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ABSTRACT 

Among the 4908 stellar systems which have at least one resolvable component brighter than V = 6.00 are 
115 systems with two or more resolvable components both brighter than V = 6.00. We model these bright 
stellar systems, both single and double, by a distribution convolving (a) formulae from theoretical models for 
stellar evolution, including giants as well as main-sequence stars, (b) an initial mass function and birth rate 
function, (c) a density distribution of stars as a function of distance from the Galactic plane, and (d) a distribu- 
tion of mass ratios and orbital separations. One reasonably firm conclusion is that masses, even in wide 
binaries, are correlated: there are too many doubly bright visual binaries (DBVBs), by a factor of 3-5, to agree 
with the hypothesis that the component masses are selected independently from the same IMF or luminosity 
function. Another conclusion is that the number of DBVBs per decibel of separation a (absolute, not 
apparent) is not constant in the range 10 < a < 105 AU, but instead decreases slowly with increasing a. We 
find distributions of mass ratio and of separation that give roughly the observed number (115) of DBVBs, as 
well as their distribution of angular separations; however, parameters in these distributions are quite sensitive 
to assumptions about stellar multiplicity. Modest discrepancies between the actual 4908 bright systems and 
our model suggest that the solar environment out to ~ 100 pc is deficient in stars above, and enhanced in 
stars below, a mass of ~2.5 M0, by factors of 2 or 3 compared with more distant regions. 
Subject headings: stars: evolution — stars: stellar statistics — stars: visual multiples 

I. INTRODUCTION 

In this paper we attempt to model the distribution of bright 
stars, both evolved and unevolved, over spectral type, with 
emphasis on “ doubly bright ” systems, where two components 
are both bright. We investigate whether, in wide (i.e., visual) 
binaries, the masses of the two components are correlated or 
not; in other words, whether the two components have masses 
which can be generated independently from the same initial 
mass function (IMF). The assumption that the components of 
wide binaries are uncorrelated is sometimes made for conve- 
nience, when analyzing binary statistics by nearest neighbor 
analysis of substantial areas of the sky (Weinberg and Was- 
serman 1988). The data set in which we test this hypothesis is 
based on the Bright Star Catalogue (Hoffleit 1983), restricted 
to F < 6.00. Because we prefer to count systems rather than 
stars, we call this the Restricted Bright System Catalog or 
RBSC. However, in considering the visual binaries contained 
in the RBSC, we restrict ourselves much more severely, to only 
those visual binaries with both components satisfying 
V < 6.00. This is because as we go to fainter and fainter com- 
panions the data will be less and less complete, and because 
many of the listed visual companions are optical, not physical, 
companions. Halbwachs (1986) has considered the larger set, 
making allowance for the probability of optical doubles at 
larger separations and/or larger magnitude differences, but our 
restriction offers us the chance to be complete. In § II we 
discuss how we can sensibly define, and count, these “ doubly 
bright ” visual binaries (DBVBs) from the RBSC. 

We describe in § III the input needed to set up a 
“ Theoretical Bright System Catalog ” or TBSC. We require (a) 
some simple interpolation formulae to describe stellar evolu- 
tion, not just in the main-sequence (MS) band but in the 

Hertzsprung gap (HG) and on the giant branch (GB) as well; 
(b) an initial mass function (IMF) and a birth-rate function 
(BRF); (c) a density distribution for stars within ~ 1 kpc of the 
Sun; (d) a distribution of mass ratios and orbital separations in 
binaries. 

Evidently there are large numbers of uncertain parameters 
which have to go into such a model, and for that reason we 
have striven for numerical simplicity in each of the four input 
areas above. Nevertheless we believe that our investigation of 
the specific hypothesis we set out to test its fairly robust. In 
§ IV we describe how the elements above are combined to give 
a TBSC. In § V we give a discussion of the results, and our 
conclusions, the principal one being that there are substan- 
tially too many DBVBs to be reasonably accounted for on the 
hypothesis that the two component masses are chosen inde- 
pendently from the same IMF, or equivalent luminosity func- 
tion. We suggest in § V that the method described here for 
dealing with stellar evolution and space distribution has 
several possible applications in related areas of astrophysics. 

II. IDENTIFYING DOUBLY BRIGHT VISUAL BINARIES (DBVBs) 

Our starting point for the observational data was the 5084 
entries in the BSC (Hoffleit 1983) which have V < 6.00, aug- 
mented to 5089 by five more stars from the Supplement 
(Hoffleit, Saladyga, and Wlasuk 1983). Following Bahcall, 
Casertano, and Ratnatunga (1987), we take this sample to be 
complete. As always in counting multiple stars down to a par- 
ticular magnitude level, we have to define carefully whether we 
are using a combined magnitude, or magnitudes of individual 
components. We also have to define carefully the concept of 
“ resolvability,” i.e., we need a criterion to define whether two 
stellar images are to be treated as separate or not. With the 
BSC, there is the problem that some DBVBs have two separate 
entries and others a single entry; and even when there are two 
separate entries, sometimes both are given the same (usually 
combined) magnitude. We identify 46 single-entry systems 

1 Institute of Astronomy, Cambridge. 
2 Work begun while at CITA, Toronto. 
3 Space Telescope Institute. 

998 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
7.

 .
99

8E
 

DISTRIBUTION OF VISUAL BINARIES 999 

which are in fact resolvable and should be included in the 
statistics. Since they are mostly systems of rather small separa- 
tion, they give more of a bias toward smaller angular separa- 
tions than is apparent just from a nearest neighbor analysis. 
Where an orbit is known, we use the angular semimajor axis in 
place of an instantaneous value of the separation; in some 
cases the orbital period is so long (up to, and even over, 1000 
yr) that one must suppose the semimajor axis is rather uncer- 
tain, but in these cases it seldom differs by much from the 
current value of separation. A further problem is that some- 
times both components are listed with the same coordinates, 
despite the fact that they may be separated by up to 100 ¿¿rad 
(20"), as is the case for a Cen (HR 5459/60). Unlike Weinberg 
and Wasserman (1988), we will include these systems (17 with 
both components having V < 6.00) in our statistics. We assign 
them also a separation which is the angular semimajor axis of 
the orbit, since almost all are systems with known orbits. This 
further biases the distribution of angular separations to smaller 
values. 

We adopted the following definitions. 
1. A “ system ” is a set of stars which is believed to be gravi- 

tationally bound. A system may consist of one, two, or more 
“resolvable components,” each of which might in principle 
contain one, two, or more “ nonresolvable subcomponents.” 
Although we would like a definitive criterion for gravitational 
boundedness, we have to accept that none is really possible: 
there will always be some weakly bound and weakly unbound 
systems whose binding energies will vary unpredictably 
through zero as a result of encounters with field stars, or inter- 
action with the Galactic tidal field. 

2. Two components are “resolvable” if and only if they 
satisfy the criterion 

log Ad > 0.22AV - 0.05 , (1) 

where A9 is the separation in /¿rad and A F is the difference in 
magnitudes. This criterion is based on the discussion of Heintz 
(1969), who showed that recognition of such systems among 
fairly bright stars is virtually complete. In practice, several 
stars have been resolved (for instance by speckle interfer- 
ometry) that are “ unresolvable ” by the criterion (1); however 
we shall adhere to criterion (1) rigorously so as to be able to 
compare our synthetic catalogs with the real catalog in a con- 
sistent way. 

3. Each entry in our “ Restricted Bright System Catalog ” is 
a system, in which one or more resolvable components has 
F <6.00. 

4. The magnitude of a resolvable component is the com- 
bined magnitude of all the subcomponents (by definition 
nonresolvable) that make up the component. 
From the 5089 entries with F < 6.00 in the BSC and its Sup- 
plement we therefore have to reject (i) 107 entries which are 
given a combined magnitude < 6.00 in the BSC, but which are 
resolvable according to criterion (1) and whose separate com- 
ponents all have F > 6.00; (ii) 74 entries which are secondaries 
(or in five cases tertiaries) of resolvable systems. We are left 
with 4908 systems, of which 115 have two or more resolvable 
components with F < 6.00 for each component. These are the 
DBVBs whose properties we will compare with theoretical 
models. 

We have already indicated that we prefer to count systems 
rather than components. Of course, this is a luxury we could not 
grant ourselves if the only information we had on components 
was their position and magnitude, as will be the case in other 

circumstances which we intend to explore in the future (see 
§ V). However, for almost all entries in the BSC some further 
information is available, and we feel that it is sensible to make 
use of it. 

In order to identify binary systems in this catalog we have 
used a nearest neighbor analysis (see Bahcall and Soneira 
1981 ; and Scott and Tout 1989 for a more detailed discussion). 
Basically one constructs the histogram of pairwise separations 
between each star and its nearest neighbor. If one believes that 
stars are isotropically distributed on the plane of the sky (i.e., 
no binaries) then the number of stars with nearest neighbors in 
the range 0,0-\-S0 is given by 

N(0, 0 + 30) = FR(0)S0 , (2) 

where 

Fr(0) = 27tn2Q9e-nnd. (3) 

Here n is the surface density of stars and Q is the solid angle of 
the survey. In fact, since the surface density of stars n(À) will in 
general depend on Galactic latitude À, then the appropriate 
distribution is 

Fr(0) = 4n20 n(A)2 sin Ae-nW*e2dA . (4) 

Figure 1 shows the nearest neighbor distribution of the 5084 
stars with F < 6 in the BSC. Dotted lines superposed on this 
histogram show the theoretically expected nearest neighbor 
distributions for a nonisotropic distribution with density 
varying with latitude (in Gould’s Belt coordinates rather than 
Galactic coordinates). There is a fairly clear excess of 62 pairs 

logA0,^rad 

Fig. 1.—Distribution of angular separations among bright stars. The histo- 
gram includes, in white bars, separations which are optical, or probably 
optical, and in light cross-hatching, systems which are represented in the BSC 
by single entries. Moderately cross hatched regions are pairs believed to be 
physical; these include several whose components are listed in the BSC as 
having identical positions. Heavily crosshatched regions are tertiaries of triple 
systems and are not counted in our statistics of DBVBs. Note that each binary 
of Table 1 contributes two nearest neighbors to this figure. Dotted horizontal 
bars are the expected numbers from eq. (4). 
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with separations less than 1 mrad ( ~ 200"). In this region one 
would expect three chance pairs. It is interesting to contrast 
this with the results of Bahcall and Soneira (1981). In their case 
they used the Weistrop (1972) data which cover a field of 13.5 
square degrees. In this region, to K = 12 there were 244 stars 
and the nearest neighbor distribution showed a significant 
excess of pairs at A0 < 0.6 mrad. They found 19 pairs where 
one would expect eight chance superpositions on average. 
Thus further observations were required to determine the 
reality or otherwise of the candidate binaries. Latham et al 
(1984) found that of the 19 candidate binaries, six were real and 
two were possibles. In our case we can be rather sure that 
essentially all of our candidate binaries are real and so detailed 
observations of individual candidates are not necessary. In 
fact, only one of the 62 nearest neighbor pairs closer than 1 
mrad is, on the basis of radial velocity and proper motion 
discrepancies, accidental. 

It appears that by using a larger sky coverage sample and a 
brighter limiting magnitude than Bahcall and Soneira we have 
managed to arrange that a large sample of real binaries can be 
easily separated from a population of “random” binaries. 
However, as a cautionary note, we should also point out that 
for 1 mrad < 6 < 5 mrad there appears also to be a significant 
excess of pairs, as also noted by Weinberg and Wasserman 
(1988); to be precise, there are 273 observed as against 170 
expected nearest neighbor separations in this range. This seems 
odd in view of the fact that there is an obvious tailoff in the 
distribution at À0 < 1 mrad. Although we do not address this 
problem in this paper we feel that it could be due to an inho- 
mogeneously distributed sample of binaries which, if closer 
than the bulk of the other binaries, would lead to an excess of 
pairs at large separations. Alternatively, it may be because of 
clustering as in the Pleiades and Hyades, and may indicate, as 
Weinberg and Wasserman suggest, a quite substantial propor- 
tion of stars from disintegrating OB associations. 

It appears that the nearest neighbor analysis applied to large 
sky coverage sampled to reasonably bright limiting magni- 
tudes is a very fruitful means of detecting binaries. Taking a 
sample with a slightly fainter limiting magnitude and similar 
sky coverage should yield an even larger sample of wide binary 
systems. Even if one makes the limiting V fainter until the near 
gap (0.3 < A0 < 1 mrad) between the real binaries and the 
“random” pairs is eliminated, then one can still produce a 
large sample of almost certain binaries without need of further 
observations. Work is in progress on this point. For a substan- 
tially higher surface density of stars it might be desirable to 
consider not just nearest neighbors but near neighbors: see 
Scott and Tout (1989). 

The BSC presents, as we have already indicated, a number of 
problems, which are presumably due to the historical develop- 
ment of the subject over about 80 years. There are several 
single entries in the Catalog that do in fact represent two 
resolvable stars. For these cases the Catalog usually contains a 
combined magnitude, a AF and the angular separation of the 
components; occasionally the magnitude quoted is that of the 
brighter component rather than the combination, even though 
the entry is single. We have searched the Catalog (by eye as 
well as by machine) for cases where, when these kinds of entries 
are split into their component stars, the individual components 
are bright enough to be included in our magnitude-limited 
sample, and also are resolvable with the criterion discussed 
above. 

This procedure yields almost as many (46) DBVBs as the 

nearest neighbor analysis (62). One of the latter (against three 
as expected statistically) is known to be optical, and there are a 
further eight DBVBs with separations above 1 mrad that could 
not have been identified purely by nearest neighbor analysis, 
but which are almost certainly physical on the basis of other 
evidence. This gives us our total of 115 DBVBs. For a number 
of systems with known visual orbits we have used the angular 
semimajor axis rather than the separation. However, when 
constructing our theoretical comparisons we will always 
simply take the angular separation to be the semimajor axis 
divided by distance. We do not make a correction for a dis- 
tribution of eccentricities, of inclinations, or of epochs. Since 
the range of angular separations covers three orders of magni- 
tude, we believe these effects will be minor. 

We have not included as DBVBs five pairs of stars which are 
described as common proper motion (cpm) pairs in the BSC, 
but which have the properties that (a) the separation is large 
(1-10 mrad), (b) both entries are intrinsically very bright stars, 
and therefore very distant (~1 kpc). The “common proper 
motion ” of these pairs is effectively zero, as one would expect, 
and the actual separations must be ~ 1-10 pc. Possibly these 
pairs have a common origin, but we think it is unlikely that 
they represent bound systems. Among the 115 DBVBs we 
accept, the distribution of angular separations is shown in 
Table 1. The near cutoff at 1 /¿rad is due simply to the fact that 
the resolvability criterion (1) does not allow binaries to be 
deemed “ resolvable ” for A0 < 0.9 /¿rad. Although the largest 
angular separation is 12 mrad, comparable to the expected 
mean nearest neighbor separation of ~25 mrad for ~5000 
systems distributed at random over the whole sphere, it 
appears to be real on the basis of radial velocities and proper 
motions, and corresponds to a physical separation of ~0.5 pc. 
However the geometric mean angular separation for DBVBs 
is ~30 /¿rad, and corresponds (from our modeling below) to 
-400 AU. 

The uncertainty in the number of DBVBs is, we believe, of 
the order of 10%. As well as the five pairs described above, 
which we reject provisionally, there are several possible resolv- 
able pairs where the magnitude of at least one component is 
close to 6.00 but rather uncertain. Specifically, if the separation 
is a few /¿rad, then usually a combined V is known fairly accu- 
rately, but the magnitude difference A F is not. A further 
problem is that there are five physical triples such that all three 
resolvable components have F < 6.00. We have simply reject- 
ed the faintest component (the most distant, in three cases). For 
a further handful of cases there are some reasons for doubting 
either that the system really is double (some bright stars having 

TABLE 1 
Numbers of Systems in the RBSCa 

log AO Number 

<0.0 .. 
0.0-0.5 
0.5-1.0 
1.0- 1.5 
1.5- 2.0 , 
2.0- 2.5 
2.5- 3.0 
3.0- 3.5 , 
> 3.5 .. 

3 
22 
23 
20 
19 
13 

3 
11 

1 
a Divided into angular separation bins 

(//rad). 
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received remarkably little attention over the centuries) or that 
it is bound. 

To check that our adopted stellar evolutionary approx- 
imations and IMF (below) are reasonable, we divided the 
RBSC into nine ranges of spectral types, corresponding (on the 
MS) to roughly equal intervals of log M. Because spectral type 
B covers a much greater range of masses than any other type 
(except M) we subdivided it into early B, mid B and lateB, as in 
Table 2. We have taken temperatures corresponding to spec- 
tral type boundaries from Popper (1980), and for early-type 
supergiants from Fitzpatrick (1988). The ratio of DBVBs to 
stars in each spectral-type bin decreases from ~7% at the 
earlier types to -1% at the later. This decrease can be 
explained, as our model verifies, by the fact that A F is much 
more sensitive to mass ratio at later types than at earlier. 

A list of HR numbers (i.e. of numbers in the Bright Star 
Catalogue) of DBVBs, of stars that we treat as single according 
to criterion (1), and of stars that we reject because, though each 
is a single entry in the BSC, they are resolvable and both 
components are fainter than V = 6.00, is available on request. 

III. THE INPUT FOR A THEORETICAL BRIGHT SYSTEM CATALOG 
In § I we identified the four main ingredients required for 

construction of a TBSC. 

a) Stellar Evolution 
We use a number of very elementary interpolation formulae 

(given in the Appendix) which allow us to compute very 
rapidly the visual luminosity Lv and effective temperature Te of 
a star with a given mass and age. We do not believe that for the 
present analysis (or indeed for several other purposes) it is 
necessary to take into account every lump and bump on a 
theoretical track in the H-R diagram, and so we have con- 
tented ourselves with simple formulae. 

Using a Monte Carlo approach, we generate 2 x 104 binary 
systems with a spectrum of masses and ages (§ Illh), positions 
in the Galaxy (§ IIIc), and binary parameters (§ Hid). For each 
binary we compute Lv and Te for both components, and test 
for resolvability using condition (1). Then we determine which 
unresolvable binaries have combined apparent magnitude 
V < 6.00, which resolvable binaries have only one resolvable 
component with V < 6.00, and finally which resolvable 
binaries have both components with V < 6.00 (the theoretical 
DBVBs). Many of the 2 x 104 systems we generate are suffi- 
ciently faint intrinsically that even at the distance of the nearest 
stars (~ 1 pc) they do not contribute at all to the TBSC, but at 

TABLE 2 
Numbers of Systems in the RBSC, Divided into Temperature Bins 

Spectral Type Approximate 7¡,(103 K) Te(103 K) Number in 
Range Mass (MS) Dwarfs Giants RBSC 

OS-BO3   >16 >29 >23 54 
B0.3-B2   8-16 22-29 17-23 217 
B2.5-B5   4-8 15-22 13-17 273 
B6-B9.5   2.2-4 10-15 10-13 499 
A    1.5-2.2 7.0-10 7.4-10 951 
F   1.0-1.5 6.0-7.0 5.1-1A 622 
G...  0.8-1.0 5.2-6.0 4.75-5.7 682 
K  0.5-0.8 3.9-5.2 3.9-4.75 1259 
Mb   <0.5 <3.9 <3.9 351 
Total  ... ... ... 4908 

3 Includes Wolf-Rayets. 
b Includes S and C stars. 

the same time some of the most intrinsically luminous can 
contribute to the TBSC several times over. We have to normal- 
ize the space density so that the right total number (4908) of 
bright systems is obtained, although given the Monte Carlo 
nature of our calculation, this right total will only be approx- 
imately achieved in a particular TBSC. 

We believe our theoretical models for stars in the MS band 
are accurate to better than 10% in both Lv and Te, but our 
interpolation formulae for Hertzsprung gap stars, red giants, 
and red supergiants are certainly less accurate. However the 
main parameter, from the point of view of,imitating the RBSC, 
is the relative lifetime in the red giant (RG) and MS stages, and 
we believe we can approximate this to -10%. Apart from the 
fact that our interpolation formulae are too simple to represent 
theoretical evolutionary models to better than this, there are 
further uncertainties as follows. 

1. We have used only a single initial composition, roughly 
corresponding to Population I (i.e., we take X = 0.7, Y = 0.28, 
Z = 0.02). But most bright stars appear to be Population I, so 
we believe this will be a minor source of error. 

2. The theoretical evolution of massive stars (>25 M0) has 
long been a source of conflict with observations. This is usually 
attributed either to stellar wind mass loss, as in Of stars and 
Wolf-Rayets, or to convective overshooting, or to both. We 
avoid a detailed understanding of this conflict by simply insist- 
ing that stars over 25 M0 restrict their evolution to the main- 
sequence band, followed by a “Wolf-Rayet” phase with a 
given Lv and Te\ and then they metamorphose directly into 
neutron stars or black holes. 

3. Theoretical red supergiants, even of fairly low initial mass 
(1-2 M0), can evolve briefly to very high luminosity (^ 105 L0) 
as their degenerate cores approach the Chandrasekhar mass. 
Presumably mass loss by stellar winds prevents this in practice. 
We therefore impose artificially an upper limit to L (or, in 
effect, core mass) of the form L < Lmax(M), where M is the 
initial mass. Beyond that point we assume the star is a white 
dwarf. We do not at present allow a “ hot subdwarf” phase, but 
will have to do so when extending the magnitude limit to 
V = 10 or more. 

4. No allowance was made for interaction in close binaries, 
e.g., for Roche lobe overflow (RLOF). This is partly because 
our binary distribution (§ Hid) mainly generates wide binaries, 
with a ^ 10 AU, P > 30 yr. Even so, some of the binaries we 
generate, will be expected to undergo RLOF, particularly at a 
late stage in evolution. However we suggest, following Tout 
and Eggleton (1988), that stellar winds, enhanced by tidal inter- 
action prior to RLOF, may usually prevent RLOF in systems 
with a > 3 AU. This would reduce the lifetimes and maximum 
luminosities of these binaries. In future investigations we 
intend to include binary interaction, if necesary. 

b) The IMF and BRF 
It is commonly assumed that the number of stars of a given 

mass and age can be separated into the product of an IMF (a 
distribution over masses) and a BRF (a distribution over ages). 
This is done more for convenience than from conviction, since 
it is all too easy to imagine that the IMF is actually time- 
dependent, or equivalently the BRF mass-dependent. Never- 
theless we cling to this simplification for want of quantifiable 
models of greater complexity. Our algorithm could in fact 
easily incorporate a time-dependent IMF, at the expense of 
including further coefficients whose values would be hard to 
determine at least from the present investigation of the RBSC. 
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Fig. 2.—The IMF of Miller and Scalo (1979) is shown with dots, and our 
approximation to it, derived from eq. (5), is shown as a continuous curve. 

Most bright systems contain moderately massive stars (late B, 
A main-sequence stars, and G, K giants which are presumably 
their descendants), and so come from a limited portion of the 
combined IMF/BRF, which may more reasonably be assumed 
to be separable. 

We adopted a simple approximation to the IMF of Miller 
and Scalo (1979), which appears like a power law at moder- 
ately high masses (~ 1 M0 to 20 M0), steepening at still higher 
masses, and with a turnover at low masses (per unit interval of 
log M, our IMF peaks at M ~ 0.18 M0). We find it simplest to 
express our IMF in the form we compute it. Let X be a random 
variable with uniform distribution in the range [0, 1]. Then we 
take a star to have mass (in solar units) 

0.19X 
M =  

(1 - X)0-75 + 0.032(1 - x)0-25 * 

For X ~ 0.7 — 0.999, this gives a Salpeterish distribution 

dX 
n(M) = -— « const. M~1/3 , 

dM 

(5) 

(6) 

and for X 1 it gives 

n(M) « const . (7) 

For X > 0.999, the IMF slope in equation (6) steepens from 7/3 
to 5. The median mass is 0.15 M0 and the mean mass 0.43 M0. 
The IMF for very low masses (<0.1 M0) is of course not 
well-determined from observation, although constraints on the 
amount of dark matter in the Galaxy have been suggested. 
However our IMF, equation (5), means that the 50% of stars 
with M < 0.15 M0 contribute only 8% of the mass, and this is 
hardly excessive. Figure 2 compares our assumed IMF with 
Miller and Scalo’s. 

Although stars with M < 0.8 M0 (89% of stars, from eq. [5]) 
hardly figure in the RBSC, they are important for the hypothe- 
sis we are testing, since if two components of a binary are 
chosen at random from the same IMF or luminosity function, 
it matters whether there are many or few stars of low mass for 
each one of high mass. 

The BRF is perhaps less problematic than the IMF, because 
although the rate of production of stars in the solar neighbour- 
hood can hardly be supposed to have been constant since the 
origin of the Galaxy, most of the RBSC entries are moderately 
massive stars which must have been born in the last 10%-20% 

of the Galaxy’s lifetime. We therefore content ourselves with a 
formula for the age t (in Myr) of a random star : 

t=YtG&l, (8) 

where 7, like X in equation (5), is a random number uniformly 
distributed in [0,1]. We take iGal, the age of the Galaxy, to be 
1.2 x 104 Myr, but can easily vary this parameter. 

c) The Galactic Distribution 
On the assumption that most bright systems are well within 

1 kpc of the Sun, we use a formula for the number density 
n(z, t) of stars which is independent of R, the distance from the 
Galactic center, and dependent only on z (distance from the 
Galactic plane) and t (age), the latter by way of an age- 
dependent characteristic height h(t). For considerable later 
numerical convenience, we adopt a z-dependence 

3 / z2V5/2 

(9) 

where h(i) is assumed to increase with age t as 

h = h0(t/tG^
2 = 1200(i/iGal)

1/2 , (10) 

with h(t) in pc and i, iGal in Myr. Note that h is not a scale 
height as usually defined, since n decreases by a considerably 
greater factor than e as z increases from h to 2/i, for example. 
Integrating equation (9) over z and then t gives the total 
number of stars per square parsec in the Galactic plane as 
1/ndl, so that d0 is the parameter which determines the pro- 
jected number density of stars. Projected mass density is 

<j = 0A3/ndl MG/pc2 . (11) 

Our choice of constant in equation (10) is based on the 
analysis of Kuijken and Gilmore (1989) of the density of K 
dwarfs at distances up to ~ 3 kpc from the plane. Since the K 
dwarfs will presumably represent a mixture of all ages, we have 
to integrate equation (9) with respect to age t, using equation 
(10), to get a distribution which we can compare with Kuijken 
and Gilmore (1989). The comparison, with h0 = 1200 pc, is 
shown in Figure 3. Because equation (10) rather naively gives 
h = 0 when t = 0, the age-integrated distribution shown in 
Figure 3 has a cusp in it at z = 0, even though equation (9) 

Z (pc) 
Fig. 3.—The numer density of K dwarfs as a function of distance from the 

Galactic plane. The dots and continuous curve are from Kuijken and Gilmore 
(1989). The open circles and broken line are our approximation obtained by 
integrating the distribution of eq. (9) over age, using eq. (10) for the time- 
dependent scale height and assuming a constant birth rate over the age of the 
Galaxy. 
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does not. According to G. Gilmore (private communication), 
the more distant K dwarfs in Figure 3 may have their distances 
somewhat overestimated, because lower metallicity at greater z 
has not been allowed for. This would make our approximation 
somewhat better than it appears. 

From equation (9) the number of stars of age t within dis- 
tance d of the Sun is 

N(d, t) = 
1 d3 

dl ¿Gal yjd1 + h2 (12) 

a formula whose simplicity is the basis for adopting the partic- 
ular z-dependence of equation (9). 

d) Distribution of Mass Ratios and Orbital Separations 
Since many stellar systems have multiplicity higher than 

two, it might be desirable to set up a model of stellar multiplic- 
ity in general. For some present purposes, however, it will be 
sufficient to assume that all stellar systems are exactly binary. 
We will find that one hypothesis we test produces far too few 
DBVBs, even when all systems are assumed to be wide binaries 
(a > 10 AU), and so a fortiori it will fail under a more reason- 
able distribution of separations. 

It would not be difficult for us to model stellar multiplicity in 
substantially more detail by, for instance, allowing each com- 
ponent of the wide binary to have a certain probability of being 
a close binary, with a distribution of mass ratio, and of period, 
that would probably be quite different from wide binaries. We 
have such a possibility in hand for a future investigation of the 
statistics of interacting binaries. However, we hope it will be 
marginal for the present investigation. 

Adopting for the present the assumption that all systems in a 
TBSC are to be binaries, we model the distribution of separa- 
tions by 

Z being another random number with uniform probability in 
[0,1]. This gives a uniform distribution of log a for a0 < a < 
au and we take a0 = 10 AU and a^ = 105 AU - 0.5 pc. As 
indicated above, our assumption that all systems are binary, 
with separation given by equation (13), is an extreme, since 
some stars will be single and others close binaries; but we shall 
find that even this extreme does not yield enough DBVBs, thus 
strengthening our case that the two masses in wide binaries are 
to some extent correlated. We refer to the model above, with 
component masses chosen independently from the same IMF, 
equation (5), and separations from the distribution (13), as our 
model 2 (model 1 being single stars only, which we do not 
discuss here). 

Anticipating that the above assumptions will not adequately 
model the DBVBs of § II, we define an alternative model 3 as 
follows. First, the total mass of a binary is determined from 
equation (5); second, the mass ratio Q(Q > 1) is taken to satisfy 
the normalized distribution 

Qn(Q) = 
4oc/n 

ea + G~a 

which is obtained if Q is given by 

ßa 
nX' nX' 

= sec —— + tan —- , 
2 2 

(14) 

(15) 

with X' another random variable uniformly distributed in 
[0,1]. The constant a will be chosen to give about the right 
number of DBVBs. The form of equation (14), and consequent- 
ly also equation (15), may seem ad hoc but we use it because, 
although it is little different from the traditional power law in Q 
at large Q, it is more sensible in that it gives the symmetry one 
would expect physically between ß < 1 and ß > 1; an exact 
power law would give a cusp at ß = 1. This is independent of 
the fact that we adhere for consistency to ß > 1 only: presum- 
ably nature does not. 

The separation, in our alternative model 3, is taken to satisfy 
a distribution rather similar to equation (14), with ß replaced 
bya/a0: 

A ,16) 

although the normalization is slightly different so that a does 
not range from unity to infinity, as does ß, but from 10_3ao to 
103ao. This means that a/aQ is generated by a formula similar 
to equation (15), except that the constant in it is not quite 7r/2, 
and X' g [ 1,1]. Note that whereas there is a slight rationale 
behind the form of equation (14) for ß, there is less behind 
equation (16) for a; we simply find it convenient to assume a 
power law for large a, with necessarily some turnover at small 
a. Following Heintz (1969), we anticipate that we can adopt 
ß = 0.33, and a0 = 30 AU. In fact we shall not attempt to vary 
these quantities to get a better fit. 

IV. SETTING UP A TBSC 
According to the input described in § III, we need four 

random numbers to generate a system: one for each mass, one 
for the age, and one for the separation. Thus even with N* = 
2 x 104 systems, the value we use most often, parameter space 
is not very well covered, and this is especially true of high- 
luminosity systems, whose lifetimes are short compared with 
the age of the Galaxy, iGal. We therefore modify equations (5), 
(8), and (12) in a complementary way, as follows. For a single 
star, choose two random numbers U, V e [0,1], and use a 
transformation X = X(U), Y = Y(U, V) to map the unit 
square on to itself, crowding points toward higher masses, and 
for each mass toward that age at which the luminosity is great- 
est. This transformation is listed in the Appendix. We then 
have to modify equation (12), which determines V, the number 
of systems to be expected within a sphere of radius d, thus : 

d(X, Y) 1 d3 

d(U, V) d2
0N* ’ 

(17) 

The area element in U, V space is of course 1/V*. For a binary 
with independently chosen masses we need two applications of 
X(U) and hence a slightly more elaborate Jacobian in equation 
(17); but if instead the secondary mass is generated from equa- 
tion (15) there does not appear to be any need to bias this 
distribution in order to achieve reasonably uniform sampling 
of the three-parameter space. Whichever model is used for 
generating the two masses, it is the larger mass which is used to 
bias the choice of age. 

We now have two component masses Mp M'. as well as an 
age tj for the jth system out of AT*. We can now use the stellar 
evolution algorithms of the Appendix to work out the visual 
luminosities of each component and, from their sum, compute 
dp the distance out to which the system (if nonresolvable) 
would be visible down to a given limit, V = 6.00 in our case. 
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Equation (17), with h a function of tj given by equation (10), 
can then be used with d = dj to find Nj = N(dj), the total 
number of such systems which should be visible ; reddening will 
be allowed for later. 

Round Nj down to the nearest integer, [AT,]; this may of 
course be zero, a case we deal with shortly. If nonzero, we now 
generate [Nj] systems, each consisting of the same two stars, 
but with various separations selected at random using equa- 
tion (12). Their distances are also selected at random using 
equation (17) in reverse: it is to be solved for d with the left- 
hand side replaced by [Nj]W, with W uniformly distributed in 
[0,1]. Once the distance is determined we can allow for 
reddening, which for the present we take to be isotropic and 
homogeneous, at 1.9 mag per kpc (Allen 1973). Further, the 
distance determines the angular separation, and hence via cri- 
terion (1) whether the system is resolvable or not. We then 
accept or reject the system for the TBSC on the same principle 
as for the RBSC (see § II): accept if either unresolvable with 
combined V < 6.00, or if resolvable and one or other V < 6.00 
(or both); and otherwise reject. Those with two resolvable 
bright components are the theoretical DBVBs. 

If [Nj] is zero, we do not just reject the system out of hand. 
This would mean, for example, that we would never get any K 
dwarfs into the TBSC. What we must do is accumulate the 
fractional parts, Nj — [Nj], in a large, but not too large, collec- 
tion of boxes in the (Lv, Te)-plane of the primary (the brighter 
in Lv); and when the accumulation exceeds unity, generate an 
extra model of the type just computed. We do this even if 
[Nj] > 0, though it is less important there. We use 9x21 
boxes, with critical Te as given in Table 2, and equal intervals of 
log Lv in the range 10_3-106*5 L0. 

V. RESULTS AND CONCLUSIONS 

To set up a TBSC for comparison with the observed RBSC a 
number of parameters have to be specified, or alternatively 
they might be determined by attempting a least-squares fit. For 
our model 2 of § Hid we allow only one parameter to be free, 
i.e., d0 in equation (9), which determines the surface density a of 
stars projected on the Galactic plane at the solar neighbor- 
hood. We take the Galactic age iGal to be 12,000 Myr, follow- 
ing Miller and Scalo (1979), and then determine d0 by trial and 
error to give the right number (4908) of systems. Since we use a 
Monte Carlo approach, we will of course not get this number 
exactly right in any one TBSC. In our alternative model 3 of 
§ Hid we treat two parameters as free : we add a, determining 
the distribution of mass ratios, to d0. 

Tables 3 and 4 show the distribution of stars in spectral type 
bins, and of DBVBs in angular separation bins, for the RBSC, 
our standard model 2, and our alternative model 3 with 
a = 0.8, a0 = 30 AU, and ß = 0.33). For each of our model 

TABLE 3 
Distribution of Bright Stars over Spectral Type of Primary 

Spectral Type RBSC Model 2 Model 3 Model 4 

O3-B0 . 
B0.3-B2 
B2.5-B5 
B6-B9.5 
A   
F   
G   
K   
M  
V < 0.0 .... 
DBVBs .. .. 
¿o(Pc)   
<7(M0/pc2) . 

54 56 ± 3 
217 115 ±8 
273 433 ± 22 
499 960 ± 50 
951 658 ± 36 
622 316 ± 12 
682 586 ± 33 

1259 1265 ± 46 
351 444 + 41 

4 11 + 2 
115 27 ±4 

0.088 
35 

43 ±4 
104 ±9 
399 + 25 

1005 ± 65 
687 + 23 
335 ± 35 
611 ±49 

1312+ 111 
434 ± 62 

9 ± 3 
119 ± 12 

0.055 
45 

42 ±5 
102 + 5 
336 ± 29 
567 + 35 

1097 ± 35 
591 ± 33 
768 ± 22 

1190 ±94 
330 ± 76 

2 ± 2 
113 ± 15 

0.054 

results we averaged 20 Monte Carlo runs, and present an rms 
scatter as well as the average. It seems clear that model 2 gives 
only a quarter as many DBVBs as required, a discrepancy of 
~ 7 <7 if we estimate the rms error of the RBSC number to be 
~ 12 (see § II). Before attaching too much weight to this dis- 
crepancy, however, we should note that several other discrep- 
ancies exist, some of them potentially more significant. The 
most significant appears to us to be that we obtain too many 
late-B stars and too few A + F stars, both by factors of ~ 1.5-2. 
However the total for all three bins together is about right. So 
also is the total of evolved giants (mainly G, K, and M). The 
late-B/(A + F) discrepancy cannot, we believe, be just an error 
of the IMF, since the range of mass is quite limited. The 
increase in slope of the IMF that would be required would be 
enormous. Nor does it seem reasonable that the stellar models 
are in error by such a large and rapidly changing amount, 
particularly since the problem is mainly in main-sequence 
stars. The stellar models we have used are in remarkably good 
agreement with Popper’s (1980) compilation of masses, lumin- 
osities, and effective temperatures (see Fig. 4, in the Appendix). 
A further discrepancy in our models is that we never achieve 
the near-equality of numbers of early-B and mid-B stars 
evident in the RBSC. However, we are fairly sure that this 
represents a statistical quirk in the observed distribution rather 
than an important effect that we should seriously endeavor to 
model. We do not have any clear concept of the standard 
deviations in the observed numbers (and are unlikely to unless 
we are able to draw up a similar RBSC centered on different 
stars than the Sun), but we suspect the inherent standard devi- 
ations in the observed data are large enough to accommodate 
the transfer of even 50 to 100 stars from the early-B to the 
mid-B bin. 

We believe that the most likely cause of the late-B/(A + F) 

TABLE 4 
Numbers of Systems Divided into Angular Separation Bins (/¿rad) 

Model log Ad; RBSC 

<0.0 0.0-0.5 0.5-1.0 1.0-1.5 1.5-2.0 2.0-2.5 2.5-3.0 3.0-3.5 >3.5 
3 22 23 20 19 13 3 11 1 

Model 2  0±0 2±1 3±1 4±2 4±2 3±2 3±2 4±2 4±2 
Model 3  0±1 19 ± 5 28 ± 4 26 ± 4 19 ± 4 13 ± 3 10 ± 2 4±2 1±1 
Model 4  0±1 20 ± 7 24 ± 5 23 ± 6 19 ± 3 12 ± 3 9±2 4±2 2±1 

Note.—All entries have been rounded to integers, so row totals need not agree with Table 3. 
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discrepancy is nonuniformity of the stellar population over 
length scales of ~ 100 pc, or time scales of ~ 100 Myr, or both. 
Thus if the solar neighborhood out to ~ 100 pc contains fewer 
massive (>2.5 M0) stars by perhaps a factor of 3, while con- 
taining more less-massive stars by perhaps a factor of 3, the 
discrepancy can be avoided. Recently, Gilmore and Roberts 
(1988) have emphasized the nonuniversality of the IMF, and of 
the stellar luminosity function on which the IMF is based. 

Another reason for accepting that the solar neighborhood 
out to ~ 100 pc is short of massive stars is the fact (also shown 
in Table 3) that our TBSCs tend to have too many very bright 
stars, V < 0.00: typically 11 + 2 as against four observed. The 
excess very bright stars are generally massive, and nearby in 
the sense of the previous paragraph-often one or two will be O 
stars at perhaps 50 pc, though they are more commonly G or 
K supergiants of 5-10 M0 at a similar distance. Yet our TBSC 
clearly does not contain too many massive stars altogether. 
Down to F = 6.00, O to mid-B stars are about right in total 
number. We feel that this also is consistent with our tentative 
picture that the solar neighborhood out to ~ 100 pc is deficient 
in massive stars. 

To test this very crude picture, a TBSC (model 4 in Tables 3 
and 4) was set up to resemble model 3 except for the following 
modifications: first, all stars more massive than 2.5 M0 and 
closer than 100 pc were rejected; second, stars less massive 
than 2 M0 were increased in number by a factor of 2.5, except 
that those more distant than 80 pc were rejected. This gave 
excellent agreement with the RBSC, solving both the late-B/ 
(A + F) anomaly and the V < 0.00 anomaly while keeping the 
good agreement between late giants and early dwarfs; 
although little can be read into this since the alterations were 
so ad hoc. It did not solve the early-B problem, but we have 
argued that this is less significant. Evidently a roughly equiva- 
lent stratagem would be to multiply the IMF by a factor of ~4 
for masses below ~2.5 M0. But we feel it is much less likely 
that there should be a “universal” IMF with such an abrupt 
jump in it, than that there should be variations in the IMF on 
length scales of ~100 pc, or (more-or-less equivalently) on 
times scales of ~ 100 Myr. 

The values of surface density a of the Galactic disk in the 
solar neighborhood given in Table 3 are roughly in agreement 
with Kuijken and Gilmore (1989), who obtained 46 + 9 
Mq/pc2. For model 2 the average mass of a system is of course 
twice that of a single star, or of a single system in model 3. The 
larger surface density of model 3 reflects the fact that putting 
mass into binaries with components of comparable mass 
reduces the light-to-mass ratio substantially. For model 4, cr is 
not definable since equation (11) relating a to d0 presupposes a 
universal IMF. 

If provisionally we accept that our late-B/(A + F) discrep- 
ancy is accounted for in the manner suggested above, then we 
believe our conclusion regarding DBVBs can still be sustained. 
In particular, the number of DBVBs and their distribution 
over angular separations was found to be barely altered from 
model 2 when we computed a variant of model 4 which con- 
tains the same assumptions about mass ratios and separations 
as model 2. Thus we reject the model 2, with all the more 
conviction because it assumes a// stars are binaries with a > 10 
AU. Our alternative model 3 with a = 0.8 gives much better 
agreement, both in terms of total number of DBVBs and their 
distribution over angular separations. It is noteworthy that the 
flat distribution (13) over log a used in model 2 transforms into 
a similarly flat distribution over log A0 (Table 4), so that the 

actual distribution of log A0 in the RBSC clearly requires a 
falling off of probability with log a at separations large enough 
to produce resolvable visual binaries as determined by cri- 
terion (1). A number of tests with our Monte Carlo procedure 
have established that the minimum separation for producing 
visual binaries in significant numbers in a TBSC is about 
10-100 AU. In trying to model both the total number and the 
angular separation of DBVBs better than model 2 we found 
model 3 satisfactory, but we have not attempted a least-squares 
solution. It is clear, for instance, that the value of a cannot be 
well-defined, at least from our investigation alone. If we 
assumed that only 50% of all systems were binaries, we would 
need a value for a larger by a factor of about 2 to obtain the 
same total of DBVBs. We emphasize that by restricting our- 
selves to that rather limited but carefully definable class of 
visual binaries that are DBVBs we can only claim to be explor- 
ing a range of mass ratios 1 < Q < 3, so we cannot determine 
whether the distribution (14) extrapolates to much larger 
values of Q. However, we do not believe it would be helpful to 
include all the companions fainter than V = 6.00 that are 
noted in the BSC since it is difficult to assess completeness, and 
also since a high proportion of them are in fact optical. Models 
3 and 4 show a decreasing proportion of DBVBs at later types, 
from ~ 5% at the earlier to ~ 1% at the later, very much in line 
with the RBSC. We also emphasize that we can say nothing 
about the applicability of our distributions to masses less than 
solar, since such stars contribute very little to the RBSC, but 
we have little doubt that there exists a great predominance by 
number of these low-mass stars, as Miller and Scale’s (1979) 
IMF shows. 

The strength of our approach is, we believe, that we are 
making a direct confrontation between an entirely theoretical 
model on the one hand and an entirely observational set of 
data on the other hand, a set which has not been truncated 
somewhat arbitrarily by, for example, excluding stars bluer 
than B — V = 0.0 on the grounds that they may be Gould’s Belt 
stars (Bahcall, Casertano, and Ratnatunga 1987). Provided we 
apply to our theoretical “ catalog ” exactly the same criteria as 
are used for admission to the observed catalog, we can make a 
direct comparison; thus all of our assumptions are included on 
an equal footing, and their influence individually can be assess- 
ed. Admittedly, in our present study we had to “truncate” the 
observational data set rather significantly, especially as regards 
DBVBs. A preliminary assessment suggested to us that there 
would be a rather larger number of these, perhaps 250, but 
then we found we had to reject several (107, § II) on the basis 
that though the combined magnitude was less than 6.00, the 
systems were resolvable and had separate magnitudes, both 
greater than 6.00. Also, the historical development of the BSC 
has meant that some double stars had one entry and others 
two, in a very unsystematic way: some double-entry systems 
have separations less than 10 /¿rad, and some single-entry 
systems separations greater than 1 mrad. Thus our 
“ truncation ” of the BSC to the RBSC, in § II, was an attempt 
to convert the Catalog to what would have been listed if every 
resolvable component had been listed to F = 6.00. 

We believe an approach like ours could be very fruitfully 
applied to larger data sets, such as Schmidt plates down to 
F = 20.0, or the Guide Star Catalog (Lasker et al 1988) which 
should be complete to F = 14.0 for latitudes greater than 30°. 
For such deeper surveys we should however have to incorpo- 
rate a more sophisticated Galactic model, as well as evolution 
of Population II (and intermediate-metallicity) stars. Another 
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circumstance in which we believe that the simple kinds of 
approximation that we make to stellar evolution would pay off 
is in combining stellar evolution with an iV-body gravitational 
calculation so that the evolution of clusters of stars such as 
M67 can be followed more physically than by assuming that 
stars are points of constant mass. 

P. P. E. is grateful to the Canadian Institute for Theoretical 
Astrophysics for financial support while this work was initi- 
ated, and to the Space Telescope Science Institute for support 
while it was completed. C. A. T. is grateful to the Science and 
Engineering Research Council for financial support. 

APPENDIX 

THE EVOLUTION FORMULAE 

Interpolation formulae describing the radius and luminosity of a star given its mass and age are based on models evolved using 
the stellar evolution program developed by Eggleton (1971,1972). Figure 4 shows an H-R diagram on which are plotted theoretical 
evolutionary tracks for 1, 2,4, 8,16, and 32 M0 stars. All stars were started on the zero-age main sequence (ZAMS) with a uniform 
composition of hydrogen, X = 0.7, helium, Y = 0.28, and metallicity, Z = 0.02. Also plotted are observational data points taken 
from the review of stellar masses by Popper (1980), except for some revisions by Popper (1982). All these points have fairly 
well-determined masses and are grouped according to mass in the ranges between our theoretical models. The data appear to 
indicate that apart from a few small discrepancies our modeling of stellar evolution across the main sequence is fairly good. 
Unfortunately there is no such wealth of comparably good data on the masses of red giants and we have just to trust our models. 
Phases of evolution that take place rapidly compared with the usual nuclear evolution of the stars are shown as dotted lines on our 
tracks. We do not take as much care over modeling these stages since they are less likely to contribute much to our catalogues. 

We regard the ZAMS as particularly important, since it establishes the position in the Hertzsprung-Russell diagram where the 
star spends most of its lifetime (i.e., the MS band). We therefore use 38 models with masses varying from 0.1 to 100 M0 to obtain the 

log T/K 
Fig. 4.—H-R diagram showing data from Popper (1980, 1982) as individual symbols identified by mass range, and our computed models as continuous (nuclear 

evolution) and broken (faster evolution) curves. 
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and 

1.107M3 + 240.7M9 

Ln = 
1 + 281.9M4 

13,990M5 

M4 + 2151M2 + 3908M + 9536 ’ 

if M < 1.093 ; 

if M > 1.093 ; 
(Al) 

0.1148M1'25 + 0.8604M3-25 

0.04651 + M2 

11.968M2-887 - 0.7388M1-679 

[ 1.821M2-337 - 1 

if M < 1.334 ; 

if M > 1.334 . 
(A2) 

The most important evolutionary time scale for a star is its main-sequence lifetime. Rather than take the point at which central 
hydrogen is exhausted as the end of the main sequence we prefer to use the more well-defined point of maximum luminosity reached 
after the hook at the end of the main sequence. A further reason for including stars somewhat beyond the hook is that the amount of 
time spent in early shell-burning on the left-hand side of the Hertzsprung gap, especially in the mass range 2-4 M0, can be quite 
considerable. For stars of mass greater than 32 M0 the maximum luminosity does not exist but the evolution is so rapid at this 
point that the point of maximum temperature on the hook suffices with no loss of accuracy. For stars less than 1 M0 there is again 
no maximum but at this point the end of the main sequence is so ill-defined (the main sequence continuing without any significant 
gap into the giant branch) that we prefer just to extrapolate our fit for higher masses. We obtain a main-sequence lifetime by fitting 
stars of masses 1,1.3,1.6,2,4,8,16,32,64, and 80MQ, from which we obtain 

2550 + 669M25 + M4-5 

0.0327M1-5 + 0.346M4 5 ' (A3) 

We take some care in modeling the evolution during this interval, since it is most of the star’s nuclear burning life. We use the 
same 10 models together with one of 0.8 M0 and find that it is adequate to fit the luminosity by a quadratic in fractional time 
tms = i/hus*1 being the age of the star: 

l°Sio = l°gio + octms + /?71S , (A4) 
where L0 is the ZAMS luminosity and a and ß are given by 

(0.2594 + 0.1348 log10 M , if M < 1.334 ; 
(0.09209 + 0.05934 log10 M , if M > 1.334 ; (A5) 

[0.144 - 0.833 log10 M , 
[0.3756 logjo M - 0.1744(log1o M)2, 

In a similar way we fit the radius using a cubic of the form 

if M < 1.334 ; 
if AÍ > 1.334 . 

logic R = logic Ro + «'tms + ß'^hs + ’Ams , 
where R0 is the ZAMS radius and a', ß\ and / are given by 

and 

ß' 

y' 

o, 
0.1509 + 0.1709 log10 M , 

if M< 1.334; 
if M > 1.334 ; 

0.2226 log 
-0.4805 log 

0.1151 , 
0.5083 log10 

10 M , if M < 1.334 ; 
io M , if M > 1.334 ; 

if M < 1.334 ; 
M, if M> 1.334. 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

Equations (A4)-(A10) are used only while 0 < t < tMS. After the end of the main sequence stars grow rapidly to become red giants. 
For the more massive stars there is a distinct rapid phase of evolution as the stars cross the Hertzsprung gap (HG) whereas for the 
lower masses there is a gradual change with no distinct HG phase. For those stars that show a maximum luminosity at the end of 
the main sequence there is a corresponding minimum at the base of the giant branch (BGB). We define the Hertzsprung gap time as 
the time between these two turning points and find that it can be fitted by 

¿hg Q-543  
tus ~ M2 - 2AM + 23.3 

(All) 
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which we extrapolate for the lower masses where there is no distinct HG. We model the rapid evolution across the gap bv two very 
simple formulae. With a new fractional time J 

'tun — ' (A12) 

we use 

and 

L- L (¿bgbY' ^ — ^TMSl T I 
V^TMS/ 

R = R TMS 
' V \ THG ^BGB \ 
Ftms/ 

(A 13) 

(A 14) 

where TMS refers to the terminal main sequence (obtained by substituting tms = 1 into eqs. [A4] and [A7]) and BGB refers to the 
base of the giant branch. The luminosity at the base of the giant branch can be approximated fairly well by 

Loan — 
2.15M2 + 0.22M5 

5 x 1(T6M1-5 + 0.35M4-5 (A 15) 

Since giants are confined to Hayashi tracks the radius over the whole of the giant evolution can be found very well as a function onlv 
of luminosity and mass. We use a Hayashi track radius 

Rht = (0.25L0-4 + O.Sl967)M~02 
(A 16) 

and hence we obtain RBGB. Formulae (A12HA14) are only used if íMs < * < tus + W 
Evolution up the giant branch takes place rapidly and with increasing rapidity as luminosity increases, so we seek a formula for 

the luminosity that fits especially well at the base but is still representative higher up. We use an approximation based on the fact 
that the giant luminosity is proportional to the burnt core mass to the sixth power and that the rate of change of core mass is 
proportional to the luminosity. This leads to 

L = 

where 

and tG is the total giant lifetime. We take 

t7/6 

to + ¿MS t HG 

(A 17) 

(A 18) 

tG — 0.15íms , (Al9) 
which gives a reasonable fit for all masses. Real stars never reach the infinite luminosity at í = iMS + tHG + te because mass is lost 
trom the envelope through stellar winds. We prevent artificially high luminosities by adopting a maximum luminosity of 

= 4000Ai + 500M2 , (A20) 
which fits in well with our theoretical tracks for lower masses and (because of the very rapid evolution at high luminosity) makes 
little difference to the actual giant lifetime. In addition for high masses, M > 25 M0, we ignore giant evolution altogether treating 
any star beyond the main sequence as a Wolf-Rayet star with luminosity L = 105 L0 and radius R = 5 RQ. 

The giant evolution is interrupted when helium ignites in the core and we find that this occurs at a luminosity of about 

lig — lb , + 2000 . (A21) 
Using this value of L m equation (A17) gives the age, tIG, at which the helium ignition occurs relative to the BGB. During core 
elium burning the luminosity and the radius of the star are temporarily reduced before the star moves on to the asymptotic giant 

branch when shell helium burning begins. Core helium burning lasts for a time 

file — 
0.54t. 

(A22) M2 - 2.1M + 23.3 
and takes place at an almost constant luminosity given by 

LHe = 0.763M°-46Lo + SOM“01 . 
Stars of higher mass than about 3 M0 make an excursion across the H-R diagram in a blue loop. Figure 4 indicates that this 
evolution is concentrated toward the high-temperature (low-radius) end so we model it as a one way trip with 

(A23) 

R = R* 25_Yh' 
,^HT/ 

(A24) 
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where 

'Th* — ' (A25) 

and Rhx is the Hayashi track radius corresponding to LHe, given by equation (A16). If RHT < 25 jR0, the minimum radius, then the 
star is assumed not to have a blue excursion (as for the 1 and 2 M0 in Fig. 4). Thus the giant evolution is split into a red giant phase, 
before helium ignition, and a supergiant phase, after core helium has been exhausted. Both phases are governed by equations 
(A17)-(A19), except that for the supergiant phase we replace (A 18) by 

*g = - 
¿He + ¿G + ¿HG + ¿MS ~ t 

(A26) 

Using Lmax from equation (A20) in equation (A17) with equation (A26) we find iWD, the age at which we assume nuclear burning 
ceases. For t > iWD we model the star by a cooling white dwarf of mass 1 M0 with radius R = 0.01 RQ and luminosity given by 

L = 
40 

(i — ¿wd)1'4 

However, we do not expect these to feature often in our catalogs for V < 6.0. 
We can obtain the effective temperature of a star from its luminosity and radius from the simple relation 

71= 1130 -Y 
R2) 

(A27) 

(A28) 

where Te is measured in kK. To compare our theoretical catalogs with the real RBSC we must convert our luminosities to absolute 
magnitudes using 

My = -2.5 log10 L + 4.75 - BC , (A29) 

where BC is the bolometric correction. To obtain a formula for BC we interpolate in Popper’s (1980) Table 1. For main-sequence 
stars we use 

2Q0.4BC 

r6.859 x 10~6Tf + 9.316 x 10~3 

1 + 5.975 x 10“loTe
14 

3.407 x 10 - 2 77 
I + 1.043 x 10-4T4-5 ’ 

2728T~3-5 + 1.878 x lQ-2re 

1 + 5.362 x 10“5T2-5 

and for the more evolved stars (mostly red giants) 

'1.124 x KT7771 + 1.925 x KT2 

1 + 1.884 x 10“9Tc
14 

= I 7.56 x 10-2T75 

I 1 + 6.358 x 10-5r4-5’ 
2728T~3,5 + 1,878 x 10~2Te 

1 + 5.362 x 10“5T2-5 

if Te < 4.452 kK ; 

if 4.452 kK < 7; < 10.84 kK; 

if Te > 10.84 kK ; 

if Te < 4.195 kK ; 

if 4.195 kK < Te < 10.89 kK ; 

if Te > 10.89 kK . 

(A30) 

(A31) 

Figure 5 is essentially the same as Figure 4 except that the detailed theoretical tracks have been replaced by tracks corresponding 
to our simple formulae. It can be seen that these formulae do indeed give a reasonable representation of the evolution that we wish 
to include. We have also included in this figure a zero-age main sequence line corresponding to equations (Al) and (A2) and it is 
pleasing to note that all Popper’s stars of higher masses lie to the evolved side of this line. We would expect all the low-mass stars to 
actually lie on this line and so are not too perturbed by the spread putting it down to observational noise and our use of a fixed 
metallicity. 

In § IV we referred to a transformation that we make from the X, Y unit square (which is a mapping of M, t space such that stars 
should be distributed over it with uniform probability per unit area) to a U, V unit square in which a much greater fraction of the 
area is devoted to stars of intrinsically high luminosity, i.e., either massive and young, or of moderate mass and just old enough to be 
giants or supergiants. The transformation we use is 

X = 2U — U2 , (A32) 

Y = ^f(KV), (A3 3) 
fGal 
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Fig. 5.—H-R diagram similar to Fig. 4, but the theoretical models have been replaced by the approximations discussed in this Appendix 

where 

{lv — v2 

f(v) = j 3 - 3t; + t>2 

[ 2-v 

if 0 < i; < 1 , 

if 1 < r < 2 , 

and K is determined by 

rGal 

Here iGal is the assumed Galactic age (12,000 Myr), a constant, and tN is an indicator of the nuclear lifetime of the star: 

(A34) 

(A3 5) 

In — ¿ms + ¿g — 1-15íms(M) . (A36) 

Since this is a function of M only, which is in turn a function of X only, via equations (A3), (A 19), and (A5), and hence of U only via 
equation (A32), it follows that equation (A33) does indeed determine 7 as a function of U, V only. Further, since X is independent of 
V, the Jacobian required in equation (17) is just 

d(X, Y) 
d(U, V) 

(A37) 

Note that by our definition of k, equation (A35), the two functional forms of equation (A34) apply respectively to the two cases 
tN < tGal and tN > tGal. The (just) monotonie function f(v) was chosen so that 

/(0) = 0, /(l) = 1 , /'(l) = 0 and /(2) = go . (A38) 

It therefore biases Y so that, for any star with tN < tGa„ t is much more likely to be close to tN than if we simply used the original 
prescription of equation (8). 
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