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ABSTRACT 
The dynamics of pinned superfluid in neutron stars is determined by the thermal “creep” of vortices. Vor- 

tex creep can respond to changes in the rotation rate of the neutron star crust and provide the observed types 
of dynamical relaxation following pulsar glitches. It also gives rise to energy dissipation, which determines the 
thermal evolution of pulsars once the initial heat content has been radiated away. We explore the different 
possible regimes of vortex creep and show that the nature of the dynamical response of the pinned superfluid 
evolves with a pulsar’s age. Younger pulsars display a linear regime, where the response is linear in the initial 
perturbation and is a simple exponential relaxation as a function of time. A nonlinear response, with a charac- 
teristic nonlinear dependence on the initial perturbation, is responsible for energy dissipation and becomes the 
predominant mode of response as the pulsar ages. The transition from the linear to the nonlinear regime 
depends sensitively on the temperature of the neutron star interior. We give a preliminary review of existing 
postglitch observations within this general evolutionary framework. 
Subject headings : pulsars — stars : neutron 

I. INTRODUCTION 
A dynamical model for the superfluid parts of the neutron 

star crust, the vortex creep model, was developed in recent 
years (Pines and Alpar 1985 and references therein) and 
applied to the observed relaxation of pulsar rotational behav- 
ior following each of a number of glitches (sudden discontin- 
uities in rotation and spindown rates) exhibited by the Vela 
and Crab pulsars, and by PSR 0525-21. The evaluation of 
postglitch relaxation following the recent large glitch from 
PSR 0355 + 54 (Alpar et al. 1988) has involved a response of 
the crust superfluid in a linear regime of the model different 
from the regime evoked in previous evaluations of postglitch 
data. Further, the four most recent glitches from the Vela 
pulsar (McCulloch et al. 1983; Hamilton, McCulloch, and 
Royle 1982; Klekociuk, McCulloch, and Hamilton 1985; Fla- 
nagan 1989; Hamilton et al. 1989) and the latest Crab pulsar 
glitch (Lyne and Pritchard 1987), unlike previous glitches 
where the time of the event was uncertain by several weeks, 
were observed at times quite close (~hr to ~1 day) to the 
glitch event itself. These observations of the earliest, prompt 
response of the crustal neutron superfluid to a glitch raise the 
possibility that prompt response in these pulsars may also 
involve the linear regime of vortex creep. Finally, recent calcu- 
lations of the superfluid energy gap in neutron matter (Chen et 
al. 1986; Ainsworth, Pines, and Wambach 1989) have indicated 
values somewhat less than the results of earlier gap calcu- 
lations. As a consequence, pinning energies may be reduced 
compared to our earlier estimates. For all of these reasons, it 
seems appropriate to reexamine the vortex creep model and 
the conclusions it enables one to draw from postglitch relax- 

ation data, including estimates of the internal temperatures of 
neutron stars. 

II. DIFFERENT REGIMES OF VORTEX CREEP 

The rotational dynamics of a superfluid is determined by the 
distribution and motion of its quantized vortex lines. The vor- 
tices in the neutron star crust superfluid coexist with a lattice of 
nuclei, which have dimensions and spacings comparable to the 
size of the vortex and which can therefore act as pinning 
centers. As a result, the vortices move in a very inhomogeneous 
medium of pinning nuclei. Vortex creep theory models this 
medium as a random pinning potential. As the crust of the star 
spins down under external torques, the rotation rate of the 
pinned superfluid will lag behind that of the crust and the 
random potential will be biased in favor of motions of vortex 
lines away (i.e., radially outward) from the rotation axis, which 
allows the superfluid to spin down. Vortex creep theory models 
the spin-down of the pinned superfluid in terms of the thermal 
motion of vortex lines in this biased pinning potential. An 
analogous treatment is possible for other systems whose 
macroscopic dynamics are governed by the motion of a dis- 
tribution of singular structures in some random potential (e.g., 
dislocations in crystals and flux lines in type II 
superconductors), so that a discussion of the different regimes 
of vortex creep may be of some relevance for such systems. 

The equation of motion for a rotating superfluid is 

where | Ó | is the rotation rate, 2Q = hk the vorticity, n is the 
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area density of vortex lines and k the vortex quantum; vr is the 
average radial velocity of the vortex lines and r the distance 
from the rotation axis. For our purposes, changes in Q are 
small compared to Q, and the extension of the superfluid in r is 
small compared to r, so that we may treat 2Q/r = 2Q0/r as a 
constant. The velocity of an individual vortex line, with respect 
to the superfluid, is determined by the forces / per unit length 
acting on it, through the Magnus equation of motion: 

/= pK x (vL — vs), (2) 

where p is the superfluid density, k the vorticity vector directed 
along the line, with magnitude k, vl and vs are the line and 
superfluid velocities, respectively. A vortex pinned to the crust 
will move with the crust, at a speed vL = rQc = r(Ds — co\ 
lagging the superfluid by rco. Because of pinning, the superfluid 
velocity tends to remain somewhat larger, by the lag co, than 
the velocity of the crust as the crust spins down. To sustain this 
relative motion between the superfluid and the pinned vortex 
lines moving with the crust, a force / = pKrœ must be exerted 
per unit length of the line. The largest force fp available from 
the pinning potential defines a critical value of co, through 
fp = pKrœcr. If the velocity difference between the crust lattice 
(the pinning sites) and the superfluid exceeds rcocr, the lines 
cannot remain pinned. Based on this microscopic picture, the 
thermal creep model gives a mean value vr of the radial velocity 
of vortex lines, for lines moving through the random pinning 
potential, at a temperature T (Alpar et al 1984a) as 

vr = v0e~Ep/kT2 sinh ^ — = 2v0e~Ep/kT sinh — , (3) 
kT cocr w 

where v0 is a microscopic velocity, Ep the pinning energy which 
characterizes the random pinning potential. We have intro- 
duced the notation w = coCTkT/Ep. If one wishes to consider 
cases in which œ > coCT where the partition function is different 
from 1, the corresponding expression is 

_ 2e~Ep/kT sinh œ/w 
V° 1 + 2e~Ep/kT cosh co/m * ^ 

While the discussion that follows can be carried through using 
this general expression, the simpler form in equation (3) is a 
very good approximation for the purposes of most applica- 
tions, and we shall use it in our analysis here. The critical lag, 
cacr, is related to Ep by 

co cr pKrbÇ ’ (5) 

where p is the density of the superfluid, £ is the superfluid 
coherence length (the radius of a vortex core), and b is the 
distance between successive pinning sites along a vortex line. 
The superfluid coherence length is given by ^ = h2kF/(nmA) 
where kF is the neutron Fermi wavenumber, m the neutron 
mass, and A the superfluid gap. 

For a complete dynamical model, equations (1) and (3) are 
supplemented by the equation of motion for the crust rotation 
rate Qc : 

IcÙc = Next-IpÙ. (6) 

Here Ic is the total effective moment of inertia of the observed 
crust; it includes the actual crust plus the core superfluid which 
is coupled rigidly to the crust on the time scales of interest 
(Alpar, Langer, and Sauls 1984; Alpar and Sauls 1988). Ic 

therefore is the inertial moment of the entire star, minus that of 
the pinned superfluid, Ip. Thus one has Ic = I — Ip, while Next 

is the external (magnetospheric) torque on the crust. From 
equations (1), (3), and (6) we obtain an equation for the lag 
co = Q — Qc, 

Next 1 4U0 _£,tr • . tp CO 
co = — —— —   v0 e pl sinh — 

Ir lr r u kT co„ 

I 4Q0 

= | Û|ao{l - [sinh (co/cb)li/ri} , 

(7) 

(8) 
where 1^1^ = NexJI is the steady-state value of | Ó | and | Clc | 
when the superfluid and crust share the total external torque, 
and we take Ip Ic so that I = Ip + Ic ^ Ic. In equation (8) 
the response parameter rj is given by 

*7 = 
|iX 
4Q0 v0 

exp En^hi. 
kT Sts 

(9) 

and is the ratio of a characteristic transit time 

ttr = r/lv0 exp (-Ep/kT)'] (10) 
to the spin-down time of the external torque, 

îs = Qo/2|Û|oo • (H) 
Note that the observed perturbations AÙC to in glitches and 
postglitch relaxation do not exceed ~ 0(10-2) so that 
any observed value of |Í2C| can be used to represent lÛI^. 
Since ts is much longer than the relaxation time scales of the 
vortex creep process, Q0 and | ^ | at a given epoch can be 
taken as constants that specify the parameter rj. 

Equation (8) serves as the starting point of our discussion of 
the different regions of vortex creep. One can integrate it to 
obtain the evolution of co and hence Q(t) and Qc(t), for a given 
set of initial conditions. The solution is 

rjm 

(1 + ri2) 2\l/2 
"■[: 

exp (œ/w) — tj + (1 + rj2)112 

exp (m/m) - - (1 + r¡2 

exp (m(0)/m) — /y + (1 + >y2)1/2 

exp (eo(0)/t¡7) — >/ — (1 + t]2)1'2 

L!1 
)1/2J 

]}= 
(12) 

Inspection of equation (8) shows that it possesses a steady- 
state solution, characterized by a lag such that co = 0 (i.e., 
ù = ùc) 

coœ = m sinh 1 rj . (13) 

It is evident from equation (12) that co -► co^ asympotically as 
i —► oo. From equations (8) and (13) it follows that 

sgn œ(t) = sgn [co^ - co(i)] , (14) 

i.e., at all times the system evolves monotonically toward its 
steady state. 

The creep response parameter rj characterizes both the 
steady-state behavior and the evolution of the system. If condi- 
tions are such that rç <0, we see from equation (13) that co^ 
m = coCTkT/Ep, and, since kT Ep, we have co^ <£ cocr. Under 
these circumstances, the steady-state angular velocity differ- 
ence is such that in the pinning region in question, one is never 
close to the critical angular velocity difference for unpinning, 
coCT. The approach to steady state then depends linearly on the 
initial conditions. Equation (8) becomes 

® = IÛ L[1 - ö#/®)] = IÔ !„ - m/t, , (15) 
where 

m 
Epj4il0v0 

VkT 
(16) 
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is a relaxation time which depends on the transit time, the 
pinning parameters, pinning energy, the temperature of the 
inner crust, and the pulsar period. At steady state, we see from 
equation (15) that 

[®J/ = l^|0OT(> (17) 

while the explicit solution for a>(t) is 

œ(t) = œœ- öco(0)e~^ , (18) 

where 

<5co(0) = co co(0), (19) 

and one sees explicitly the linear dependence of œ(t) on <5co(0). 
The observed behavior of the crust is 

ÙC=Ù„- (Ip/I)lôù)(0)/Tl}e-tl . (20) 

Under these circumstances, vortex creep gives rise to energy 
dissipation at a rate 

Èdiss = Ipco00\Ùx\ = Ip(Ù00)\. (21) 

If, on the other hand, conditions are such that 77 > 1, we see 
from equation (13) that 

t] = sinh [œjva] = 6) exp [cojro] (22) 

and 

Itooolni = œ In (2rj) = (0crll - (kT/Ep) In (4v0 is/r)] . (23) 
On making use of the definition of rç, equation (9), one finds 
that the condition rç > 1 implies that (/cT/Ep)ln [4i;0 is/r] 1 
so that co^ < œCT. Thus, for rç 1, the approach to steady state 
depends nonlinearly on the initial conditions. Equation (8) 
becomes 

*-|ÛU-^exp(2) (24) 

which possesses the solution 

exp {[(«*)„, - ®(t)]M} 

= 1 + [exp {[(ftO„, - ®(0)]/ro} - 1] exp (-t/T„,), (25) 

where 

w kT coCT 
tn, = \ùL = TpJCiL- 

The observed behavior of the crust is given by 

(26) 

c lc 
c0 Ic ® 1 + [exp (t0/Tj - 1] exp (-í/t„,) ’ 

(27) 

where t0, the “offset time,” reflects the nonlinear dependence 
on initial conditions, and is given by 

_ <5cu(0) _ (coJnl - w(0) 
to-|äL- ' 

The energy dissipation rate in steady state is 

^diss Iao)nl I ^ I oo = ^p ^cr I ^ I oo 

(28) 

(29) 

for pinned superfluid regions in this nonlinear creep regime. 
A comparison of the linear regime, equations (15)-(21), and 

the nonlinear regime, equations (22}-{29), shows that the 
observed behavior is quite distinct in the two regimes on 

several counts. In the linear regime the observed relaxation of 
the crust in response to a perturbation from steady state is 
always a simple exponential decay in time, formally identical to 
the old two-component model (Baym et al. 1969), though in a 
different context. This response is linear in the initial pertur- 
bation, which appears as the amplitude of the exponentially 
decaying term in Ùc(t). By contrast, in the nonlinear creep 
regime, the response of the crust can be either linear or nonlin- 
ear depending on the size of the glitch. For perturbations such 
that t0/Tnl > 1, in fact, the response has an exponential depen- 
dence on the initial perturbation <5co(0), while the subsequent 
evolution in time of Ùc(t) is itself a more complicated function 
than simple exponential decay. The most characteristic feature 
of this response is its Fermi function behavior (Alpar et al 
1984a): Ùc(t) is constant initially, showing no recovery from its 
initial postglitch value 0C(0

+) = until t ~ t0; within a 
time interval around t = t0, (lc(t) relaxes back to its 
steady-state value Observation of such constant offsets in 
Clc (until some offset time t0) constitutes an indication of the 
presence of nonlinear creep regions. Thus, the observed 
“persistent shifts” in Ùc are likely indicators of this regime, 
while the observation of a sudden increase in Ùc some time 
after a glitch would provide conclusive evidence of creep in the 
nonlinear regime. 

On the other hand, in the case of a weak perturbation, t0 
Tnl, the response in the nonlinear regime also becomes a simple 
exponential in time, with linear dependence on the initial per- 
turbation, <5a>(0). Thus, a pinned superfluid region in the non- 
linear regime will also respond linearly to small perturbations 
from its steady state, when <5co(0) = co^ — a>(0) (kT/Ep) coCT. 
By contrast, nonlinear creep will respond very nonlinearly 
when <5cu(0) = i.e. cu(0) w, which is a perturbation that 
takes it far from its steady state. Similarly, in the linear regime 

1, if the initial conditions are such that sinh [co(0)/o7] > 1, 
the initial evolution will rapidly converge to the appropriate 
time dependence of the linear regime given in equation (18), so 
that after some short time tl9 equation (18) will be followed 
with ôœiti) < ôœ(ô) replacing <5cu(0) and 0^) < w. Thus, in 
either of the regimes specified by rj, the initial conditions may 
be close to the steady state of the other regime, but the system 
will not remain at such “ off” conditions. Rather, a very rapid 
initial evolution will ensue, converging to the general solution 
of the appropriate regime as specified by rj. 

The steady state in the linear regime, = | Ó I«, tz, is deter- 
mined by the relaxation time, as is characteristic of linear 
systems operating at a small bias (jíil^T cocr). The relax- 
ation time, again typical of such systems, is determined by 
thermal factors; i.e., t oc exp Ep/kT. (Early work on relaxation 
times [Feibelman 1971; Greenstein 1979] in the old two- 
component model also had this Boltzmann exponential depen- 
dence on T-1, but with a different physical context, and a 
different energy spectrum.) By contrast, the steady state in the 
nonlinear regime, < (ocr, is set by the strength of pinning. 
The system is now operating close to unpinning conditions. 
The relaxation time toward the steady state is proportional to 
temperature (eq. [26]). This result, which seems strange on the 
basis of an intuition for almost “free” systems, whose equi- 
librium properties are dominated by thermal processes, is 
typical of highly driven systems, where the enthalpy plays a 
dominant role. Thus the colder the system is, the larger the bias 
co^ must be to achieve the steady-state creep rate for the | Ö 
required by the external torque, and the more rapid the relax- 
ation processes near the highly biased steady state. In this 
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connection, we note that the linearity parameter rj reflects, in 
fact, a comparison of the rate 1^1^ imposed by the external 
torque with the thermal rate oc exp(-Ep/kT). 

The rate of energy dissipation in the linear regime is smaller 
by ~ IÓ1^ Tz/cocr 1 than the rate in the nonlinear regime. If 
and when the entire pinned superfluid is in the linear regime, 
energy dissipation from vortex creep can be shown to be 
totally insignificant in the star’s thermal evolution. On the 
other hand, regions in the nonlinear creep regime, as indicated 
by the observation of persistent shifts in Ùc, provide a signifi- 
cant source of energy dissipation and determine the neutron 
star’s temperature once the initial heat content of the star has 
been radiated away (Alpar, Nandkumar, and Pines 1985; Shi- 
bazaki and Lamb 1989). 

III. THE TRANSITION 

We now discuss the criterion for distinguishing the linear 
and nonlinear creep regimes, as a function of the star’s age (Q 
and íX) and temperature, and of the pinning energy Ep (hence 
the superfluid gap A) in a given part of the pinned superfluid. 
From equation (9), a transition value of Ep/kT is obtained by 
setting rj = 1, so that larger values of Ep/kT will imply the 
nonlinear creep regime and smaller values will imply linear 
creep : 

(él=ln (8i< 7)= 35-46 + ln 6+ln (77) ’ (30) 

where 6 is the spin-down time ts = Q/21 in units of 106 yr, 
and we have taken typical values v0 = 107 cm s-1 and r = 106 

cm of the microscopic velocity of vortex lines and the radius of 
the neutron star, respectively. It is desirable to have a frame- 
work for deciding whether a particular observed relaxation 
time T reflects a nonlinear or linear response of vortex creep to 
the glitch. To this end we note that the criterion r¡ = 1 can be 
expressed as 

t] = — = I (31) 

using equations (9), (16), and (26). Thus, if tz < (>)t„z creep will 
be in the linear (nonlinear) regime : the system is always in that 
regime for which the relaxation time to the appropriate steady 
state is shortest. The relation between tz and t„z can be most 
simply expressed as 

lnT'=lnT"'+é“(é)tr- 
(32) 

This expression shows clearly that the transition between 
linear and nonlinear creep is determined essentially by the 
exponential dependence on Ep/kT. In principle, an under- 
standing of the transition can be used to determine the range of 
pinning energies for which creep will be (non)-linear if the tem- 
perature of the star is known or, on the basis of a calculated 
range of pinning energies, to estimate a temperature below 
which vortex creep throughout the pinned superfluid parts of 
the star will be predominantly in the nonlinear regime. There 
are uncertainties in theoretical calculations of both the pinning 
energies Ep and of the cooling history of neutron stars. Though 
subject to these uncertainties, pinning energies are a structural 
property of neutron stars; we expect similar ranges of Ep to 
obtain in neutron stars of different ages. The transition in 
dynamical relaxation, from the linear to the nonlinear regime, 
is then an evolutionary property, linked sensitively to the tem- 

perature. We now address the issues of pinning and cooling in 
turn. 

As discussed in earlier work, the physical conditions of 
pinning can be classified into various possibilities—strong, 
weak, and superweak pinning—depending on the relation of 
Ep to a lattice binding energy EL, and the relation of the vortex 
core radius Ç to the lattice spacing bz (Anderson et al 1982; 
Alpar et al 1984a, b). Observational upper limits (Alpar ei al. 
1987), as well as recent calculations yielding lower values of the 
superfluid gap A and the pinning energy Ep9 indicate that 
strong pinning is unlikely to obtain. The transition from weak 
to superweak pinning probably involves a decrease in Ep, with 
a large reduction in œcr and, as may be seen in equation (5), a 
correspondingly large increase in h, the distance between suc- 
cessive pinning centers along a vortex line. Although we can 
estimate the various pinning parameters for weak pinning 
theoretically (Alpar et al 1984h), such estimates are not at 
present possible for superweak pinning. We shall illustrate the 
transition by using a model calculation with weak pinning 
everywhere. The criterion for superweak pinning, that the 
vortex core radius ^ is greater than bz/2 (Alpar et al 1984h) 
implies, with the gap values we employ, that superweak 
pinning would obtain at densities greater than 9 x 1013 g 
cm-3. The effect of superweak pinning is indicated qualitat- 
ively in the discussion below. The pinning parameters depend 
on the superfluid gap A and the temperature in the following 
way : 

£p(MeV) = 0.87A2(MeV)kF(fm ~ , (33) 

where 7 is a dimensionless factor of order 1. This formula is 
based on the following estimate of the pinning energy that 
binds a vortex line to a nucleus in the crust superfluid : 

(34) 

where “ out ” and “ in ” refer to the values of superfluid neutron 
density, and gaps, inside and outside the nuclei, respectively, 
and V is the volume of the nucleus. In equation (33) we have 
chosen to scale Ep with the gap and kF values corresponding to 
the total density in a given pinning region, which are quite 
close to the “out” values, in view of the uncertainties in the 
rough estimate of pinning given in equation (34). A model 
calculation employing densities inside and outside nuclei used 
in earlier work (Alpar et al 1984a, b) and the recent gap values 
of Ainsworth, Pines, and Wambach (1989) gives values of y 
between 6 x 10“2 and 1 throughout the pinned superfluid: 

hweak(fm) ^ 230 
(bz/50 fm)3 A2(MeV) 

^(fm"1) 
(35) 

û)cr
weak(rad s“1)^^ 

A(MeV) 
r6kF(îm~1){bJ50 fm)3 ‘ 

(36) 

For the relaxation time in the nonlinear creep regime with 
weak pinning, we have 

kT cocr 

z", = Tp\ùl 

fcT(keV) 1 1   
ayS A(MeV) IÛI _ 10 r6(bj50 fm)3[Mfm _1)]2 ( 

using equations (5) and (33-36). Here we have normalized the 
lattice spacing bz to a typical value, 50 fm, and i’î | to the value 
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13 -3 
Density (10 gm cm ) 

Fig. la 

13 -3 
Density (10 gm cm ) 

Fig. lb 

Fig. 1.—{a) Relaxation times, in days, from a model calculation for the Crab pulsar. The interior temperature is taken to be 35 keV. Values of the superfluid gap 
are those shown in Fig. 2, taken from Ainsworth, Pines, and Wambach (1989). y is taken to be 0.7. The vertical axis is the logarithm (base 10) of the relaxation time in 
days, to accommodate the rapid variation of t, (diamonds). The more slowly varying Tnl (open squares) has values of several hundred days. Regions between points A 
and B are in the nonlinear regime. The observed prompt relaxation times of a few days must represent higher density regions to the right of the transition point A, 
responding in the linear regime, according to this particular model calculation, (b) Relaxation times, in days, from a similar model calculation for the Vela pulsar. The 
interior temperature is taken to be 11 keV. Values of the superfluid gap are again those shown in Fig. 2, and y = 0.7. The upper parts of the xl curve are not shown. 
The nonlinear relaxation times are several thousand days. The observed relaxation times of a few days and a few months indicate a possible extension of the linear 
creep regions by a transition to superweak pinning at point SW. The location of this transition is taken from the inequality (56), shown in Fig. 2. Regions between 
points B and A, or if there is superweak pinning, regions between points B and SW, are in the nonlinear regime. The dashed lines indicate superweak relaxation times 
qualitatively and do not reflect a model calculation for superweak pinning. 

10“10 rad s-2, the spindown rate of the Vela pulsar. (Values of 
the lattice spacing bz as a function of density in the neutron star 
crust can be found in Negele and Vautherin 1975). Then, at a 
given temperature, Tnl oc 1/A, while for an observed Tnh the 
inferred value of the temperature scales with A. In the linear 
regime, the relaxation time 

kT 
— exp —z oc exp a —- 
4Q0 v0 

F kT T 
(38) 

where a is a constant. Thus, at given T, rl oc (1/A) exp a'A2, 
d — a¡T, and for an observed value of the inferred tem- 
perature would be 

Toe A2/ln(AVT)oc A2 . (39) 

For a pulsar with internal temperature T, to the extent that 
one knows both A(p), the superfluid gap as a function of 
density, and Ep(p\ one can now plot t* and xnl as functions of 
density through the pinned superfluid. We emphasize again 
that this is subject to much uncertainty stemming from uncer- 
tainties in the calculations of Ep(p) and A(p). The run of the two 
relaxation times is that shown in Figure 1. The nonlinear 
regime obtains at lower densities, to the left of the transition 
points marked A where xnl = tz. The A(p) curve we used is 
taken from the recent results of Ainsworth, Pines, and 
Wambach (1989) and is shown in Figure 2. A range of A(p) 
curves are allowed according to these recent calculations, but 
they are all typically less than the early gap results (Hoflberg et 
al 1970); Takatsuka 1972) by a factor of 2. For illustrative 
purposes, in Figure la, we have used the Crab pulsar’s param- 
eters, with an interior temperature of 35 keV, consistent with 
observational upper limits and with standard cooling calcu- 
lations. Figure lb employs the Vela pulsar, with an interior 
temperature of 11 keV, consistent with the recent observa- 

tional results of Ögelman and Zimmermann (1988). In calcu- 
lating Ep, we set y = 0.7 in equation (33), to illustrate some of 
the features of the transition in the figures. This value of y is 
consistent with estimates of Ep using equation (34). Both relax- 
ation times were evaluated for the weak pinning regime, using 
the expressions above. The effect of superweak pinning has 
been shown qualitatively in Figure lb, with the alternative 
transition point SW, and will be discussed in the next section in 
connection with the Vela pulsar. 

13 -3 
Density (10 gm cm ) 

Fig. 2.—The superfluid gap in MeV as a function of neutron density. This 
is representative of a family of gap curves calculated recently by Ainsworth, 
Pines, and Wambach (1989). When the gap value is less than the threshold 
curve given in inequality (56) and represented by the open squares here, 
pinning is expected to be in the superweak regime. This is expected at densities 
above about 9 x 1013 gem-3. 
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Let us now discuss the effect of cooling on the transition. As 
the neutron star becomes older, the curve for t¿ will move 
upward, in proportion to the increasing period (decreasing 
rotation rate Q) of the star. The xnl curve will also move 
upward, in inverse proportion to the decreasing | Ô | of the star. 
As IÓI oc Qn with n ~ 3 for most pulsars, the Tnl curve will 
move faster, resulting in a tendency against nonlinear creep. 
However, this effect of the dynamical evolution of the pulsar is 
completely overcome and reversed by the effect of its cooling. 
As the pulsar ages and its internal temperature T decreases, Tnl 
will come down linearly in T, while xl will move up, exponen- 
tially in T-1, resulting in a rather rapid extension of the non- 
linear creep regime to encompass larger and larger portions of 
the pinned superfluid and rapidly prevailing over the entire 
pinned superfluid in older pulsars. A comparison of Figure la 
with Figure lb shows this evolutionary effect clearly. 

For pulsars much older than the Vela pulsar, at ages greater 
than a few 105 yr, the initial heat content will have been radi- 
ated away. The surface temperature of such older pulsars is 
determined by balancing their blackbody luminosity with the 
energy dissipation rate in nonlinear creep (eq. [29]) (Alpar, 
Nandkumar, and Pines 1985), 

Ls^47t/?
2aT/ = £diss = /pú)cr|íi| . (40) 

For neutron stars with 6
4/0i4 10~2, where g14 is the 

gravitational acceleration at the surface in units of 1014 cm 
s-2, Gudmundsson, Pethick, and Epstein (1982) have shown 
that the interior (including the pinned superfluid regions) has a 
temperature T oc (r/)0*455 giving 

roc|Ô|0-455, Tn,^i||<x|ûr0-545 , (41) 

using equation (26). For still older pulsars, the surface tem- 
perature and flux are so low that a very small temperature 
gradient from the interior to the surface suffices to drive the 
thermal flux. If we assume Ts< T for such pulsars, we obtain 

T cc\Ù |1/4, Tn/oc|Ôr0-75 . (42) 

Equations (41) and (42) give the scaling of the temperature in 
the interior and of postglitch relaxation times with 1^1. The 
condition 6

4/^14 > 10 ~2 for the validity of the Gudmund- 
sson, Pethick, and Epstein (1982) results translates to 
IÙI (rad s~2) > 10-12(M/MQ)/(IpA3œCT). 

If there is no significant nonlinear creep initially, the energy 
dissipation will be insignificant (cf. eq. [21] and eq. [29]), and 
cooling will be more rapid. Once the initial heat content of the 
star has been radiated away, nonlinear creep and energy dissi- 
pation will rapidly increase their role. The nonlinear creep, 
dominated by the external torque, becomes prevalent as the 
temperature drops and thermal rates become less important. 
The energy dissipation rate increases to a level where the 
further drop of temperature is regulated by a rate determined 
by the external torque as in equations (41) and (42). The time 
scale over which nonlinear creep becomes dominant depends 
sensitively (exponentially) on the barrier heights Ep for thermal 
creep, therefore on A2. At a given epoch a pulsar, at some 
uniform internal temperature, will possess a spectrum of relax- 
ation times reflecting the nature and strength of pinning, i.e., 
the variation of Ep, cocr, and b throughout the pinned inner 
crust superfluid. From this spectrum of possible relaxation 
times those which characterize substantial portions of the 
pinned superfluid will be observable in the pulsar’s postglitch 

behavior. For the earlier epochs when both the linear and the 
nonlinear regimes of creep prevail in suitable portions of the 
superfluid, the shortest of the relaxation times will reflect creep 
in the linear regime. These may, in some pulsars, be too short 
to be observable. As the pulsar evolves, the nonlinear creep 
regime will take over in most of the pinned superfluid. It will 
still be true that the shortest relaxation times will come from 
the surviving regions of linear creep. But such regions of linear 
creep become progressively negligible in terms of the moment 
of inertia they represent, so that eventually the linear creep 
regime, with the shortest underlying relaxation times, will drop 
out of the hierarchy of observed relaxation times. Thus 
neutron stars, after a certain age, will display a set of pinning 
regions all responding in the nonlinear creep regime. In either 
creep regime, the shortest possible (or observed) relaxation 
times reflect the weakest (superweak) pinning regions, as both 
Tni and t¡ depend inversely on the distance b between successive 
pinnings along a vortex line, and b increases rapidly, in a way 
difficult to estimate, in the superweak pinning region. Whether 
a superweak pinning region is in the linear or the nonlinear 
regime depends most sensitively on the value of Ep/kT. Ep is 
also difficult to estimate in the superweak region. At present 
there is no calculation of the superweak pinning properties and 
relaxation times. 

As can be seen in Figure 1, the longest relaxation times of a 
given pulsar are associated with the nonlinear regime. Some 
values of t can obtain for one part of the pinned superfluid in 
the linear creep regime and another part, with stronger 
pinning, in the nonlinear creep regime (e.g., in Fig. la, i/ at 
point C and Tnl at point B have the same value). Thus an 
observed relaxation time might be consistent with either linear 
or nonlinear creep. The ambiguity is in principle resolved since 
the time-dependence of creep relaxation is different in the two 
regimes. In practice resolving this ambiguity may prove diffi- 
cult: (a) because for small enough perturbations the response 
in the nonlinear creep regime becomes linear, and the time- 
dependence is a simple exponential decay, as for the linear 
creep regime, and (b) because the fits to the observed relaxation 
typically consist of several components with different relax- 
ation times, and it can be difficult to distinguish significantly 
between different combinations of linear or nonlinear creep 
response. 

Such ambiguity will mainly arise in relatively young pulsars, 
in which the linear and nonlinear creep regimes coexist. For an 
older pulsar in which creep is nonlinear, and any remaining 
linear creep becomes observationally insignificant, the shortest 
relaxation time from the weak pinning regions would corre- 
spond to the maximum gap A (cf. eq. [37]). However, the 
global minimum in the relaxation time will probably come 
from the superweak pinning regions, since 

IV. DISCUSSION OF POSTGLITCH OBSERVATIONS 

In this section we shall review the evaluation of postglitch 
behavior in terms of vortex creep theory, for each of the four 
pulsars whose postglitch relaxation has been observed, the 
Crab and Vela pulsars, PSR 0355 + 54 and PSR 0525 + 21. In 
our earlier work on postglitch relaxation, the data following 
the first two observed glitches of the Crab pulsar, the first four 
of the Vela pulsar and the one glitch observed from PSR 
0525 + 21 were fitted in terms of nonlinear creep response 
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alone (Alpar et al. 1984b; Alpar, Nandkumar, and Pines 1985). 
This was in part because nonlinear creep was required by shifts 
in Clc that persisted for years after a glitch, and for simplicity, 
the same regime was employed, successfully, to evaluate the 
shorter time scale components of the relaxation. However, in 
all of these cases, the actual date of the glitch was not known, 
the uncertainty being at least a week. This may have masked 
the response of creep in the linear regime in the form of initial 
exponential relaxation, with short relaxation times. Postglitch 
observations following the recent large glitch of PSR 0355 + 54, 
when evaluated within the vortex creep model, require the 
presence of both linear and nonlinear creep regimes (Alpar et 
al. 1988). The more recent fifth (Hamilton, McCulloch, and 
Royle 1982), sixth (McCulloch et al. 1983), seventh (Klekociuk, 
McCulloch, and Hamilton 1985), and eighth (Flanagan 1989; 
Hamilton et al. 1989) glitches of the Vela pulsar, and the third 
Crab pulsar glitch (Lyne and Pritchard 1987) have all been 
caught within a day; fits to the postglitch data can be made 
with combinations of simple exponential decays and persistent 
shifts. In particular, Cordes, Downs, and Krause-Polstorff 
(1988) have fitted the relaxation following each of the first six 
Vela pulsar glitches with a “ short ” (t = 4-10 day), and an 
“intermediate” (t = 14-120 day) exponential decay followed 
by a long-term relaxation in which Ùc(t) is linear in time. It 
would seem timely to carry out a comprehensive evaluation of 
the postglitch fits, with particular emphasis on whether fits to 
the observed time-dependence of Ùc following the glitch can 
distinguish significantly between the alternatives of linear and 
nonlinear creep. Such a reexamination is being carried out 
(Nandkumar et al. 1989, Alpar et al. 1989). Here we present a 
preliminary analysis, based on consistency arguments, of the 
implications of observed relaxation times. 

We can check for the consistency of interpreting a particular 
observed relaxation time as reflecting the linear creep regime, 
as follows : 

(i) Note that a requirement on the linear regime is that 
(Ep/kT) be less than its transition value, given by equation (30). 

(ii) Use this requirement, together with the expression, equa- 
tion (16), which relates the linear creep relaxation time to the 
pinning energy, temperature, and coCT, to obtain a minimum 
value for œcr. This minimum is, from equation (16), 

40Qo v0 1xl (Ep f Ep\ , ^ 
a,‘’> ,, l^exp6^J„' <3) 

(in) Check to see whether the minimum value so obtained 
can be accommodated by observational or theoretical upper 
bounds on œcr. The existence of linear creep will imply that 

E'<kT&\, 
(44) 

in the regions of the star where creep is linear. Similarly, evi- 
dence for nonlinear creep means there are regions in the pulsar 
where pinning energies are larger than a certain value, 

,45» 

The bounds (37) and (45) could be used as bounds on the 
interior temperature of neutron stars if an accurate calculation 
of Ep were available. More realistically, with theoretical and 
observational information on the temperature, they can be 
used to yield the smallest and largest ranges in the spectrum of 
pinning energies. The bound (44) from the existence of linear 
creep is most restrictive using the temperature of the oldest and 

coldest pulsar that displays linear creep (PSR 0355 + 54). Simi- 
larly, the existence of nonlinear creep in the youngest and 
hottest, the Crab pulsar, supplies the most restrictive use of the 
bound (45) on the range of strongest pinning energies. 

a) The Crab Pulsar 
The most recent, third, observed glitch of the Crab pulsar 

(Lyne and Pritchard 1987) was recorded with an uncertainty of 
only one hour in its time of occurrence. The initial postglitch 
data can be fitted with an exponentially decaying phase 
residual [which is the second integral of Í¿c(í)], with a time 
constant t = 2.5-5.5 days, depending on the length of data 
employed, followed by a component that has a longer relax- 
ation time. Exponential decays with various combinations of 
two relaxation times provide an equally good fit to the data. 
Our earlier work yielded 3 day and 60 day relaxation times for 
the nonlinear creep fits to the postglitch relaxation following 
the first two glitches. Work in progress (Nandkumar et al. 
1989) will compare linear and nonlinear creep fits to the Crab 
postglitch relaxation data. A model calculation for Crab pulsar 
relaxation times is shown in Figure la. Using T = 35 keV, and 
the recent gap values of Ainsworth, Pines, and Wambach 
(1989) shown in Figure 2, nonlinear relaxation times of 80-120 
day are indicated, along with a wide range of shorter relaxation 
times for the linear creep regions. 

Using equation (30), we find (Ep/kT)tr ~ 29. Applying the 
inequality, equation (43), to the Crab pulsar, we obtain coCT > 
1.5 x 10"2 rad s_1 as the consistency condition for the 
appearance of a 3 day relaxation time which represents a linear 
creep region. Correspondingly, coCT > 0.3 rad s-1 for a 60 day 
relaxation time to represent linear creep. The latter limit is 
close to the observational upper limit (Alpar et al. 1987), œcr ~ 
0.7 rad s-1, on the average value of œCT of the pinned crustal 
superfluid. 

What are the consistency conditions imposed by the 
assumption that one or both relaxation times represent nonlin- 
ear creep? As we have noted, the presence of a persistent shift 
in Ùc is a sign of nonlinear creep. Since such a shift has been 
observed following the 1975 glitch, there must exist a region of 
nonlinear creep in the Crab pulsar. It follows that the pinning 
energy in the nonlinear creep regions, Ep

n\ must be greater 
than the transition value given in the inequality (45), 

£/>29/cTCrab . (46) 

From standard cooling theory (Tsuruta 1986), kTCrah ~ 35 
keV, so that there must be present, in the Crab pulsar, substan- 
tial (Ip/1 ~ 10“ 3) regions in which the pinning energy exceeds 1 
MeV. Such regions may be expected to correspond to weak 
pinning (Alpar et al. 1984h). On making use of the microscopic 
expressions for the pinning energy in the weak pinning region 
(eq. [33]), this limit in turn implies a limit on the superfluid 
energy gap, 

A(MeV) > l.l[(/cT)Crab/35 keV^D^fm"1)]-1'2 . (47) 

This limit does not depend on any observed relaxation times, 
but only on the existence of nonlinear creep as evidenced by 
the persistent shifts. It does, however, use the standard cooling 
theory results for the temperature. 

One can obtain a particularly important limit on o>cr from 
(36) and (47), 

mcr > 0A5y112 [kX(Crab)/35 keV]1/2 

r6(bj50 fm)3/cF
3/2(fm_1) ' 

(48) 
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Now, the persistent shift in in the Crab postglitch data 
involves a region with Ip/I ~ 10 ~3, so that Ip ~ 1042 g cm2 for 
a typical neutron star with total moment of inertia 1045 g cm2. 
Thus the Crab data for nonlinear relaxation implies 

Ip, 43 ^cr £ 4.5 X 10 ~ 2[/cT(Crab)/35 keV]1/2a , (49) 

where a ~ 0(1) is the average of the density dependent factors 
in the inequality (48) over the nonlinear creep regions. As older 
pulsars will have more nonlinear creep regions, and œcr is a 
temperature independent pinning parameter, this gives a lower 
limit, applicable to all pulsars, on the coefficient of | Û |c in the 
rate of energy dissipation, equation (29). This lower limit is 
consistent with the current observational upper limit (Alpar et 
al. 1987), IpA3tücr < 0.7 rad s_1. For the Crab pulsar, with 

= 2.5 x 10-9rads-2,equation(37)reads 

A(MeV) ^ 2.2/cT(keV)[TnZ(d)]-1(|Q|/2.5 x 10~9)“1 

x r6~1(bz/50 fmr^Mfm-1)]-2 . (50) 

With the current gap values of Ainsworth, Pines, and 
Wambach (1989), shown in Figure 2, and at a temperature of 
35 keV, the nonlinear relaxation times shown in Figure la, 
Tnl = 80-120 days are obtained. In earlier work, Alpar, Nand- 
kumar, and Pines (1985) used this relation, with a smaller non- 
linear relaxation time of 60 days obtained from fits to 
postglitch relaxation data then available, and with larger gap 
values (Hoffberg et al 1970). They deduced an internal tem- 
perature T ^ 4 x 108 K, consistent with T = 35 keV obtained 
from standard cooling scenarios. 

If an observed relaxation time, for example 60 days, reflects 
nonlinear creep and one does not assume any prior knowledge 
of the superfluid gap or the temperature, but retains the 
assumption of weak pinning, then an interesting lower bound 
on the superfluid gap Á and on the temperature follows from 
equation (50) and the inequality (47) : 

A(MeV) ^ 0.9(t„,/60 d)( | Û | /1 |Crab) 

x r6(bj50 fm)3/cF(fm “ 1)>’_ 1 (51) 

and 

/cT(keV) > 25(t„z/60 d)2( \Ù\/\Ù |Crab)2 

x r6
2(bz/50 fm)6/cF

3(fm ~1)y~1 (52) 

These lower bounds are proportional to | Ó | xnl and ( | Ó | Tn/)
2 

respectively, so the Crab pulsar, having the largest | à |, is the 
one glitching pulsar, at present, where these bounds are inter- 
esting. They apply if the relaxation time can be confirmed to 
reflect the nonlinear regime, but are independent of any knowl- 
edge of the temperature. 

If at least one component of postglitch relaxation can be 
shown to be in the linear regime, then there must be pinning 
regions with Ep

l < 29 kTCrah. It will be very interesting to see if 
the short time scale postglitch relaxation following the third 
glitch can be fitted better with linear or nonlinear creep 
(Nandkumar et al. 1989). In either case the long time scale 
persistent shift in | & |c, which was clearly part of the postglitch 
behavior following the 1975 glitch and may have been present 
after the 1969 and 1986 glitches as well, indicates the unequivo- 
cal presence of the nonlinear creep regime. 

b) The Vela Pulsar 
The situation for the Vela pulsar is similar to that for the 

Crab. Our earlier fits to postglitch relaxation data involved 

short-term relaxation components, characterized by t ~ 3 day 
and t ~ 60 day, followed by a long time scale response, with Ùc 
healing gradually, and only linearly in time. (The observation 
of similar relaxation times for Crab is a numerical coincidence.) 
For these first few observed glitches, the glitch date was uncer- 
tain by 5 to 23 days, and our postglitch fits employed the 
nonlinear creep regime alone. By contrast, the fifth, sixth, and 
seventh glitches were each caught within a day, while the 
recent eighth glitch (Flanagan 1989; Hamilton et al. 1989) 
actually took place during an observation (Hamilton et al. 
1989). The short-term relaxation has been fitted by a pair of 
simple exponentials, with relaxation times Ti = 1.6-3.2 days 
and i2 = 60-233 days (Klekociuk 1987) for the three sets of 
postglitch data following glitches 5, 6, and 7. An extensive 
study of JPL data for relaxation following glitches 1 through 6 
(Cordes, Downs, and Krause-Polstorff 1988) has also shown 
that each postglitch data set can be fitted with a pair of expo- 
nentials with t1 = 4-10 days and t2 = 14-120 days. It will be 
very interesting to see if these data sets can be fitted equally 
well with combinations including nonlinear creep response, 
and whether the observed time dependence can distinguish 
significantly between the two possible regimes. Figure lb gives 
relaxation times for the Vela pulsar, employing the gap values 
of Ainsworth, Pines, and Wambach (1989), and kT = 11 keV 
for the interior temperature. This value of the interior tem- 
perature is deduced from the recent observational limits on the 
Vela pulsar’s surface temperature (Ögelman and Zimmermann 
1989) and is somewhat lower than the predictions of most 
standard cooling theories. 

For the Vela pulsar the transition value of Ep/kT is 
(Ep/kT)tr ^31, so that if an observed relaxation time reflects 
linear regime vortex creep, the bound on œcr using equation 
(43) is seen to be <ucr > 6 x 10“2 rad s"1 for the longest report- 
ed relaxation time, 233 days (Klekociuk 1987). Thus the 
observed relaxation times can be easily associated with the 
linear creep regime. However, as was the case with the Crab 
pulsar, the observation of a slow component of the relaxation 
(with AiX linear in t in the case of the Vela pulsar) indicates the 
presence of nonlinear creep. The simultaneous presence of the 
two creep regimes would imply : 

Ep1 < (Ep/kT)trkT < Ep
nl (53) 

so that for the Vela pulsar one has 

Ep
l < 31/cTVela < Ep

nl. (54) 

The internal temperature of kT ^ 11 keV implied by the obser- 
vations yields Ep

nl > 0.34 MeV. The internal temperature pre- 
dicted by standard neutron star cooling theories, kT ~ 16 keV 
at the age of the Vela pulsar, gives Ep

nl >0.5 MeV. If all relax- 
ation times, including the prompt relaxation, reflect the nonlin- 
ear creep regime only the upper bound remains in effect. The 
internal temperature can then be determined from Tnl, using 
equation (37) as was done by Alpar et al. (1984h) for the post- 
glitch relaxation times for the first four Vela glitches; they 
found a temperature T ^ 1.5 keV, in clear disagreement with 
the results of standard cooling theory, using earlier, large gap 
values. According to equation (37), the currently available, 
lower values of the superfluid gap will further decrease the 
temperature estimate. A demonstration that nonlinear creep 
response provides a significantly better fit to the recent data 
than the fits provided by linear creep will be necessary, if we are 
to confirm these low-temperature estimates and call for a non- 
standard, rapid cooling scenario for the Vela pulsar. We note 
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that the current observational upper limit to the Vela pulsar’s 
surface temperature is also somewhat below the surface tem- 
peratures inferred from standard cooling theory, but the dis- 
crepancy there is relatively small and can perhaps be 
accounted for if the spectrum that would emerge from a pulsar 
atmosphere (Romani 1987) is used instead of a blackbody in 
deriving a temperature upper limit from the observed count 
rate data. 

Let us assume that it proves possible to fit the comparatively 
prompt relaxation (t < 60 d) observed in all eight Vela glitches 
with linear response, and, also, that the standard cooling sce- 
nario is applicable. In this case we can use equation (37) to 
obtain an estimate of the value for the relaxation time associ- 
ated with the persistent shift, which characterizes vortex creep 
in a nonlinear region. With the internal temperature T = 11 
keV, the nonlinear relaxation times, shown in Figure lb range 
from 640 to several thousand days. The appearance of such a 
relaxation process would serve to confirm both the above 
assignment of relaxation times and calculations based on the 
standard cooling scenario. Figure lb also shows the effect of 
regions of superweak pinning on the spectrum of relaxation 
times. A transition to superweak pinning might occur when £ 
vortex cores encompass several neighboring pinning sites. 
Using the criterion £ > bz/2, we find that with the current gap 
values, this transition would take place at a density of 9 x 1013 

g cm-3. The resulting reduction in Ep and increase of h, the 
distance between effective pinning sites along a vortex line, 
change the relaxation times. Superweak pinning parameters 
are not available at present; the dashed lines in Figure lb are 
meant as a qualitative sketch. Note that because of the sensi- 
tive dependence of rt on Ep, even a modest reduction in Ep will 
extend the linear creep regions significantly, while the 
reduction of Tnl due to the increase in b (eqs. [5] and [26]) will 
be less important. With superweak pinning the longest nonlin- 
ear relaxation times may be reduced ; down to a value of ~ 
100 d at p = 9 x 1013 g cm-3, from about 2000 days in the 
model calculation displayed in Figure lb. The moment of 
inertia in the linear creep regions will increase, and a prevalent 
range of linear creep relaxation times might be chosen, depend- 
ing on the run of Ep in the superweak regime; the dashed line 
in Figure lb was drawn to reflect prevailing linear creep relax- 
ation times in the 10-100 d range. 

In short, if the observed relaxation times less than ~ 100 d 
reflect the nonlinear regime and the Vela pulsar has an interior 
temperature like 11 keV, then there must be superweak 
pinning. Alternatively, these relaxation times could reflect the 
linear regime and weak pinning. In earlier work (Alpar et al 
1984h), associating weak pinning and nonlinear creep with a 60 
d relaxation time had led to the low-temperature estimate 
T ^ 1.4 keV. An evaluation of the postglitch fits following the 
first seven Vela glitches is in progress (Alpar et al 1989). 

c) PSR 0355 + 54 
Alpar et al (1988) recently evaluated the postglitch relax- 

ation data following the large glitch observed from this pulsar 
(Lyne 1987) in terms of an initial linear creep response, 
observed as an exponential relaxation with time constant 44 d, 
and a persistent shift in Í2C due to a nonlinear creep region. The 
transition value of Ep for this pulsar is (Ep)tr ~ 35kT so that the 
relaxation time of 44 d, when interpreted as a linear creep 
relaxation time, requires œcr> 4 x 10 ~5 which is compatible 
with the pinning conditions almost anywhere in the pinned 
superfluid. The existence of a persistent shift in Qc indicates the 

nonlinear creep regime. The simultaneous presence of the two 
creep regions implies that 

Ep
l < 35/cT0355 + 54 < Ep

nl (55) 

The internal temperature of PSR 0355 + 54 is ~ 1.5 keV if we 
assume that this pulsar is old enough to be heated primarily by 
vortex creep; a comparable value is obtained using some stan- 
dard cooling scenarios. With this assumed low temperature, 
one has an interesting upper limit on the pinning energy which 
characterizes the linear response regime, Ep

l < 50 keV. Such 
small pinning energies indicate superweak pinning. Indeed, a 
model calculation based on weak pinning alone shows that the 
nonlinear creep regime would prevail everywhere in PSR 
0355 + 54; the observation of the 44 d linear relaxation time 
requires that superweak pinning must be present. The condi- 
tion for superweak pinning, ^ > hz/2, means A must be small, 

A < ~ 1 MeV . (56) 
nmbz 

This bound is indicated in Figure 2; the observation of linear 
creep from PSR 0355 + 54 implies the presence of A < 1 MeV 
over a region with Ip/I ~ 10"3. Note that some standard 
cooling scenarios give temperatures as high as 9 keV. In this 
case we only have < 315 keV and no strong argument for 
superweak pinning. 

Thus, PSR 0355 + 54 is still in that early stage in a pulsar’s 
life when the presence of linear creep is observable as the 
response of a substantial part of the pinned superfluid, but only 
because pinning is superweak there. As the pulsar cools 
further, its temperature will no longer satisfy the first inequality 
in (55), even in comparison to the minimum pinning energies 
available in the superweak regions, leading to the prevalence of 
nonlinear creep at later stages of the pulsar’s life. 

d) PSR 0525 4-21 
In this case, two relaxation times, t1 = 150 d and t2 = 3000 

d were extracted by Alpar, Nandkumar, and Pines (1985) from 
their postglitch fits with nonlinear creep, along with a long- 
term persistent shift. As we would expect, for this old pulsar 
with is = 1.5 x 106 yr and T = 1.3 x 10“2 keV (inferred from 
the dissipation rate by vortex creep), the entire relaxation 
process observed reflects nonlinear creep. The requirement 
that Ep

l be less than the transition value (Ep)tT ~ 36kf, leads to 
a maximum pinning energy, (Ep

l)max ~ 0.5 keV. It is not very 
plausible that such very weak pinning energies could lead to 
the pinning of vortices in a substantial portion (Ip/I ~ 10“ 3) of 
the star, required to explain relaxation in this pulsar as a linear 
response. As noted by Alpar, Nandkumar, and Pines (1985), 
the relaxation time obtained from the explicit expression for 
Tnh using a temperature ~ 1.3 x 10"2 keV, is ~ 140 d, in good 
accord with the observed time ~150 d. This comparison 
depends on the relation between the surface temperature and 
the interior temperature, as well as on the superfluid gap and 
pinning energies. Within the uncertainties involved, the more 
recent calculations of the gap do not alter the agreement 
between the theoretical estimate of Tnl and the observed relax- 
ation time. 

V. CONCLUSIONS 

We have presented a general analysis of vortex creep relax- 
ation phenomena, with special attention to the possible pre- 
sence of regions in which creep is a linear response to a glitch. 
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We have also considered in some detail the consistency criteria 
which enable one to assign an association of observed r’s with 
linear or nonlinear creep regions within the star and have 
applied these conditions to the few pulsars for which postglitch 
observations have been made: the Crab and Vela pulsars, PSR 
0355-1-54 and PSR 0525 + 21. We conclude that linear creep 
can be important in the early stages (;$ 106 yr) of the life of a 
pulsar, while nonlinear creep becomes the dominant response 
as a pulsar ages (> 106 yr) and cools. Nonlinear creep is, in fact, 
present in all four pulsars, since each exhibits relaxation phe- 
nomena which fall outside the expected behavior for linear 
creep response. 

In PSR 0355 + 54, the observation of prompt postglitch 
relaxation requires the presence of linear creep and of super- 
weak pinning, while for the Crab and Vela pulsars, a detailed 
analysis of the postglitch behavior which takes into account 
the possible presence of linear creep is needed to see whether 
linear creep, nonlinear creep, or a combination of the two, 
provides a significantly better fit to the data. 

The phenomenology presented here shows that pulsar relax- 
ation evolves from linear response, limited to superweak 
pinning as the pulsar ages and cools, to nonlinear response 
only, for pulsars older than about 106 yr. If upheld by future 

observations and supported by accurate calculations of 
pinning, vortex creep theory can become an important diag- 
nostic of thermal evolution of pulsars (Shibazaki and Lamb 
1989). The observation of a persistent shift in Ù healing in the 
manner characteristic of nonlinear creep would be the most 
direct and significant support of vortex creep theory. Future 
detections of old pulsars in soft X-rays, along the lines of the 
recent X-ray identification of PSR 0656 + 14 (Cordova et al 
1989) will also be interesting: the thermal luminosities should 
scale with | Ù | (eq. [29]), with a coefficient Ip a>cr that depends 
on neutron star structure and so should be roughly similar in 
all pulsars. Finally, according to our analysis, old pulsars are 
not expected to exhibit linear response. 
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