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ABSTRACT 
Pulse time-of-arrival observations of the binary pulsar PSR 1913 + 16 now extend over approximately 14 

years. The data are consistent with a straightforward model allowing for the motion of the Earth, special and 
general relativistic effects within the solar system, dispersive propagation in the interstellar medium, relativistic 
motion of the pulsar in its orbit, and deterministic spin-down behavior of the pulsar itself. The results show 
that at the present level of precision, the PSR 1913 + 16 system can be modeled dynamically as a pair of 
orbiting point masses. A total of five Keplerian and five “ post-Keplerian ” orbital parameters can now be 
determined, most of them with remarkably high precision. The masses of the pulsar and its companion are 
determined (within general relativity) to be = 1.442 ± 0.003 and m2 = 1.386 + 0.003 times the mass of the 
Sun, respectively, and the orbit is found to be decaying at a rate equal to 1.01 ± 0.01 times the general rela- 
tivistic prediction for gravitational radiation damping. 

Our results represent the first experimental tests of gravitation theory not restricted to the weak-field, slow- 
motion limit in which nonlinearities and radiation effects are negligible. The excellent agreement of observa- 
tion with theory shows conclusively that gravitational radiation exists, at the level predicted by general 
relativity. We also use the results to calculate improved upper limits on the rate of change of the Newtonian 
gravitational constant, and the fractional energy density (relative to closure density) of a cosmic background 
of ultra-low-frequency gravitational radiation. These limits are, respectively, Ó/G = (1.2 + 1.3) x 10“11 vr_1 

and < 0.04 at frequencies 10“9 to 10“12 Hz. 
Subject headings: gravitation — pulsars — radiation mechanisms — relativity — stars: binaries 

I. INTRODUCTION 
The 8 hour binary pulsar PSR 1913 +16 has proved to be an 

outstanding relativity laboratory, perhaps even surpassing the 
high expectations held shortly after its discovery (Hulse and 
Taylor 1975). Observations of its pulse arrival times have pro- 
vided the data necessary (1) to specify the orbital elements and 
masses of both the pulsar and the companion star; (2) to deter- 
mine that the orbit is decaying at precisely the rate expected 
from the emission of gravitational radiation; (3) to rule out 
several theories of gravitation; and (4), for the first time, to 
probe experimentally some details of the solution to the 
general relativistic two-body problem (Taylor et al. 1976; 
Taylor, Fowler, and McCulloch 1979; Taylor and Weisberg 
1982; Weisberg and Taylor 1981, 1984). Interesting applica- 
tions of the data are still being found: some recent published 
results include the determination of a new upper limit to G/G 
(the fractional rate of change of the Newtonian gravitational 
constant; Damour, Gibbons, and Taylor 1988) and the first 
plausible evidence for gravito-magnetic effects, in the form of 
geodetic precession of the PSR 1913 + 16 spin axis (Weisberg, 
Romani, and Taylor 1989). 

The pulsar has now been observed regularly for 14 years, 
with steadily improving data acquisition equipment and tech- 
niques. Parameters describing the system have been derived 
from least-squares fits of arrival-time data to timing models of 
increasing sophistication and accuracy (Blandford and Teu- 
kolsky 1976; Epstein 1977; Haugan 1985, 1988; Damour and 
Deruelle 1986). As the time span of available data has 

lengthened and the quality of the data has improved, we have 
been able to tighten significantly the constraints on the mea- 
sured physical parameters. In this paper we provide new deter- 
minations of the pulsar and orbital parameters, together with a 
thorough discussion of errors in the data and their effect on the 
estimated parameter values. 

The plan of our paper is as follows. In § II we describe the 
techniques used to measure pulse arrival times, along with 
some details of the data acquisition hardware used for this task 
since 1974. Section III summarizes the development of the 
detailed relativistic models used to analyze the data, and § IV 
describes our implementation of these models in software and 
presents the results obtained for parameters of the models. 
Consequences of the parameter values are discussed in § V 
from a point of view free of any assumptions about the strong- 
field nature of gravity. Then, in § VI, we discuss the implica- 
tions in the more restricted circumstance in which general 
relativity is assumed correct. Section VII summarizes our con- 
clusions and outlines the prospects for further progress. 

II. MEASURING TOPOCENTRIC PULSE ARRIVAL TIMES 

PSR 1913 + 16 is a pulsar with short period (P = 59 ms), 
large dispersion measure (DM = 169 cm-3 pc), and low flux 
density (S = 0.7 mJy at 1400 MHz). It moves in a binary orbit 
of short period (Pb = 7.75 hr) and high eccentricity (e = 0.617), 
with a maximum speed around 400 km s-1. All of these char- 
acteristics make it an unusually difficult pulsar to observe. 
With a very few exceptions (for example, Lyne and Ritchings 
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1977; Backer et al 1985), useful observations of PSR 1913 +16 
^ have been made only with the benefit of the uniquely high 
g sensitivity of the 305 m telescope of the Arecibo Observatory.1 

S Our observations consist of more than 4480 measurements 
^ of pulse arrival times at Arecibo between 1974 September and 

1988 July. A consistent procedure has been common to nearly 
all of the measurements. On a given day, the pulsar is observed 
for the full tracking range of the telescope, about 2.5 hr. The 
periodic pulsar waveform is averaged for intervals of about 5 
minutes, and the resulting integrated profiles are recorded 
along with time tags corresponding to the first digitized bin of 
the average profile and occurring near the midpoint of the 
integration. 

Other details of the observations have varied widely over the 
14 years, and a total of 13 distinct combinations of data acqui- 
sition equipment have been used. The changes were made in 
order to take advantage of new feed antennas, new receivers, 
and enhanced signal processing hardware as they were devel- 
oped. Most changes occurred during the first 6 years of the 
experiment, during an era of extensive upgrading of the 
Arecibo telescope’s capabilities. Since 1981, we have taken par- 
ticular care to minimize changes, and to calibrate the resulting 
instrumental offsets when changes have been deemed desirable. 
Most of the timing measurements of PSR 1913-1-16, and 
indeed all of those with uncertainties less than 40 jus, have been 
made since 1981 February. 

a) Data Acquisition Systems 
Important specifications of the first 11 observing systems, 

including frequency, bandwidth, effective time resolution, and 
typical measurement uncertainty, were presented and dis- 
cussed in an earlier paper (Taylor and Weisberg 1982, hereafter 
TW). The information is summarized and brought up to date 
in Table 1. The highest quality data discussed in TW are those 
recorded with “observing system K,” which remained in 
service until late 1984 and has become known as our “ Mark I ” 
observing system. It took advantage of a pair of 2 x 32 x 250 

1 The Arecibo Observatory is part of the National Astronomy and Iono- 
sphere Center, operated by Cornell University under contract with the Nation- 
al Science Foundation. 

kHz filter-bank spectrometers, the detected outputs of which 
were sent to a pair of 32 channel de-dispersing circuits (Orsten 
1970; Boriakoff 1973). The two de-dispersed output signals, 
each corresponding to the total power in summed orthogonal 
polarizations from an 8 MHz bandwidth, were routed to a dual 
1024 bin digital signal averager clocked in synchronism with 
the topocentric pulsar period. 

As shown in Table 1, a Mark II system was brought into 
service in 1984 October. This equipment was designed for 
optimum performance in timing millisecond pulsars (Rawley 
1986; Rawley et al 1987; Rawley, Taylor, and Davis 1988). It 
makes use of one of the 2 x 32 x 250 kHz filter-bank spec- 
trometers, followed by a bank of 32 concurrently operating 
signal averagers. The total accepted bandwidth is 8 MHz, only 
half of that used by the Mark I system. Dispersion delays are 
removed in software before the 32 single-channel profiles are 
combined to form a grand average for each 5 minute integra- 
tion. 

In 1988 July we began using a Mark III system which com- 
bines some of the advantages of both the Mark I and Mark II 
approaches. Its signal-averaging hardware is multiplexed to 
allow concurrent averaging of up to 32 signal channels; its 
speed is adequate for use with the fastest millisecond pulsars; 
and, with the help of a new 2 x 32 x 1.25 MHz filter bank, it 
utilizes the full 40 MHz bandpass of the dual-polarization 22 
cm feed of the Arecibo telescope. A disadvantage of the present 
version of the Mark III system is that its frequency resolution 
is a relatively poor 1.25 MHz per channel. Consequently, the 
uncorrectable dispersion smearing is a rather large 630 jus. 

In each of the 13 observing systems, the detected pulsar 
signal was sampled continuously at a constant (or nearly 
constant) rate, and averaged for 5 minutes in synchronism with 
the apparent pulsar period. In some of the earliest observa- 
tions, before the PSR 1913 + 16 parameters were known well 
enough to allow an adequate ephemeris to be computed in 
advance of each observing session, raw data samples were 
recorded on magnetic tape and the Doppler shifting and syn- 
chronous averaging accomplished after the observations were 
completed. Since 1978.4, the average pulsar waveforms have 
been accumulated in real time, with a computerized ephemeris 
and associated hardware adjusting the sampling rate to allow 

Dates 

TABLE 1 
Observing Systems Used and Summary of Available Data 

Frequency 
(MHz) 

Total 
Bandwidth 

(MHz) 
Frequency 
Channels 

System 
Noise 

Temperature 
(K) 

Time 
Resolution 

(/is) 

TOA 
Uncertainty 

(/zs) 
Number of 

Observations 

A. 1974 Sep-Deca   
B. 1975 Apr-1976 Novb   
C. 1975 Jun-1976 Feb    
D. 1976 Nov-Deca,b   
E. 1977 Jul-Augb   
F. 1978 Jun-1981 Feb   
G. 1977 Jul-Aug   
H. 1977 Dec   
I. 1978 Mar-Apra   
J. 1980 Jul-1981 Feb   
Mark 1.1981 Feb-1984 Dec 
Mark II. 1984 Oct-1988 Jul 
Mark III. 1988 Jul-  

430 
430 
430 
430 
430 
430 

1410 
1410 
1410 
1410 
1410 
1408 
1404 

8.0 
0.64, 3.2 
0.25 
0.64 
0.64 
3.34 
8.0 
8.0 
8.0 
8.0 

16.0 
8.0 

40.0 

32 
32 

1 
32 
32 

504 
32 
32 
32 
32 
64 
32 
32 

175 
175 
175 
175 
175 
175 
80 
80 
80 
80,40 
40 
40 
40 

5000 
2000 
2000 

750 
340 

43 
125 
125 
125 
200 
125 
125 
640 

275 
310 
890 
155 
150 
75 
75 
55 
50 
85 
20 
31 
16 

524 
112 
75 
73 
52 

573 
57 
72 

116 
312 

1719 
638 
159 

a Raw data samples were recorded on magnetic tape, with signal averaging done afterward in software. All other observations used real-time signal 
averaging, synchronized by means of a precomputed ephemeris. 

b Some or all of these observations were made with only one polarization. 
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Fig. 1.—Average profiles of PSR 1913+16 as observed with the Mark I, 
Mark II, and Mark III data acquisition systems at frequencies near 1408 MHz. 
The effective time resolutions, which are dominated by dispersion smearing, 
are indicated by bars to the right of each pulse. The full period (59.03 ms) is 
plotted, and the gradual weakening of component 1 relative to component 2 is 
a real effect (Weisberg, Romani, and Taylor 1989). 

for the small but significant changes in pulsar period during an 
integration. 

Some representative samples of pulse profiles obtained with 
the pre-1981 observing systems were shown in Figure 1 of TW. 
These plots illustrated the improvement in time resolution 
obtained over the first 7 years, as well as the inevitable trade- 
offs between resolution and signal-to-noise ratio and the sig- 
nificant dependence of pulse shape on frequency. Figure 1 of 
the present paper shows profiles obtained with the Mark I, 
Mark II, and Mark III systems at frequencies near 1408 MHz. 
Each profile is the average of several hundred 5 minute integra- 
tions. 

b) Determining Times of Arrival and Their Uncertainties 
An effective pulse time of arrival (TOA) was calculated for 

each 5 minute average profile in the following fashion. The 
observed profile, typically consisting of 1024 numbers rep- 
resenting relative flux density throughout a full pulsar rotation 
period, was matched with a high signal-to-noise “standard 
profile” in order to determine the exact phase of the pulsar 
waveform. This “ template matching ” was done by least- 
squares fitting, either in the time domain or in the Fourier 
transform domain. In either case, a x2 “ goodness-of-fit ” sta- 
tistic was minimized with respect to three parameters : the level 
of the baseline, the pulsar signal strength, and the phase offset 
between observed and standard profiles. 

The time delay corresponding to the measured phase was 
added to the time corresponding to the first bin of the observed 
profile. In addition, for data acquired since late 1982, a correc- 
tion (typically amounting to a few microseconds) was applied 

to the time reckoned by the observatory’s master clock, so that 
the TOA was ultimately referred to Coordinated Universal 
Time as kept by the US Naval Observatory or the National 
Institute of Standards and Technology2 (Davis et al 1985; 
Rawley et al. 1987). The resulting topocentric TOAs, which 
consitute our basic data set for all further analysis, are specified 
in units of proper atomic time on Earth, or terrestrial dynami- 
cal time (TDT). 

We estimate an uncertainty for each TOA as part of the 
template-matching procedure. Typical values range from a 
maximum of nearly 1 ms for a small fraction of the early data 
to 20 gs or less for most of the measurements made since 1981. 
Because the estimated uncertainties of individual TOAs are 
themselves subject to significant errors, we improve statistical 
reliability by using daily average values of uncertainties scaled 
by the known dependence of telescope gain and system noise 
temperature on zenith angle. 

III. DEVELOPMENT OF THE TIMING MODEL 
The phase of a pulsar waveform at a particular time of 

observation depends on a number of factors, including (1) the 
spin-down behavior of the pulsar, (2) dispersive delays in the 
interstellar medium, (3) motion of the Earth within the solar 
system, (4) orbital motion of the pulsar, if any, and (5) relevant 
instrumental delays. Analysis of pulsar timing data requires a 
detailed model of these effects in order to predict the pulsar 
phases. Differences between predicted and observed values can 
then be used to determine corrections to various assumed 
model parameters, as described in § IV. 

a) Single Pulsars 
An adequate timing model for single pulsars has been devel- 

oped in stages of increasing accuracy, beginning soon after 
pulsars were discovered (see, for example, Hunt 1971; Man- 
chester and Peters 1972; Manchester, Taylor, and Van 1974; 
Manchester and Taylor 1977). Early observations required 
accuracies only at the 100 gs level; however, the discovery of 
millisecond pulsars in 1982 made it essential to achieve accu- 
racy in the submicrosecond range. Our current model, 
embodies in a Fortran program called TEMPO, which has 
been continually evolving since 1972, meets this goal—as 
proved by extensive tests with 6 years of data from the milli- 
second pulsar PSR 1937 + 21. Some details of the model, par- 
ticularly those not relevant to the orbital motion of binary 
pulsars, were presented in a paper by Rawley, Taylor, and 
Davis (1988). 

Our timing model for single pulsars is concisely specified in 
an equation relating the topocentric pulse arrival times t to the 
corresponding infinite-frequency relativistic coordinate times 
tb of pulse arrival at the solar system barycenter (SSB) : 

H — t ~ D/f A- (r * ñ)/c + AEq — ASq . (1) 
In this equation t is measured in the topocentric TDT system, 
while tb is in units of barycentric dynamical time (TDB). The 
observing frequency/is expressed in the rest frame of the SSB; 
the dispersion constant D, measured in hertz, is conventionally 
related to the commonly quoted dispersion measure by 
D = DM/(2.41 x 10~16). In the remaining terms of equation 
(1), i* is a vector from the SSB to the phase center of the telscope 
at the time of observation, Ä is a unit vector toward the pulsar, 
c is the speed of light, AEO is the solar system “ Einstein delay,” 

2 Formerly the National Bureau of Standards. 
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! or combined effect of gravitational redshift and time dilation 
^ due to motions of the Earth and other bodies, and Aso is the 
£ “Shapiro delay” caused by propagation of the pulsar signal 
S through curved spacetime in the solar system. 
2 The Einstein delay AEO amounts to an integral of the expres- 

sion 

^EO 
dt 

+ —— constant. 
2c2 (2) 

The sum is taken over all significant masses rrii in the solar 
system, excluding the Earth; rf is the distance of from Earth; 
t;0 is the velocity of Earth with respect to the SSB; and the 
additive constant is chosen so that the average value of the 
right-hand side over a long time interval is equal to zero (for a 
related discussion see Backer and Hellings 1986). 

The Shapiro delay Aso is the time-delay analog of the well- 
known bending of light at the limb of the Sun (Shapiro 1964). 
Its magnitude is readily computed from the relation 

Aso = - 2G^e log (1 + cos 0), (3) 

where M0 is the mass of the Sun and 0 is the pulsar-Sun-Earth 
angle at the time of observation ; we have neglected the eccen- 
tricity of the Earth’s orbit. We note in passing that the product 
GMg is known with higher precision than either G or M0 
separately; in equation (3) and elsewhere throughout this 
paper we adopt the constants used in the JPL ephemeris, 
GMq = 1.3271243999 x 1026 cm3 s“2, GM0/c3 = 
4.925490947 /¿s, and c = 2.99792458 x 1010 cm s"1. 

Accelerations of nonbinary pulsars relative to the SSB are 
small enough that barycentric dynamical times tb are equiva- 
lent to proper times T in the rest frame of the pulsar, up to an 
additive constant and a nearly constant Doppler and gravita- 
tional redshift scale factor. Therefore, if a pulsar’s rotational 
energy is gradually being dissipated by some deterministic 
damping mechanism, and the phase is further affected by a 
stochastic term e(T), the phase at proper time T = tb — t0 is 
given by 

0(T) = vT + ivT2 + ¿vT3 + • • • + e(T) . (4) 

In this expression v = 1/P is the spin frequency, and dots 
over symbols represent derivatives with respect to time. With a 
suitable choice of the reference epoch t0, the calculated phase 
for a barycentric arrival time tb = t0 will vanish, and thus i0 
represents a nominal infinite-frequency pulse arrival time at 
the SSB. 

All reasonable dissipation mechanisms yield braking 
torques proportional to a moderate power of v, which guar- 
antees that magnitudes of the frequency derivatives decrease 
rapidly after the first, with v/v æ v/v, and so forth. For PSR 
1913 + 16, the frequency and first derivative are v = 16.9 s-1 

and v = —2.5 x 10“15 s-2, so the expected second derivative 
is v = 3 x lO-31 s-3. Such a small value would be unob- 
servably small over our data span. Moreover, experience has 
shown (Cordes and Downs 1985) that pulsars with small v/v 
usually have little or no observable “timing noise”—that is, 
e(T) is also very small. Thus there is good reason to expect only 
the first two terms on the right-hand side of equation (4) to be 
significant for PSR 1913 + 16. 

b) Blandford-Teukolsky 
Orbital motion of a pulsar involves significant accelerations. 

Consequently, the analysis of binary pulsar timing data 

requires an additional transformation to obtain the proper 
time T corresponding to each TOA. Blandford and Teukolsky 
(1976, hereafter BT) derived the first useful formulae for this 
purpose, soon after the discovery of PSR 1913 + 16. Their 
model assumes the orbit to be a slowly precessing Keplerian 
ellipse in a plane inclined at angle i to the plane of the sky. The 
pulsar and its companion are assumed to obey essentially 
Newtonian dynamical laws. The largest short-period rela- 
tivistic effects—gravitational redshift and time dilation, fully 
analogous to the Einstein delays within the solar system 
already discussed—are calculated separately and patched into 
the model afterward. Any additional effects are accommodated 
in a phenomenological manner, by allowing for nonzero time 
derivatives of the orbital elements. Thus, the model is formu- 
lated in a way that is free of assumptions about the correct 
relativistic theory of gravity, and it can be used to detect and 
measure effects that were not explicitly incorporated at the 
outset. 

In the BT model, the transformation from barycentric 
arrival time tb to pulsar proper time T is defined by 

tb — t0 = T + {x sin co(cos E — e) 

+ [x cos <u(l — e2)1/2 + y] sin E} 

f 2n 
x |l — — [x cos a>(l — e2)1/2 cos E — xsin co sin £] 

x (1 — e cos E)_1|, (5) 

where Pb, e, and co are the binary orbital period, orbital eccen- 
tricity, and longitude of periastron; x = (a1 sin i)/c is the pro- 
jected semimajor axis of the pulsar orbit in time units; y 
measures the combined effect of gravitational redshift and time 
dilation; and the eccentric anomaly E is defined by Kepler’s 
equation, 

2n 
E — e sin E = — (tb — T0), (6) 

"b 

in which T0 is a reference time of periastron passage, measured 
in the TDB system. 

Precession of the longitude of periastron is accommodated 
in the model by setting œ = co0 œ(tb — T0) in equation (5), 
and orbital changes caused by gravitational radiation or any 
other mechanism can be detected and measured by similarly 
allowing for time derivatives Pb, x, and è. Blandford and Teu- 
kolsky (1976) argued that a quasi-Newtonian phenomenologi- 
cal model was an adequate approximation for treating the 
PSR 1913 + 16 data available in 1976, and this assertion was 
borne out in practice (Taylor et al 1976). It is no longer true, 
however, as shown in § IV, so a better model has become 
essential for extracting the maximum possible information 
from the data. 

To facilitate discussion in the remainder of § III, we present 
in Table 2 a list of parameters used in the BT model and in the 
others we are about to describe. Each model includes right 
ascension a, declination <5, proper-motion components fia and 
Hô, a reference epoch t0, and the pulsar frequency v and its 
derivatives v and v. In addition, the models for binary pulsars 
include the five Keplerian parameters, x, e, T0, Pb, and co0, plus 
at least two “ post-Keplerian ” (PK) parameters. Seven orbital 
parameters are sufficient to specify a binary system completely, 
up to arbitrary rotations about the line of sight (see, for 
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TABLE 2 
Parameters of the Timing Models 

Parameter 
Single BT EH DD DDGR 
Pulsar Model Model Model Model 

Ô . 

Vô 

v = 1/P 
v   

x = (a l sin i)/c 
e   
T0    
Ph   

á) = 2nk/Pb .. 
y   
Pb -  
s = sin i   
r  
M = m1 + m2 ■ 
m7   

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Y 
Y 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Y 
Y 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Y 
Y 

Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 
Y 

Y 
Y 

Note.—“ Y ” denotes inclusion of the parameter in the model. 

example, Smart and Blandford 1976). Additional measurables 
can therefore yield tests of the nature of gravity or of the 
“ cleanliness ” of the binary system. In the BT model, the most 
significant PK parameters are á>, y, and Pb, the latter yielding a 
quantitative test for the existence of gravitational radiation. 
Secular derivatives x and è may also be included if desired. 

c) Epstein-Haugan 
More precise observations demand a more accurate timing 

model, and Epstein (1977, 1979) developed an improved 
formula that includes the Shapiro time delay in the binary 
system and the leading short-term periodic terms in the orbital 
motion. Instead of adding relativistic corrections and phenom- 
enological time derivatives to an otherwise Newtonian treat- 
ment of orbital motion, Epstein used the two-body solution 
found by Wagoner and Will (1976) for the Einstein-Infeld- 
Hoffmann equation of motion in general relativity. Since the 
solution closely approximates a precessing ellipse, a descrip- 
tion can be made in terms of an osculating orbit whose most 
significant parameters have the same names as their Keplerian 
counterparts. Epstein’s (1977) equations (A22) and (A16), 
which we will not reproduce here, define the transformation 
from t0 to T in analogy with equations (5) and (6) for the BT 
model. As shown in Table 2, the gravitational redshift and time 
dilation parameter y, and the phenomenological time deriv- 
atives, co, Pb, etc., are also included as in the BT model. An 
additional free parameter, the orbital projection factor sin i, is 
added to the model to quantify the post-Newtonian effects. 

By 1984, having acquired several years of data with accu- 
racies in the 20 ps range, we discovered that fitting them to the 
Epstein model produced recognizably nonrandom residuals. 
At about the same time, Haugan (1985) derived and integrated 
post-Newtonian equations of motion for a two-body system 
and compared his results with those of Epstein. This process 
revealed a flaw in the Epstein model, amounting to the fact 
that in an eccentric orbit the rate of periastron advance is not 
constant but rather is modulated by an orbital phase- 
dependent term. More specifically, the longitude of periastron 

advances in proportion to the true anomaly rather than the 
mean anomaly. Haugan derived a corrected version of 
Epstein’s equation (A22) which we used to carry out a satisfac- 
tory solution yielding the first direct measurement of sin i 
(Weisberg and Taylor 1984). 

More recently, Haugan (1988, hereafter H88) has recognized 
(and we have independently proved) that the parameterization 
used in Epstein (1977) and Haugan (1985) yields a measure- 
ment of “ sin i ” that is principally a test for the presence of the 
expected periodic modulation of the rate of apsidal advance 
(which is identical in form, whether caused by relativistic or 
Newtonian effects) rather than of relativistic orbital-shape and 
Shapiro-delay effects (for further discussion see Damour and 
Taylor 1989). Haugan’s 1988 paper contains a suggested re- 
parameterization which separates these effects cleanly, and we 
illustrate the effect of these changes in § IVc. 

d) Damour-Deruelle 
Damour and Deruelle (1986) called attention to another dis- 

tinguishing aspect of the original Epstein-Haugan (EH) model: 
it departs in a fundamental way from the theory-independent 
phenomenological approach of BT. Under the assumption that 
general relativity correctly describes gravitation in the nonlin- 
ear (strong-field) regime, the EH model yields a meaningful 
estimate of a fourth PK parameter, sin i—and thus a consis- 
tency check of the cleanliness of the binary pulsar system as 
well as a test for gravitational radiation (Weisberg and Taylor 
1984). However, the EH parameterization folds several inde- 
pendent effects, the largest of which is not necessarily even 
relativistic, into the single parameter sin i. If general relativity 
is not valid under strong-field conditions, the meaning of sin i 
measured by the EH prescription is unclear. Since no other 
experimental tests of gravity in strong-field conditions exist, 
Damour and Deruelle argue persuasively that a more theory- 
independent approach to the data analysis is highly desirable 
(see also Damour 1988). 

With these ideas in mind, they devised an elegant new 
method for solving the relativistic two-body problem to post- 
Newtonian order (Damour and Deruelle 1985). From the solu- 
tion they derive a new timing formula for binary pulsars 
(Damour and Deruelle 1986, hereafter DD). This model is valid 
under very general assumptions about the nature of gravity in 
strong-field conditions (Damour 1988). The essential trans- 
formation relating solar system barycentric time tb to pulsar 
proper time T is summarized by the expression 

- i0 = T + AR + AE + As + . (7) 

Here AR, the “Roemer time delay,” is the propagation time 
across the binary orbit, analogous to the solar system term 
(r • h)/c in equation (1); AE and As are the orbital Einstein and 
Shapiro delays, analogous to AEO and Aso in the solar system; 
and A^ is a time delay associated with aberration caused by 
rotation of the pulsar. The A’s are defined by 

Ar = x sin co[cos u — e(l + c>r)] 

+ x[l — e2(l + <50)2]1/2 cos co sin u , (8) 

AE = y sin m , (9) 

As = — 2r log {1 — e cos u — s[sin co(cos u — e) 

+ (1 — e2)1/2 cos co sin u]} , (10) 

Aa = A{sin [a> + Ae(uy\ + e sin œ] 

+ £{cos [co + Ae(w)] + e cos co} , (11) 
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for which one also needs Kepler’s equation, the relation 
between eccentric anomaly u and true anomaly Ae(u), and the 
time dependence of œ : 

u — e sin u = 2tc 
T-T0 

Pb 

Ae(u) = 2 arctan 

Pt 
2 

T- % 

\ + e 1/2 
tan 

(12) 

(13) 

œ = œ0 + kAe(u) . (14) 

As shown in Table 2, the PK parameters of the DD model 
include œ = 2nk/Pb, y, and Pb, which have essentially the same 
meanings as in the BT and EH models.3 In addition, the equa- 
tion for As contains two measurable parameters, s = sin i and 
r, which characterize the “ shape ” and “ range ” of the Shapiro 
delay. In principle, the small quantities A, B, ôr, and 00 might 
also be measured. However, as DD point out, these quantities 
are nearly degenerate with other parameters, and prospects for 
their measurements appear poor over any reasonable time 
scale. Their effects are discussed further in the Appendix. 

e) Damour-Deruelle (General Relativity) 

For the sake of completeness, we present one final relativistic 
timing model for binary pulsars, which we call the DDGR 
model (Taylor 1987). It amounts to a variation of the DD 
model in which, contrary to their theory-independent 
approach, general relativity is explicitly assumed to be the 
correct theory of gravity. The minimum possible parameter set 
is used, with two PK parameters—and no ad hoc parameters 
or extra secular derivatives are introduced. The chosen PK 
parameters are the total system mass, M = mt + m2, and the 
companion star’s mass, m2 (m1 is the mass of the pulsar). Equa- 
tions (8)-(14) remain applicable, but the variables k, y, Pb, s, r, 
A, B, ör, and ôe, instead of being free (or potentially free) 
parameters, are determined by the following relations : 

k = 
3GM 

7 = ■ 

c2aR(l - e2) ’ 

ePbGm2(mi + 2m 2) 
2nc2aRM 

. 1927T/27rGY/3 Ä/f_1/3 

'•-'l+Urj m ' 

fie) - (1 + Se‘ + &‘*l - i’! ' ■ , 

cxM 
s = , 

aRm2 

r = Gm2/c
3 , 

P aR m2 

_Pbx(l — e2)1/2JV cM 

B = 0 , 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

3 The parameter cb is strictly not the instantaneous rate of change of co, but 
rather its average over an orbital period. 

G 
<5r = -j—— (3mf + 6171^2 + 2ml) » (24) 

c aRM 

G / 7 
e c2 aRM 1^2 

We reemphasize that these equations are specific to general 
relativity, and for the sake of brevity we have given equations 
defining the aberration constants A and B that are valid only if 
the pulsar spin axis is closely aligned with the orbital angular 
momentum, Further details and references can be found in 
Damour and Deruelle (1985), DD, and TW. 

mf + 6m1m2 -b 2m2 (25) 

IV. DETERMINING THE SYSTEM PARAMETERS 

a) Basic Procedure 
Implementation of the four timing models in our computer 

program TEMPO is a complex but reasonably straightfor- 
ward process. The program transforms each observed TOA 
from its topocentric (TDT) value t to a barycentric (TDB) 
value tb, using equation (1). The position and velocity of the 
telescope at the time of an observation are determined by inter- 
polating a solar system ephemeris and correcting, after the fact, 
for measured irregularities in the rotation rate of the Earth. 
Earth-rotation data are obtained from the bulletin published 
by the International Earth Rotation Service, and ephemeris 
data are taken from either the Center for Astrophysics 
PEP740R or the Jet Propulsion Laboratory DE200 ephemeris. 
Both the CfA and the JPL ephemerides are based on numerical 
integrations of a solar system model whose parameters have 
been adjusted for best fit to an extensive data base of solar 
system observations; comparisons between the two (e.g., 
Prózsyñski 1984), as well as our experience in observing milli- 
second pulsars (Rawley, Taylor, and Davis 1988), confirm that 
either ephemeris has more than sufficient accuracy for use in 
analyzing the data from PSR 1913 + 16. The solar system Ein- 
stein delay AEO is evaluated by interpolating a table of numeri- 
cally integrated values included with the CfA ephemeris, or, 
when the JPL ephemeris is being used, by means of a semi- 
analytical model developed at the Bureau des Longitudes 
(BDL) in Paris (Fairhead, Bretagnon, and Lestrade 1988). 

The pulsar proper time T is computed from by a process 
that depends on the binary model being used: equations (5) 
and (6) are used for the BT model, Haugan’s (1985) equations 
(69) and (71) for the EH model, equations (7)-(14) for the DD 
model, and equations (7)-(25) for the DDGR model. We call 
attention to the fact that some of these equations have been 
presented in the inverse of the form needed. For example, equa- 
tions (7H14) define tb in terms of T, whereas the opposite is 
actually required. Some useful short-cut procedures for the 
necessary inversions are presented in DD. 

The pulsar rotational phase ^(T;) is determined from equa- 
tion (4) with € = 0, and a x2 statistic measuring goodness of fit 
of the model to the data is computed from 

'26) 

In this equation, nt is the closest integer to each computed 
</>(7]), and (j,- is the estimated uncertainty of (see § lib). Along 
with the phases, TEMPO calculates partial derivatives 
dÿ/dÇ \Ti with respect to each of the model parameters £. These 
include, in addition to the physical parameters listed in Table 
2, up to five instrumental parameters to account for imperfect- 
ly calibrated differences between observing systems. Standard 
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; linearized techniques (see, for example, Bevington 1969; Press 
^ et al. 1986) are then used to minimize x2 with respect to as 
^ many of the model parameters as desired, while others are held 
g fixed. This process requires the evaluation and inversion of a 
2 covariance matrix, from which corrections to the estimated 

parameters and their formal uncertainties are derived. 
The integers ^ in equation (26) represent the number of 

pulsar periods (or rotations of the spinning neutron star) 
elapsed between each 7] and the reference epoch at which 
</> = 0. Since imperfect parameter values can lead to ambi- 
guities of whole cycles across gaps in the data, newly dis- 
covered binary pulsars require a “bootstrap” procedure in 
which ambiguities are detected and systematically resolved 
while the estimated parameter values are being improved 
(Taylor 1989). For PSR 1913 + 16 the system parameters have 
been known well enough since 1975 that no ambiguities have 
existed. The measured phases 0(7^) are typically within + 0.001 
of the neartest integer, even after intervals of a year or more 
with no observations. It is worth pointing out that the remark- 
ably high precisions for pulsar parameters obtainable from 
timing observations are largely a result of this ability to 
connect phase throughout data sets spanning many years. 

If the model fitted to the data is an adequate one, and if the 
data are free of systematic errors, the global minimum of x2 

should be close to the number of degrees of freedom N — J, 
where J is the number of fitted parameters. In addition, the 
postfit normalized residuals should have the character of 
random white noise, with no significant correlations and a 
Gaussian amplitude distribution, and the formal parameter 
errors should be realistic estimates of the true uncertainties. 

Real data at best approximate such ideals, so it is essential to 
make quantitative estimates of the size of systematic contribu- 
tions to the errors. One useful tactic is to study carefully the 
statistical character of the postfit residuals; another scheme 
particularly helpful in cases like the present, where subsets of 
the data have nonuniform quality and may be influenced by 
different instrumental effects, is to perform solutions in which 
various subsets of data are intentionally given zero weight. The 
effect of the unweighted data on the fitted parameter values can 
then be directly assessed, and their corresponding residuals can 
give immediate indications of possible systematic errors. We 
have carried out numerous tests of this kind, and have used 
them to determine the uncertainty estimates quoted in the next 
section. Additional details are given in the Appendix. 

b) Astrometric and Spin Parameters 
The first eight items listed in Table 2, the astrometric and 

spin parameters of the pulsar, are only peripherally related to 
the main topic of this paper. These parameters depend on 
annual and secular terms in the timing model, so their values 
are sensitive to TOA errors that change over long time scales. 
Consequently, for high-precision measurement of a, <5, v, v, etc., 
the frequent changes of data acquisition equipment during 
1974-1977 reduce our earliest data to questionable value. The 
parameter values quoted in Table 3 are based on solutions 
carried out for data acquired since 1981. For convenience we 
quote the pulsar spin parameters in terms of both frequency v 
and period P, 

For several reasons, we list two full sets of results in Table 3. 
The solution labeled B 1950.0 (CfA) is based on the PEP740R 
ephemeris, including its numerically integrated values for the 
solar system relativistic clock corrections Aeo. The solution 
labeled J2000.0 (JPL) is based on the DE200 ephemeris and the 

TABLE 3 
Astrometric and Spin Parameters of PSR 1913 + 16 

Coordinate System 

Parameter B1950.0(CfA) J2000.0(JPL) 

a  19h 13 m 12S46549(15) 19h15m28s00018(15) 
^  :  16o01'08':i89(3) 16°06'27"4043(3) 

(mas yr x)   -3.2+1.8 -3.2+1.8 
Vs (mas yr-1)   1.2 ± 2.0 1.2 + 2.0 
v(s    16.940539303217(2) 16.940539303295(2) 
v(10 15 s 2)   -2.47559(2) -2.47583(2) 
I v|(10~27 s"3)  <6 <6 
i0(JED 2,445,888 + )   0.745517962 0.745517886 
P(ms)  59.029997929883(7) 59.029997929613(7) 
P(10 18 ss-1)   8.62629(8) 8.62713(8) 
IPKlO-^ss“1)    <2 <2 

Note.—Figures in parentheses are uncertainties in the last digits quoted. 

BDL semianalytical model for Aeo. For the reference epoch t0 

we list a TDB Julian ephemeris date, roughly centered within 
our highest quality data, for which </>[T(i0)] = 0. Thus, t0 rep- 
resents a nominal infinite-frequency barycentric pulse arrival 
time, as well as a reference epoch for the remaining astrometric 
and spin parameters. 

It is known that the coordinate systems of the CfA and JPL 
ephemerides are not oriented identically (Prószyñski 1984; 
Bartel et al. 1985; Backer et al. 1985). For this reason, applying 
any standard recipe (e.g., Standish 1982) to convert the B 1950.0 
position of PSR 1913 + 16 to J2000.0 coordinates will not yield 
exactly the J2000.0 position given in Table 3. Furthermore, our 
two solutions incorporate different definitions of the unit of 
time, because they implicitly use different constants for the last 
term in equation (2). The measured values of v, v, P, and P 
depend on the value of this constant, and therefore on the time 
interval over which it was determined. Because the BDL semi- 
analytical model includes cyclic terms with periods up to 1000 
yr, while the CfA numerical integration extends over only 50 
yr, the BDL model is probably the preferable system to use. 
We hasten to point put that while these subtleties will be 
important to others observing PSR 1913 + 16, both now and in 
the future, they have no bearing on the remaining results of this 
paper. Both the CfA and the JPL/BDL systems are good 
enough descriptions of solar system effects that they have neg- 
ligible impact on measurement of the orbital parameters. 

c) Orbital Parameters 
We now turn to the orbital parameters of the PSR 1913 +16 

system, whose measurement and interpretation form the 
central theme of our paper. A representative set of solutions for 
the optical parameters is summarized in Tables 4 and 5. For 
purposes of discussion we include in these tables one solution 
each for the EH model, the reparameterized Haugan model 
(H88), and the DDGR model; two for the BT model; and three 
for the DD model. The first seven solutions are based on the 
Mark I, Mark II, and Mark III data alone—that is, all of the 
high-quality data acquired since 1981 February. The last solu- 
tion, labeled DD(3), includes all data back to 1974 with esti- 
mated uncertainties less than about 500 ps. An example of the 
postfit residuals for solution DD(1) is presented in Figure 2, 
both as a function of date and as a function of orbital phase. 

Table 4 lists values obtained for the five Keplerian orbit 
parameters. Small but significant differences exist between the 
BT and other values for x, and between the BT, EH, H88, and 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



TESTS OF RELATIVISTIC GRAVITY WITH PSR 1913 + 16 

TABLE 4 
Keplerian Orbital Parameters 

441 

H 
oo 

^ No. 1, 1989 
oo 

ft 
(T) 00 (T) 

x = (ai sin i)/c T0 Pb co0 
Solution (s) e (JED 2,445,888 + ) (s) (degrees) 

BT(1)   2.341774(9) 0.6171472(10) 0.61724862(8) 27906.980894(2) 220.1426(2) 
BT(2)    2.34178(10) 0.6171467(11) 0.61724862(8) 27906.980894(2) 220.143(2) 
EH   2.341749(12) 0.617127(5) 0.61724861(8) 27906.980895(2) 220.1428(2) 
H88   2.341752(19) 0.617128(6) 0.61724859(10) 27906.980895(2) 220.1428(3) 
DDGR   2.341754(9) 0.6171314(10) 0.61724857(7) 27906.980891(2) 220.1428(2) 
DD(l)a  2.341754(9) 0.6171313(10) 0.61724860(8) 27906.980895(2) 220.1428(2) 
DD(2)a  2.34176(10) 0.617132(3) 0.6172486(2) 27906.980895(2) 220.143(2) 
DD(3)   2.341761(9) 0.6171304(10) 0.61724861(8) 27906.980894(2) 220.1426(2) 

Note.—Figures in parentheses are uncertainties in the last digits quoted. 
a Preferred solutions. 

remaining values of e. Such differences are to be expected, 
because the precise definitions of parameters in the three basic 
models are not identical. Note that we have chosen a reference 
periastron passage time, T0, in 1984 July—near the middle of 
our span of highest quality data—whereas most previously 
published solutions used a T0 in 1974 September. The freedom 
of choice for T0 arises, of course, from the discrete freedom 
(modulo 2n) in choosing an origin for the eccentric anomaly in 
Kepler’s equation. 

Table 5 lists all of the significantly nonzero PK parameters. 
Two such parameters exist for the DDGR model, while the BT 
model has three, EH and H88 each have four, and DD has as 
many as five [two of which were held fixed in solutions DD(1) 
and DD(3)]. The remaining columns of Table 5 contain upper 
limits for I x I and | è \ obtained from the BT(2) and DD(2) solu- 
tions, as well as the number of instrumental free parameters, 
the value of and the number of degrees of freedom for all 
eight solutions. 

With the understandable exceptions already mentioned, the 
solutions yield consistent parameter estimates within the mea- 
surement uncertainties. All of the Keplerian parameters are 
determined to six or more significant figures, as are œ and M, 
the most important of the PK group.4 The next most signifi- 
cant PK parameter, y (or m2 in the DDGR model), is deter- 
mined to a fractional accuracy of about 0.2%. The orbital 
period decay rate, Pb, is known to 1%, and sin i in the EH 
model is determined to about 5%. All of these parameters, and 

4 At the present level of accuracy, it is important to specify that à> is mea- 
sured in units of degrees per Julian year (365.25 days). 

the limits for x and è as well, are readily determined by the 
linearized least-squares procedure outlined in § I Va. 

A striking demonstration of the significance of gravitational 
redshift and time dilation effects in the orbit is produced by 
setting y = 0, minimizing x2 with respect to everything else, 
and comparing the postfit residuals with those produced in a 
“good” solution in which 7 was allowed to vary. Figure 3 
shows the results of such a test, directly comparable to the 
bottom portion of Figure 2. The rapid precession of periastron 
causes the shape of the orbit delay curve (eqs. [7]-[14]) to 
change substantially over a few years, yielding large and highly 
correlated residuals if 7 is constrained to zero. 

Precession of the periastron and decay of the orbital period 
also give rise to large effects readily amenable to graphical 
display. For this purpose, we carried out solutions for each of 
19 localized blocks of data, solving for just two parameters, T0 
and œ0, in each block. The periastron time T0 was always 
chosen to corespond to an orbit near the middle of the data 
segment. All other parameters were held fixed at the values 
found in the J2000.0 (JPL) solution in Table 3 and the DD(1) 
solution in Tables 4 and 5. The localized values of T0 and co0 

are listed in Table 6 and plotted in Figure 4. To allow error 
bars to be seen in the figure, we include an expanded-scale 
version at the bottom in which the expected œ corresponding 
to the DD(1) parameters has been subtracted. It is obvious that 
apsidal motion is a huge effect in the PSR 1913 + 16 system, 
confirming its strongly relativistic character. The line of 
apsides of this binary orbit has rotated through nearly 60° 
during our 14 years of observations. 

Figure 5 is a similar graph showing the observable effects of 

TABLE 5 
Post-Keplerian Parameters 

à) y Pb r M m2 \x\ \e\ Instrumental 
Solution (degrees yr“1) (ms) (1(T12) s = sin i (/is) (M0) (M0) (1(T13) (10“14s_1) Parameters /2 

BT(1)   4.22660(4) 4.288(10) -2.428(26) ... ... ... ... 0a 0a 1 2617.8 2500 
BT(2)   4.22660(18) 4.29(11) -2.427(30) ... ... ... ... <2.7 <4.3 1 2613.3 2498 
EH    4.22661(4) 4.281(10) -2.429(26) 0.73(4) ... ... ... 0a 0a 1 2551.8 2499 
H88     4.22660(4) 4.281(10) -2.429(27) OTlí^o ••• ••• ••• °a °a 1 255L6 2499 

DDGR   ... ... ... ...’ •• 2.82837(4) 1.386(3) 0a 0a 1 2556.6 2501 
DD(l)b   4.22659(4) 4.289(10) -2.427(26) 0.734a 6.83a ... ... 0a 0a 1 2552.0 2500 
DD(2)b   4.22659(18) 4.29(11) -2.428(34) c c ... ... <2.4 <1.9 1 2551.9 2496 
DD(3)   4.22656(4) 4.296(11) -2.435(34) 0.734a 6.83a ... ... 0a 0a  5 4878.7 4001 

Note.—Figures in parentheses are uncertainties in the last digits quoted. 
a Parameter held fixed at this value. 
b Preferred solutions. 
c See text and Fig. 7. 
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Fig. 2.—Postfit residuals from the DD(1) solution in Tables 4 and 5, 
plotted separately against date and orbital phase. 

Year (JED 2,440,000 + ) (degrees) 

1974.78.. 
1974.94.. 
1976.94.. 
1977.59.. 
1977.96.. 
1978.24.. 
1978.43.. 
1978.82.. 
1979.32.. 
1980.11.. 
1980.59.. 
1981.15.. 
1981.92.. 
1982.56.. 
1983.56.. 
1984.52.. 
1985.51.. 
1987.19.. 
1988.54.. 

2331.446132(3) 
2389.585675(2) 
3118.5909664(19) 
3356.6401066(18) 
3493.5910292(11) 
3593.3972500(6) 
3663.487700(2) 
3807.5445721(9) 
3988.4231539(8) 
4276.5368946(7) 
4455.4774927(7) 
4656.38191738(14) 
4938.35870602(12) 
5172.53186888(11) 
5536.55001230(11) 
5888.61724869(17) 
6249.7284133(4) 
6864.0695866(3) 
7358.57869939(14) 

178.983(4) 
179.654(3) 
188.087(2) 
190.846(2) 
192.426(2) 
193.5845(8) 
194.393(4) 
196.0622(11) 
198.1547(9) 
201.4867(8) 
203.5581(8) 
205.88350(15) 
209.14664(14) 
211.85639(14) 
216.06875(14) 
220.1428(2) 
224.3214(5) 
231.4306(5) 
237.1527(2) 

Note.—Figure in parentheses are uncertainties in 
the last digits quoted. 

orbital decay. The ordinate, measured in seconds and labeled 
“ orbital phase shift,” corresponds to the difference between the 
measured values of T0 listed in Table 6 and the values that 
would be expected if there were no dissipative effects in the 
orbit. Again, as an aid to visualizing the measurement uncer- 
tainties, the figure includes an expanded-scale section showing 
differences between observed and expected periastron times. In 
the expanded section we also illustrate, with a time origin at 

75 80 85 90 
Date 

Fig. 3 Fig. 4 
Fig. 3.—Postfit residuals from a solution similar to DD(1), but constrained by setting y = 0 to illustrate the significance of orbital time dilation and gravitational 

redshift effects. Notice that the vertical scale is 20 times larger than that of Fig. 2. 
FIG. 4.—Top: Values of the longitude of periastron, co, measured within 19 localized blocks of data throughout our 14 yr data span. Bottom: Differences Aœ 

between the locally measured values of œ and the values expected according to the DD(1) parameter set. 
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Fig. 5.—Top: Cumulative shift of the times of periastron passage relative 
to a nondissipative model in which the orbital period remains fixed at its 
1974.78 value. Bottom: Differences between the locally measured periastron 
times and those expected according to the DD(1) parameter set. Dashed curves 
illustrate differential trends that would be expected (relative to epoch 1988.54) 
if the rate of orbital decay Pb were 2% larger or 2% smaller. 

1988.5, the differential trends that would correspond to 2% 
larger and 2% smaller values of Pb. These curves make it clear 
that the rate of orbital decay can be measured to approx- 
imately 1 % accuracy with the existing observations. 

With the quality of data that we have so far been able to 
achieve, the values and uncertainties of sin i in the H88 model, 
and especially s and r in the DD model, cannot be reliably 
determined by linearized minimization of x2- This circum- 
stance occurs because the curvature of the x2 hypersurface with 
respect to these parameters is small enough that, with the 
present measurement uncertainties, the acceptable zone 
around the global minimum is larger than the region over 
which the curvature can be treated as constant. Some impor- 
tant information on the parameters in question can still be 
obtained, however. A useful strategy is to plot values of A/2 

with respect to the poorly determined parameters, thereby 
mapping out the regions around their most likely values. 

Such a plot for the H88 solution is shown in Figure 6. It was 
made by holding sin i fixed at each of the values 0.05, 0.10,..., 
0.95, and minimizing x2 with respect to all other model param- 
eters. The global minimum Xmm was subtracted from each 
resulting x2(s^n 0» and the differences interpolated to produce 
the smooth curve shown. Intervals with Ax2 < 1 and Ax2 < 4 
formally correspond to 68% and 95% confidence ranges for 
the single parameter sin i. In Table 5 we quote the 68% or “ 1 
a” limits. 

A map of Ax2(s, r) for the DD(2) solution was prepared in a 
similar way and is reproduced in Figure 7. In this case the list 
of assumed parameter values is two-dimensional, and the A/2 

differences were interpolated to facilitate drawing contours by 
hand. In the figure we use an abscissa linear in cos i rather than 
sin i, because it is cos i that has a uniform a priori distribution, 

and this helps to illustrate the volume of parameter space 
excluded by the data. The highest plotted contours, 2.3 and 6.2 
units above the minimum, represent the boundaries of nominal 
68% and 95% confidence regions for s and r collectively. The 
contours for A/2 = 1.0 and 0.5 have low significance, but help 
to illustrate where significant contours might fall if higher 
quality data were available. In the regions to the right of the 
contours for A/2 = 6.2, the value of x2 rises very steeply, so 
that larger values of s and rare quite incompatible with the 
data. Figure 7 shows that the most likely values of s and r are 
s ä 0.6 and r ä 7 ps, with uncertainties that are moderately 
large and interdependent in a complicated way. 

V. CONCLUSIONS INDEPENDENT OF A SPECIFIC 
THEORY OF GRAVITY 

a) Astrometry and Rotational Stability 
Astrometry of PSR 1913 + 16 and its surrounding optical 

field has already been the subject of a number of papers. 
Taylor, Fowler, and McCulloch (1979) published a pulsar 
timing position accurate to about O'.T, from which a candidate 
optical identification was suggested by Crane, Nelson, and 
Tyson (1979). More recently, Backer et al. (1985) measured the 
pulsar’s position with the VLA and presented an updated 
timing position, based on our data through 1984 July. The two 
radio positions were shown to be consistent with each other 
but inconsistent with that of the optical candidate as remea- 
sured by Elliott et al. (1980). The position listed in Table 3 is 
consistent with the earlier timing position (to within 1.8 o in 
right ascension and 1.4 o in declination), and it has consider- 
ably smaller uncertainties. It is clear that the optical candidate 
is an unrelated foreground or background star which happens 
to lie approximately 0'.'5 north of the pulsar position. This 
conclusion is consistent with recent three-color CCD photom- 
etry by Boeshaar et al. (1988), who conclude that the star is 
most likely an unassociated dA-K main-sequence field star. 

Our solution for the proper motion of PSR 1913 + 16 is 
formally quite significant, but for reasons described in the 

(sin i)H8a 
Fig. 6.—The smooth curve represents values of Ax2 obtained from the H88 

solution when sin i was held fixed at a number of values throughout its range. 
The expected value of sin i according to the DDGR solution—the simplest 
interpretation of the PSR 1913 + 16 system within general relativity—is 
marked by the vertical dashed line. 
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Fig. 7.—Contours of constant A/2 in the (s, r)-plane for solution DD(2). 
Values of s and r corresponding to the DDGR solution are marked by a filled 
circle. 

Appendix we quote it in Table 3 with with conservative esti- 
mates of the uncertainties. In Galactic coordinates, the angular 
motion amounts to to nt = -0.4 ± 1.5, = 3.4 ± 2.3 mas 
y-1. The dispersion measure implies a distance of about 5 kpc 
(Taylor and Manchester 1981), so the pulsar appears to be 
moving out of the Galactic plane with a transverse velocity of 
roughly 80 km s -1 in the solar system reference frame. There is 
not much evidence of the expected effect of Galactic rotation, 
which should contribute a proper motion toward the Galactic 
center with æ — 5 mas yr-1 (see Rawley, Taylor, and Davis 
1988 and references therein). If the Galactic rotation effect is 
being canceled by peculiar motion of the pulsar relative to its 
local neighborhood, the pulsar’s total velocity in that frame is 
at least 140 km s-1, and probably higher when the unknown 
radial component is included. Models of circumstances sur- 
rounding the pulsar’s birth strongly suggest velocities of 
~ 150-250 km s-1 (Cordes and Wasserman 1984; Burrows 
and Woosley 1986; Bailes 1988), which would then be consis- 
tent with our observations. 

The characteristic timing age of PSR 1913 + 16, P/P = 2 
x 108 yr, is much larger than those for most pulsars, and the 
surface magnetic field strength, typically estimated from B = 3 
x 1019(PP)1/2 = 2 x 1010 G, is much smaller. We find only 
marginal evidence for nonzero values of the second derivative 
and stochastic noise terms of equation (4). As described in the 
Appendix, attempts to measure such effects over a decade or 
more, at the extremely low levels of a few milliperiods of accu- 
mulated phase, are fraught with difficulties. However, we 
believe the conservatively stated upper limits for v and P 
quoted in Table 3 to be reliable. The lack of timing noise 

exceeding ~30 fis over at least 7 years (see Fig. 10 and the 
Appendix) implies an “ activity parameter ” A < — 5.7, making 
PSR 1913 + 16 one of the most stable of all known pulsars 
(Cordes and Downs 1985). 

b) Orbital Dynamics 

It was recognized at the time of discovery of PSR 1913 + 16 
that its orbital elements imply a high-mass, high-velocity 
binary system containing regions with relativistically strong 
gravitational fields, and that periastron precession, gravita- 
tional redshift, and time dilation should all produce readily 
measurable effects in its pulse timing data (Hulse and Taylor 
1975). Within a few months, many other experimental pos- 
sibilities had also been suggested, including the long-predicted, 
but never before observed, gravitational radiation-reaction 
effects (Esposito and Harrison 1975; Wagoner 1975) and 
“magnetic” aspects of gravity as experienced by the rapidly 
spinning pulsar (Damour and Ruffini 1974; Esposito and Har- 
rison 1975; Barker and O’Connell 1975). Most important, the 
PSR 1913 + 16 system was seen to offer a first-ever experimen- 
tal opportunity to probe the nature of gravity in strong-field 
conditions (Damour 1988; see this paper also for additional 
references). 

As described in §§ III and IV, analysis of PSR 1913 + 16 
timing data according to the DD model yields estimates of five 
phenomenological PK parameters, three of which are deter- 
mined to 1% precision or better. Two PK parameters suffice to 
complete a dynamical specification of the binary system within 
a particular relativistic theory of gravity. Additional param- 
eters can then be used to provide information on the adequacy 
of the physical and mathematical models, and—if all else is 
well—on the gravitational theory in question. 

A theory of gravity successfully passing the tests posed by 
this experiment must account for the well-determined values of 
co, y, and Pb, as well as the limits placed on s, r, x, and è. A 
theory would be in serious trouble if descriptions of the binary 
system based on different parameter subsets were to lead to 
conflicting conclusions, such as incompatible estimates of the 
masses of the two stars. Although a theory might be technically 
“ rescued ” by introducing astrophysical complications accom- 
panied by additional free parameters, such ad hoc additions 
are unlikely to be persuasive unless all viable theories of 
gravity require them. 

We call attention to the fact that values of x2 for the two BT 
solutions (see Table 5) are significantly higher than for any of 
the other fits based on post-1981 data. The relatively poor fit of 
the BT model to the data is illustrated in Figure 8, in which we 
have plotted residuals from the BT(2) and DD(1) solutions, in 
each case averaged into 30 equally spaced bins of orbital phase. 
The inescapable conclusion is that a Newtonian solution to the 
gravitational two-body problem, even when retrofitted with 
Einstein delays and phenomenological time derivatives of the 
orbital elements, is inadequate to describe the PSR 1913 + 16 
system to the accuracy demanded by our data. 

The DD model is the most theory-independent way of char- 
acterizing the observed deviations. Our constraints on param- 
eters s and r (Fig. 7) rule out values of s greater than about 0.8 
(unless |r| is very small) and negative values of r. Negative 
values of r are not meaningful, so far as we know, within any 
theory of gravity. However, they are mathematically permitted 
by equation (10), so it is reassuring to find that, according to 
our data, almost certainly r > 0. The value of s must lie 
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Fig. 8.—Postfit residuals for the BT(2) (top) and DD(1) (bottom) solutions, 
averaged into 30 equally spaced bins of orbital phase. The BT model (quasi- 
Newtonian motion, with “ add-on ” relativistic effects and time derivatives) is 
obviously not an adequate approximation. 

between zero and one (with suitable definition of co) for equa- 
tion (10) to make sense. 

VI. CONCLUSIONS BASED ON GENERAL RELATIVITY 

We now use the measured orbital parameters to analyze the 
PSR 1913 + 16 system under the assumption that general rela- 
tivity is the correct theory of gravity, at least in the non- 
quantum regime. Similar treatments within the framework of 
other theories will be pursued in another paper (Damour and 
Taylor 1989). 

a) Masses of the T wo Stars 
Table 5 shows that the DDGR solution, with exactly two 

PK parameters—the minimum number required to specify all 
of the astrophysical unknowns—has a %2 scarcely larger than 
those of the DD(1), EH, H88, and DD(2) solutions, which have 
1, 2, 2, and 5 additional free parameters, respectively. Thus, 
general relativity successfully accounts for all aspects of our 
data on the PSR 1913 + 16 system while using the simplest 
possible dynamical model: a pair of point masses moving 
under their mutual gravitational interaction. According to the 
DDGR solution, the mass of the pulsar is mi = M — m2 = 
1.442 + 0.003 M0, and the mass of the companion is m2 = 
1.386 + 0.003 M0. 

The success of general relativity in accounting for our obser- 
vations is further strengthened by the values of the PK param- 
eters obtained in the H88 and DD solutions. (The EH 

parameter sin i is not particularly useful in this regard, as 
mentioned in § IIIc.) As shown for Haugan’s model in TW 
equations (2)-(8), and for the DD model in equations (15)-(25) 
of § III, a specific value for each PK parameter—together with 
the well-determined Keplerian orbital elements—specifies a 
parametric relationship between m1 and m2 in general rela- 
tivity. If Einstein’s theory is valid, and the binary system as 
uncomplicated as our model assumes (see § VIh), then the 
parametric curves should all meet at one point in the (mlv 
m2)-plane. 

In practice, experimental uncertainties transform the para- 
metric curves for well-determined parameters into strips of 
finite width. Contours of Ax2 for poorly determined param- 
eters like s and r can be mapped into the (m^ m2)-plane, as well. 
Strips and contours for the PSR 1913 + 16 system in general 
relativity are plotted in Figure 9. We also plot the curve corre- 
sponding to sin i = 1. The region below this curve corresponds 
to sin i > 1, and is therefore forbidden. 

Notice that the values of m1 and m2 determined from the 
DDGR model, marked with a black dot near the center of the 
figure, are consistent with all of the well-determined param- 
eters, and with the most likely values of (sin i)HS8, s, and r as 
well. For reference, the values of (sin Ohss? s, and r correspond- 
ing to the DDGR values of mx and m2 are also marked in 
Figures 6 and 7. In both cases the nominal general relativity 
values are close to location of the x2 minima. We mention in 
passing that Damour and Schäfer (1988) have shown that 
higher order general relativistic effects modify slightly the 
dependence of M on m = 2nk/Pb (eq. [16]). The corrected 
value for the total system mass M is 2.82827 + 0.00004 M©, 
smaller than the value given in Table 5 by 0.00010 M0. This 
correction has a negligible effect on the individual masses that 

(sin i)h88 (the Haugan 1988 sin i parameter). Uncertainties in œ and y are 
smaller than the widths of their plotted curves; two curves are plotted for Pb, 
and (sin i)H88, bracketing the uncertainty range. Numerically labeled dotted 
curves represent a mapping of Ax2 contours for parameters r and s from Fig. 7. 
Companion masses below the curve labeled sin i = 1 are incompatible with the 
mass function. The point marked with a filled circle corresponds to the mass 
values given for the DDGR solution in Table 5. 
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2 b) Astrophysical Considerations 

From its discovery, the PSR 1913 + 16 system has been 
known to consist most likely of two neutron stars (Hulse and 
Taylor 1975; Webbink 1975; Smarr and Blandford 1976). 
Alternative possibilities have been thoroughly explored, and 
the results have always led to either theoretical or observa- 
tional difficulties. For example, a white dwarf companion with 
m2 = 1.386 Mq would be barely stable, since its mass is pre- 
cariously close to the Chandrasekhar limit; in any event, it 
seems impossible for close binary evolution to leave a white 
dwarf in the system without also circularizing the orbit 
(Srinivasan and van den Heuvel 1982; van den Heuvel 1987, 
and references therein). The stripped helium core of a post- 
main-sequence secondary would probably be visible (Crane, 
Nelson, and Tyson 1979), but, as we described in § Va, no 
visible counterpart has been found. In short, all models of the 
system involving white dwarf or helium star companions 
appear to be highly contrived and therefore unlikely. 

Almost certainly, then, both components of the PSR 
1913 + 16 system are neutron stars. In that case, Smarr and 
Blandford (1976) and others have shown that nonrelativistic 
contributions to œ and Pb are utterly negligible. Burrows and 
Woosley (1986) have emphasized that the “baryonic masses” 
of the neutron stars are 10%-15% larger than the gravitational 
masses we measure, the difference having been carried off by 
neutrinos emitted during final collapse of the supernova cores. 
The measured parameters leave only a moderate amount of 
freedom in many details of the system’s evolution (Cordes and 
Wasserman 1984; Burrows and Woosley 1986). Both the 
pulsar and the companion, for example, are too heavy to have 
been formed by accretion of matter onto a white dwarf. The 
system probably evolved from two massive stars with main- 
sequence masses between 16 and 18 M0, and a small degree of 
asymmetry in the second supernova explosion is needed to 
keep the orbit bound with the observed eccentricity. 

c) Gravitational Radiation 
Substituting M = 2.82827 + 0.00004 M0, m2 = 1.442 

± 0.003 M0, and the Keplerian parameter in equations (18) 
and (19) yields the prediction of general relativity for the rate of 
orbital period change due to gravitational radiation. The result 
is ( — 2.40216 + 0.00021) x 10“12, in excellent accord with our 
measured value ( — 2.427 + 0.026) x 10“12. The uncertainty in 
the theoretical value is dominated by the uncertainty in m2. We 
hasten to point out that the six different values of Pb listed in 
Table 5 are in no sense independent estimates, since they all 
depend on the same observations. It is not significant that all 
six measurements are approximately 1 o lower than the theo- 
retical value of Pb. 

Equations (18) and (19) were first derived by Peters and 
Mathews (1963), heuristically starting from a “quadrupole 
formula” dating back to Einstein (1918; see also Landau and 
Lifshitz 1962). More rigorous and more complete derivations 
of the gravitational radiation energy flux, or directly of the 
observable rate of orbital period change in binary systems of 
strongly self-gravitating bodies, have been actively pursued in 
recent years, especially after the announcement of the measure- 
ment of Pb in PSR 1913 + 16 (Taylor, Fowler, and McCulloch 
1979). The results of these studies have confirmed the validity 

of equations (18) and (19); for reviews of recent work and 
references see Will (1986) and Damour (1987). Blanchet and 
Damour (1989) and Blanchet and Shäfer (1989) have investi- 
gated the gravitational radiation loss contributions from terms 
of higher order in (v/c). Blanchet and Schäfer (1989) find that 
the fractional error in equation (18), caused by ignoring higher 
order terms, is only 2.15 x 10“5, which is negligible at present 
levels of accuracy. 

Our test for gravitational radiation in general relativity can 
be summarized by the ratio of observed to expected orbital 
decay rates, 

P&(observed) 

P fc(theory) 
1.010 + 0.011 . (27) 

To the best of our knowledge, there are no other plausible 
candidates for contributions to Pb as large as 1% of the gravi- 
tational radiation value. Three of the closest possibilities— 
transverse motion of the system, Galactic acceleration, and 
mass-energy loss caused by pulsar spin-down—each probably 
contribute no more than a few tenths of 1% of the measured 
effect (Shapiro and Terzian 1976; Will 1981). Thus the 1% 
agreement is an impressive confirmation of Einstein’s theory 
and, more specifically, a verification of its ability to predict 
effects involving strong and rapidly varying gravitational 
fields. 

d) The Newtonian Constant G 
Damour, Gibbons, and Taylor (1988) have shown that the 

good agreement between the measured value Pb and the 
general relativistic prediction can be used to place a stringent 
limit on the rate of change of the Newtonian gravitation con- 
stant. Recent interest in Kaluza-Klein and superstring theories 
has brought renewed interest in possible variation of funda- 
mental coupling constants, because these theories predict 
changes on the time scale of the Hubble expansion. Our 
improved precision for Pb now allows us to tighten the limit 
even further. If 0Pb = P&(observed) - Pfc(theory), the relevant 
equation and the new limit can be written as 

G ÔPh 
-^ = (1-2+1.3) x IO“11 yr“1 . (28) 

This limit is comparable to those obtained from active radar 
ranging data between Earth and the Viking landers on Mars 
(Hellings et al 1983; Reasenberg 1983). Further details may be 
found in the paper by Damour, Gibbons, and Taylor (1988). 

e) Ultra-Low-Frequency Gravitational Radiation 
Alternatively, the difference between observed and theoreti- 

cal values of Pb can be used to place an upper limit on Qg, the 
energy density of ultra-low-frequency gravitational radiation 
expressed as a fraction of closure density. Bertotti, Carr, and 
Rees (1983) show that gravitational waves with periods greater 
than the span of the observations, but less than the light-travel 
time to PSR 1913 +16, would manifest themselves as an extra 
contribution to ôPb. The resulting limit on £lg can be written as 

I / SP V 
=004'ri- <29> 

where i/0 = lOOfc km s“1 Mpc“1 is the Hubble constant. At 
the ultra-low frequencies of 10“9 to 10“12 Hz, this limit is the 
best available constraint on a stochastic gravitational wave 
background. 
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! VII. SUMMARY AND PROSPECTS 

3, Accurate time-of-arrival measurements of pulses from the 
§? binary pulsar PSR 1913 + 16 over the last 14 years have 
S enabled us to measure five Keplerian and five post-Keplerian 

orbital elements, all but two of them with precisions of 1% or 
better. The evidence indicates that both stellar components are 
collapsed objects and may be considered point masses in the 
orbital analysis. Within general relativity, the component 
masses have been determined with an accuracy of about 0.2%. 
The orbit is losing energy within 1% of the rate predicted for 
gravitational radiation damping in general relativity—which 
we interpret as inconvertible evidence for the existence of 
gravitational waves. Moreover, the excellent agreement 
between predicted and observed orbital decay rates provides a 
limit comparable to the best available for the rate of change of 
the Newtonian gravitation constant G, and the best available 
limit on the energy density of a cosmic gravitational wave 
background at ultra-low frequencies below 10“ 9 Hz. 

In another paper (Damour and Taylor 1989), we will explore 
the fates of several other theories of gravity when their strong- 
field consequences are used to interpret the parameters of the 

PSR 1913 + 16 system. Future observations with 10 times 
better precision would enable measurements of the post- 
Keplerian parameters s and r with accuracies around 5%. This 
is a very exciting prospect because of the considerably tight- 
ened constraints that they would place on gravitational theo- 
ries. Such observations would be feasible with the Arecibo 
telescope if it were upgraded according to current plans. 

The data for this experiment could not have been obtained 
without the dedication and skills of many individuals at the 
Arecibo Observatory. We are also most grateful for early work 
by R. A. Hülse, L. A. Fowler, and P. M. McCulloch, and for 
essential contributions to the Mark II and Mark III data 
acquisition systems by L. A. Rawley, D. R. Stinebring, and 
T. H. Hankins. We have benefited enormously from correspon- 
dence and conversations with M. P. Haugan and especially T. 
Damour, who also provided a critical reading of this manu- 
script. R. N. Manchester and D. Nice have contributed impor- 
tantly to the development of TEMPO, and J. F. Chandler and 
E. M. Standish furnished the CfA and JPL ephemeris data. 
Our work has been supported financially by a number of 
grants from the National Science Foundation. 

APPENDIX 

ANALYSIS OF EXPERIMENTAL ERRORS 

Uncertainties for the parameters listed in Tables 3-6 are a combination of our best estimates of both random and systematic 
errors, and are intended to represent (probably conservative) 1 a confidence intervals. Random errors were calculated by the 
standard methods accompanying least-squares fitting procedures (e.g., Bevington 1969; Press et al. 1986). In this appendix we 
describe the methods used to estimate bounds on the possible systematic errors. 

The best kind of systematic measurement errors are those large enough to be easily recognized, and stable enough that they can 
be retroactively removed or allowed for. One example of such errors is a class which affects all of our TOAs to some degree, and 
which is particularly important when nonoverlapping data obtained with dissimilar observing systems are analyzed together. 
Because of widely different instrumental resolutions, a variety of receiver bandwidths, and the frequency-dependent pulse shape of 
PSR 1913 + 16, data obtained with each distinct observing system require a standard profile unique to that system. Unless 
simultaneous (or nearly simultaneous) observations are made, there will be unknown offsets between TOAs obtained with a given 
system relative to others. 

Such uncalibrated offsets exist for all of our data acquired before 1978, with observing systems A-E, G, and H (see Table 1). 
Therefore, in solutions including these data, such as solution DD(3) discussed in § IV, additional instrumental parameters must be 
introduced and their values estimated along with the physically interesting parameters. One consequence is that postfit residuals 
and x2 values for these solutions will be artificially smaller than they might otherwise have been; another consequence is that the 
early data do not help much in determining high-precision values of the astrometric and spin parameters of the pulsar. 

Residuals for the DD(3) solution are plotted as a function of date in Figure 10. Five instrumental parameters were estimated in 
this fit, respectively characterizing the offsets of observing systems A, B + C, D, E + G, and H. Since 1978, and especially since 1981, 
we have taken care to measure the offsets between TOAs obtained with different observing systems, so that additional empirical 
parameters would not be required. A minor exception to this rule applies to the 1983 July observations, which were carried out after 
some supposedly innocuous changes had been made in the equipment to permit observations of the millisecond pulsar PSR 
1937 + 21. The single instrumental parameter included in the first seven solutions listed in Tables 4 and 5 accounts for the 
uncalibrated offset caused by these modifications. 

More insidious systematic errors are those small enough to be individually undetectable, or with a time dependence that 
approximates some linear combination of terms in the model. We have taken two approaches toward allowing for possible errors of 
this kind. First, as described in TW, we have looked for telltale correlations among nearly adjacent postfit residuals by averaging 
groups of n consecutive values, and testing to see whether the standard deviations of the resulting averages decrease as n~1/2. The 
results of such tests for the Mark I, Mark II, and Mark III observing systems are illustrated in Figure 11. (Similar results for the 
earlier observing systems were presented in Fig. 3 of TW.) With the exception of the offset in the 1983 July data mentioned earlier, 
we find no evidence for correlated errors in the data acquired since 1981, at least down to the 1-3 ¿ts range. 

Our second means of identifying possibly significant systematic errors concentrates on those parameters which come closest to 
making our “experimental design matrix” singular. For purposes of discussion, we reproduce in Table 7 the most significant 
portions of the normalized covariance matrix for solution DD(1). The submatrix at the top of the table includes all covariances 
among the astrometric and spin parameters and the single instrumental offset, Ol9 while the bottom portion contains covariances 
among the orbital parameters and between each of them and the pulsar frequency v. Together, these two sections include all 
elements of the full (15 x 15) matrix with absolute values greater than 0.3. The largest off-diagonal term is the covariance of 0.974 
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Fig. 10.—Postfit residuals from the DD(3) solution, which includes all data back to 1974 with estimated uncertainties less than 500 fis. The lower panel presents 
the same data on a 10 times expanded vertical scale; the slight negative offset around 1983.5 illustrates the consequence of not allowing for a small instrumental offset 
in the 1983 July data. 

Fig. 11.—Standard deviations among averages of postfit residuals obtained from sequences of consecutive measurements with the Mark I, Mark II, and Mark III 
systems. If the measurement errors are uncorrelated, the standard deviations should decrease as n-1/2, as indicated by the dashed line. 

TABLE 7 
Covariance Matrix for Solution DD(1) 

a O, 

a 
Ô 
Ma 

V 
V 
Oí 
P 

1.000 
0.652 
0.812 
0.590 

-0.379 
0.008 

-0.080 
0.863 

1.000 
0.726 
0.662 

-0.505 
0.162 
0.047 
0.918 

1.000 
0.474 

-04.72 
0.328 

-0.195 
0.905 

1.000 
-0.329 
-0.420 

0.085 
0.916 

1.000 
-0.346 

0.090 
0.969 

1.000 
-0.420 

0.905 
1.000 
0.610 

x e T0 Pb œ0 (b y 

x 1.000 
e -0.025 1.000 
T0 -0.104 -0.009 
Pb -0.215 -0.006 
a>0 -0.903 0.107 
œ -0.580 0.080 
y 0.974 -0.207 
Pb -0.019 -0.027 
v -0.058 -0.210 
p 0.991 0.839 

1.000 
0.449 1.000 
0.431 0.355 1.000 
0.366 0.859 0.684 

-0.073 -0.211 -0.897 
-0.393 -0.186 0.035 
-0.206 -0.670 -0.072 

0.957 0.952 0.992 

1.000 
-0.584 1.000 
-0.037 -0.013 1.000 
-0.594 -0.013 0.075 

0.983 0.994 0.819 
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; between the parameters x and y; these parameters become fully decoupled only on the time scale of apsidal motion, approximately 
^ 85 years. 
è The last row in each submatrix of Table 7 contains the “ global correlation coefficient,” p, defined as the maximum correlation 
S between a given parameter and all possible linear combinations of the other parameters (see, for example, Eadie et al 1971). The 
2 global correlation provides a relative indication of the measurability of a parameter, given the times at which measurements have 

been made. Values of p extremely close to unity indicate probable difficulties. Not surprisingly, y has the largest global correlation, 
0.994, followed by co0 (0.992) and x (0.991). If significant orbital phase-dependent systematic errors were present in the data, it would 
not be surprising to find these parameters affected by larger amounts (relative to their formal errors) than the other parameters. 

The nearly random nature of the residuals in Figure 10 shows that our efforts directed toward long-term stability of the 
measurements have been largely successful, and that our model of the nonbinary aspects of the PSR 1913 + 16 system is reasonably 
good. On the other hand, there are some long-term (i.e., not orbit phase-dependent) systematic trends still visible in the residuals, 
partuclarly in the data from observing system J and, to a lesser extent, system F. For this reason the most trustworthy results from 
the astrometric and spin parameters, and especially their time derivatives, come from the post-1981 data. 

The parameter values quoted in Table 3 were taken from solution DD(1) and a similar solution based on the CfA ephemeris. The 
quoted uncertainties for all parameters except v, P, pa, and are 2-3 times the formal errors, and reflect our estimates of the largest 
systematic errors that might have escaped notice through the tests outlined above. The quoted uncertainties for the remaining 
parameters in Table 3 are 6-10 times the formal errors, and allow for the contingencies that (1) some of the uncalibrated offsets 
could be real and (2) timing noise and improperly calibrated offsets may have affected the proper-motion values. 

For the orbital parameters as well, the most reliable solutions are based on the post-1981 data. As can be seen in the top panel of 
Figure 2, these observations were obtained in seven concentrated sessions each of about 2 weeks duration, plus some scattered 
measurements made with the Mark II system from late 1984 through early 1988. To test for the presence of session-dependent errors 
and their effect on the measured parameters, we carried out eight solutions similar to DD(1) except that the data from each block, in 
turn, was given zero weight. Except for the 1983 July offset already mentioned, this procedure brought to light no further evidence of 
systematic errors—and, in particular, no evidence for orbital phase-dependent errors. In these solutions even the values of y, œ0, and 
x, which have the largest global correlation coefficients, varied by no more than the uncertainties quoted in Tables 4 and 5, which 
are twice the formal standard errors. 

Solutions carried out using the DD model require explicit assumptions for the values of<5r, <50, A, and B in equations (8) and (11). 
In the theory-independent phenomenological approach of §§ IV and V, the values of these parameters cannot be specified a priori, 
and yet they are too small to be measured from the existing data. In order to test the sensitivity of other parameters to the values 
assumed for the four small quantities, we carried out a series of solutions in which each of the first three, in turn, was first taken to 
have its value in general relativity given by equations (22)-(25), and then 50% larger and 50% smaller values. Similarly, B was taken 
to have the values 0 and + 50% smaller values. Similarly, B was taken to have the values 0 and ± 50% of the nominal value of A. 
The x2 values of these fits were nearly identical (the extremes differing by less than 0.5 out of 2552), and variations in the fitted 
parameters were never as much as twice the uncertainties quoted in Tables 4 and 5. 
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