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ABSTRACT 
We consider the extent to which it is possible to generalize the simple depolarization factor D = ¡i* 

obtained by Cassinelli, Nordsieck, and Murison for the reduction in circumstellar Thomson scattering polar- 
ization due to the finite angular radius cos-1 n* of a uniform spherical light source as seen from the scattering 
point. By formulating the equations for the total and polarized scattered fluxes for an arbitrary illuminating 
radiation field, and for generalized spherical scatterers, we consider a series of special cases and reach the 
following conclusions: 

1. For general (limb-darkened) spherical sources a simple factor can still be used for Rayleigh/ 
Thomson scattering but with the functional form of Dfa*) depending on the limb darkening law. 

2. The D(n*) factor is applicable, in Rayleigh/Thomson scattering, for any spatial distribution of the scat- 
terers. 

3. A similar factor also applies for a disk light source for Rayleigh scatterers near the disk axis (e.g., in 
the jets of SS-433). 

A correction factor C is also derived for the total intensity of Rayleigh scattered light. This depends only on 
the observer’s direction i, and on n*, for any localized scattering volume, but varies with the distribution of 
the scatterers and of the light source for extended scattering volumes. 

Non-Rayleigh scatterers are then considered, and it is shown that in general no C and D factors can be 
obtained which depend only on fi* and i. Rather, these cases depend on the scatterer and the light source 
distributions, and on the form of the coefficients in the Fourier expansion of the scattering functions. 
Subject headings: polarization — radiation transfer — stars: circumstellar shells 

I. INTRODUCTION 
There has been considerable recent interest in utilizing the polarization of light scattered off circumstellar matter as a diagnostic 

of the geometry of this matter and of the illuminating stars (e.g., Brown and McLean 1977; Brown, McLean, and Emslie 1978; Rudy 
and Kemp 1978; Daniel 1981; Simmons 1982, 1983; Dolan 1984; Friend and Cassinelli 1986; Drissen et al 1986h; Clarke and 
McGale 1986,1987). Most of the papers cited utilize a single scattering approximation in their theoretical analysis, the adequacy of 
which appears to be borne out by comparison with the multiple scattering analyses (e.g., Daniel 1981 ; Dolan 1984). However, most 
of these calculations also utilize a point light source treatment which overestimates the degree of polarization (see Brown et al 1978) 
because it does not allow for the differing polarimetric position angles of light scattered in the same locality but incident from 
different parts of the light source. Rudy and Kemp (1978) do incorporate a polarimetric diminution factor of 1 or less to allow for 
this effect but do not evaluate its dependence on scattering location or angle. 

Cassinelli, Nordsieck, and Murison (1987, hereafter CNM) have addressed this problem analytically, for the case of a uniformly 
bright spherical star illuminating an electron scattering envelope with axial symmetry, by starting with the radiative transfer 
formulation of Chandrasekhar (1960) and going to the optically thin limit above the stellar surface (radius R*). They find that the 
polarization for scattering off electrons at distance r from the stellar center has the same direction as in the case of a concentric point 
light source but that the degree of polarization is reduced by a factor D = cos O^r) = (1 — R^/r2)112 where 0* is the angular stellar 
radius seen from distance r. 

In this paper we use single scattering theory directly to derive the D(r) result of CNM and to investigate the extent to which it can 
be generalized to the following: nonuniform spherical light sources (e.g., limb-darkened stars); nonspherical light sources (e.g., 
accretion disks); arbitrary spatial distributions of scattering electrons; scattering particles other than electrons. We also obtain 
expressions for the factor by which the total scattered (as well as polarized) intensity is modified by finite size light sources. This can 
be of particular interest when the much stronger direct unpolarized starlight is eclipsed. 

II. STOKES INTENSITIES, FOR EXTENDED SOURCES OF LIGHT, SCATTERED OFF LOCALIZED SPHERICAL SCATTERERS 

We consider first a small volume containing N spherical scattering particles, with scattering functions i^x), i2(x) in the termino- 
logy of van de Hulst (1957) and with x the scattering angle, located at the origin O of a Cartesian coordinate system Oxyz. Axis Oz 
will eventually be taken to be a symmetry (or other convenient) axis, but for the moment is arbitrary, and plane Oxz is chosen to 

1 This work was completed while J. C. Brown was on leave at the University of Wisconsin-Madison. 
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342 BROWN, CARLAW, AND CASSINELLI Vol. 344 

contain the distant observer’s direction E at polar angle inclination i to the Oz axis-see Figure la. Unpolarized light will be taken to 
be incident on these scatterers with a specific intensity 7'(0', </>') in direction (0', 0'). Then the emergent (scattered) radiation arising 
from radiation incident in solid angle dco' = sin O' dO' dcß' is characterized by (see, e.g., Simmons 1983) 

dFs 

dFQ > = 

dFv 

NF(0\ Wdœ' 
d2k2 x < 

(h + h) 
2 

---1 ^ cos 2ij/ , (l) 

where k is the wavenumber, d is the distance to the observer, and ij/ is the angle of the polarization direction (maximum E vector) to 
the direction on the sky chosen for the Stokes Q-axis. Then dFs, dFQ, and dFu are the elementary contributions from dco' to, 
respectively, the scattered flux at the Earth and the unnormalized Stokes parameters along directions Q, U on the sky which we will 
refer to as “ Stokes fluxes.” For a finite light source, we must integrate equation (1) over co'. 

For spherical scatterers, the polarization direction p can be taken as normal to the scattering plane as shown in Figure 1. [In cases 
where it lies in the scattering plane, this appears as a change of sign in the scattering function (i1 - i2), equivalent to n/2 rotation in 
t/^.] Then if we choose to define the ß-axis as the projection of Oz on the plane normal to OE we can express as well as x, in terms 
of O', </>', i from the spherical geometry of Figure lb. Here these are in fact expressed most usefully in the form 

cos x = cos i cos 0' + sin i sin 0' cos </>' , (2a) 

sin x cos \¡/ = sin 0' sin 0' , (2b) 

cos 0' = cos x cos i + sin x sin i sin i/f, (2c) 

so that, using equation (2a) in equation (2c) 

sin x sin i/f = sin i cos 0' — cos i sin 0' cos </>' . (2d) 

We then obtain, using equations (2b) and (2d), 

sin2 x sin 2i/f = sin i sin 20' sin </>' — cos i sin2 0' sin 2(p' , (3) 

and, using equations (2a) and (2b), 

sin2 x cos 2i/f = |[sin2 z(l — 3 cos2 0') — (1 + cos2 i) sin2 0' cos 2</>' + 2 sin 2i sin 0' cos 0' cos </>'] , (4) 

while by equation (2a) 

1 + cos2 x = iCP — cos2 i) — (1 — 3 cos2 i) cos2 0' + sin2 i sin2 0' cos 2</>' + 2 sin 2i sin 0' cos 0' cos 0'] . (5) 

We have obtained these forms because for Rayleigh scattering (^ + i2) ~ 1 + cos2 x and (ii — i2) ~ sin2 x (the constant of 
proportionality being 3ctt k2/Sn) while for general scatterers the first terms in the Fourier expansions of (^ + i2) and (^ — i2) are of 

Fig. 1.—Geometry and terminology for scattering of light from an extended source off of a localized scattering region, (a) is centered on a scatterer at 0 with 
incident light of intensity /' from direction O', </>'. To clarify the scattering geometry, (b) shows the angular variables of the problem in terms of a spherical triangle 
ZEF centered on the scattering point 0, directions in (a) appearing as points on a sphere in (b). 
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the Rayleigh form (Simmons 1982). It is then convenient to redefine the scattering functions in terms of 

A+(x) 
h + h , 

2(1 + cos2 x) ’ fk-(x) = (6) 

so thatfk
+,fk are independent of y_ for Rayleigh scatterers. Then setting do) = sin 6' d9' d(j)', n' = cos O', and integrating equation 

(1) over all incident light directions co' we obtain, using equations (3)-(6). the completely general expressions 

FS(U k)-] 

N f1 Ç2* 
FQ(i, h ^2 J 1 I nu', V) dp dn’ 

Fv(i, k) 
f +(y\ 
- 2 [(3 — cos2 i) — (1 — 3 cos2 i)fi'2 + sin2 i(l — n'2) cos 2</>' + 2 sin lifi'y/l — jn'2 cos </)'] , 

x A_^0 |-s|n2 m _ 2^2^ _ (i -j_ cos2 _ ^2^ cos 2^' _|_ 2 sin lifi'yjl — n'2 cos </>'] , 

.A-(x)[2 sin - n'2)112 sin </>' - cos i(l - n'2) sin 20'] , 

(7a) 

(7b) 

(7c) 

where % is given, in terms of 0', 0', by equation (2a). 
To evaluate the normalized Stokes Parameters we use Q = FQ/Fioi ; U = FJF^ where Ftot = Fs + F* and F* is the flux at the 

observer of the total direct light from the primary source. This latter will depend on the brightness distribution of the source as seen 
from F, which for a general source, will not be expressible in terms of /'(0', 0') at the scattering volume 0. Therefore, to find ß, U for a 
finite light source, we will have to obtain F* for each specific source geometry. 

We now consider the special form taken by equations (7a)-(7c) for some particular scattering functions and light source 
geometries. 

III. DEPOLARIZATION FACTORS FOR RAYLEIGH AND THOMSON SCATTERING 
For these two cases we can write 

fk
+ =fk~ = Ak6 , (8) 

where A is independent of both k and x for the Rayleigh case (depending only on particle size) while for the Thomson case 
A = (3/167r)<TT//i4 (k thus canceling entirely in expression [1] for the F’s) where crT is the Thomson cross-section. Because all 
/-dependence in these cases is therefore already incorporated in the brackets factors in equations (7a)-(7c), we can see that Fs, FQ, 
Fu are expressible in terms of integral moments of 0') which we now evaluate in some special cases of interest. 

a) General Axisymmetric Light Sources 
In cases where the small scattering volume lies on the axis of rotational symmetry we take Oz to be collinear with this axis, so that 

/'(//, 6') = r(fi') only (see § IV). Then all the 0' dependent terms in expression (7) integrate to zero, resulting in the greatly simplified 
expressions 

(3 — cos2 i)J' — (1 — 3 cos2 i)K' Fs 

Fq 

Fv 

2nNAk4 

sin2 i(3K’ 

-(1 

J’) 

where 

dß' 

(9a) 

(9b) 

(9c) 

(10) 

have their usual meanings. 
With the appropriate value of A, equations (9b) and (9c) are identical to those obtained by CNM for Thomson scattering when 

expressed in terms of the moments J', K' of /'. Their results were in fact obtained for spatially extended scatterers with axial 
symmetry of which our localized scattering “ point ” is a special case. However, we will show shortly (see § IV) that starting from the 
point scattering results (9) allows easier demonstration of when and how results can be extendèd to arbitrary distributions of 
scatterers. 

As noted by CNM, in the case of the light source shrinking to a point, J' = K' = H' from which we can obtain the correction 
factors C, D needed for a point source treatment to give the proper finite source values, viz., for the polarized and scattered fluxes, 

L- = IdL = D. 
fq

p fv
p ’ Fs

p 
c, (11) 
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where 

and 

(3J' - K') + (3K' - J') cos2 i 
C ~ 2(1 + cos2 i)H' 

D = 
3K' - r 

2H' 

(12) 

(13) 

where J' K' H' are values at the scattering site and superscript p indicates point source values. The actual fluxes F for an isotropic 
point source, at distance r from the scatterers along the axis of symmetry, with the same total luminosity L as the source, can be 
written directly, or from equations (9) with J' = K' = H' = L/(4nr)2 as 

Fqp 

iV 

NLAk* 
4nd2r2 

(1 + cos2 i) 

— sin i (14) 

Result (13) for the depolarization factor is identical to that obtained by CNM in their equation (18) for the case of a spherical 
stellar light source. In fact, in the form (13) it applies equally to any light source with axisymmetry through the scattering point—see 
below 

Result (12) was not derived by CNM, and we show below how it can be incorporated in their expressions. An important difference 
between the C and D factors is that D is independent of the observer’s direction i, while C is not, which will be important in our 
discussion of special cases and of extended scattering volumes. 

b) Specific Axisymmetric Light Sources 
i) Uniform Spherical Star of Radius R, Luminosity L 

In this case /'(r, //) = L/4n2R2 for all p' in /i* < < 1. where ¿í* = cos 0* = (1 - R2/r2)112 and 0* is the stellar angular radius 
seen from the scattering point at distance r from its center. Then evaluation of J’, K\ H' and substitution in equations (12) and (13) 
gives, by comparison with a point source at the center of the sphere 

(15) C = 
8 - /i«(l + ¿0(1 - 3 cos2 i) 

3(1 + /**X1 + cos2 0 

and 
>2u2\l/2 D = p,=(l-R2/r2) (16) 

the latter being precisely the CNM result. 
The Stokes fluxes are, therefore, by equations (11H14) 

rQ 

Fv 

C(/1*, 0(1 + cos2 0 
NLAk4 j ^ ■ 2 • 

= „ ' ~2j2 x 4 -D(M*) sm2 i 4nr d 
(17) 

We are also interested in the normalized Stokes parameters Q = FQ/F*(l + <5) and U = FJFJl + <5) where <5 - ^ 15 

the flux of direct starlight at the Earth, namely F* = L/4nd2 in this case, so that F*(l + 5) is the total light flux at the Earth (direct 
plus scattered). Thus 

NAk4- 
S(r, i) = C(Pt, 0(1 + cos2 0 , (18) 

Q(r,i)=~ 
NAk‘ d(F*) • 2 • sin2 i; 

1 +<5 
U =0 (19) 

Since there is no U component of polarization, the degree of polarization P — Q- . . • .i u 
The appearance of an i dependence in <5 and hence in Q means that the finite source polarization correction cannot strictly be 

treated as a function of r only when dealing with Q, as supposed by CNM, although it can for Fe. In most cases <5 is small, i.e., the 
degree of scattering polarization is small, and 5 can to a first approximation be neglected in equation (19). In cases of substantial 
polarization, however, the factor 1 + <5 in equation (19) can become significant, especially as the factor C can be substantial as seen 
in Figure 2 which shows C to vary with p* and i up to almost 3. . • . . f „ 

The physical reasons for the i and p, dependence of C can be understood in terms of two factors The dominant oneis that as F 
increases (p decreases) the surface of the star approaches the scatterer and the inverse square law tends to increase the intensity of 
scattered light toward the value for scattering above a plane parallel atmosphere (p* -► 0). The second factor, and the one w ic 
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Fig. 2.—Correction factor C{n*, i) for the modification of scattered light intensity off of a localized scattering region due to finite angular radius cos 1 //* of a 
uniform spherical light source, for observational direction i. 

introduces an i dependence into C, is that increase of R* introduces a spread in % values about the value x = i relevant to a point 
source. In particular, for i = 90° the 1 + cos2 x intensity factor takes the value 1 for a point source (x = X = i = 90°) but a value > 1 
for a nonpoint source since x < 90° scatterings are introduced. This adds to the inverse square law effect. On the other hand, at 
i = 0°, the 1 + cos2 x factor is 2 for a point source (x = X — ^ — 0°) but < 2 for a non-point source. This acts in the opposite direction 
to the inverse square factor, overcoming it for n* not too small, and producing a shallow minimum in i) with respect to /z*, for 
small L 

ii) Spherical Star with Limb Darkening 
For a star of radius R with limb-darkening law /'(//) we see from equation (12) that the correction factor for Fs is 

r (3 - cos2 Q ['(p')dn' - (1 - 3 cos2 Q fl I'(n')n'2 d¡x' 
(1 + cos2 ¡) ¡'(ß'jß'dß' 

while the depolarization factor is 

D _ ÍL A/*')(3/*'2 - 1)^' 
2 ÍÍ, ß'Kn'W 

(21) 

It is evident from equation (21) that the depolarization factor for the Stokes flux FQ in this case is again a function only of/z*—i.e., 
of R/r—but a more complicated function than in the uniform star case (i) alone. For example, the simplest case of a limb-darkening 
law 7'(/z') ~ 1 + ßfi' (limb brightening for ß <0) gives, by equation (21) 

ß) — ^*[1 + ß(l + ^+
2)/(4/z+)]/{l + 2ß(l + ¿z* + ^*2)/[3(l + ¿z*)]} , (22) 

which goes to /z* (see eq. [16]) as /? -► 0 and goes to 1 as /z* -> 1 as expected. Results forD^iz*, ß) are shown in Figures 3a and 3b. For 
ß >0 (Fig. 3a) these results show that limb darkening reduces the effective angular radius of a star and so increases D relative to a 
uniform star of the same geometric radius. For—1</?<0 (Fig. 3b) limb brightening increases the effective stellar radius and, for 
small radii, decreases D compared to a uniform star (i.e., the depolarization is not so great). 

However, for stars of large enough geometric radius (small enough /z*) limb brightening results in negative depolarization factors 
D. This is to be interpreted as meaning that scattering material close to the star mainly scatters radiation coming from the bright 
stellar limb, this light having a polarization plane orthogonal to that from a point source. In this (admittedly unusual) case, an 
equatorial scattering disk would result in an equatorial rather than polar polarization plane ! Limb-brightening laws steeper than 
this linear one (limited to ß > — 1) can given even more negative D. 

For this same 7'(/z') law we find also 

8 - ji*(l + /zj(l - 3 cos2 Q + [3/?(l + /z,)/4][(l + 3/z*2) cos2 / + 5 - /z*2] 

+ m+xi +cos2 o{i + (2/?/3)[(i + ¿¿* + ^*2)/(i + p*ï\} 
which again reduces to equation (15) when ß^>0 and to the point case as ¿z* -► 1. 

In this case, the point source expressions are the same as in case (i) since by spherical symmetry dL/dco' = L/4nr2 in all directions 
for any limb-darkened sphere. Thus equations (17)-(19) with the values of C, D given in equation (22) and (23) describe Fs, FQ, FU9 
and <5, Q. 

iii) Accretion Disks 
In some close binaries an accretion disk is an important source of light. For such a source 7'(/z') is not axisymmetric at general 

scattering points but is axisymmetric for scattering sites close to the disk axis. Precisely this combination of circumstances is 
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- 
Fig. 3.—Modification of the depolarization factor for a spherical light source of angular radius but with a limb-darkening law r{p!) ~ \ + ßn' 

relevant to the scattering of light from the accretion disk of SS 433 off* the narrow coaxial jet material, which contributes to the 
interpretation of the variable polarization of SS 433 (McLean and Tapia 1980; Carlaw and Brown 1988). Light from the primary 
star also contributes to the scattering polarization in SS 433 but this can be treated as case (i) or (ii) above (Carlaw 1988; Carlaw and 
Brown 1988). 

For a flat disk, the radiation field is not isotropic, the radial flux being maximal along the disk axis and zero in the plane of a thin 
disk. Thus the specific intensity IJ from a uniformly bright thin disk along its axis is related to its luminosity L by (with superscript 
or subscript d denoting disk) 

IÍ = 2nRd
2 \ Id'dn = 4n2Rd

2 \ IJudfi = 2n2Rd
2Id' , 

Jn Jo 
so that 

// = L/(2n2Rd
2) (24) 

where Rd is the linear disk radius, as compared to /' = L/(4n2R2) for a spherical source. Thus, for a scattering volume on the axis of 
symmetry, expressions (11)-(13) will give the fluxes from a finite disk compared to those of an arbitrarily small disk, but if we want 
correction factors for a finite disk compared to an isotropic point source at its center and of the same total luminosity, factors (12) and 
(13) have to be multiplied by 2. Thus if we denote by superscript ip values for an isotropic point source and define 

F d rQ>v n 
p ip - Dd rQ,U 

and 
Fjp = Cd 

then along the axis of a uniform disk, analogously to equations (15) and (16) 

Dd = 2ßd 
and 

_ 2[8 - ßd(l + faXl - 3 cos2 Q] 
d 3(1 + + cos2 i) 

where 

(25) 

(26) 

(27) 

Hd = (l + Rd
2/r2) 1/2 = cos dd (28) 

with 6d the angular size of the disk seen from distance r on the axis. 
In the more realistic case of a nonuniform disk, hottest and brightest at its center, expressions (20) and (21) for a limb-darkened 

sphere can be similarly generalized along the above lines. 
The anisotropy of disk radiation results in a further modification when we consider the normalized quantities Q, Ô since the disk 

flux at the Earth will now be Fd = L cos i/(2nd2) instead of L/4nd2 for a spherical source of the same L. Consequently equation (18) 
and (19) are replaced for points along the disk axis by 

NAk* r (1 + cos2 0 
2r2 d cos i 

(29) 
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and 

Qd=- 
NAk* Dd 

Ir2 I + ôd cos i (30) 

IV. SPATIALLY EXTENDED RAYLEIGH SCATTERING REGIONS 
We now consider the case of an extended light source centered on an origin O the light from which is scattered off an extended 

spatial distribution of scatterers having number density n(r, 6, 0) at the point with spherical polar coordinates (r, 0, 0) centered on 
O and with 0 measured about the axis of symmetry of the light source from the plane containing the observer whose direction is at 
angle i0 to Oz (Fig. 4). The equations of the previous sections then apply to an elementary scattering volume when we set N = ndV 
and measure Q in the plane OSE and perpendicular to OE, the direction to the observer (Fig. 3a). When we come to integrate over 
all F, three complicating factors arise. 

1. Some of the scattering matter will be occulted by the finite light source and the corresponding A F should be omitted from the 
integral (see Milgrom 1978). Following CNM, we will not consider this further here as the material concerned is that which 
backscatters light and so contributes little to the polarization (and indeed little to the scattered light in the case of dust scattering 
(but see Brown and Fox 1989). 

2. In cases where the light source does not look axisymmetric from dV, the simplifications obtained between equations (7a)-(7c) 
and equations (9a)-(9b), even in the Rayleigh case, will not occur; i.e., D cannot then be written as a function of//* only and C as a 
function of //* and i only. For general spatially extended scattering volumes, the light source can only look symmetric from all dF if 
it is spherically symmetric, although possibly limb darkened, or if the scattering volume extends only along an axis of symmetry 
such as the disk/jet case discussed in § Illh(iii). In general cases, therefore, there is no alternative but to resort to equations (7a)-(7c) 
and carry out simultaneously the integrations over co' and over F. Here we will restrict ourselves to those cases where the light 
source symmetry condition does hold, which will cover most practical cases. 

3. The direction (Q) of the scattered polarization will vary with the direction r of the scattering element dV at P, being normal (or 
parallel) to the line OP projected on the sky, as also will the value of i. To obtain the Stokes fluxes from the entire volume F we 
must therefore integrate the components of the local contributions AQ along a common polarimetric reference (g0, U0), which 
we will choose to have Q0 in the plane OEZ, and with the local i value. The contributions to Fs, Fn , Frj from volume dV are, bv 
equation (17) Ö° ° * 

dFs) \C(r, i)(l + cos2 0 
LAk* n(r)dV 

dF. Qo 

dFUo 

And2 D(r) sin2 i cos 2Q 

D(r) sin2 i sin 2Q 

(31) 

where Q is the rotation of the g-axis with respect to the g0 axis. Here i and Q depend on i0, 0, 0 in a way determined by the 
geometry of Figures 3a and 3b. In fact the geometry involved, and the identities we need, are essentially identical to those of § II, 
apart from the factors C, D, because we are now integrating over emergent ray paths in precisely the same way as we did before over 
incident ray paths. Thus we utilize the identities (3}-(5) with i0 replacing i, i replacing x, & replacing 0, and 0, 0 replacing 0', 0'. That 
is, 

D(r) sin2 i cos 2Q = ~ [sin2 ijl - 3/i2) - (1 + cos2 ¿JO - n2) cos 2</> + 2 sin 2i0(l - ti2)ll2n cos <£] , (32) 

D(r) sin2 i sin 2Q = D(r)[2 sin /„¿¿(l - /i2)1/2 sin <f> - cos ijl - ß2) sin 20] , (33) 

C{r, i)(l + cos2 i) = C0[(3 - cos2 ¿J - (1 - 3 cos2 i0)ß
2 + sin2 ¿„(1 - /i2) cos 20 + 2 sin 2ijl - ß2)ll2ß cos 0] , (34) 

(b) 

Fig. 4.—(a-b) Geometry and terminology for calculation of Stokes intensities from an extended scattering region 
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where D(r) is given by equation (13) and C0 by the new equation 

C0(i0, r, 0, 4>) = 3J
2H

K + ^K
2h - [cos2 'o + ^ (1 - 3 cos2 ijl - H2) + ^ sin2 i0(l - ß2) cos 2<t> + sin 2i0(l - ß2)u2ß cos (p , 

(35) 

and on integration over V with dV = r2 dr dji dcj) we get 

C0 & </>) 

DfQ(io, & <t>), (36) 

Dfu(i0, 4>) 

where the functions /sJqJu are given in brackets in equation (32), (33), and (34). 
Functions/^/i; are identical to those for an isotropic point light source at the center (with the appropriate factor in the disk case). 

Therefore, provided we are dealing with a situation where the source looks axisymmetric from all scattering points (i.e., a spherical 
source or a disk source with scattering along its axis) then D is solely a function of r. Because the same factor D appears in the 
equations FQ and F^, we can then calculate these quantities for any spatial distribution of scatterers using the point light source 
equations if we replace the real n(r, 6, (j>) by a weighted function neff = D(r)n(r, 0, 0). The second and third of equations (36) may 
alternatively be expressed in terms of an effective optical depth function (see Simmons 1983) 

rQ 

Fv 

LAk¿ 

And2 

pi rin po 

•) 1 «/O «Ir m 
n(r, 0, fydfidÿdr x 

Teff(0> ^ — D(r)n(r, 0, (¡))dr . (37) 

All the usual equations for stars with axisymmetric Rayleigh scattering envelopes (Brown and McLean 1977) and for rotating 
envelopes in binary systems (Brown et al 1978) then carry over to the extended light source case. 

Unfortunately, this simple representation does not apply also to the total scattered flux Fs because C0 depends on i0, 0 and </> as 
well as on r. In cases where Fs is important and where the light source is comparable in size to that of the scattering region, the 
rather complicated function (35) will have to be incorporated in the integrations (36); i.e., when the light source is large, the scattered 
flux Fs will involve higher integral moments of the function n(r, 0, </>) than do the polarized fluxes FQ, F¡j. 

V. NON-RAYLEIGH SCATTERERS 

We have seen that for Rayleigh scatterers the depolarization factor D(r) derived by CNM for uniform spherical sources illumi- 
nating axisymmetric scatterer distributions can in fact be generalized to arbitrary distributions of scatterers and to more general 
light sources, including disks when the scatterers are along its axis. The finite source correction C to the scattered light flux Fs, 
however, does not have such a simple form and depends also on the direction of observation and in a more complex way on the 
source intensity distribution. Fortunately, Fs is of less interest than the polarized flux in most cases, and the simple D(r) factor will 
prove to be a very useful result. 

/ 
/ 

Fig. 5.—Illustrative example of non-Rayleigh scattering. Here the scattering function fk (x) is assumed to be a delta-function in x so that all contributions to the 
polarized intensity must originate on the surface of the cone of half-angle x, hence on the locus of intersection of this cone with the stellar surface. 
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Finally, it is of interest to see whether such a factor can be obtained for non-Rayleigh scattering. To do so we revert to the simplest 
possible case of a uniform spherical source on the grounds that if this is not amenable to obtaining an analog to D(r), more complex 
sources will not either. 

We therefore return to equations (7a)-(7c) with r(fi\ 0') = r(fi') only. For non-Rayleigh scatterers/fc
_ is no longer independent of 

X so that it depends on (eq. [2a]) x = cos-1 (cos i cos 9' + sin i sin 0' cos </>'). Inspection of equation (7) then shows that the 0' 
dependent integrand terms will not in general integrate to zero because in the Fourier expansion offk~(x) there will occur terms of 
the form cos jcj)' and sin jet)' which, when multiplied by sin </>' or cos </>' in equation (7) will give terms like cos {[(/ + l)/2] </>'} which 
will not all integrate to zero. Physically this just means that fk~(x) ^ fk(x + tt), in general, since non-Rayleigh scattering functions are 
commonly strongly peaked for forward scattering. This means that expressions (la)-(lc) will involve higher moments of /' than in 
the Rayleigh case, including moments over </>' as well as //, which when divided by the results for a point source will lead to finite 
source correction factors depending not only on the stellar size but also in detail on the form of the Fourier expansion of/k

-. 
Perhaps this is most easily seen by considering an extreme geometrical case of strong forward scattering with/k

-(/) ~ ô(x — Xo)> 
where 3 is the delta function. Then light scattered at 0 in Figure la can only reach the observer if it originates on the surface of the 
cone of half-angle x0 shown in Figure 5. From this figure it is clear that only light from the locus if on the stellar surface is relevant 
to determining FQ, at the observer, and the rest of the star can be removed without changing the observed fluxes. Clearly then the 
spherical star can never be replaced by any equivalent point source at its center for any scale factor analogous to D(r) in the Rayleigh 
case. 

It appears, therefore, that the simple D factor treatment of Rayleigh scattering of light from finite sources is fortuitous, arising 
from the simple periodic </>' dependence of expressions (3) and (4) in the Rayleigh problem. 
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