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ABSTRACT 
One of the fortunate aspects of angular momentum loss from low-mass (i.e., solar-type) stars is that it is a 

great equalizer. By the age of about 108 yr, the rotational velocity of solar mass stars becomes independent of 
the initial rotation rate on the main sequence; this is a consequence of the strong dependence of the angular 
momentum loss rate on the rotation rate. Thus, once this common value is reached, the rotation velocity 
depends only on time (and the mass of the star). In principle, then, the measured rotation rate of a low-mass 
star provides an estimate of its age when its mass is known. The observed rotation periods of low-mass stars 
in the Hyades are used to test this conclusion and to check the validity of the theoretical angular momentum 

ioSoorateS’ The PrescnPtlon for angular momentum loss by a magnetic stellar wind published by Kawaler in 1988 is consistent with the observed rotation rates for cluster members in the range [0.60 <(B—V)< 1.25]. A 
mean rotational age for the Hyades of 4.9 ± 1.1 x 108 yr follows from this analysis. This rotational age 
obtained using a solar-calibrated wind law and the rotation periods of subsolar mass members, agrees closely 
with the age determined by the more traditional technique of isochrone fitting to the higher mass stars at the 
turnoff. In general, this technique of rotational dating is distance-independent and may also be applied to other 
clusters of intermediate age (108 to several x 109 yr) and to individual stars. 
Subject heading: clusters: open — stars: evolution — stars: rotation 

I. INTRODUCTION 
The rotation rates of low-mass stars decrease with time as 

the result of angular momentum loss. Evidence for spin-down 
is provided by the observed sharp drop in the mean stellar 
rotation velocity with increasing spectral type that occurs at 
about F5 (Kraft 1970). The Kraft (1970) curve reflects the 
initial distribution of angular momentum with mass for stars 
hotter than F5, i.e., that mean angular momentum is pro- 
portional to M2 (Kawaler 1987). Low-mass stars fall well 
below the extrapolated Kraft curve and therefore have under- 
gone angular momentum loss. Indeed, observations of 1 M0 
stars of known age show that the rotation velocity decreases as 
t1/2 (Skumanich 1972; Soderblom 1983). The initial explana- 
tion by Schatzman (1962) was that stellar winds, constrained to 
corotate with the star by the stellar magnetic field, carry away 
angular momentum very efficiently. The observed orderliness 
of this spin-down implies that a fundamental physical process 
such as Schatzman’s magnetic braking is indeed responsible. 

Many theoretical studies of the solar wind have addressed 
the issue of angular momentum loss (i.e., Weber and Davis 
1967; Mestel 1968; Belcher and MacGregor 1976; Mestel 
1984; Mestel and Spruit 1987). Kawaler (1988, hereafter K88) 
developed a parameterized angular momentum loss law based 
on the general form of Mestel (1984) and coupled it to evolving 
stellar models, and Pinsonneault et al. (1989) included the 
effects of internal angular momentum redistribution on the 
surface rotation rate. These models successfully reproduced the 
observed spin-down of the Sun and other low-mass stars, 
allowing calibration of the parameters of the wind law. The 
results of K88 and Pinsonneault et al. (1989) show two impor- 
tant features. First, by about 108 yr, the rotation velocity 
becomes independent of the initial angular momentum. 
Second, the time scale for internal angular momentum redistri- 
bution is of order 108 yr, so that low-mass stars rotate (and 
spin down) roughly as solid bodies by an age of a few x 108 yr. 

These two points suggest an exciting application of magnetic 
braking theory. The rotation periods of low-mass stars 
depends only on time and knowable stellar parameters such as 
mass and radius. Thus, a calibrated angular momentum loss 
law provides a tool for determining stellar ages without depen- 
dence on stellar distance. 

This Letter adapts the magnetic braking model of K88 to the 
task of determining stellar ages. Section II briefly reviews this 
law and the assumptions and calibrations used in its formula- 
tion. The angular momentum loss rate is then integrated to 
derive a relation between rotation period and age (and stellar 
parameters). In § III, this Prot(i, M, R, I) relation is converted to 
a period-age-color relation using simple stellar models. Section 
IV tests the technique of rotational dating by application to the 
low-mass stars in the Hyades; this Letter concludes with a 
discussion of the application of this method to individual stars. 

II. THE MAGNETIC BRAKING LAW 
In the angular momentum loss model of K88, the stellar 

wind (mass-loss rate M14 in units of 10'14 M0 yr'1) is 
assumed to corotate with the star out of the Alfvén radius rA, at 
which point it detaches from the magnetic field and its angular 
momentum is lost to the star. The magnetic field strength is 
assumed proportional to the rotation rate, and the wind veloc- 
ity is set to the escape velocity at the Alfvén radius. With these 
assumptions, the rate of angular momentum loss per unit time 
is 

dJ 
~dt 

-n/3 
(1) 

where the constant term 

Kw(n) « 2.04 x lO33/0(n)(1.43 x 109)" (2) 

is determined by the basic physical assumptions in the model 
and calibration of various quantities to their solar values. The 
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value of n is related to the magnetic field configuration; n = 2 
corresponds to a radial field, while n = 3/1 corresponds to a 
dipole field. The factor fQ(n) is the solar calibration factor, 
which adjusts equation (1) so that solar models spin down to 
the solar rotation rate at the solar age for a given value of n. A 
value for/0 is given by 

/o = 2.95 x 10(3-2n) (3) 

which is an approximation to Table 1 of K88 for solid body 
rotation. For details of the derivation of equations (1) and (2), 
see K88. 

Evolutionary models of main-sequence stars, such as in K88, 
show that radius and moment of inertia change very slowly 
with time once a low-mass star arrives on the main sequence. 
Also, studies of rotation velocities in young clusters demon- 
strate that after about 108 yr, low-mass stars spin down 
roughly as solid bodies (Pinsonneault et al 1989; K88). Hence, 
with the assumption that stars rotate as solid bodies, then 
J = IQ, and equation (1) can be integrated directly to obtain 
the rotation period as a function of time, valid for t > 108 yr : 

Ptor = [y (2n)^ ^ ^ 

x (MiJ 1 -2n/3 / M \~n/y 

Wo, 
i + PS";3, (4) 

where P0 is the initial rotation period. A value of n = 1.5 in 
equation (4) reproduces the i-1/2 spin-down law for 1 M0 and 
conveniently eliminates the dependence on the mass-loss rate. 
Hence a value of n = 1.5 is adopted, noting that for n = 1 or 2, 
the dependence on the mass-loss rate remains weak. With these 
simplifications, equations (2) and (4) become a relationship 
between rotation period, age, and stellar mass, radius, and 
moment of inertia : 

P 2 rot = 3.724 x 10"5 
1/2 -1/2-1 

t + P2
0 (5) 

The Sun provides a good example of the small effect of the 
initial rotation period P0 on the rotation period at large times. 
In the T Tauri phase, observed rotation velocities are often in 
the 10-20 km s-1 range (e.g., Hartmann et al 1986); when 
projected to the ZAMS, these stars would rotate with velocities 
about 100 km s-1 (Stauffer and Hartmann 1986). In 1 M0 
models of K88, models that rotate at 20 km s_ 1 in the T Tauri 
phase have begun magnetic braking by the time they reach the 
ZAMS their peak rotation velocity is 65 km s-1 (Prot = 
0d70) at an age of 2.2 x 107 yr, but is reduced to 25 km s-1 

(Prot = ld8) by an age of 5.0 x 107 yr; these numbers agree 
with observed velocities of young stars. Therefore a representa- 
tive value for the initial rotation period of 1 day is adopted. 
With this value, the time dependent part of equation (5) is 
equal to P% after only 6.4 x 106 yr of angular momentum loss. 
The initial rotation term decreases the rotation rate by only 
3% after 108 yr of angular momentum loss; by 3 x 108 yr, the 
contribution is less than 1%. Therefore, after about 108 yr, 
low-mass stars essentially forget their initial rotation rates, and 
the subsequent history of the surface rotation is determined 
solely by the magnetic braking rate. This integration explains 
why K88 and Pinsonneault et al (1989) find the rotation veloc- 
ity of evolving solar models to be independent of the initial 
angular momentum. The initial rotation period can therefore 
be safely ignored in this analysis. 

III. THE PERIOD-AGE-COLOR RELATION 

Rarely are stellar masses or radii (or moments of inertia, for 
that manner) determined directly. Therefore, a more useful 
form of equation (5) would express these quantities in terms of 
observable parameters such as color. This can be achieved by 
expressing the radius and moment of inertia in terms of the 
stellar mass using stellar models. As an illustrative example for 
this Letter, consider the approximate main-sequence homol- 
ogy relationships near 1 M0, 

R-R°(0 ,6>) 

and 

/ M V 
<6b> 

Expressing the rotation period in days (Pd), and the age in Gyr 
(t9), equation (5) becomes 

Pd
2 (12.55)2i9| 

-¿ + [(r-l)/2] 
(7) 

which relates the rotation period to age and stellar mass (where 
we have dropped the P0 term). In logarithmic form, 

log (Pä) = 0.5 log (t9) + 0.5^ - i + r-^j log (JL) + 1.099. 

(8) 

Since mass is rarely the observed quantity, the (B — V) color 
can be used as a mass surrogate; a mass-color relationship of 
the form 

l°g ^ — Kbv + Sbv(B — V) (9) 

has been adopted. Using the stellar models from K88 
(Z = 0.02) with the color calibrations described by Green 
(1988) gives Kbv = 0.275(± 0.005) and SBV = -0.410(± 0.010). 
These values show little dependence on times for ages between 
3 x 107 and 5 x 109 yr in the mass range of interest. Therefore, 
using (B — F) as a mass surrogate in equation (8) produces the 
following period-age-color relation : 

log (Pd) = 0.5 log (t9) - 0.205^ — i + — V) + 0.824 . 

(10) 

Thus the observed rotation period and color of a low-mass 
star yield its age. Equation (10), derived assuming n = 1.5 to 
reproduce the empirically determined t~1/2 spin-down rate for 
1 M0 stars, effectively extends this law to include stars over a 
large range of colors (masses). This value of n = 1.5 corre- 
sponds to a magnetic field geometry that is intermediate 
between radial and dipole (Kawaler 1988). Other choices of n 
are possible, allowing derivation of analogs to equation (10) for 
various field configurations. 

Fundamental stellar data derived for main-sequence stars in 
binary systems (Popper 1980) give a value for r that is very 
close to 1 for stars at and below 1 M0. These radii agree well 
with the models of K88; thus, we use stellar models that match 
the observed radius for a given mass to obtain a value of about 
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1.9 for the exponent i in equation (6b). With these representa- 
tive values, equation (10) becomes 

log (Pd) = 0.5 log (i9) + 0.390(11— V) + 0.824 , (11) 

which is the adopted period-age-color relation for low-mass 
stars. The internal error in log (i9) from equation (11) is a 
about 0.08. In order of importance, this error comes from the 
following factors: (1) the term/0, reflecting our lack of knowl- 
edge of the angular momentum redistribution history of low- 
mass stars; (2) the uncertainties in the homology exponents i 
and r; and (3) the color-mass calibration. 

Since the rotation velocity vTOt is equal to the radius multi- 
plied by the angular rotation velocity, equation (11) can be 
converted to a rotation velocity-age-color relation by applica- 
tion of equation (6a) : 

log (vrot) = 0.5 log (i9) - 0.390(21— V) + 0.880 , (12) 

where £>rot is measured in km s-1. Note however that equation 
(12) is implicitly more dependent on the stellar radius. As such, 
it is more sensitive to uncertainties in the adopted mass-radius 
relation. 

iv. application: the age of the hyades 

The rotation periods, determined photometrically by Radick 
et al. (1987), and colors for a sample of low-mass stars in the 
Hyades provide a stringent test of the rotational dating tech- 
nique. Rotation periods are preferable because, while there are 
many measurements of rotation velocities of Hyades stars, the 
velocity-age-color relation has larger uncertainties. In addi- 
tion, the measured velocities are reduced by the sine of the 
inclination of the rotation axis, leading to additional uncer- 
tainties. 

Lines of constant age (rotation isochrones), computed using 
equation (11), are superposed over the data from Radick et al 
(1987) in Figure 1. The data parallel the isochrones very closely 
for (B—V)> 0.59; the star vB 190, which shows anomalously 
fast rotation (see the comments in Radick et al. 1987) has not 

Fig. 1.—Rotation periods (in days) for low-mass stars in the Hyades, mea- 
sured by Radick et al. (1987), as a function of (B-V). Rotational isochrones 
are shown as solid lines and are labeled with the age in units of 108 yr. The 
dashed line shows the best linear fit with slope 0.39 to stars with 
{B—V)> 0.59; this fit corresponds to an age of 4.9 x 108 yr, with a statistical 
uncertainty of 1.1 x 108 yr. 

been included in this analysis. The rotational age of the Hyades 
can be read off of Figure 1 as approximately 5 x 108 yr. A 
more precise estimate of the rotational age is obtained by 
making a linear fit to the observed rotation periods. Varying 
both the slope and the intercept of the fit, the best fit for 
(B—V)> 0.60is 

log (Prot) = 0.402(1? — V) + 0.652 . 

The intercept of this relation is a combination of the constant 
in equation (11) and the logarithmic age of the stars in the 
Hyades; thus the above fit yields a mean age for these stars of 
4.5 x 108yr. 

An important point to note is that the slope of the 
P[{B-Vy] relation is very close to that expected from the 
theory of angular momentum loss (0.39). This indicates that the 
value of the intercept obtained while imposing a slope of 0.39 
on the fit to the data yields a mean age of (4.9 + 1.1) x 108 yr 
for the low-mass stars in the Hyades for which rotation periods 
have been measured; age determinations for individual stars 
with (B—V)> 0.60 range from 4 x 108 to 7 x 108 yr. These 
ages are actually skewed slightly toward larger values by any 
(few) initially very slow rotators that are still spinning down, 
but at a slower rate than the average. Nevertheless, the rota- 
tional ages over a wide range of colors agree quite well with 
more traditional determinations of the age of the Hyades. 

In his study of the spin-down of solar mass stars, Skumanich 
(1972) included solar mass stars in the Hyades, with an 
assumed age of 4 x 108 yr. With Skumanich’s data alone, the 
rotational age for the Hyades would not be precisely indepen- 
dent of other dating techniques because of the use of the t~1/2 

law in deriving equation (10). However, Soderblom (1983) used 
data from cluster and field stars in confirming the t~1/2 law for 
solar mass stars. In fact, removing the Hyades data from 
Soderblom’s sample would not significantly alter the spin- 
down law he derives. These empirical determinations of the 
t~112 law only consider stars in a narrow range of (B—V) 
centered on the solar value. Here we show that the magnetic 
braking law correctly predicts the relationship between rota- 
tion period and color at a given time over a wide range of 
color; thus, we may date stars over a larger range of color than 
considered by Skumanich (1972) or Soderblom (1983). The 
derived rotational age of the Hyades is therefore a valid test of 
the theory of magnetic braking for low-mass stars. 

V. CONCLUSIONS 
The integrated angular momentum loss law gives a consis- 

tent description of the rotation of low-mass stars in the Hyades 
with (B—V) > 0.60. The derived rotational age of low-mass 
stars in the Hyades is very close to the turnoff age of between 3 
and 5 x 108 yr determined by G. DaCosta and P. Demarque 
(private communication) using the Revised Yale Isochrones 
(Green, Demarque, and King 1987). This agreement indicates 
that the magnetic braking law is valid for stars redder than 
about (B—V) = 0.6, i.e., less massive than about 1.1 M0. 
Above this mass, where the observations shown in Figure 1 
depart from a single isochrone, some of the assumptions of the 
braking model begin to break down. Compared to lower mass 
stars, the character of magnetic field generation and modula- 
tion, and the structure of the stellar wind begin to change for 
stars with (B—V)> 0.60. These higher mass stars have begun 
to climb back up to the Kraft curve. 

In general, the rotational age is a completely independent 
age estimate, as it employs low-mass stars, while isochrone 
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fitting relies on the more massive stars near the turnoff. Fur- 
thermore, the rotational age is independent of distance. Rota- 
tional dating should work for Population I clusters with ages 
between 108 and several x 109 yr, without recalibration. This 
procedure can be applied to individual field stars, with an 
internal uncertainty of 20% or so. More sophisticated applica- 
tion of the wind law to models of evolving rotating stars will 

enable us to extend the isochrones to higher mass (bluer) stars 
and therefore decrease further the uncertainty in the derived 
rotational age. 

The author wishes to thank Gary DaCosta and Pierre 
Demarque for helpful comments on this work, which is sup- 
ported by NASA grant NAGW 778 to Yale University. 
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