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ABSTRACT 
We assess neutron starquake models for y-ray bursts. The elastic energy the crust can store is sufficient to 

account for that radiated in a single burst, but it is insufficient to supply the > 106 bursts each star produces 
over its lifetime, and so it must be replenished. Seismic waves are radiated if shear stress is relieved by brittle 
fracture. However they cannot propagate directly to the surface but are temporarily trapped below a reflecting 
layer. Between the reflecting layer and the surface the displacement amplitude of the wave is nearly constant 
and the strain is very small. At low frequencies, < 104 Hz, the reflection is associated with an evanescent zone. 
At high frequencies, >104 Hz, the reflection occurs where the magnetic field stress starts to dominate the 
crustal rigidity. The shaking of the stellar surface couples the seismic waves to Alfvén waves which propagate 
out into the magnetosphere. At low frequencies, the coupling coefficient, T, is proportional to the square of 
the magnetic field, B, and increases with the seventh power of the wave frequency, v. At high frequencies, T is 
proportional to B4/7v3/7. Alfvén wave luminosities sufficient to power Galactic y-ray bursts are possible if mag- 
netic fields ^lO11 G cover at least part of the stellar surface. The conversion of Alfvén waves into y-rays may 
occur if the waves are charge-starved or if their amplitudes approach that of the background magnetic field. 
Subject headings: gamma rays: bursts — stars: neutron — wave motions 

I. INTRODUCTION 

Fifteen years after their discovery by Klebesadel, Strong and 
Olson (1973), y-ray bursts remain a major unsolved problem of 
high-energy astrophysics. Satellites detect around a hundred 
bursts per year. The bursts lack counterparts at other wave- 
lengths (e.g., Hartmann and Woosley 1988), and consequently 
the source objects are unidentified. Individual bursts usually 
last for a few seconds; they exhibit a great variety of temporal 
structure, including rise times as short as several milliseconds 
(e.g., Liang and Petrosian 1986). Observed fluences lie in the 
range 10-6 to 10-4 ergs cm-2, with substantial emission above 
a few MeV being common (Share et al 1986). The narrow 
distribution of fluences suggests that the luminosity function is 
not very broad. 

Neutron stars have long been viewed as being the most 
plausible sources. The positional coincidence of the peculiar 
1979 March 5 event with a supernova remnant in the LMC 
and its fast ( < 0.25 ms) rise time and 8 s pulsations provide the 
strongest links to rotating neutron stars. The recently dis- 
covered 2.2 s periodicity in the 1984 August 5 event 
(Kouveliotou et al 1988) is also suggestive. Other circumstan- 
tial (and controversial) evidence pointing to neutron stars 
includes linelike features at ~50 and ~450 keV, respectively 
interpreted as due to cyclotron resonance in a ~ 1012 G mag- 
netic field and gravitationally redshifted y-rays from pair 
annihilation (e.g., Liang and Petrosian 1986). 

The distribution of bursts over the sky is isotropic, and so 
they must be located within the neutron star scale height, ~ 1 
kpc. For many events, source distances less than a kiloparsec 
are also inferred from the absence of a spectral cutoff (due to 
photon-photon pair production) above a few MeV (Schmidt 
1978). 

The relative lack of low-energy X-ray luminosity, Lx(3-10 
keV)/Ly(> 30 keV) ^ 0.02 (Laros et al 1984), is an important 
clue to understanding the nature of the y-ray emission region. 

This X-ray paucity constraint (Imamura and Epstein 1987) is 
unlikely to be satisfied in regions of high density or near the 
neutron star surface, where substantial thermal reprocessing of 
y-rays into X-rays would occur. For sources associated with 
neutron stars this suggests emission from a region of low- 
density plasma well out in the magnetosphere. This geometry 
would also avoid an excessive optical depth to pair production. 

Starquake models for y-ray bursts have been discussed by 
Pacini and Ruderman (1974); Tsygan (1975); Fabian, Icke, and 
Pringle (1976); Muslimov and Tsygan (1986); and Epstein 
(1988). The basic idea is quite simple. Elastic energy released in 
a crustquake excites oscillations of the magnetic field frozen in 
the surface, and the induced electric field accelerates high- 
energy particles, which in turn radiate y-rays. This paper is 
devoted to assessing the merits of starquakes as the root cause 
of y-ray bursts. 

Before embarking on a discussion of the consequences of 
neutron starquakes, it is only fair to point out that their very 
existence is open to question. Even if mechanisms exist for 
producing the requisite stress in the crust, stress release might 
proceed by plastic flow rather than by brittle fracture, espe- 
cially at the depths implied by the quake energetics discussed 
below. Deep-focus earthquakes provide a good analogy; it is 
still not understood how rupture can occur at their depths 
(Kasahara 1981). 

The plan of this paper is to assess the component parts of 
y-ray burst models based on neutron starquakes. Section II 
contains a discussion of both the requirements for, and the 
expected properties of, neutron starquakes. The coupling of 
seismic waves to Alfvén waves is evaluated in § III, and the 
behavior of Alfvén waves in the magnetosphere is investigated 
in § IV. In § V we attempt to identify the principal sources of 
free energy in the interiors of old neutron stars. Finally, § VI 
presents a brief overview of the strengths and weakness of 
starquake models for y-ray bursts. 
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IL QUAKE ENERGETICS 
The energy released in a typical y-ray burst, assuming iso- 

topic emission, is 

_ io38 / F v ß Y 
ri \10-6 ergs cm_2/\l kpc/ Gr^S ’ 

where rj specifies the fraction of energy released which is con- 
verted into y-rays, F is the observed fluence, and D is the 
distance. The magnetic energy in the magnetosphere (~1041 

ergs for a 1012 G surface field) and the maximum elastic energy 
that the crust can store (~ 1044 ergs for a 10“ 2 yield strain) are 
much greater than the typical energy required for a single 
burst, provided that rj is not too small. It is therefore plausible 
that each burst is produced by a starquake. 

To examine the energetics of a starquake, we model the crust 
as plane-parallel, chemically homogeneous, and subject to a 
constant Newtonian gravitational acceleration, g = —gz, 
where 2 is a unit vector in the upward direction. In numerical 
expressions we take g = 1014 cm s-2. We are primarily con- 
cerned with the region above neutron drip, which occurs at 
p « 4 x 1011 g. Here the pressure is due to degenerate elec- 
trons. Integrating the equation of hydrostatic equilibrium, we 
obtain the density profile 

. (Hernf2 (g2ixemu 2 
P~ 3n2h3 V c2 2 + 2gme\z\ 

3/2 
(2) 

where mu is the atomic mass unit, ge is the mean molecular 
weight per electron, and all other symbols have their usual 
meanings. We adopt an intermediate value of ge = 2.5 when 
presenting numerical results; detailed models predict that ge 
rises from about 2.2 near the surface to 3.3 near neutron drip 
(Baym, Pethick, and Sutherland 1971). 

The ions in the solid crust are arranged in a Coulomb lattice 
whose shear modulus is given by (Baym and Pines 1971) 

the quake is simply the speed at which the fracture propagates, 
divided by d. Since cracks typically propagate at a significant 
fraction of the shear wave speed, vs = (g/p)112, we find 

v0 
V'T />(*<>) 

1038 ergs/ |_4 x 1011 g cm 

11/18 

Simple models of fracture which successfully describe seismic 
radiation by terrestrial quakes (see, e.g., Kasahara 1981) 
predict that the spectral density, Ev, satisfies 

|v3 for V < v0 , 
[v-1 for v > v0 , (8) 

so a substantial amount of energy is released at v > v0. The 
seismic energy density is partitioned into shear and compres- 
sional waves in proportion to the inverse sixth power of the 
ratio of their propagation speeds.1 Most of the energy is 
emitted in shear waves, since their speed is typically a few times 
smaller than that of compressional waves. Some conversion of 
energy between shear and compressional waves occurs each 
time the waves are reflected below the stellar surface. We 
ignore the compressional waves in the remainder of the paper, 
since, for our purposes, their behavior is not very different from 
that of shear waves. 

For simplicity we have assumed in this section that the 
quake occurs at or above the depth at which neutron drip 
occurs, and we see that this is sufficient to explain the burst 
energetics and time scales. More energy could be released from 
quakes at greater depths. However, the shear speed decreases 
with depth below neutron drip, and thus some of the waves 
produced in this region may never reach the surface. 

III. TRANSMISSION OF ENERGY INTO THE MAGNETOSPHERE 

^ = 0.295Z Vn?/3 , (3) 

where rii = p/(Zpemu) is the ion number density. The atomic 
number, Z, varies from 26 near the surface to 36 near neutron 
drip (Baym, Pethick, and Sutherland 1971); an average value 
of 32 is adopted here. The crust will remain solid below the 
melting temperature 

Z5/3e2 Í 4np y/3 

krm \3pemJ 
- 3 x ioy/3 K , (4) 

where Fm ^ 180 is the melting parameter (Slattery, Doolen, 
and DeWitt 1982). 

The elastic energy released in a quake may be expressed as 

Eq ~ n(zQ}€2
iMd3 , (5) 

where eyield is the yield strain at which the crust cracks, d2 is the 
area of the fault plane, and zQ is the depth. Equations (3) and 
(5) together require 

d ~ 3 x 10" 
TT y L 

P(zo) -4/9 

1038 ergs/ |_4 x 1011 g cm- 

* ™ ^ 

where, for convenience, the density is scaled by its value at 
neutron drip. 

The characteristic frequency, v0, of elastic waves emitted by 

The magnetic energy density dominates the rigidity in the 
outer layers of the crust of magnetic neutron stars. It may even 
exceed the rest-mass energy density very close to the surface, 
and it certainly does so in the magnetosphere. To include the 
effects of the magnetic field B on wave propagation, we add the 
Maxwell stress to the equations of elastodynamics. Because 
B2 $> 4npc2 in the magnetosphere, the displacement current 
cannot be neglected in Maxwell’s equations. For simplicity, we 
consider the crust to have a plane-parallel geometry and the 
unperturbed magnetic field to be uniform.2 Moreover, we treat 
the surface layers as solid because, with our scalings, the mag- 
netic field completely dominates the stress in the ocean provid- 
ed that the surface temperature is <3 x 105 K. This is 
probably true for old neutron stars. 

Linearizing the equation of motion and the continuity equa- 
tion about a static equilibrium, we obtain 

d2â 1 
P = V • <5<r + - <5/ x Æ + ôpg -\ôp (9) 

and 

ôp=-\-(pÇ), (10) 

1 This dependence of energy density on wave speed is characteristic of a 
quadrupolar emission process. Because of the absence of external forces, quad- 
rupoles are the lowest order multipoles in these seismic events. 

2 The global structure of the magnetic field is important at frequencies 
( ~ 5 x 103 Hz) below which the Alfvén wavelength is larger than the stellar 
radius. 
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respectively. Here Ö denotes an Eulerian perturbation, f is the 
displacement of an element of material from its equilibrium 
position, and dj is the perturbed current density. The pressure 
due to the degenerate electrons, p, has been written separately 
from the elastic stress associated with the deformation of the 
Coulomb lattice, a. The components of the perturbed elastic 
stress tensor are related to the components of the gradient off 
by 

where k is the bulk modulus. In writing equation (11), we have 
neglected the extra terms which arise if there is a static elastic 
stress associated with the equilibrium state. It is easy to show 
that these terms are of order €yield < 1 relative to those 
retained. 

The crust is effectively a perfect electrical conductor at 
seismic frequencies, so the perturbed electric field is given by 

<12> 

Equation (12), combined with Maxwell’s equations, 

V x <5£ = 
1 ÔÔB 
c dt (13) 

and 

V x ÔB 
An 1 ÔÔE 
'Tij + -c-ÏT' (14) 

may be used to relate ôj to £ 
The transmission coefficient for the energy flux between the 

crust and the magnetosphere should not be significantly 
affected by the polarization and propagation angle of the inci- 
dent shear wave. We consider then the simplest possible case, a 
vertically propagating shear wave polarized in such a way that 
£ x z x 5. For this special case V • <5p, and ôp all vanish. 
Next, we take a harmonic time dependence, exp (-icot), for the 
perturbation variables and combine equations (9)h(14) to 
derive the wave equation, 

d di\ 
+ ,15) 

where p, and p are the effective shear modulus and density: 

where 

u 
fz co 6.5 /he co2| z |\1/2 

(19) 

The first and second terms on the right-hand side of equation 
(18) represent the upward-propagating, incident wave and the 
downward-propagating, reflected wave, with AR the complex 
reflection amplitude. 

In the magnetosphere, z > 0, jù = {B cos a)2/(4jt), p = B2/ 
(47tc2), and the wave equation reduces to that for relativistic 
Alfvén waves, 

d2£, -, (o2 

^ + sec2a —f = 0. (20) 

The outward-propagating solution has the form 

f = At exp (21) 

where A T is the complex transmission amplitude. 
To determine AR and AT, we perform two numerical integra- 

tions of equation (15) from z 0 to z > 0 starting from differ- 
ent lower boundary conditions. Then we choose the 
appropriate linear combination of the two boundary condi- 
tions in such a way that the solution satisfies the radiation 
condition, f' = icy(sec a)f/c, for z > 0. The transmission coeffi- 
cient, T, the ratio of the transmitted to the incident energy flux, 
is given by 

T=\-\Ar\2. (22) 

The solid curve in Figure 1 displays T as a function of fre- 
quency for various vertical magnetic field strengths. These 
numerical results may be understood with reasonable quanti- 
tative accuracy as follows. 

For a homogeneous crust, it is easy to show that the trans- 
mission coefficient for a vertically propagating shear wave is 
given by the familiar formula 

{ZC "b ZM)2 (23) 

where Zc and ZM are the impedances of the crust and the 
magnetosphere. Each impedance is the product of the relevant 
propagation speed and effective density. Thus, 

and 

£ = + 
{B cos a)2 

An 

P = P + 
B2 

Anc2 * 

(16) 

(17) 

Here cos a = Bz/B. Equations (2) and (3) are used to obtain the 
dependence of ju and p on depth. The magnetoelastic wave 
speed, vs, is equal to {p/p)112. 

Deep in the crust, but above neutron drip, equation (15) has 
the asymptotic solution 3 

í ~ IZr7/4{exp [ — i(u + cot)] + Ar exp [i(u - coi)]} , (18) 

Zc = (PB) 1 and ZM = 
B2 cos a 

Anc 
(24) 

To apply equation (23) to an inhomogeneous crust, we need 
to know where to evaluate Zc. It turns out that there are two 
different regimes to consider. To proceed, we define a new 
dependent variable'F by 

T* = p1'2^ . (25) 

Then the wave equation (15) becomes 

1 d2p ft)2p~| 
2p dz2 p. J 

¥ = 0 . (26) 

3 The z-dependence of the amplitude follows from conservation of the 
WKBJ flux, F ~ pvs(a)Ç)2. 

The expression in square brackets is positive at large depth in 
the crust and also in the magnetosphere, so in these regions the 
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Fig. 1.—Transmission coefficient as a function of frequency for a vertically 
propagating wave. The solid lines refer to numerical calculations, while the 
dashed lines show the quasi-analytical approximations discussed in the text. 
The upper and lower pairs of curves are for 1012 and 1011 G fields, respectively. 

waves are propagating in a WKBJ sense. In between there is an 
evanescent zone in which ^ is nearly constant and the strain is 
very small. This illustrated in Figure 2, which displays the 
displacement amplitude and strain as calculated numerically 
for v = 104 Hz and B = 1011 G. 

For v 104 Hz, equation (23) yields a reasonably accurate 
formula for T if Zc is evaluated at zev, the lower boundary of 
the evanescent zone, where the expression in square brackets in 
equation (26) vanishes. At low frequencies, zev is in the region 
where the electrons are relativistic. In this regime 

|zev| ^ 4 X 1Q4(1Q3V
Hz) cm > (27) 

and equations (23) and (24) imply 

(28) 

At high frequencies, substantial reflection occurs below zev, 
where the propagation speed increases rapidly with height as 
the magnetic field starts to dominate the shear stress and the 
density decreases. In this case, it is more appropriate to evalu- 
ate Zc where the vertical wavenumber is changing on the scale 
of a wavelength, or, equivalently, where 

dvl 
-=±^. (29) 

For v > 104 Hz, this leads to the following approximation for 
the transmission coefficient : 

T ~ 9 x 10~ 
B 

1011 G 

4/7 

TO 
(cos a) -3/7 (30) 

The dashed lines in Figure 1 show the approximate solution 
for the transmission coefficient as calculated from equation (23) 
with Zc evaluated using the relevant criterion as described 
above. The approximate formulae (28) and (30) for T are quite 
accurate in both the low- and the high-frequency limits. 

We have seen that only a small fraction T of the incident 

Fig. 2.—(a) Displacement amplitude and (b) associated strain, in arbitrary units as a function of height above the surface for a 104 Hz vertically propagating wave 
in a 1011 G magnetic field. The location of the evanescent zone is indicated by the pair of vertical lines. 
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wave flux leaks into the magnetosphere. The fate of the reflec- 
ted energy is clearly of interest. The angular momentum 
barrier4 and an increase in wave speed with depth both refract 
waves upward. This behavior is an obvious consequence of the 
WKBJ dispersion relation, 

k2
z(z) = Kl + 1) (31) 

Compressional waves are guaranteed to return eventually to 
the surface, since they propagate throughout the star. 
However, shear waves cannot propagate in the fluid interior 
below the crust. Those which reach this region may be reflected 
if the rigidity drops sufficiently abruptly to zero at the inner 
boundary of the crust. Otherwise, as the waves slow down, 
their radial wavevectors and amplitudes will increase, and their 
energy will ultimately be dissipated as heat. 

The waves which do return will bounce many times off the 
surface and will spread throughout the crust on a time scale 
~10-2[t;s(zQ)/(2 x 108 cm s-1)]-1 s. The characteristic 
storage time for wave energy in the crust, t(v), is twice the time 
it takes the waves to cross the crust, 2ic, divided by T(v). For 
vertically propagating waves, 

t(v) 
2 Cz<>dz 

' T(v) Jo 

5 x 10~6|zQ|1/2 

T(v) 
s . (32) 

At low frequencies, equations (28) and (32) imply 

3 x 104 

cos a 
B (JleL) 

1/2 

W^) [W^g) S- (33) 

while at high frequencies equations (30) and (32) give 
-3/7 B 

1011 G 

-4/7 

105 cm 

1/2 
S . 

(34) 

With the same scalings, t ~ 1 s at v0 = 104 Hz. 
To obtain a crude picture of the time-dependent Alfvén wave 

luminosity following a quake, we combine the seismic wave 
power spectrum given by equation (8) with t(v) from equation 
(32). A trivial calculation yields 

L(t > tc) = 
Í 

^ £v dv — exp 
'o 4v) t(v) 

(35) 

A graph of L(t) for a nominal quake with a total energy release 
of 1038 ergs is presented in Figure 3. 

Our analysis of the propagation of shear waves has 
neglected damping. In the absence of empirical data, it is diffi- 
cult to identify the principal damping mechanisms, let alone to 
estimate the seismic g’s they provide. Since the storage time for 
the seismic energy in the crust is of order lö4 wave periods, any 
process which produces Q < 104 would be important. 

For the Earth, the seismic Q ranges from ~ 100 in the upper 
mantle to ~ 200 in the crust to ~ 500 in the deep mantle. The 
damping mechanism is not well established, but stress-induced 
motion of dislocations is a plausible guess (Minster 1980). This 
mechanism is temperature-dependent, and gives rise to g’s 
which decrease as the melting temperature is approached. 

The stress-induced motion of dislocations may well domi- 

4 Or, equivalently, the 1/r dependence of the horizontal wavenumber in a 
spherical star. 

Fig. 3.—Alfvén wave luminosity as a function of time, normalized to a total 
seismic energy release of 1038 ergs. The energy starts to be transmitted into the 
magnetosphere after a time ic ~8 x 10-4s. 

nate the damping of shear waves in the crusts of neutron stars. 
However, it is not possible to make a reliable estimate of the 
g’s it produces. 

Theoretical calculations of the degenerate electron viscosity 
in a solid neutron star crust have been reported by Flowers 
and Itoh (1976). They included electron scattering by phonons, 
impurity ions, other electrons, and free neutrons. We neglect 
chemical impurities because of the large uncertainty in their 
concentration and type. For core temperatures of ~ 106 K, the 
damping due to electron viscosity is most severe at high den- 
sities, the dominant scattering mechanism being due to 
phonons. At neutron drip, the damping time is of order 
4 x 103 s for 104 Hz waves. This is probably an underestimate 
because of the likely presence of other sources of electron scat- 
tering, especially lattice imperfections. Even so, it is still much 
longer than the typical time scale for a y-ray burst. 

Itoh, Kohyama, and Takeuchi (1987) have calculated the 
ionic contribution to the viscosity for the liquid state. Their 
results give a damping time of order 300 yr for densities of 106 

g cm~3. Although those mechanisms which can be quantitat- 
ively analyzed provide negligible damping on y-ray burst time 
scales, it should be borne in mind that this does not constitute 
a proof that damping is unimportant. 

Up to this point we have considered how a vertically propa- 
gating shear wave polarized orthogonal to the ambient mag- 
netic field couples to an Alfvén wave. Since the magnetosphere 
can also support fast magnetosonic waves, it is natural to 
inquire whether more general seismic disturbances couple to 
them. As a preliminary step to addressing this query, we note 
that the dispersion relation for fast magnetosonic waves is iso- 
tropic and reads 

co2 = (ck)2 , (36) 

which differs from the anisotropic dispersion relation for 
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Alfvén waves, 

co2 = (ck cos i¡/)2 . (37) 

Here, k is the magnitude of the wavevector, and ij/ is the angle 
between k and B. (This dispersion relation, derived assuming 
an infinite conductivity, is also valid for a low-density, rela- 
tivistic plasma, as shown in Appendix A.) The constancy of co 
and the horizontal component of k, k sin 6, across the surface 
leads to Snell’s law. For fast magnetosonic waves and Alfvén 
waves, the appropriate forms are 

and 

sin 6t c 
sin Oi vs ’ 

sin 6t c cos i// 
sin Oi vs 

(38) 

(39) 

Here, 0, and 0t denote the angles of incidence and transmission. 
At the reflecting layer, vs c, and thus only waves having very 
small angles of incidence can couple to fast magnetosonic 
waves. For Alfvén waves the only restriction is that the trans- 
mitted wavevector be almost orthogonal to B.5 

The displacement amplitude of a propagating shear wave 
increases with height in the crust as a consequence of the con- 
servation of energy flux,6 before saturating at a constant value 
in the evanescent zone. Because the strain amplitude, e, is pro- 
portional to the gradient of the displacement, and the magni- 
tude of the wave vector, k = co/vs, also increases with height, e 
reaches a maximum near the bottom of the evanescent zone (cf. 
Fig. 2b). The following argument relates the maximum strain 
amplitude to the Alfvén wave luminosity. 

We assume that the entire neutron star surface radiates 
Alfvén waves. Then the fractional perturbation of the surface 
magnetic field associated with luminosity L is 

f—<*> 

In terms of the surface displacement amplitude, equations (12) 
and (13) imply 

Thus, we estimate the total strain at zev to be 

n. J t>s(Zev) 1 Y 
UxlO’cms-1] V 1038 ergs s 1 

1/2 B 
1011 G 

(42) 

With the chosen scaling, the maximum strain is dangerously 
close to unity. More accurate numerical calculations for verti- 
cally incident 104 Hz waves, with the same scaling parameters 
as in equation (42), predict that the maximum strain amplitude 
is 0.2, and that it occurs at z æ 2zev. A dynamic yield strain as 
large as 0.1 is not unusual (R. Jeanloz 1988, private 

5 We discuss coupling to fast magnetosonic waves and its relation to pre- 
vious calculations of electromagnetic damping in Appendix B. 

6 The flux, F, is proportional to pvs f
2, and pvs decreases with height. 

communication). Thus, we cannot predict whether shear waves 
transfer their energy to Alfvén waves and/or crumble the crust, 
generating heat. However, it is clear that the neutron starquake 
model is not viable if bursts are significantly more distant, and 
consequently more luminous, than estimated above. 

Suppose that some heat is deposited at | z |ev ~ 450 cm (this 
is the appropriate value of zev for v ~ 104 Hz), where 
p ~ 9 x 105 g cm-3. At this depth, the Debye temperature is 
~3 x 106 K, and the melting temperature is ~3 x 107 K. A 
heat input of > 1035 ergs will melt the solid crust. 

The transport of heat from zev to the nondegenerate outer 
layers is controlled by degenerate-electron conduction. The 
diffusion time scale through a liquid crust is given by 

tdifi 
v PCV 

KZ/iemu 
103 s , (43) 

where Cv is the capacity per ion and K is the thermal conduc- 
tivity, the dominant electron scattering mechanism being due 
to ions (Flowers and Itoh 1976). Thus thermal energy will be 
radiated from the surface as X-rays, on time scales which are 
much longer than the typical duration of the y-ray emission, as 
required by the X-ray paucity constraint. 

IV. ALFVÉN WAVES IN THE MAGNETOSPHERE 
An attempt to predict the behavior of Alfvén waves in the 

magnetosphere is fraught with uncertainties. Below we touch 
on a few of the most critical issues. 

The dispersion relation given by equation (37) implies that 
the group velocity of Alfvén waves has magnitude c and is 
aligned with the local magnetic field. Close to the stellar 
surface, the Alfvén waves excited by a quake have propagation 
vectors that are nearly orthogonal to the magnetic field. As the 
waves travel out along the curved field lines, the wavevectors 
rotate toward alignment or counteralignment with the mag- 
netic field lines, with the component of k along B fixed by the 
constancy of co. Significant rotation of k occurs over distances 
comparable to the radii of curvature of the field lines. This 
result may be derived in a straightforward fashion from the 
eikonal equations (Weinberg 1962). Physically, it arises 
because the Alfvén wave phase velocity is proportional to 

I cos if/1, where ij/ is the angle between k and B. Consequently, 
an initially planar wave front which travels out along a bundle 
of diverging field lines bows out because the central part of the 
wave front propagates faster than the outer parts. 

We have already discussed the magnetic field perturbations 
required for Alfvén waves to carry the luminosity of a typical 
y-ray burst. The energy emitted by the star is guided along 
magnetospheric field lines and might bounce many times 
between their feet, at least for closed field lines. Since the 
energy flux transmission coefficient between crust and magne- 
tosphere is the same in both directions, the equilibrium energy 
density of Alfvén waves near the stellar surface, ~ 1017(£Q/1038 

ergs) ergs cm"3, is smaller by vs/c < 10"3 than the energy 
density of seismic waves just below the evanescent zone in the 
crust. The equilibrium Alfvén wave energy density corresponds 
to a perturbed magnetic field strength 

SB 
B 

10' 
vl/2 

1038 ergs/ yio11 G 
B 

(44) 

near the star. This value of SB is significantly larger than that 
obtained from the Alfvén wave luminosity in equation (40). 
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The larger value of ÔB given in equation (44) arises from waves 
propagating in both directions along the field lines. 

Because Alfvén waves transport energy without loss along 
the equilibrium field lines, their relative amplitudes vary 
according to 

0B n — Í 12 -ccB (45) 

Equations (44) and (45) indicate that, if equilibrium is reached, 
the Alfvén waves are likely to become nonlinear not very far 
from the star. 

Up to this point, we have been making the implicit assump- 
tion that the plasma density in the magnetosphere is high 
enough so that the MHD limit applies to Alfvén wave propa- 
gation. We shall now show that this is a questionable assump- 
tion. 

The corotation charge number density (Goldreich and 
Julian 1969), 

n 
B 

Pee 
cm 3 , (46) 

sets a lower limit on the magnetospheric plasma density, n. 
Here, P is the rotational period of the neutron star. For planet- 
ary magnetospheres, n> nCT; neutral plasma is injected into 
the magnetosphere from the upper atmosphere of the planet, 
from satellites, and from the solar wind. For quiescent old 
neutron stars, it is plausible that n « ncr, since the atmospheric 
scale height is very small, ~0.1 cm for a surface temperature 
Ts = 105 K. Much higher densities may exist if accretion is 
occurring, or if an energetic process expels plasma from the 
stellar atmosphere. In the latter context, it is noteworthy that 
substantial plasma may be torn off the surface by outward- 
propagating Alfvén waves. In the presence of Alfvén waves, the 
force on charged particles is ~eôB ~ 5 x 10-10(<5B/G) dynes, 
which is much larger than the gravitational force on a proton, 
10“10 dynes, at the surface. 

For low plasma densities a different nonlinearity from that 
discussed previously may occur even at relative field ampli- 
tudes SB/B 1. Because the wave vector is nearly orthogonal 
to the magnetic field near the surface, equation (12) implies that 
the wavevector is nearly parallel to ÔE. Therefore, the displace- 
ment current and \ x ÖB are nearly orthogonal. From equa- 
tion (14), we see that a substantial physical current is necessary 
to support the wave. If the plasma density is so low that the 
required drift velocities exceed c, the wave is charge-starved. 
This occurs where 

ÔB 2nec 
B v0B 

(47) 

Based on the values of ÔB/B given by equations (40) and (44), 
the Alfvén waves are expected to be charge-starved close to the 
stellar surface unless n > ncr. The fate of such waves requires 
further investigation. 

Once the Alfvén waves go nonlinear, by whatever mecha- 
nism, a substantial part of the wave energy is probably trans- 
ferred to the electrons. An upper limit to the Lorentz factors is 
obtained by balancing the electrostatic acceleration with cur- 
vature radiation reaction. We find 

y 
B 

1011 —i 106 cm/ 

1/2 
(48) 

V. SOURCES OF FREE ENERGY 

We deduce a mean repetition time between y-ray bursts of 

'~ ,04f{i x lo-pc-Xrs) (Wf1) yr ,49) 

for each neutron star under the assumption that all neutron 
stars produce y-ray bursts during a fraction / of their lifetimes. 
Here, n is the local density of neutron stars and Ñ is the 
number of bursts observed per year. The scaling for n comes 
from Lyne, Manchester, and Taylor (1985), who find that the 
Galactic pulsar birthrate could be as high as 3 x 10"11 pc-2 

yr-1. We adopt a lifetime of 1010 yr and a vertical scale height 
of 1 kpc for old neutron stars. 

The total amount of energy released by each star is 

It seems inescapable that, associated with quake activity, an 
energy at least comparable to Etot must be dissipated as heat in 
the neutron star interior. If most of this energy is ultimately 
radiated from the stellar surface, it would account for a surface 
temperature 7^uake ~ 2 x 104 K. 

The source of free energy to power quakes in neutron stars is 
a mystery. During its birth a neutron star radiates away ~ 1053 

ergs of binding energy. Thus, it seems possible that old neutron 
stars might retain as much as 1044 ergs of free energy. 
However, upon closer examination there are not many places 
where this amount of free energy could be stored, and even 
fewer from which its release would produce quakes. We have 
already seen in § II that the crust can store at most ~ 1044 ergs 
of elastic energy. Other sources are considered below. 

The rotational energy is ER ~ 1046 P~2 ergs, where P is the 
period in seconds. If the star rotates rigidly as it is spun down, 
only a tiny fraction, <10-11, of this energy would be stored 
elastically. Internal differential rotation is a source of free 
energy whose sudden release has been proposed as an explana- 
tion for pulsar glitches (Pines and Alpar 1985). Consider a star 
with two components of fixed moments of inertia ^ and I2 
which are rotating with angular velocities Q and Q-b AQ, 
respectively. The amount of energy which can be released by 
bringing the star into uniform rotation while conserving total 
angular momentum is 

AEr = 
+ /2) 

AQ2 . (51) 

The fact that radio pulsars are such excellent clocks is most 
easily understood if they have small internal differential rota- 
tion. In fact, it is generally believed that the anisotropic 
neutron superfluid in the core rotates rigidly with the crust as a 
result of strong electromagnetic coupling. The pinning of 
vortex lines in the crust allows the isotropic crustal neutron 
superfluid to rotate more rapidly than the crustal láttice. 
Unpinning events are associated with glitches. In this picture 
11 and /2 correspond to the crustal lattice plus core superfluid 
and to the crust superfluid, respectively. Typically /2//i ~ 
10“2. Theoretical estimates of the maximum value of AQ 
which can be supported by the pinning force range from 0.1 to 
10 radians s-1 (Alpar et al. 1984). Individual burst events 
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might therefore be explained in this way. The total amount of 
free energy available over the lifetime of the bursting neutron 
star is equal to the initial rotational energy of the crustal super- 
fluid. An initial angular velocity >10 radians s"1 would be 
sufficient to explain the total burst energetics. 

An alternative is that differential rotation might temporarily 
store energy by winding up an internal magnetic field. The rate 
of change of magnetic field energy is 

dEg , 
— = TexlQ-I.QÙ- I2(fi + An)(Ù + Áíi), (52) 

where 7;xt, the external torque applied to the crust, gives the 
total rate of change of angular momentum of the star, 

Text = Ii& + I2& + Aïi). (53) 

Equations (52) and (53) imply that the ratio of the change of 
magnetic field energy to that of the rotational energy is 

dEg /2 Aii 
dER - /! + /2 Si ’ (54) 

for I Aíi/íi I <| 1 and | AC1/Ù) <4 1, showing that this is an 
unlikely source of free energy. 

Phase transitions which occur at temperature T could 
release energy ~NkT, where N is the total number of particles 
involved. However, old neutron stars are thought to be cold, 
T < 106 K, so over their lifetimes at least 0.1% of their mass 
would have to be involved in phase transitions for them to 
release ~ 1044 ergs. 

Little is understood concerning the strength and structure of 
internal magnetic fields in neutron stars. Because of the high 
electrical conductivity of degenerate material, large fields 
might persist for the lifetimes of the stars. Since magnetic fields 
are buoyant, they could produce an anisotropic stress on the 
crust (Sturrock 1986). Interior fields of order 1014 G would be 
sufficient to explain the total y-ray burst energetics. 

Having seen how limited the sources of free energy in 
neutron star interiors are, we consider the obvious external 
source, the accretion of interstellar gas. Hydrodynamic accre- 
tion from the interstellar medium onto a moving neutron star 
proceeds at the rate (Alcock and Illarionov 1980) 

M ~ 3 x 109  - ) 
50 km s g s“ (55) 

where M is the star’s mass, v is the speed at which it is moving, 
and is the hydrogen number density of the interstellar gas. 
The resulting stellar surface temperature is 

i M V/4 

T_~1.5 x 105 — 1 M 
MqJ \3 x 109 g s_1 

1/4 

10 km 

-3/4 
K, (56) 

where Rs is the neutron star radius. The incoming material 
does not fall directly onto the star’s surface unless the Alfvén 
radius, 

r A 1010 M 
109 g s-1 

-2/7 

X (M\-in( Rs V2/7 

\mJ ViOkm/ 
cm , (57) 

is smaller than the corotation radius, rcr, at which the orbital 
period is equal to the star’s spin period : 

r cr 
2/3 

cm . (58) 

With our scalings, rcr > rA for P > 500 s. If rcr < rA, unaccreted 
material gains angular momentum causing the rotational 
energy of the neutron star to decay at the rate 

102 M 
3 x 109 g s" 

rA \1,2i PY1 

101 cm y 1 s 
ergs s" 

(59) 
This is known as the propeller mechanism (Illarionov and 
Sunyaev 1975). 

Energy is also lost through magnetic braking at a rate 

É"~6x'o2i^)Xfy^‘-‘- «*» 

The propeller mechanism dominates magnetic braking for 
P > 4 s, and the neutron star spins down enough to permit 
accretion on a time scale ~ 108 yr. 

The mass accreted over the burst repetition time scale t is 
Ma - 1021 g, and covers an area ,4 ~ 3 x 108 cm2, provided 
that the magnetic field confines the accretion flow above and 
below the star surface. The strain built up in the crust is given 
by 

e ^io4-  TY V1 

|_1028 ergs cm 3J \3 x 108 cm2/ 

X (s x 10* g s^XlO4 yr) ’ (61> 

which might be large enough to trigger crustquakes. However, 
it is by no means clear that accretion, even if anisotropic, will 
stress the crust to the level calculated in equation (61). The 
upper crust is not very strong, and mass loading by accretion 
seems likely to force a sideways flow of material which would 
limit the stress built up at depth. 

Accretion also leads to the storage of free energy in nuclear 
form. The weight of the accreted material causes the equi- 
librium phase boundaries separating difierent nuclear com- 
positions to rise relative to the actual phase boundaries. The 
metastable nuclei so produced may undergo occasional, 
sudden transitions to their equilibrium states. The mass 
between the equilibrium and actual phase boundary must 
equal that accreted since the previous adjustment at that phase 
transition. Because around 1 MeV per nucleon can be released 
during a phase change, seismic events with E < 1039 ergs 
might be produced on the burst repetition time scale.7 It is 
interesting to note that phase changes are also thought to be a 
possible energy source for deep-focus terrestrial quakes 
(Kasahara 1981). 

We think that phase transitions and internal magnetic fields 
are the most plausible sources of free energy in old neutron 
stars. 

VI. DISCUSSION AND CONCLUSIONS 
It is perhaps no surprise that after surveying many aspects of 

the starquake model for y-ray bursts, we have not reached any 

7 Bisnovatyi-Kogan and Chechetkin (1979) have emphasized that metasta- 
ble nuclei are a source of free energy in neutron stars. 
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firm conclusion regarding its validity. All that we can offer is an 
assessment of its strengths and weaknesses. 

Starquakes have the following virtues. They can easily 
provide the energy necessary to power a single burst. They 
release energy in the low-entropy form of seismic waves which 
are transformed into Alfvén waves on time scales characteristic 
of observed y-ray bursts. The energy density in the Alfvén 
waves dominates the rest-mass energy density in the magneto- 
sphere. The Alfvén waves may become nonlinear far from the 
stellar surface and accelerate the ambient plasma to energies 
that are limited by radiation reaction losses due to the emis- 
sion of y-rays. Thus, it is possible to imagine an efficient con- 
version of elastic energy to y-ray energy. 

Of course, the above scenario is replete with uncertainty. It 
is quite possible that plastic flow, and not brittle fracture, is the 
manner in which stress is relieved in neutron star crusts. The 
source of the free energy necessary to replenish the crustal 
stress in old neutron stars is not identified. The conversion of 
seismic waves into Alfvén waves, on the appropriate time 
scales and without the production of excessive crustal strains, 
requires that magnetic fields > 1011 G cover at least part of the 
stellar surface. Such field strengths are larger than those gener- 

ally associated with old neutron stars; they certainly exceed the 
field strengths deduced from the rotational braking of milli- 
second pulsars. However, surface fields of 1011 G may be small 
enough to switch off the pulsar mechanism. The propagation 
of Alfvén waves in low-density neutron star magnetospheres is 
poorly understood. The behavior of these waves and the 
manner in which they accelerate particles probably depend 
upon the degree to which the neutral plasma density exceeds 
the corotation charge density. 

We close on an optimistic note. In spite of all the uncer- 
tainties that plague the starquake model, it appears to us to be 
the most viable model yet proposed for y-ray bursts. Some of 
its difficulties may reflect our poor understanding of the mag- 
netic and mechanical properties of neutron star interiors. 
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APPENDIX A 

THE DISPERSION RELATION FOR RELATIVISTIC ALFVÉN WAVES 

We can understand the electrodynamic properties of a relativistic Alfvén wave by computing the dielectric response of the plasma. 
Since the electrons are mostly in their ground Landau levels, they form a one-dimensional plasma, undergoing E x B and 
polarization drifts perpendicular to the field and moving along the field in response to a field-parallel electric field. The dielectric 
tensor, evaluated in the center of momentum frame, is the same as that for a classical plasma with zero perpendicular temperature 
(e.g., Melrose 1980). The nonzero elements are 

(Al) 

(Op C duôf/ôu 
Czz + k|| Jl « - k|| ” ’ 

where the wave propagates in the x-z plane at an angle ÿ to the magnetic field which lies along the z-axis. Here coG is the cyclotron 
frequency and coP = (4nne2/me)1/2 is the formal plasma frequency for positrons and electrons combined. (The plasma is assumed to 
be charge-neutral. If this is not true, there will be additional contributions to the dielectric tensor.) A1so,/(m) is the one-dimensional 
particle distribution function evaluated at proper velocity u = v(l — v2)~1/2 and normalized to unity. 

If most of the electrons have relativistic speeds, the dominant contributions to exx9 exz, and ezx come from particles that are 
moving along the field, in the opposite direction to the wave. In this case we introduce a parameter 

ß = 
2œ2

P<y> 
10~5<y> 

-2 
(A2) 

which is the ratio of the particle energy density to the magnetic energy density and is generally smaller than unity. Therefore, 

e** - 1 + ß > exz = ß tan >j//2 . (A3) 

By contrast, ezz is dominated by particles streaming along the field with the wave. Using the Plemelj relation in the usual manner, 
we obtain 

1 ßa>Q lißcüQCOi nicop 
1 2~ "t" 3 2~ CO (O CO 

df (A4) 
duJu=ß-i/2 

where is the imaginary part of the frequency responsible for wave damping. Particles with Lorentz factors y = /U1/2 Landau 
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damp the wave. Substitution into Maxwell’s equations furnishes the dispersion relation 

c2ki i , « , <°2 tan2 •A  = 1 + ß +  —   
ß(DQ 

where we have only retained the leading terms, under the assumption that 

coco g < cüp<y> col • 

The damping decrement is given to leading order by 

coi neo2 tan2 if/ Í 2 

ft) 4colß3l2(y} V du)u=ß-m 

and it is generally negligible. 
The Alfvén waves therefore propagate without significant losses close to the star if they have linear amplitudes. 

(A5) 

(A6) 

(A7) 

APPENDIX B 

COUPLING TO MAGNETOSONIC WAVES 

In § III we showed that seismic waves couple to fast magnetosonic waves only if < vs(zcy)/c. Because the horizontal wavenumber 
kh is related to the quantum number l in a spherical star by /(/ + 1) = kj;R2

9 this implies that substantial coupling occurs only for 
/ < coR/c. 

McDermott et al. (1984) have calculated the emission of electromagnetic waves produced by the oscillation modes of a neutron 
star in vacuum, assuming that the equilibrium dipole magnetic field has negligible effect on the mode frequencies and eigenfunctions. 
It is unlikely that real neutron stars would emit electromagnetic waves, because the magnetosphere plasma frequency greatly 
exceeds typical oscillation frequencies. However, fast magnetosonic waves have the same dispersion relation (36), so their emission is 
entirely analogous. 

By use of the formalism from McDermott et al. (1984), it can be shown that the electromagnetic power radiated from the star is 

P = C(ft), 0 4- B2r,2(R) , (Bl) 
oTT C 

where q is the characteristic magnitude of the surface displacement. We are interested in the regime coR/c >1, for which the 
coefficient C(co, /) is of order unity for / < coR/c, and is given by 

l2 fcoRe\21 

2e V 2c/ ) 
(B2) 

when / > coR/c. The radiation of electromagnetic or equivalently fast magnetosonic modes is therefore negligible compared with the 
radiation of Alfvén modes. 
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