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ABSTRACT 
This third paper in the series modeling QSOs and AGNs as clusters of accreting black holes studies the 

accretion flow within an externally supplied cluster. Significant radiation will be emitted by the cluster core, 
but the black holes in the outer halo, where the flow is considered spherically symmetric, will not contribute 
much to the overall luminosity of the source because of their large velocities relative to the infalling gas and 
therefore their small accretion radii. As a result, the scenario discussed in Paper I will refer to the cluster 
cores, rather than to entire clusters. This will steepen the high-frequency region of the spectrum unless inverse 
Compton scattering is effective. In many cases accretion flow in the central part of the cluster will be optically 
thick to electron scattering, resulting in a spectrum featuring optically thick radiative component in addition 
to power-law regimes. The fitting of these spectra to QSO and AGN observations is discussed, and applica- 
tion to 3C 273 is worked out as an example. 
Subject headings: black holes — galaxies: nuclei — quasars 

I. INTRODUCTION 

In the first paper of this series, Pacholczyk and Stoeger 
(1986, hereafter Paper I), we introduced the black hole cluster 
model of quasars (QSOs) and active galactic nuclei (AGNs) in 
a highly idealized form. We elaborated in some detail the 
strong motivations from developing cluster models of this type, 
stressing their intimate connection with the single black hole 
model, set down some preliminary assumptions, and then pro- 
ceeded to fit the model to individual QSOs and AGNs on the 
basis of those assumptions. As we emphasized in Paper I, this 
simplified picture undoubtedly does not adequately describe 
the dominant underlying physical processes in these classes of 
objects. However, the results presented there indicate that 
models of this type are very promising, from several different 
points of view. In particular, the general properties of such 
clusters of compact objects have no difficulty in fitting the 
general features of quasar and AGN spectra, energy output 
and variability, and seem to be able to explain very naturally— 
through the greater variety and richness of the underlying 
gravitational environment itself—the distinguishing character- 
istics of the different classes of such sources. Moreover, from a 
dynamical and evolutionary perspective, the lifetime of such 
clusters—before they end in a single supermassive black 
hole—is long enough to make them realistic alternatives to 
that model and to assure us that such objects can exist in 
sufficient numbers and therefore should be observed. 

Finally, it has been pointed out in (Pacholczyk and Stepinski 
1988, Paper II) that such an accreting cluster of black holes is a 
natural site for a system of shock structures capable of acceler- 
ating particles to energies adequate to explain the observed 
properties of synchrotron and inverse-Compton radiation 
from QSOs and AGNs. 

The principal assumptions of our idealized black hole cluster 

model as given in Paper I are (1) each AGN or QSO is 
powered by a relaxed cluster of accreting black holes with a 
mass spectrum f(m) = Bm~ßdm; (2) each black hole has a 
“standard” geometrically thin, optically thick accretion disk 
surrounding it, i.e., an accretion disk as described by Shakura 
and Sunyaev (1973) and Novikov and Thorne (1973); (3) the 
accretion disks are randomly oriented with respect to the line 
of sight; (4) the accretion M for each black hole is assumed to 
be M = 0.3Mcrit, where Mcrit = 3 x 10-8 m (in solar masses 
per year); (5) accreting material is supplied by the galaxy in 
which the cluster is embedded or by stars near or within the 
cluster itself or both. 

By assuming that the specific accretion rate onto each black 
hole is the same, and that the same thin disk model applies to 
each, we were able to fit our cluster model to the spectrum and 
spectral luminosity of any QSO or AGN in a very simple 
way—so that its mass spectrum reflects the radiative power 
spectrum, and the number of black holes contained in it reflects 
the luminosity. The radius of the cluster was determined by the 
variability of the source. 

In this paper we move forward to modify and strengthen this 
idealized cluster model in a number of ways, focusing primarily 
on a proper and consistent treatment of the accretion flow 
onto the entire cluster, and within it—as it filters through it to 
feed all the component black holes—and on the changes which 
must be introduced in the cluster model as a consequence of 
that. We shall include a number of important considerations, 
each in a relatively simple way, in order to give ourselves some 
idea what suitable zeroth-order cluster models of QSOs and 
AGNs are really like. We shall find that they will be very 
similar to those of Paper I, with all the efficiently radiating 
holes confined to the cluster core. 

We shall here concentrate on investigating externally sup- 
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plied clusters of black holes. Internally supplied clusters will be 
dealt with in a subsequent paper. When most of the accreting 
material comes from outside the cluster, the accretion rates of 
the individual holes must be described consistently with the 
characteristics of the overall flow filtering through the cluster. 
We cannot just assume that Mh = 0.3Mcrit, as we did in Paper 
I. It turns out that these considerations alter our description of 
externally supplied clusters as QSO and AGN sources. In par- 
ticular, we find that the regions of each cluster away from its 
core will not contribute significantly to the radiation from it. 
This is due to “the velocity problem” and, in some cases, to 
“ the temperature problem.” The relative velocity of almost all 
the holes outside the core with respect to the accretion flow will 
be too high for them to feed efficiently from it, hence the veloc- 
ity problem. At the same time, if there is sufficient X-ray flux 
originating anywhere in the cluster, as there often will be, the 
infalling gas will often be preheated to those X-ray tem- 
peratures, further inhibiting its accretion onto the component 
holes, and we have the temperature problem. Our treatment 
will be limited to clusters for which the flow onto the core is 
subcritical. We shall discuss the almost critical cases, however, 
for which there will be an optically thick region within the 
cluster. 

We first describe, in § II, the two main flow regimes within 
clusters—the “ cluster core,” from which most of the radiation 
will originate, and the much more extensive region, or halo, 
surrounding the core, and we examine this halo and show that 
the holes there will always be underfed by the accretion flow. 
The structure of the black hole cluster is described in § III, and 
the core is dealt with in § IV, in a very similar way to our 
preliminary treatment of the entire cluster in Paper I. In § V we 
discuss the optically thick regions of the cluster and construct a 
model for those. We discuss our improved externally supplied 
cluster models in § VI and motivate our future work on inter- 
nally supplied and supercritical core clusters. 

II. ACCRETION IN THE HALO: THE VELOCITY PROBLEM 

Throughout regions of the cluster away from the center— 
particularly those near the edge—the flow will be spherically 
symmetric, as we are assuming the external flow is. It will also 
be subcritical—Rnd, as long as it is not approaching the critical 
accretion rate M0crit, its velocity will be of the order of the 
free-fall velocity % = (2GM0/r)1/2, where M0 is the mass of the 
cluster and r is the radius from its center. 

The accretion rate Mh onto individual black holes is given 
by 

Mh = nRjlp\vh-v\, (1) 

where p is a density of flow far from an individual hole, v is the 
velocity of the accretion flow with respect to the cluster, vh is 
the velocity of the hole with respect to the cluster (notice that 
vh — visa vector difference), and 

Ra 
2GMh 

(2) a2 + (vh - v)2 

is the accretion radius for the hole and a is the sound speed of 
the gas. Combining equations (1) and (2), we have simply 

4nG2M¡ 
Mh = P\vh~v\ 

[a2 + (vh - v)2V 

Of course, the accretion rate onto the entire cluster is 

Mc = 4nr2pv , 

(3) 

(4) 

and so in equation (3) p can be expressed in terms of Mc, r, and 
v. It can be shown that, despite some of the accreting material 
falling into black hole sinks in the outer region of the cluster, 
Mc will remain approximately constant until deep inside (see 
below). 

We shall define the “ cluster halo ” to be that part of the 
cluster away from the center where the flow remains essentially 
spherically symmetric on average and subcritical (with respect 
to the total mass contained inside a given radius) and where 
the accretion rate onto individual holes can be expressed by 
equation (3), with the density given by equation (4). 

The “ cluster core ” will be that region inside the halo where 
spherically symmetric flow breaks down and where the accre- 
tion rate onto individual holes is not dictated by equations (3) 
and (4). We shall describe in greater detail later the structure of 
our cluster. Assuming equipartition and virialization—or at 
least an advanced stage of evolution toward these two 
conditions—holes within the cluster will be mass segregated, 
with larger mass holes concentrated toward the center. The 
central region of a cluster, then, will be dominated by the large 
black holes (there will still be a lot of smaller ones, too, of 
course—these will be smoothly distributed throughout the 
entire cluster), and all the material not accreted by holes in the 
halo will end up in the core. It is obvious that the central 
region will be chaotic—the accretion flow there will be far from 
spherically symmetric, even though it started out that way, due 
to the churning movement of all the larger black holes. The 
unaccreted material will be “sloshing around” in this deep 
potential well. 

It is impossible to give a detailed prescription of where the 
“cluster core” begins and an adequate treatment of the pro- 
cesses which determine the radiation emanating from it. What 
is clear is that, as long as the flow is still subcritical with respect 
to the total mass inside a given radius, all of the inflowing 
material not absorbed by holes in the cluster halo must be 
accreted by the holes in the cluster core, with the correspond- 
ing emission of radiation. For our models, we shall define the 
“cluster core” observationally, by the radius of variability 
Rvar. Outside this core defined by Rvar, as we shall see, very 
little radiation is produced by the component black holes. 
Within this core, we shall not use equation (3) for Mh, as we do 
in the halo. Instead, we shall assume that all the holes—big and 
small alike—accrete the available material in proportion to 
their masses, i.e., that their specific accretion rates are the same 
and equal to mcore, the “ specific accretion rate ” onto the core, 
as long as mcore is subcritical. 

This then is the way we define and treat the “ cluster halo ” 
and the “cluster core.” Notice that these definitions are not 
related to other definitions of “ core ” and “ halo ” in the liter- 
ature on clusters, and as such have nothing to do with gravita- 
tional core collapse and other dynamical issues. In studying 
the halo, we shall see that it will accrete very little material in 
the very subcritical case. Let us examine the reason for this 
more carefully and substantiate the same conclusion also for 
the nearly critical cases, in which there is significant radiation 
pressure to slow the flow from its free-fall velocity %. Before 
focusing directly on this issue, it is important first to under- 
stand the preheating and cooling of the accreting gas within 
the cluster. 

The problem of accretion with preheating and cooling of the 
infalling gas by X-rays produced in this process is, in general, a 
very complex problem. It has been treated among others by 
Ostriker et al. (1976), Cowie, Ostriker, and Stark (1978), 
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Bisnovatyi-Kogan and Blinnikov (1980), and Krolik and 
London (1983). They considered the spherically symmetric 
case with Compton heating and bremsstrahlung and Compton 
cooling. In addition, Krolik and London (1983) added a sup- 
plemental term to heating to represent the complicated heating 
and cooling at low temperatures and to allow the description 
of thermal equilibrium at 104 K without affecting processes at 
temperatures larger than 106 K. Ostriker ei al (1976) argued 
that for high values of the ratio of the cluster luminosity L to 
the critical Eddington luminosity LE = 1.3 x 1038M0/Mo ergs 
s-1, and high efficiencies the accretion flow cannot become 
transonic steadily and smoothly when the sonic point is 
assumed to be at the temperatures close to the outside tem- 
perature (temperature at infinity) of ~104 K. Even for low 
efficiency, but high luminosités L/LE, heating inside the sonic 
radius results in recurrent flares, as was pointed out by Cowie, 
Ostriker, and Stark (1978), although the average luminosity is 
equal to that expected from a stationary flow. Bisnovatyi- 
Kogan and Blinnikov (1980) were able to construct numeri- 
cally stationary solutions for high values of L/LE and of the 
efficiency; these solutions smoothly match the asymptotics at 
infinity for any luminosity lower then LE and for an arbitrary 
value of the efficiency. In their solutions the sonic temperature 
Ts, that is, the temperature Ts = T(RS) at the sonic radius Rs, is 
close to Tx, the temperature equivalent to the maximum energy 
Em possessed by the X-ray flux (^EJ4k), and not to 7^ = 104 

K, the temperature at the recombination radius Rr, for high 
efficiencies and luminosities. The sonic radius is always posi- 
tive for any value of efficiency, and it goes to zero in the 
Eddington limit L-+ LE. The results of Bisnovatyi-Kogan and 
Blinnikov (1980) are in good agreement with the time-averaged 
luminosities found by Cowie, Ostriker, and Stark (1978). No 
detailed investigation of the stability of Bisnovatyi-Kogan and 
Blinnikov’s solutions were carried out by these authors. They 
mention only that crude estimates indicate a possible thermal 
instability against isobaric perturbations of short wavelength 
resulting in the disruption of the accretion flow into small 
blobs of cold matter embedded in a hot medium. It remains 
unknown what effects on the development of the instability 
factors such as thermal conduction, magnetic fields, or radi- 
ative friction will have and how they might inhibit the insta- 
bility in real situations. Krolik and London (1983) 
corroborated the point that the accreting gas may find a sonic 
radius temperature Ts very different from the temperature at 
infinity assumed to be of the order of 7^ 104 K, for high 
values of luminosity and efficiency, if there exists a bound on 
the highest radiative equilibrium temperature, which should in 
general be determined by Comptonization. Krolik and 
London also extended the work into the range of high masses 
of the central black hole modeling a QSO or an AGN. Their 
outside temperatures Tout (at R = lÆout and also l(XRout, where 
Rout = 3.8(Mo/108 Mq)Tc¿ pc, with 7¿8, the Comptonization 
temperature, in units of 108 K) were high (from 106 to 108 K), 
with T], = 108 K. They found that solutions with high lumin- 
osities and efficiencies may be thermally unstable and that the 
instability may disrupt single-phase steady accretion flow. 
They also estimated the instability conditions for flows with 
initial temperatures of 104 K. They confirm in principle the 
determination of regions of steady flow in the luminosity- 
efficiency plane done by Cowie, Ostriker, and Stark (1978). 

We will adopt here the picture characterized by isothermal 
flow into the accretion radius RAC of the cluster, a flow with 
increasing temperature between RAC and Rx, the radius at 

which the temperature of the flow is Tx, the temperature equiv- 
alent to the maximum energy Em possessed by the X-ray flux, 
and a second region of isothermal flow for r < Rx. Bisnovaty- 
Kogan and Blinnikov (1980) chose Em = 10 keV for their case; 
our Em will have to be chosen differently, based on the spec- 
trum being emitted by our cluster and its X-ray cutoff. At any 
rate, like the authors cited above, we shall have the radius Rx, 
generally speaking, located outside our cluster. The accretion 
flow for r < Rx will be isothermal, with a velocity close to free 
fall for small accretion rates : 

; <5% = <5 
2GM0 (5) 

where <5 = (1 — L/LE)1/2, L is the luminosity from inside r, and 
Le is the critical luminosity for the mass inside r. Because of 
our conclusions above, both L and LE can be taken with refer- 
ence to the cluster core. Now we can return to the principal 
issue and show why holes in the cluster halo will accrete very 
little of the inflowing material. 

The velocity vh of a given hole will also be of the same order 
as %, except for holes in highly elliptical or radial orbits. For 
such situations, there will be segments of the orbit during 
which vh will be very small, and other segments during which 
the relative velocity of the hole with respect to the fluid vrel = 
\vh — v\ is small. In all other cases the relative velocity between 
a given hole and the flow will be of the order of % and will be 
supersonic. One can show that the sonic point of the accretion 
flow will be outside the core radius Ævar and usually outside the 
radius of the entire cluster. We write the “specific accretion 
rate ” m = MfI/Mftcrit for a given component hole, from equa- 
tion (3) with equations (4) and (5) as 

. _ 1 (Ro\2 m_ [ v2o T. 
m 4\r ) m0 v [a2 + (vh - v)2\ c ’ 

(6) 

where m and m0 are the masses of an individual hole and of the 
cluster, respectively, in solar masses, mc is the specific accretion 
rate of the cluster, and v0 is the free-fall velocity at R0. We see 
clearly from this that, as long as a2 + (vh — v)2 is larger than, or 
of the same order as, v%, m is smaller than mc; often m mc. 
The maximum possible specific accretion rate onto a hole takes 
place for radial or elliptical orbits when vrel = a; then we have 
from equation (6) 

m max = 2.46 x 1(T24 1 — ô2 

Ô 
Moy,2(RoŸ12 

R0Tj \rj m0 
(7) 

For example, for a hole with mass m = 1 in a cluster with 
M0 = 108 solar masses, R0 = 1015 cm, T = 106 K, and 
L/Lcrit = 0.8, this maximum specific accretion rate is close to 
0.5 at r = R0 and larger at smaller radii. Only for certain por- 
tions of radial or highly elliptical orbits will “the velocity 
bracket” be much larger than 1, as needed for m to be of the 
same order as mc. The time interval in which a hole accretes 
nearly critically taken as a percentage of hole’s period is a good 
indicator of inefficiency of the accretion process in a halo. The 
value of this percentage in the first approximation depends 
only on mass of the hole and degree of criticality L/Lcrit, and 
can be calculated to be of the order of 10"3. This is precisely 
why component black holes in the halo will not accrete effi- 
ciently from the overall flow. We call this conclusion the 
“ velocity problem.” In “ the velocity bracket ” we also see the 
origin of the “ temperature problem.” If the temperature, and 
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thus the sound speed a, of the flow is too high, then—even if vrel 
is small—accretion will be small. 

We can see from this analysis that, even when a is less than 
vTçh the percentage of time during which holes in radial orbits 
will be accreting efficiently is very small. If we were to put 
many more holes into the halo to obtain enough radiation by 
this process, we should have to increase their number in the 
core proportionately. The radiation from these holes in the 
core would still overwhelm that from the cluster halo. Finally, 
from equation (7), it is clear that max (m) will approach the 
critical value of 1 for small holes and for reasonable values of r, 
only if T < 106 K. But if X-rays are being produced in the 
cluster, T > 107 K, assuming a balance between bremsstrah- 
lung cooling and bremsstrahlung and Compton heating, which 
render the flow within the cluster isothermal at T, the tem- 
perature equivalent to the maximum X-ray energy (see 
Bisnovatyi-Kogan and Blinnikov 1980). Thus, in general we do 
not expect significant radiation from accretion onto the black 
holes in the halo of the clusters, for subcritical accretion 
regimes. Even when Mc nears criticality at a given radius, with 
respect to the mass contained therein, slowing v significantly, 
the velocity of individual holes vh and the sound speed a will 
still be very high. 

The above conclusions concerning the relatively small accre- 
tion rate onto black holes in the halo of our cluster and the 
correspondingly insignificant or small contribution of these 
objects to the overall radiation from the cluster are the results 
of the velocity problem and of the temperature problem dis- 
cussed above in a fairly general manner. We would expect 
these conclusions to hold almost independently of the details of 
the internal structure or mass distribution of our cluster, and 
therefore the bulk of the cluster’s radiation to come from its 
core. We shall examine this radiation from the core in § IV. We 
shall also examine the case of a cluster of many small holes 
acting as an outer region (halo) around one large massive hole 
acting as a core. We will see that such a limiting case can 
plausibly model some of the X-ray emitting active galactic 
nuclei. 

III. STRUCTURE OF THE BLACK HOLE CLUSTER 
As we have already mentioned, each AGN or QSO is con- 

sidered to be powered by a relaxed cluster of accreting black 
holes with a mass spectrum 

f(m)dm = 3hn~ßdm , m € (mi, m2), (8) 

where m is the mass of an individual hole in solar units, & and 
ß are constants, and and m2 are the lower and upper limits 
of the mass distribution. The lower limit is firm as it is related 
to the smallest black hole which can form, of the order of one 
solar mass. The upper limit is related to the largest mass within 
the cluster, and it can be expressed in terms of ^ and ß as 
follows : 

m2 /?#!. (9) 

This expression is derived from the assumption that there is 
only one largest mass in the distribution. The total mass of the 
cluster, the total number of holes in the cluster, and other 
quantities related to the number of holes in the cluster and 
their masses can be calculated from equation (8). There are 
basically two parameters: & and ß which will be fixed from the 
spectra. Figure 1 shows some properties of the distribution 
given by equation (8) as functions of parameters @ and ß. For 

100 10000 1E+6 1 E-f 8 

100 10000 1E4-6 1E4-8 

B 
100 10000 1E+6 1E+8 

B 
Fig. 1.—Properties of the distribution of mass inside the cluster. The value 

of the parameter & is on the x-axis, and the percentage of total cluster mass or 
percentage of total number of holes in the cluster is on the y-axis. The solid line 
represents the largest mass in the cluster, the dotted line represents mass 
contained in “large” masses; the dashed line represents mass contained in 
“small” masses. Number of “large” holes is represented by dotted-dashed 
line, and number of “ small ” holes is represented by long-dashed line. Three 
cases for different values of ß are shown. 

the purpose of this presentation we divide all holes in the 
cluster into two classes: “small,” such that/(m) > 1 and 
“large,” such that/(m) < 1. Figure 1 shows how much of the 
cluster mass is concentrated in “ small ” holes, in “ large ” holes, 
in the largest hole, and also the ratio of the number of “ small ” 
holes to “large” ones. As we can see from Figure 1, in the case 
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of small ß (ß = 1.5) half of the cluster mass is concentrated in 
the largest hole with the rest of the cluster mass distributed 
among a few “large” holes. The vast majority of holes are 
“ small,” but they do not contribute significantly to the cluster 
mass. For large ß (ß = 2.5) the picture is different; the largest 
hole contributes only marginally to the total cluster mass, and 
most of the cluster mass comes from “ small ” holes. 

We will assume that the holes are segregated by mass within 
the cluster, that is, larger objects occupying more central loca- 
tions and smaller ones extending to larger radii. For the 
purpose of this paper, we will take a spatially homogeneous 
distribution of holes of a given mass throughout the portion of 
the cluster up to a certain “ confinement radius ” Rm(m). There 
will be no object of that mass m outside the confinement 
radius. The dependence of the confinement radius Rm on mass 
will be assumed to be of a power-law type 

RJm) = R0(^j \ (10) 

where k; is a constant and R0 is the radius of the cluster. If the 
cluster is virialized and equipartition has been achieved, it can 
be shown that k = j. If this is not the case, k < With no 
mass segregation, of course, k = 0. 

Now we are in a position to calculate the spatial mass dis- 
tribution within the cluster, which we shall need later in the 
paper. First, we have to calculate how many holes with a given 
mass (between m and m + dm) are in the spherical shell at 
radius r, r -I- dr. This number is given by 

N(m, r)dm dr = 47¡r2 H(Rm - r)dr , (11) 

where H is the Heaviside function accounting for the fact that 
different masses extend to different radii in the cluster. Having 
V(m, r), we can calculate the total mass of the shell r,r + dr by 
integrating over all masses present in this shell 

J''m2 
mN(m, r)drdm . (12) 

mi 

The next quantity we have to calculate is the mass interior to a 

given radius r. This mass (in solar units) is given by integrating 
masses of spherical shells (given by eq. [12]) from the origin up 
to the given radius and is used in the equation of motion to 
calculate the free-fall velocity of the accretion flow. 

Constructing a sink function from equations (3) and (11), we 
can easily show that the accretion rate Mc(r) in the cluster halo 
is approximately constant with r. Figure 2 shows this result 
very clearly. The cluster radius R0 = 1. As the flows of a given 
& move toward smaller radii, we see what percentage of Mc 

still remains. Mc is essentially constant, and the cluster acts as 
a sieve or filter, most of the accreting material passing through 
the outer layers to be accreted by the black holes in the core. 

IV. RADIATION FROM THE CORE 

From our analysis in § II, we conclude that in our black hole 
clusters, the bulk of the radiation must come from the cluster 
core as we have defined it in § II, where the accretion can be 
much more efficient than in the halo. Since we know so little 
about what happens in the core, we have defined it observa- 
tionally, letting the variability of the given source set the limit 
on the core radius, instead of using it to limit the size of the 
entire cluster. This is obviously the step to take, given that the 
cluster halo contributes so little radiation. In fact, the primary 
result of what we have done so far in this paper is the modifi- 
cation of the results of Paper I so that they apply to cluster 
cores, instead of to the entire clusters themselves. 

With one important modification the results of Paper I can 
be taken over and applied to cluster cores—the total mass, M0, 
the number of holes AT, and the radius Ryar are now taken to 
apply to the core and not to the cluster, onto which the accre- 
tion is spherically symmetric. By the time the flow reaches the 
core radius Rc = jRvar, it is already chaotic and far from spher- 
ically symmetric, so that the inefficient accretion regimes in the 
halo no longer apply. Exactly what the details of accretion in 
the core are is unknown and constitutes a very complex 
problem. We assume that they are roughly equivalent to all the 
holes in the core radiating in the disk mode with m = mcore for 
each, as we explained above. 

The important modification referred to above is that the 
distribution of masses in the core is not the same as that of the 

Fig. 2.—The value of accretion flow Mc in units of the flow at the radius of the cluster Mc0 plotted against the radius in units of cluster radius. The lowest line on 
every figure corresponds to á? = 100, the highest corresponds to ^ = 107. For ß = 1.5 the flow is practically constant for every for larger values of ß the flow 
decreases in central parts of the cluster. 
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entire cluster of which it is a part. In fact, it is not a simple 
power law, if that for the cluster is. Obviously, too, even 
though the cluster halo contributes little to the overall emis- 
sion from the source, it will be very important in discussing its 
dynamics and evolution (its lifetime). The extent of the cluster 
beyond the core, for example, must be taken into account. The 
confinement radii for black holes of different masses will also 
be determined by the cluster radius R0, according to equation 
(10). The fact that R0 will be larger than Rc will ensure that the 
cluster will have a longer lifetime than that of a cluster the size 
of the core. The related issue of gravitational core collapse, 
however, must still be addressed (Stoeger 1985). 

In Paper I, with the assumptions that all the accreting disks 
are of the “outer regime” type (Shakura and Sunyaev 1973; 
Novikov and Thorne 1973), and thus the bulk of the radiation 
from any disk is at a frequency near that corresponding to the 
inner-edge temperature, we found that for a variety of Seyferts, 
QSOs, and BL Lacs their power-law spectra between the 
optical and the X-ray are fitted by black hole clusters with ß 
between 1.8 and 2.05, and Mtot between 6 x 103 and 5 x 108 

solar masses. We assumed an individual black hole specific 
accretion rate of m = 0.3. We also found that a cluster would 
have a reasonable long lifetime for variability radii not too 
small (Rvar > 1014 cm or 55 light-minutes). With the same 
assumptions and with modifications explained above, these 
values of ß and of Mtot will now apply to “cluster cores” as we 
have defined them in this paper. The “ velocity problem ” pre- 
vents us from self-consistent description of an entire cluster 
with radius R0 = Rvar in this way. It is rather “ the core ” 
embedded within a larger, more extensive cluster which now 
models the AGNs and QSOs. 

The distribution of mass in the core is obtained by inte- 
grating the number of holes with a given mass m in a spherical 
shell at r, given by equation (11) over r up to the core radius Rc. 
The result is 

fc(m)dm = <%r3Km;3Km-ß + 3Kdm , (13) 

for masses smaller than m1Ç, and ^m~ß thereafter; £ = 
(Ro/Rc)11*-' 

To obtain the emission spectrum of the cluster core we must 
integrate over the core distribution (13) the emission from a 
single accretion disk associated with mass m : 

hd = I0dm*l3m2l3
V
ll3H(vm-V), (14) 

where 

vm = vm0m“1/4m1/4 (15) 

(see eqs. [7] and [6a] in Paper I). 
The situation is now more complex than considered in 

Paper I since the integral must be weighted by the core mass 
distribution (13) rather than the cluster mass distribution (8). 
We have 

L,= Ivfc{m)dm 
Jmi 

'Çmi 
:-3Km;3Km-ß + 3Kdm + ß dm . 

JÇmi 
(16) 

The result of this integration is a function of frequency v; we 
will represent it as function of x = v/v , where vm = vm(mi) 
(eq. [15]). 

At frequencies higher than vmi (that is, for x > 1) the inten- 
sity Ivc vanishes. The frequency vmi (or x = 1) is the upper limit 
to radiation from the cluster core; the smallest holes of mass 
m1 contribute to the radiation at vmi. At frequencies lower than 
vm2 = vm(m2), where m2 is the upper end of the mass distribu- 
tion, the spectrum is proportional to v1/3; the main contribu- 
tion to radiation comes from the outer portions of accretion 
disks surrounding the largest masses in the cluster core. In the 
region of frequencies between vm2 = vm(m2) and vmi£ = 
that is for x between vm2/vmi and (~1/4, the solution Ivc corre- 
sponds to the case considered in Paper I. The emitted spectrum 
has the form 

x~9+4ß k — (k — 1) 
(ß ~ 7/3 — 3k)/k~\ 

I j* 1/3 

where 
(17) 

7/3 - ß 
m3/4m9

l
l4~ß v¡Jq 

is independent of k, and 

k(ß, k) = 
7/3-jg 

1/3 — ß + 3k ' 

(18) 

(19) 

When Rc = R0, ( = vmi( = vmi, the core is identical with the 
entire cluster considered in Paper I; the frequency region in 
which the solution (16) is valid extends from vm2 to vmi and is 
independent of mass segregation given by k. 

When Rc < R0 the upper end of this frequency range, vTO1Ç, 
depends on mass segregation and decreases with k. If the core 
is small enough for the confinement radius Rm2 of the largest 
masses to be equal to the core radius Rc, vm2 = vmi£, and the 
range of applicability of the solution (17) vanishes. Note that in 
every case the spectral index of the solution (17) does not 
depend on mass segregation. 

At higher frequencies, in the range from vmi£ to vmi (x within 
f-1/4 and 1), the cluster spectrum is steeper: 

L?L = kíñA\x-9+*0-12K_xll3) (20) 
7oc \Ro/ 

(except when no mass segregation takes place, k; = 0). For a 
typical value of k = 0.5 (for a virialized cluster with 
equipartition) the spectral index is —15 + 4/?. This steepening 
of the core emission at higher frequencies (with respect to the 
emission from the cluster discussed in Paper I) is due to a 
deficiency in the number of small holes in the core. The large 
number of them are now located outside the core. This defi- 
ciency becomes significant for holes with masses smaller than 
mi£ = m^Ro/RJ1^, for which the confinement radius equals 
the core radius and all larger masses are confined to the core. 

The above described frequency spectra of cluster core emis- 
sion are illustrated in Figure 3 for several values of ß and 
RJR0, and for k = 0.5. Note the increase of the steeper region 
of the spectrum with decreasing core size. These features of the 
radiation spectra emitted by our cluster cores complicate their 
fitting to actual QSO and AGN source spectra. We shall post- 
pone a detailed discussion of fitting to a subsequent paper until 
we have studied several other relevant issues in our models, 
including internal mass supply and spectrum flattening by 
absorption and inverse Compton scattering. Here we simply 
point out that, if we fit the spectra of the model, as given in 
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-3 -2.5 -2 -1.5 -1 -0.5 0 -3 -2.5 -2 -1.5 -1 -0.5 0 
Fig. 3.—The frequency spectra of cluster core emission for several values of Rc/R0 and ß. The x-axis represents log (v/vOTi), the y-axis represents log (/vc//0c), and 

the index k is set to be 0.5. The highest curve on every picture represents the frequency spectrum for the case ß = 1.5; lower curves represents cases ß = 2.0, ß = 2.5, 
ß = 3.0, and ß = 3.5, respectively. 

equations (17) and (20), to a single power law derived from the 
data, as in Paper I, we obtain a pair of values for ß and 
&(Rc/R0)39 or for ß and ^[iR3 — Rf)/Ro] if a central optically 
thick component of radius Rt is present in the core (see § V 
below). In the totally optically thin case, we cannot separately 
relate & and R0, the cluster radius. This, however, is possible 
when a central optically thick component is present in the 
cluster spectrum. 

V. THE OPTICALLY THICK REGIME 

The discussion of the emission spectrum from the core of a 
cluster of accreting black holes was presented in the preceding 
section under the assumption that the cluster is optically thin 
throughout. We must relax this assumption now and consider 
at what radius Rz within the cluster the accretion flow becomes 
optically thick and what contribution such an optically thick 
central component will make to the spectrum. In such situ- 
ations the QSO or AGN is modeled by a single spherically 
symmetric component of radius Rx plus the distribution of 
component black holes for Rr < R < Rcore = Rvar. It turns out 
that these considerations severely alter our cluster model. 

There are two radii important for this optically thick region. 
The first, obviously, is Rt. The second is Ætrap, the radius inside 
which radiation is swept irretrievably into the central holes by 
the optically thick flow. The radius Rz is determined by the 
requirement that the optical depth from infinity to this radius 
be equal to unity : 

CRr 
= kz p dr = 

Rz Kz Mc 

4nr2v 
dr = 1 (21) 

where v is given by solution to the equation of motion. The 
integration in equation (21) will be some very complicated 
function of R. Instead of doing this, we shall assume for simpli- 

city that Rz is not much different from what it would be if all 
the mass of the core were placed in a single black hole. Then 

where rj is the efficiency of the accretion process (0.06 for 
Schwarzschild holes in the disk mode), and Rs is the Schwarzs- 
child radius of the core. If we take mc = 0.3, for instance, and 
use the relationship L/LE = mc as well, then 

J'm2 
m1 ~ß dm . (23) 

mi 

The trapping radius below which the mean diffusion velocity of 
radiation, c/tt, is less than free-fall velocity, due to large 
Thomson scattering optical depth tx (see, e.g., Begelman 1978) 
can be shown to be approximately given by 

R trap 
mc Rs 

2t1 
7.38 x 10: 

f 
^ dm , (24) 

where mc =0.3 has been assumed. 
Now what we need to do is to calculate the total luminosity 

produced by the black holes between Rtrap and Rzi assume a 
spectrum on the basis of the opacity mechanism dominant 
there (depending on the temperature and the density), and cal- 
culate the photospheric temperature of this central optically 
thick component. First of all, using equations (10) and (11), L 
between Rtrap and Rz will be given by 

Lr,= 
*Rz (*oo 

.Rtrap •'0 « 

m2 ¿Mm ßIvddmdv 2Tjimi t,i V 
————" -TJT-; 4nr2H\ —fRl-mUr, 

(25) 

where /vd is given by equation (14). Working out the integra- 
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tions in equation (25) and neglecting all but the dominant 
contributions, we obtain for 2 < ß < 3.5 

02/5-4 _ 02/3-4 
Lr, =f(ß)äSmmj~ß   ^ 

where 

m = 

Roß~4 

9.88 x 1039 

(23/6 - /?)(14 - 4ß)(2ß - 4XL44)1-74í 

(26) 

(27) 

Now we assume that, in this optically thick region, Kff < Kes 

and p = Cr~312, as given by Mc = 4npr2v, with Mc ~ constant 
and velocity v approximately equal to free-fall velocity; and 
C = 1.85 x 102m3/2mc. Using Kes = 0.4 cm2 g_1 and Kff given 
by the formula (Zel’dovich and Shakura 1969) 

1.14 x 1056 „ 2 _ 
= ,,/f-,3^7/2..3 C1 - 6 ) Cm § (4/h)3T1/2x3 

hv 
X = (28) 

we can calculate the spectrum from a optically thick isothermal 
atmosphere 

y12/5 -X 
Fv = 4.59 X io-11C-2/5r23/1° ’ (29) 

and integrating over frequencies 

F = 
f 

Fvdv^3C-2,5T33/1° . (30) 

Using equation (30) and the relationship between L and F 
(L = 47rR2jF), we have the expression for the temperature 

T = ±C4/33Rt-
20/33L™/33 . (31) 

Now if we go back and look at equation (26), which depends 
on = &[_(R2ß~4 — Rt

2
rap 4)/Fo^_4], we can see that the data 

will constrain this parameter. In particular, if the spectrum (29) 
peaks near the optical or X-ray regions, & and R0 must be such 
that 

U < \lov-*oxdv, FVx < , (32) 
Jvo 

and the flux from the holes outside Rz must be fitted to the 
difference between I0v~ctox and FVt. If, on the other hand, the 
spectrum (29) peaks at frequencies lower than those of the 
optical, data from those frequencies will constrain LRx and 
therefore This constraint, together with that described in 
§ IV, will separately determine & and R0. 

Taking 3C 273 as an example with the values determined in 
Paper I: /O(2500 Â) = 2.6 x 1031, ao:c = 1.22, ß = 1.95, Mtot = 
9.1 x 107, and Rvar = 1.1 x 1015, let us see what sort of an 
optically thick component we might have. In the absence of a 
detailed fitting to our cluster core model, we assume Rc/R0 = 
0.1—that is the cluster radius R0 = 1.1 x 1016 cm. We also 
assume that because of this, ß = 2.2 and ^ = 1.0 x 108 (for 3C 
273, & in Paper I was 1.26 x 107). If/? goes up, & must also go 
up. Then mcore = 2.12 x 108 and RScore = 6.25 x 1013 cm. For 
m = 0.3 as assumed in Paper I, Rz equals 2.23 x 1015, which is 
greater than jRvar, and there would be no optically thin core. If 
we choose m = 0.2, then Rz = 8.68 x 1014 and Rtrap = 1.05 
x 1014 cm. Then, from equation (41) LRx = 1.36 x 1046 ergs 
s“1, which is less than Lbol of 3C 273, which is greater than 
1.0 x 1047 (Bassani, Dean, and Sembay 1983). Also, equation 
(45) gives T = 1.38 x 105 K, corresponding to a maximum 
radiation frequency of ~2.87 x 1015 Hz, which is in the ultra- 
violet. This gives a rough idea of what we might expect, on the 
basis of our model, for the optically thick central component of 

a source like 3C 273. It also illustrates how parameters like m 
may be constrained by the data. 

VI. SUMMARY AND CONCLUSIONS 

Our discussion of the radiation from a cluster of black holes 
with accreting disks indicated that the outer portion of such a 
cluster is not an efficient emitter if the source of the accreted 
material is external to the cluster. The reason for this is the 
rather small value for the accretion radius of a hole located in 
the outer region (“ halo ”), resulting from a large relative velo- 
cities between the holes and the spherically symmetric flow of 
the infalling gas (the “velocity problem”). This is a fairly 
general conclusion which does not depend on the mass spec- 
trum or the spatial distribution of masses or on the other 
details of the cluster model. 

In an externally supplied cluster the bulk of the radiation, 
however, originates in its core, where the flow is chaotic and far 
from spherically symmetric, and where the infalling matter is 
apportioned among all the objects in the core. As shown in 
§ IV, the resulting spectrum of the core radiation will be the 
same as that of the corresponding full cluster model (Paper I) 
for lower frequencies, but steeper for higher frequencies (X- 
rays), depending on the model (see Fig. 3). The smaller Rc is 
relative to R0, the steeper the high-frequency spectrum will be 
and the more it will extend into lower frequencies. This results 
from the diminished contributions of the smaller mass holes, 
the majority of which are located in the halo and therefore 
accrete at a lower rate due to the velocity problem discussed in 
§H. 

Relying on the results of § II, we can see that a limiting case 
(with respect to the index ß of the power-law distribution and 
corresponding to a small ß) of a cluster of N small (say, m = 1) 
holes accreting in a “ halo ” mode, and surrounding one large, 
massive central hole acting as a core can also plausibly model 
some of the AGNs. The small holes accrete at a critical rate 
only during a time interval At on their orbits (§ II). Because 
At/T does not depend on parameters of the orbit we can say 
that, on average (At/T)f(m) holes of mass m radiate critically at 
any given time. The spectrum from the entire cluster is 

7v cluster = 1014m^r
3
eV

1/3//(vcOre - v) 

+ N Y 1014m4/3v1/3íí(v1 - v), (33) 

where mcore is the mass of core, ^ 108, vcore is the maximum 
frequency emitted from the core, ^3 x 1015 Hz; V is the 
number of small holes; is the mass of a small hole ^ 1 ; and 
Vi is the maximum frequency emitted from small hole 
^3 x 1017 Hz. In this calculation At/T is a constant ^0.004. 
Substituting all these values into equation (33) yields a spec- 
trum which varies as v1/3 with a discontinuity at v = vcore £ 3 
x 1015 Hz. The value of the jump at the discontinuity depends 
on the number of small holes N. Observations indicate a 
typical value of the jump of the order of 102-103 yielding 
N ^ 1011—1010 and the total cluster mass of the order of 1011- 
1010 solar masses. 

The accretion radius of a small hole can be expressed in the 
form: 

Ra = -TTi — r > (34) ez o m0 

where e<5 is the ratio of the relative velocity of the hole with 
respect to the fluid to the free-fall velocity; RA depends on the 
position r where critical accretion takes place, which in turn 
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depends on L/Lcrit. For L/Lcrit ^0.1 critical accretion takes 
place at r ^ 0.1jRo, and for L/Lcrit ^ 0.9 at r ^ R0. For a hole 
with m = 1 in either case RA is of the order of 10-3Æo. At any 
given moment there are ~ 0.004AT holes accreting critically, 
from a volume of accretion ^Q.0Q4NRA~ 4 x 10"12ATjRo. 
For V ^ 108 the accretion volume is smaller than the cluster 
volume by a factor of 4 x 10 “4, but for N ^ 1011 the accretion 
volume is ~40% of the cluster volume. We see that such a 
cluster of small holes accreting in the “ halo ” regime can effec- 
tively consume much of the infalling gas, the velocity problem 
notwithstanding. 

Another result of critical importance to these cluster core 
models is that in many cases there will be a radius Rx at which 
the accretion flow becomes optically thick to the outside obser- 
ver. The model must then be modified to include a central 
spherically symmetric source of radius Rx, emitting a total 
luminosity LRx with a spectrum FVx at a photospheric tem- 
perature TSx. This makes data fitting more complicated, but it 
also ensures that the model is well constrained by the data, as 
pointed out in § V. There we also showed how LRx is deter- 
mined and derived an expression for FVt, for a p = Cr~3/2 

isothermal atmosphere with k{{ < /ces. This will usually be the 
opacity in these situations and, as we pointed out in § II, the 
flow will be isothermal, or nearly so, throughout the cluster. 
With LRx and FVt, we then derived 7¡t, and worked out what we 
would expect for 3C 273. We found that for mc = 0.2 we would 
have an optically thick central component radiating greater 
than 1.0 x 1046 ergs s-1, peaking in the ultraviolet and having 
Rx = 9 x 1014 cm. In fact, it seems likely that these models will 
often yield a optically thick, UV-radiating central component. 
This is interesting, since many QSOs and AGNs are strong UV 
emitters and our models situate the site for some of this emis- 
sion (more UV will come from the accretion disk at Æ > Rx) in 
a central component, inside the dominant source of the X-rays. 

Recently Guilbert and Rees (1988) pointed out that in QSOs 
and AGNs there should, generally speaking, be a significant 
amount of cold, optically thick material in or near the core. 
The presence of this material may help to explain, through the 
reprocessing of hard radiation, some of the perturbations on 
the pure power-law spectrum which is characteristic of many 
of these sources. They are concerned almost exclusively with 
models in which the bulk of the X-rays and y-rays are produc- 
ed by nonthermal mechanisms very close to the core. This is 
different from our cluster models, principally because the bulk 
of harder radiation in the cluster will be produced either by 
black hole accretion disks or by shocks (Paper II), away from 
the central part of the core. This is especially true if there is a 
central optically thick component as described in § V. 

However, Guilbert and Rees also clearly remark, in agreement 
with our analysis, that for objects having L > 0.1Lcrit an opti- 
cally thick central region is inevitable, irrespective of the non- 
thermal mechanisms, except where AGNs are powered by 
electromagnetic extraction of the central black hole’s spin 
energy. 

Finally, it is important to point out that the principal fea- 
tures of the radiation from the externally supplied cluster of 
black holes are not significantly altered by the details of the 
model of the accretion disks surrounding the individual holes 
(Shakura and Sunyaev 1973; Novikov and Thorne 1973). 
More detailed discussion of this point will be included in a 
future paper. 

Our primary concern in future papers of this series will be to 
go beyond the paradigm of an externally supplied cluster and 
examine the two most important scenarios for internal supply. 
The first of these is tidal disruption of stars within the cluster 
by individual black holes, and the second is the transfer of gas 
from stars to the black holes to which they are bound (in 
binary or multiple systems), leading to a multiplicity of X-ray 
sources similar to those observed in our own Galaxy. Thus, we 
shall describe our cluster as containing both stars and black 
holes, which obey the same power-law mass scales, from 0.1 to 
2 solar masses dominated by the stars, and from 2 solar mass 
and above dominated by the black holes. For the scenario 
relying on tidal disruption, we shall estimate the amount of 
material liberated by this mechanism and then determine the 
efficiency of the accretion process at various radii within the 
cluster. Such an estimation has been recently attempted by 
Hagio and Yokoyama (1988) using a cluster of stars and 104 

solar mass black holes in which tidal disruption is the major 
source of material supply and where the' radiation spectrum 
reflects the spectrum of accretion rates onto the individual 
holes, rather than their mass spectrum. Again, as in the case of 
an externally supplied cluster, the “ velocity problem ” will 
dominate the “ halo,” and its radiative contribution will be far 
smaller than that of the core. For the scenario dominated by 
“ binary systems ” we shall estimate the number of black holes 
of various sizes which are bound to at least one star which 
supplies substantial material and then determine the character- 
istics of a cluster of such systems which would model a QSO or 
an AGN. In this case the “ velocity problem ” will not dominate 
our discussion of the “ halo,” as a large percentage of the mass 
lost by a star bound to a black hole will be accreted by the 
black hole. 

One of us (T. F. S.) acknowledges partial support of this 
research through NASA grant NSG-7419. 
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