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ABSTRACT 
We made three-dimensional numerical simulations of collisions between white dwarfs using a smooth par- 

ticle hydrodynamics (SPH) code with 5000 particles. The code allows for radiation and degenerate pressure 
and uses a reduced nuclear network which models the large release of nuclear energy. Two different collision 
models are considered over a range of impact parameters: between two 0.6 Mq carbon-oxygen white-dwarfs 
and between 0.9 M0 and 0.7 M0 carbon-oxygen white dwarfs. In nearly head-on collisions a very substantial 
fraction of the mass is lost as a result of a large release of nuclear energy. In grazing collisions, where nuclear 
energy release is much less important, the fraction of mass lost is close to that produced in collisions between 
main-sequence stars. The quantity of processed elements ejected into the interstellar medium by these colli- 
sions does not significantly affect the chemical evolution of the Galaxy. Some grazing collisions produce a 
coalescence of the two white dwarfs into an object whose mass exceeds the Chandrasekhar limit. The inevi- 
table collapse of this white dwarf is delayed by the high temperature and fast rotation it acquired in the 
collision. 
Subject headings: hydrodynamics stars: interiors — stars: mass loss — stars: white dwarfs 

I. INTRODUCTION 
Collisions between main-sequence stars are important in the 

cores of globular clusters (Hills and Day 1976) and in galactic 
nuclei. White dwarfs, being the end product of the envolution 
of most stars, should coexist in large numbers with main- 
sequence stars in these systems. We expect collisions in which 
one of the colliding stars is a compact object to be relatively 
frequent. Unfortunately, computer simulations of collisions 
between a white dwarf and a giant or between a white dwarf 
and a main-sequence star are exceptionally challenging 
because of the huge differences in densities and dimensions 
between these stars. Shara and Shaviv (1977, 1978), Shara and 
Regev (1986), and Regev and Shara (1987) attempted to simu- 
late head-on collisions between main-sequence stars of various 
masses and a white dwarf (modeled as a point mass) in two 
dimensions using a very rudimentary scheme to model nuclear 
energy release. Simulations in three-dimensions of encounters 
between a low-mass main-sequence star and a white dwarf 
have been published recently by Soker et al (1987). They show 
that for a wide range of off-axis collisions the encounter 
resulted in the formation of a massive disk around the white 
dwarf. The formation of such disks was also obtained by Benz 
and Hills (1987, hereafter Paper I) in their simulations of main- 
sequence star collisions. We show in this paper that they also 
form in collisions of two white dwarfs. 

In this paper, which is the second step in the learning curve 
towards the simulation of collisions between main-sequence 
stars and compact objects, we investigate collisions between 
two white dwarfs. These collisions may seem quite unlikely 
since white dwarfs are about one to two orders-of-magnitude 
smaller than the lower main-sequence stars found in older 

stellar systems. However, the cross sections for collisions are 
proportional to the product of the sum of the masses of the 
colliding stars and the sum of their radii because gravitational 
focusing dominates (Hills and Day 1976), so the collision cross 
section for two white dwarfs is about equal to that between two 
0.1 Me main-sequence stars and is about two order-of-magni- 
tude smaller than that for collisions between two main- 
sequence stars with masses of 1 M0. In the last section of this 
paper we compute the probability of a collision between two 
white dwarfs in the core of a typical globular cluster and in the 
Galactic center. These statistical calculations show that white- 
dwarf collisions do occur in these dense stellar systems. 

The study of collisions between two white dwarfs requires 
additional physics not needed in studies of collisions between 
main-sequence stars, such as the production of a large amount 
of nuclear energy during the collision and the effect of radi- 
ation pressure. Comparisons between the results of white- 
dwarf and main-sequence star collisions can be used to better 
identify which physics is primarily responsible for producing a 
given property of the collisions. Much of the nuclear-processed 
material in white-dwarf collisions is ejected into the interstellar 
medium where it may be detectable. Furthermore, a collision 
can produce a white dwarf more massive than the Chandrase- 
khar limit whose existence is eventually announced by the sub- 
sequent Type I supernova. Supernovae occurring in the nuclei 
of galaxies, such as S Andromedae, SN 1885, which appeared 
in the nucleus of M31, may be suspected to be collision- 
induced events. 

In § II we describe the set of equations that are solved in 
simulating the collisions while in § III we focus on the nuclear 
network we developed to take into account the large amount 
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of nuclear energy generated in some of the white-dwarf colli- 
sions. Section IV is a brief summary of our smooth particle 
hydrodynamics (SPH) code. Sections V and VI present the 
results of the simulations, whereas in § VII we compute colli- 
sion rates and discuss various implications of these collisions. 

The radiation pressure term has the usual form: 

Prad = iaT4 . (2.7) 

The variation of the total specific internal energy Utot is 
given by the first law of thermodynamics : 

II. EVOLUTION EQUATIONS 

Our calculations ignore radiation transport, which is a rea- 
sonable simplification. Except for a very small fraction of the 
total mass in the outer atmosphere of the stars (which is not 
modeled by the code), essentially all shocks occur in optically 
thick regions where heat is transported on diffusion time scales 
which much exceed the shock crossing time. We ignore com- 
plications such as magnetic fields. 

In our previous paper on main-sequence star collisions 
(Paper I), we neglected nuclear energy release because the time 
during which the temperature exceeded hydrogen ignition 
threshold was too short for any significant generation of 
energy. The situation is quite different for colliding white 
dwarfs. These stars are composed of helium or carbon-oxygen, 
and their nuclear ignition takes place in the degenerate regime. 
As we will show, the temperature in the shock easily reaches 
carbon ignition threshold, so we include in our hydro code a 
small nuclear network that will be described in § III. 

The results reported below were obtained using a fully three- 
dimensional hydrodynamic code which includes self-gravity 
and makes no assumptions about the flow symmetry. The 
hydrodynamics is described by the momentum equation in its 
Lagrangian form : 

dv   Vfiot ^7 / i C O 
i *^visc (2*1) at p 

where 5^^ is the classical artificial viscous stress which is intro- 
duced to model kinetic energy dissipation in shocks; and the 
gravitational potential </> is obtained from Poisson’s equation 

V2(/> = 4nGp . (2.2) 

The mass density is denoted by p, the gravitational constant 
by G, and v is the velocity of a mass element. The total fluid 
pressure consists of a degenerate electron pressure, a nonde- 
generate gas pressure, and a radiation pressure term : 

^.o, = -Pdeg + ¿V + f’rad • (2-3) 
In the degenerate regime, the pressure is obtained from the 

ideal, fully relativistic equation of state (Chandrasekhar 1939): 

f’deg = 4f(x) ; 

f(x) = [x(2x2 - 3)(x2 + 1)1/2 + 3 log (x2 + 1)1/2] ; 

p = Bx3; (2.4) 

where Pdeg is the pressure, p is the density, A = 6.01 x 1022, 
and B = 9.82 x 105pe. The mean molecular weight per elec- 
tron pe is updated as the simulation proceeds and the abun- 
dances of the element changes due to nuclear burning. The 
corresponding specific internal energy is given by the expres- 
sion: 

viet = ^, g(x) = 8x3[(x2 + 1)1/2 — 1] —f(x). (2.5) 

The gas pressure is described by the nondegenerate equation 
of state 

fgas =(y~ l)pt4herm (2-6) 
with y = 5/3. 

dUM=_p W dQ 
dt ‘0, dt dt ’ 

(2.8) 

where V is the volume and dQ is the heat generated by the 
dissipation of kinetic energy in shocks and is related to the 
artificial viscous stress. All other energy sources, besides 
nuclear energy generation (see § III), have been neglected. 

The gas pressure Pgas and the radiation pressure are found 
by first computing the nondegenerate part of the specific inter- 
nal energy : 

t/nondeg = ^tot ~ ^deg , (2.9) 

where i/deg is given by equation (2.5). This Unondeg energy is 
then set equal to the sum of radiation energy plus the thermal 
energy. We therefore write : 

t/nondeg = ^rad + ^therm = a T* + CVT , (2.10) 

where cv is the specific heat at constant volume. We solve 
equation (2.10) for T. Once T is known, the radiation and 
thermal components of the specific energy and the pressure can 
be readily computed. 

The mass continuity equation is trivially incorporated by the 
numerical algorithm which is described in § IV. 

Equations (2. l)-(2.10) represent a closed system that can be 
solved for the time evolution of the system once the initial state 
has been specified. 

III. THE NUCLEAR NETWORK 

The high temperatures reached during the collision requires 
that nuclear energy release be included in the code. Unfor- 
tunately, a full nuclear network coupled to a three-dimensional 
hydro code would take a prohibitively large amount of com- 
puter time and storage. We devised a reduced nuclear network 
which meets the needs of these calculations: we are interested 
in the dynamics of the collision rather than in the detailed 
chemical composition of the material, so our network needs 
only to reproduce the energy generation accurately. This 
energy release must take place over the correct time scale. The 
bulk composition of white dwarfs is generally a mixture of 
carbon and oxygen. For He white dwarfs helium must also to 
be considered. Proton-induced reactions can largely be 
neglected. 

The above considerations led us to include the following 
elements in our network: 4He, 12C, 160, 20Ne, 24Mg, 28Si, 32S, 
36Ar, 40Ca, 44Ti, 48Cr, 52Fe, 56Ni, and 60Zn. These nuclei 
cover all essential burning stages from helium burning on. 

The individual reactions for various burning stages which 
are included in the network are discussed in the following 
papers: 

He-burning.—4He(2a, y)12C and 12C(a, y)160 are taken from 
Nomoto, Thielemann, and Miyaji (1985) and Caughlan et al 
(1985), respectively. 

C-burning.—The employed 12C(12C, a)20Ne rate is from 
Fowler, Caughlan, and Zimmerman (1975). In principle, this 
reaction has two channels, the alpha and the proton channel. 
However, most of the 23Na nuclei will react with the free 
protons via 23Na(p, a)20Ne and “effectively” proceed through 
the alpha-channel. Therefore, we included only 20Ne as the 
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final product but with the reaction rate of the alpha-h proton 
channel. 

Ne-hurmngr.—The main reactions are 20Ne(y, a)160, and 
20Ne(a, y)24Mg with rates from Fowler, Caughlan, and Zim- 
merman (1975) and 24Mg(a, y)28Si from Harris et al (1983). 

O-burning.—The rate for oxygen fusion 160(160, a)28Si is 
taken from Fowler, Caughlan, and Zimmerman (1975). As in 
carbon burning, we suppressed the proton channel to 31P, 
because in most cases it is followed by a (p, a) reaction to 28Si, 
which again can be handled as an “effective” alpha channel. 
Therefore, we used a rate for the alpha channel which results 
from the sum of both channels. The network also included the 
reaction 160(12C, a)24Mg by Hulke, Rolfs, and Trautvetter 
(1980), which can be important in explosive combined oxygen 
and carbon burning. 

Si-burning and nuclear statistical equilibrium.—Si-burning is 
usually initiated by photodisintegration reactions at tem- 
peratures in excess of 3 x 109 K, which provide the particles 
for capture reactions, and it ends in an equilibrium abundance 
distribution around Fe (thermodynamic equilibrium). A small 
energy generation network like the one employed here cannot 
contain all reactions involved. We want to concentrate on 
nuclei with major abundances. In an astrophysical plasma 
which starts with a distribution of nuclei with equal neutron 
and proton numbers (N = Z, like all nuclei mentioned above) 
and which does not allow for extensive electron capture and 
beta-decay due to a short burning time scale, the resulting 
abundance distribution will again be centered around a line of 
N = Z. Here the nuclei with even proton numbers have the 
larger binding energies and therefore the major abundance. 
For that reason, an alpha chain of nuclei starting at 2 8Si and 
ending beyond Z = 26 can serve the purpose of an equilibrium 
network, which approximates the major abundances and 
energy generation. The doubly magic 56Ni nucleus plays a 
dominant role. All reaction rates in this alpha chain were cal- 
culated with the code SMOKER (see Thielemann, Arnould, 
and Truran 1987). Because a network like this does not contain 
neutron and proton captures it can underestimate the time 
scale for burning Si to Ni. In the approach to equilibrium with 
free neutrons and protons present, a combination of neutron 
and proton captures will be faster than alpha-induced reac- 
tions. Therefore, in intermediate temperature conditions in 
\ Mch Si and heavier nuclei are produced but no nuclear equi- 
liu ium is reached yet, Si could be overestimated. However, as 
the dominant energy release occurs from the transformation of 
C and O to Si, the energy generation and resulting effects on 
the hydrodynamics will be almost unaffected by this uncer- 
tainty. 

The nuclear reaction rates, listed above, are generally 
denoted by <7, k} ••= (ovyj k for a reaction between particles j 
and k, where the cross section is averaged over a Maxwell- 
Boltzmann distribution of relative velocities. In an application 
like the present one, where the astrophysical plasma has rela- 
tively high densities and is at least partially degenerate, effects 
of electron screening become highly important. Under most 
conditions the generalized reaction rate integral can be 
separated into the traditional expression without screening 
and a screening factor (see also Thielemann and Truran 1987) 

a k>* =fscr(Zj, Zk, p, T, Y¡)<J, k} . (3.1) 
This screening factor is dependent on the charge of the 

involved particles, the density, temperature, and the composi- 
tion of the plasma. Here YJ denotes the abundance of nucleus i 

given by ^ = nJipN^, where nt is the number density of nuclei 
per volume. In the present calculations we employed the 
description of Itoh et al (1979, 1980) for the screening factors 
in the strong screening regime. 

The reaction network is described by the following set of 
differential equations : 

^ = 144 + 14* YjYk+ I 4m YjYkYi ■ (3.2) 
j j,k j,k,l 

The coefficients c1 are connected with the reaction rates for 
(1) decays or photodisintegrations Àp (2) two-particle reactions 
<7, k}, and (3) three-particle reactions <7, k, /> like the triple- 
alpha process which can be interpreted as successive captures 
with an intermediate unstable target (see Nomoto, Thiele- 
mann, and Miyaji 1985). The individual cl’s are given by 
c) = N^j, 4* = pNANi/(Nj\Nk\)a ky, and c)^ = 
(pNa)2Ní/(N/c, /). The N¡s can be positive or 
negative numbers and specify how many particles of species i 
are created or destroyed in a reaction and the denominators 
including factorials avoid double counting of the number of 
reactions when identical particles react with each other (for 
example in the 12C + 12C or the triple-alpha reaction; for 
details see Fowler, Caughlan, and Zimmermann 1967). 

Equation (3.2) is solved with a first-order scheme (i.e., the 
Euler backward differentiation method where the right side is 
evaluated at the new grid point in time). The set of nonlinear 
equations resulting from this discretization is solved with the 
aid of a multidimensional Newton-Raphson iteration until an 
accuracy of 10“ 7 is obtained. The total energy generation per 
gram due to nuclear reactions in a time step ôtnuc which 
changed the abundance by <5is given by 

ôe= -ZôYtNAM'X'iC
2 (3.3) 

i 
where Mcx i denotes the mass excess of nucleus l The time step 
is determined by 

ôtauc = 0.1 miiij ¿tnuc 
(3-4) 

where the minimum is taken only for nuclei with an abundance 
in excess of 10“7. 

IV. NUMERICAL TECHNIQUES 
To solve the system of equations outlined in § II in three 

dimensions, we use, as in Paper I, the smooth particle hydrody- 
namics method (SPH). This method has been described exten- 
sively in the literature as have a number of tests to check its 
ability to reproduce analytical and experimental results (see, 
for example, Monaghan 1985; Benz 1988 and references 
therein). SPH is a free Lagrangian method for solving the con- 
servation equations of hydrodynamics in which a finite set of 
extended Lagrangian particles replaces the continuum of 
hydrodynamic variables. The finite extent of the Lagrangian 
particles is determined by a smoothing function (or kernel) 
containing a characteristic length scale h. This length scale is 
roughly analogous to a zoning scale in conventional finite dif- 
ference methods. In this paper we use the kernel called W4 in 
Monaghan and Lattanzio (1985) which is based on B-splines 
rather than the exponential kernel used in Paper I. This kernel 
has a number of advantages over the exponential kernel 
(Monaghan 1985). The advantage of SPH is that the usual 
mesh upon which traditional finite difference methods are 
based is not needed, so SPH does not suffer from mesh tan- 
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gling or inaccuracies associated with the severe distortion of 
the mesh. SPH is particularly suited for the simulation of 
highly distorted flows such as those occurring during impacts. 
Compared to Eulerian schemes, SPH is also particularly 
advantageous where large voids have to be modeled, as is the 
case in this problem. No computer memory or time is wasted 
by having a large number of empty cells just in case some 
material moves into them. A typical simulation is evolved in 
time by computing the trajectories of all particles from the 
various forces acting among them. These forces are computed 
from the interactions between the particles that depend on 
their relative positions and velocities. 

The most expensive part of the calculation is the determi- 
nation of the gravitational force. We use the hierarchical 
binary tree to determine the gravitational potential and force 
that has been described in Benz et al (1989). In this method a 
tree (really an inverted tree) is constructed from the particles; 
the tree has a hierarchical structure of nodes. The particles 
themselves are at the lowest layer of nodes, the leaves. The next 
layer of nodes is constructed from those particle pairs consist- 
ing of mutual nearest neighbors; the node is located at the 
center of mass of the pair, and the quadrupole moment of the 
pair is computed. The computation of the rest of the tree pro- 
ceeds in an analogous fashion. In each case, mutual nearest 
neighbor nodes or particles or particle-nodes are merged into a 
node for which the center of mass and quadrupole moments 
are computed. Eventually, there is just one node at the top of 
the tree. Clearly, when computing the forces on a particle, a 
node far away from it need not be expanded but can be used as 
is with its quadrupole moment correction; the desired degree 
of accuracy dictates how far the three must be expanded in the 
gravitational force calculation for any given particle. The com- 
putational cost of this algorithm scales as N log N for large N. 
The same tree can easily be used to find all the neighbors of 
any given particle that contributes to the local properties 
(density, pressure, and so on). 

Each particle is described by the following quantities : mass, 
specific internal energy, chemical composition and position in 
phase space. As in traditional Lagrangian hydrodynamics, the 
mass of the particle is constant in time (but all particles need 
not be equally massive). We use operator splitting to treat the 
hydrodynamics and the nuclear burning. First, a hydro time 
step is computed in which the hydrodynamic equations and 
equation (2.10) are solved for each particle. At the end of the 
hydro time step, the position, velocity, density, and internal 
energy of each particle are updated. Next, we use our nuclear 
network to compute the nuclear energy that was released 
during the hydro time step. The nuclear time step used (eq. 
[3.4]) is, on average, ~2-4 times smaller than the hydro time 
step, but can be much smaller during very violent nuclear 
burning. At the end of this part of the code the particle’s chemi- 
cal composition is updated and the total nuclear energy release 
is added to the internal energy of the particle under consider- 
ation and the system is ready for the next hydro time step. 

V. INITIAL CONDITIONS 

Paper I showed that the results of a collision between two 
stars are nearly independent of their relative velocity if it is less 
than their surface escape velocity. For an 0.5 M0 white dwarf 
the escape velocity is ~4000 km s“1. This velocity is more 
than one order of magnitude larger than the velocity disper- 
sion of stars in galactic nuclei and nearly three orders of mag- 
nitude larger than the velocity dispersion of stars in globular 

clusters. This greatly reduces the initial conditions parameter 
space we have to consider. We compute only collisions for 
which the relative velocity at infinity is zero. 

Having specified the initial relative velocity, we need to 
specify several more parameters before starting the simulations 
including individual masses, density structure, chemical com- 
position, and impact parameter. To keep the number of simu- 
lations within reasonable bounds, we only simulated collisions 
between two 0.6 M0 and between an 0.7 M0 and an 0.9 M0 

white dwarf. We assume the precollision stars are zero- 
temperature, completely degenerate white dwarfs. The internal 
pressure and specific energy are given by equations (2.4) and 
(2.5), respectively, so that the internal structure of the stars is 
completely determined once the chemical composition is speci- 
fied. This assumption is not critical since the energy released in 
shocks in head-on collisions far exceeds any reasonable initial 
energy that we might choose. For grazing collisions, gravita- 
tional torques are responsible for the mass loss. They will be 
shown to be quite insensitive to the internal structure of the 
stars. Finally, we specify that all our white dwarfs are com- 
posed of an homogenized mixture of 50% carbon and 50% 
oxygen. All the simulations reported in this paper have been 
performed using 5000 particles. 

With the above choice we have performed two sets of simu- 
lations, one between two 0.6 M0 white dwarfs and one 
between an 0.7 M0 and an 0.9 M0 white dwarf. For each set of 
simulations we have varied the impact parameter so that the 
various collisions range from head-on to grazing. For each 
collision we have determined the amount and chemical com- 
position of the ejected mass as well as the amount of mass in 
the merged object and any accretion disk around it. The initial 
conditions for the simulations and their general results are 
given in Table 1. 

VI. RESULTS 

We describe the individual collisions in this section, while in 
the next one we give the collision cross sections and global 
properties such as the enrichment of the interstellar medium 
due to the ejection of processed elements. We recall that in all 
the collisions we took the impact velocity of the two stars at 
infinity to be zero (see discussion in § II). 

The overall results are given in the first seven rows of Table 
1. Columns (1) and (2) give the masses of the colliding stars. 
Column (3) gives Rmin, the minimum separation of the two 

TABLE l 
Summary of Collision Results 

Run 
(1) 

(M0) 
(2) 

M2 
(M0) 
0) 

Ri + R2 
(4) 

Mlost 
(M0) 

(5) 

Mbound 
(M0) 

(6) 

A^disk 
(M0) 

(7) 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 
13. 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.9 
0.9 
0.9 
0.9 
0.9 
0.9 

0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.6 
0.7 
0.7 
0.7 
0.7 
0.7 
0.7 

0.000 
0.166 
0.282 
0.507 
0.705 
0.772 
0.970 
0.000 
0.014 
0.243 
0.464 
0.696 
0.955 

0.09 
0.05 
0.02 
0.03 
0.05 
0.05 
0.00 
0.57 
0.52 
0.08 
0.05 
0.06 
0.10 

1.11 
1.15 
1.18 
1.12 
1.05 
1.04 

binary 
1.03 
1.08 
1.52 
1.55 
1.42 
1.41 

0.00 
0.00 
0.00 
0.05 
0.10 
0.11 
0.00 
0.00 
0.00 
0.00 
0.00 
0.12 
0.09 
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stars in the encounter if they were point masses, in units of the 
sum of their radii + R2; Rmin was calculated analytically 
from the preencounter orbital angular momentum and kinetic 
energy. The amount of mass lost from the system (in solar 
masses) is given in column (4). This mass loss was computed in 
the same manner as in Paper I. Columns (5) and (6) give, 
respectively, the mass of the merged object and the mass of any 
accretion disk orbiting it. 

Figure 1 shows the fraction of mass lost plotted as a function 
f°r the two series of white dwarf collisions calculated in 

this paper and for main-sequence collisions with impact veloc- 
ity V = 0, which were computed in Paper I. Figure 2 shows the 
mass of the accretion disk as a function of Rmin for these three 
series of collisions. We note that the amount of mass loss and 
the mass of the accretion disk increase in grazing collisions for 
all three series of collisions. This is due to gravitational tor- 
quing of each star by the other and the large amount of 
angular momentum in the coalesced objects. Jetting produces 
the local maximum in the mass lost at zero impact parameter. 
It is greater for the collisions between the more massive white 
dwarfs because of the large amount of nuclear energy released. 

As in Paper I, we can only summarize a small fraction of the 
tremendous amount of detail shown in these simulations. We 
try to give the flavor of these collisions by illustrating them 
with a selection of representative cases which are discussed 
below. 

i) Collisions between 0.6 M0 White dwarfs 
We simulated seven collisions between two 0.6 M0 white 

dwarfs. Their global results are listed in the first seven lines of 
Table 1. 

Figure 3 gives snapshots of the stars during a head-on colli- 
sion. We notice the high-speed jets which form in the collision 
plane during the initial contact and the rebound of material 

Fig. 1. Fraction of the mass of the two stars lost in a collision plotted as a 
function of their closest approach in units of the sum of their radii. Plots are 
given for collisions between two white dwarfs with masses of 0.6 M0 each 
{solid line), two white dwarfs with masses of 0.7 and 0.9 MQ {dashed line), and 
two equally massive lower main-sequence stars {dash-dotted line). 

series of calculations given in Fig. 1, and the line types have the same meaning. 

perpendicular to this plane which occurs after the shock pro- 
pagates through the stars. Both these phenomena produce 
mass loss. This superelastic rebound is especially vigorous 
because of the high temperature reached in the shock due to 
the production of significant nuclear energy. 

Figure 4 shows for this simulation the variation in time of 
the various specific energies. We note the increase in kinetic 
energy as the two stars approach each other. When they 
collide, the thermal energy increases sharply due to the rapid 
release of nuclear energy. From the variations in the potential 
energy we see that the coalesced object oscillates with a period 
of -15 s. As found for main-sequence collisions given in Paper 
I, these oscillations are slowly damped as the object settles to 
dynamical equilibrium. From this figure, we notice that the 
total nuclear energy release in the collision is about a third of 
the initial thermal energy in the stars. This additional energy 
causes the fraction of mass loss to be much larger than that 
found in head-on collision between two equal-mass main- 
sequence stars (see Paper I) for which nuclear-energy pro- 
duction is negligible. 

Figure 5 shows the fractional abundance of the chemical 
elements in the ejecta for all simulations of 0.6 M0 collisions 
plotted as a function of the closest approach, Rmin. We find 
that in a head-on collision the mass fraction of carbon goes 
from 0.5 to 0.353 and oxygen from 0.5 to 0.387. The major 
heavy elements produced are 24Mg (0.01443), 28Si (0.0846), 32S 
(0.0447), and 56Ni (0.0881). All other elements are present with 
mass fractions less than 0.005. Since 0.09 M0 have been lost in 
the collision, -0.0076 M0 of 28Si and 0.0079 M0 of 56Ni are 
ejected into the interstellar medium for each head-on collision 
between two 0.6 M© white dwarfs. The extent to which this 
ejecta enriches the interstellar medium in heavy elements is 
estimated in the next section. 

Increasing Ämin/(Äi + ß2) to 0.166 (simulation 2) decreases 
the mass lost from the system because the shock weakens con- 
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SIMULATIONS OF STELLAR COLLISIONS. II. 991 No. 2, 1989 

Fig. 3.—Projections onto the plane of the initial orbit of the fluid particles in two colliding white dwarfs at various times during a head-on collision (simulation 1). 
The times are measured in seconds from the beginning of the simulation. Each frame of the figure covers a spatial region of 8 x 109 cm by 8 x 109 cm. 

siderably. The temperature and density in the shock do not 
increase as much as in the head-on collision, so less nuclear 
energy is released. This is illustrated by the relative abundances 
of the elements produced in the collision. From Figure 5 we 
find that although 28 Si is slightly more abundant (0.115) con- 
siderably less 56Ni is produced (0.0399). The total mass ejected 
is 0.0058 M0 of 28Si and 0.002 M0 of 56Ni which for both 
elements is significantly less than in the head-on collision. 

Increasing Rmin/(Ri + R2)t0 0.282 (simulation 3) leads to a 
further sharp decrease in the mass loss. This collision produces 
the smallest mass loss found in any of the simulations reported 
here (see Fig. 1). Figure 6, which shows pictures made at selec- 
ted times during the collision, indicates that the merging of the 
two stars is a two-step process. The two stars survive the initial 
impact, but they lose kinetic energy. As they move away from 
each other, their self-gravity slows down their velocity of 
recession. Because of the energy dissipation in the collision, the 
two stars do not recede very far from each other before turning 
around and colliding again. During this collision they form a 
bar-like structure which redistributes the angular momentum 
as they roll around each other, so they finally merge into one 

object. This scenario is typical of collisions at large enough 
impact parameters. The only feature that varies is the number 
of closest approaches needed to dissipate enough kinetic 
energy to allow the final merger. In this simulation one close 
encounter was sufficient. We have found that up to three peri- 
center passages are needed in grazing collisions before a 
merger occurs. The evolution of the various energies during the 
collision shown in Figure 6 is displayed in Figure 7. We note 
that little nuclear energy was generated during the collision. 
The figure shows that the mutual perturbations of the stars 
cause them to pulsate until their final merger into one object in 
dynamical equilibrium. Figure 5 shows that this simulation did 
not produce a significant quantity of heavy elements including 
56Ni. In fact, except for the initial carbon and oxygen, the only 
other elements present in a significant fraction are 2 8 Si (0.104) 
and 24Mg (0.043) which amount, respectively, to 0.002 M0 of 
28Si and 0.00085 M0 of 24Mg. 

If Rmin is larger than half the sum of the radii of the two stars 
no significant nuclear energy is released, and the ejecta have 
almost exactly the initial chemical composition. Only a few 
elements produced in nuclear reactions in the collision are 
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Fig. 4—Time variations in the specific energies for the collision shown in Fig. 3: kinetic (short dashed line), thermal (dash-dotted line), potential (long dashed line), 
and total (solid line) as well as the total nuclear energy generated since the beginning of the simulation (dotted line). Time is again given in seconds, whereas the 
specific energies are given in units of 1.6 x 1017 ergs g- ^ 

present and only as traces. At larger values of Rmin, the initial 
shock has no significant effect other than dissipating orbital 
kinetic energy so the semimajor axis of the orbit is reduced at 
each pericenter passage. As we found for main-sequence colli- 
sions in Paper I, in grazing collisions the shock does not play a 
significant role in mass loss. Mass is lost because the strong 

Fig. 5.—The fractional abundance of the chemical elements in the ejecta 
from collisions between two 0.6 M0 white dwarfs. These data are plotted as a 
function of the closest approach in the orbit in units of sum of the radii of the 
two objects. 

gravitational torques transfer angular momentum outward 
causing the ejection of the outer parts of the merged object. A 
good example of this is found in simulation 6, for which 
^min/CRi + R2) = 0.172. Figure 8 shows the time dependence 
of the various energies for this simulation. As a result of the 
first impact, the two stars oscillate in phase as they move away 
from each other. These oscillations slowly damp out before the 
second close encounter. This second close encounter did not 
produce the final merger of the two stars; a third one was 
necessary. Figure 9 shows selected snapshots of the evolution 
of the collision. We note the “ bridge ” of material connecting 
the two stars after the first encounter. As they move away this 
material eventually falls back onto the two stars. In the final 
merger, we note the appearance of the same kind of spiral 
structure that was found in Paper I. The material in the outer 
parts of the arms is lost. It is worthwhile noting that the frac- 
tion of mass lost during these grazing collisions is similar to 
that found for grazing collisions between equal-mass main- 
sequence stars. This is not surprising, since gravitational 
torques are responsible for the mass loss in both cases. The 
equation of state, while quite different in the case of white 
dwarfs, is only of secondary importance. We suspect that 
4%-5% of the total mass of the two stars is typically lost in 
grazing collisions between two equal-mass stars with an initial 
density distribution which follows a polytrope of index n — 1.5. 
As found in Paper I, these grazing collisions also result in the 
formation of an accretion disk having a substantial mass. In 
the particular case of simulation 6, the total mass of the accre- 
tion disk is ~0.11 Mq. The structure of the merged object and 
the accretion disk is shown in Figure 10. This is a projection of 
the particle velocities onto a plane passing through the rota- 
tional axis of the merged object. 

Finally, for RmiJ(Ri + R2) = 0.97 (simulation 7) we found 
that no mass was lost but that the encounter resulted in the 
formation of a binary system. This result is quite different from 
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SIMULATIONS OF STELLAR COLLISIONS. II. 993 No. 2, 1989 

pIG 6—Projections onto the plane of the initial orbit of the fluid particles positions at various times during simulation 3, which involves a collision between two 
white dwarfs with masses of 0.6 M0 each and with Km¡n/(Ki + R2) = 0.282. As in Fig. 1, time is given in seconds, and each frame covers an area of 8 x 109 cm by 
8 x 109cm. 

that found in low-velocity collisions between main-sequence 
stars where all encounters in which the two stars actually hit 
each other result in the merger of the two objects. We attribute 
this result to differences in equation of state between the two 
types of stars. For degenerate stars, pressure is independent of 
temperature, so the energy dissipated in the first collision can 
be absorbed by the stars without significantly increasing their 
radii. For nondegenerate stars, an increase in temperature 
always produces an increase in radius. Main-sequence stars 
produce a runaway situation where the energy dissipated 
during the first impact increases the radius so the two stars 
overlap slightly more on their second encounter which allows 
even more dissipation and in turn increases their radii and so 
on. We are presently running a number of simulations to inves- 
tigate the possibility of forming double white dwarf binaries by 
tidal dissipation in close encounters, so we will delay any 
further discussion of these matters to a forthcoming paper. 

ii) Collisions between 0.9 M0 and 0.7 MQ White Dwarfs 
We present here, for the first time, a series of six simulations 

of collisions between two unequal mass stars. The results are 

summarized starting on row 8 of Table 1. We will, in reporting 
the results, concentrate on the differences between these simu- 
lations and equal-mass star collisions. As we will see, these 
collisions are substantially more efficient in expelling mass and 
producing heavy elements for the same relative velocity at 
infinity. The kinetic energy per unit mass at impact is substan- 
tially greater in a collision between two massive white dwarfs 
than in a collision between two less massive ones, so the shock 
temperatures and the amount of nuclear energy release are 
much larger for the more massive white dwarfs. 

From Figure 1, we notice the huge mass loss in a head-on 
collision. About 35% of the total mass or 0.57 M0 is ejected 
from the system. Figure 11 shows the time variation of the 
various energies during a head-on collision. It is evident that 
the large mass loss results from the large amount of nuclear 
energy generated in the collision. In this collision the nuclear 
energy release is almost twice the initial internal energy of the 
stars. Figure 12 displays pictures made at selected times during 
this collision. We notice the sharp oblique shock at the inter- 
face between the two stars at the initial impact. Only the less 
massive and less dense star (the one with the larger radius) is 
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Fig. 7.—Time variations in the specific energies for the collision given in Fig. 6: kinetic (short dashed line), thermal (dash-dotted line), potential (long dashed line), 
and total (solid line) as well as the total nuclear energy generated since the beginning of the simulation (dotted line). Time is again in units of seconds whereas the 
specific energies are given in units of 1.6 x 1017 ergs g~ ^ 

destroyed. The more massive, denser star suffers only margin- 
ally from the collision, and, in fact, gains 0.07 M0 from the 
collision. This behavior is due to the shock being much strong- 
er in the less massive, less dense star, in which a detonation 
wave is generated that destroys it completely. We notice that 
the chemical composition of the ejecta is also quite remarkable, 

Fig. 8.—Time variations in the specific energies for the collision given in 
Fig. 9: kinetic (short dashed line), thermal (dashed-dotted line), potential (long 
dashed line), and total (solid line) as well as the total nuclear energy generated 
since the beginning of the simulation (dotted line). Time is given in seconds, 
whereas the specific energies are given in units of 1.6 x 1017 ergs g- ^ 

as shown in Figure 13. Besides the original carbon (now down 
to 0.179) and oxygen (now down to 0.214), it is composed 
mainly of 56Ni (0.297) and 28Si (0.130). This represents a total 
amount of 0.17 M0 of 56Ni and 0.074 M0 of 28Si that is ejected 
in the collision. 

Increasing Rmin reduces the shock strength, so the maximum 
shock temperature is less, as is the mass loss and the nuclear 
energy generation. This trend was also found in cases where 
two equal-mass white dwarfs collide. A dramatic example of 
this sharp decrease in shock strength is illustrated by simula- 
tion 10, for which the closest approach Rmin is slightly below a 
quarter of the sum of the two radii. In this simulation the mass 
loss has already dropped to 0.075 M0, i.e., by more than a 
factor of 7 from the head-on collision! The amount of 56Ni 
ejected has decreased even more since its mass fraction in the 
ejecta has dropped below 0.1. However, the amount of pro- 
cessed elements ejected in this collision considerably exceeds 
that found in any collision between equal-mass white dwarfs. 

VII. COLLISION RATES 
We shall use the results of the previous section to compute 

cross sections for coalescence and mass loss. We follow the 
procedure used in Paper I, which was based on equations given 
in Hills and Day (1976). We use these cross sections to deter- 
mine the rate of collisions among white dwarfs in globular 
clusters and the Galactic center. 

In the limit where the stellar velocity dispersion is much less 
than the escape velocity from the surface of the colliding stars, 
which is the case for collisions among white dwarfs in globular 
clusters and the Galactic center, Paper I shows the ratio of the 
coalescence cross section to the geometric cross section, a0 = 
71(1^ + R2)2, to be given by 

!k = ( fusion Y KescV 
ao Ut + ^2/V V / 

(7.1) 
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pIG 9—Projections onto the plane of the initial orbit of the fluid particles position at various times during simulation 6, which involves a collision between two 
white dwarfs with masses of 0.6 M0 each and with RmJ{Rl + R2) = 0.772. As in Fig. 1, time is given in seconds, and each frame covers an area of 8 x 10 cm by 
8 x 109cm. 

T = 325.05 

Fig. 10.—Projections of the fluid particles positions in the merged object 
which resulted from simulation 6. Projections are made onto a plane perpen- 
dicular to the original orbit. We note the fast rotation of the object and the 
accretion disk around it. 

Here and R2 are the radii of the two stars, V is the 
relative velocity of the two stars at infinity, Rfusion is the 
maximum value of Rmin which allows the coalescence of the 
two stars, and 

[ 

2G(M1 + M2) 

(Ri + Ri) 

-|l/2 

is the escape velocity of the two stars when they are in contact 
with each other. Two colliding white dwarfs with masses of 0.6 
M0 and radii of 0.0127 R0, have an escape velocity of Fesc = 
4240 km s ~1 at contact while two white dwarfs with masses of 
0.7 and 0.9 M0 and radii of 0.0114 and 0.00924 RG, respec- 
tively, have Fesc = 5440 km s" L 

Paper I also shows that coalescence occurs if RmiJ 
(Ri + R2) ^ 1*03 for equal-mass main-sequence stars. We have 
fewer simulations of white dwarf collisions at nearly grazing 
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Fkj. 11 —Time variations in the specific energies during simulation 8 which shows a head-on collision between a 0.9 M0 white dwarf and a 0.7 M0 one : kinetic 
(short dashed line), thermal (dash-dotted line), potential (long dashed line), and total (solid line) as well as the total nuclear energy generated since the beginning of the 
simulation (dotted line). Time is again given in seconds, whereas the specific energies are given in units of 2.67 x 1017 ergs g" ^ 

encounters, but they are consistent with + KJ ^ 1. 
We find that a collision between two white dwarfs with mass 
0.6 Mq produces a binary system if R^JiRi + tf2) = 0.97. A 
collision between two main-sequence stars at this value of 
Rmm/(Ri + Ri) produces a single coalesced star (Paper I). 
However, gravitational radiation will cause the white dwarfs in 
this binary to merge in much less than a Hubble time. 

For a typical globular cluster and for the Galactic center the 
velocity dispersion is less than 10 km s"1 and 150 km s-1, 
respectively, so the cross sections for coalescence are more than 
105 times the geometric cross section in globular clusters and 
103 times it in the Galactic center. 

The number of collisions per unit volume and time is given 
by 

dn 
dt 

= n1n2r (7.2) 

where n1 and n2 are the space densities of the two species of 
colliding stars. The rate coefficient for collisions among them 
in the limit where V Fesc (Paper I) is given by 

r = <ac vy = niR, VL 
<v2y^j] 

(7.3) 

if their velocity dispersions are independent of their mass. Here 
<F2> is the mean-squared velocity dispersion in the system. If 
we consider only collisions among a given species of stars, so 
n1 = n2 = tt0, then we replace by (no)/2 in equation (7.2) 
because each colliding star is counted twice in the summation 
leading to this equation. This equation must be integrated over 
the volume of the system to find the total rate of collisions per 
unit time. We shall now find this for globular clusters and the 
Galactic center. 

i) Collisions in Globular Clusters 
White dwarfs constitute ~Fwd = 0.25 of the mass of globu- 

lar clusters (Hills 1978). We shall assume a similar mass frac- 
tion in the Galactic center. Hills and Day (1976) calculated the 
rate of collisions among stars in globular clusters by assuming 
that they consisted only of main-sequence stars with masses of 
0.4 M0 and radii of 0.5 Rö. This gave an average of 335 
collisions per globular cluster per Hubble time, which was 
based on the data for 41 globular clusters. The rate coefficient 
for collisions between white dwarfs with masses of 0.6 M0 is 
~ 0.038 times that of these main-sequence stars. If 0.25 of the 
cluster mass is in white dwarfs, their collision rate is reduced by 
another factor of 16 compared to that calculated for main- 
sequence stars, so their collision rate is 0.0024 times that calcu- 
lated for main-sequence stars or an average of 0.8 white dwarf 
collisions per globular cluster in the Galaxy. In the most favor- 
able globular cluster, M80, about six to seven white dwarf 
collisions have occurred. A total of ~ 120 white-dwarf colli- 
sions have occurred in the 150 globular clusters in the Galaxy. 
Most coalesced white dwarfs have masses below the Chandra- 
sekhar limit, so after the collision they will remain as fast 
rotating, massive white dwarfs that will largely reside in the 
cores of the globular clusters. In this dense stellar environment, 
massive white dwarfs tend to accumulate in binaries by 
exchange collisions with existing binaries (Hills 1976). 

ii) Collisions in the Galactic Center 
The central core of the Galaxy provides an even more favor- 

able environment for stellar collisions. Bailey (1980) finds that 
the stellar density at distance r from the Galactic center is 
about 

p = Pc = 3 x 107 M0/pc 3 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
2.

 .
98

6B
 

SIMULATIONS OF STELLAR COLLISIONS. II. 997 No. 2, 1989 

Fig. 12.—Projections onto the plane of the initial orbit of the velocity vectors of the fluid particles at various times during simulation 8, which shows a head-on 
collision between two white dwarfs with masses, of 0. M0 and 0.9 M0. The times are given since the start of the simulation in seconds, and each frame covers an area 
of 6.4 x 109 cm by 6.4 x 109 cm. 

for r < Rc = 0.1 pc, while 

p = pc(r/Rc)-
1S 

for r = 0.1-100 pc. It is easy to show by integration that the 
total rate of stellar collisions outside the core radius, Rc, is just 
5 times that within it so the total number of stellar collisions 
occurring per unit time in the Galactic center is 6 times that 
within Rc, or 

dN 
dt R*nin2r, (7.4) 

where F is given by equation (7.3) and n1n2 is replaced by (no/2) 
if two colliding stars are identical. 

If we assume that 0.25 of the mass of the Galactic core is in 
white dwarfs with masses of 0.6 M0 and radii of 0.0127 JR©, we 
find a collision occurs among these objects in the Galactic 
center about once every 4 x 106 yr, so a total of 3000 white- 
dwarf collisions have occurred in the Galactic center in the 
past 1.2 x 1010 yr. If 0.125 of the stellar mass is composed of 
white dwarfs with masses of 0.7 M0 and another 0.125 of the 

mass is in white dwarfs with masses of 0.9 M0, then there were 
~ 560 collisions among the 0.7 M© white dwarfs, 350 collisions 
among the 0.9 M© white dwarfs, and ~960 collisions between 
0.7 M© and 0.9 M© white dwarfs for a total of 1870 collisions 
among all white dwarfs. 

From Part I we find that in the limit where V Fesc, the 
ratio of the mass-loss cross section to the coalescence cross 
section becomes 

°ml dR min 
(R, + R2) ' 

(7.5) 

where A = AM/(M1 + M2) is the fraction of the mass lost 
when the closest approach distance is Rmin. These cross sec- 
tions were found numerically from the data in Figures 1, 5, and 
13. Figure 1 shows the integrated mass loss as a function of 
jRmin f°r the two types of white-dwarf collisions while Figures 5 
and 13 show the chemical composition of the ejected gas. Table 
2 shows the computed mass-loss cross sections in units of the 
coalescence cross section. 

We note that the integrated mass-loss cross section is ~3% 
of the coalescence cross section for collisions between two 0.6 
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Emin/ (Rl+Rz) 
Fig. 13.—The fractional abundance of the chemical elements in the ejecta 

from collisions between a 0.7 M0 white dwarf and a 0.9 M0 one. These data 
are plotted as a function of the closest approach in the orbit in units of sum of 
the radii of the two white dwarfs. 

TABLE 2 
Mass-Loss Cross Sections in Units of the Coalescence 

Cross Sections 

Elements 0.6-0.6 M0 0.7-0.9 M0 

O .. 
C .. 
Si .. 
Ni .. 
S ... 
Mg 
Ne . 
Ar .. 
Ca . 

Total 

1.4 x IO'2 

1.3 x HT2 

1.5 x 10'3 

7.6 x IO'1 

6.6 x IO'4 

3.7 x 10“4 

2.2 x IO'5 

1.5 x KT4 

1.6 x 10'4 

3.1 x 10'2 

2.6 x 10'2 

2.0 x 10“2 

1.1 x 10'2 

1.2 x 10'2 

6.0 x IO'3 

1.9 x 10'3 

9.6 x IO'5 

1.4 x 10'3 

1.6 x 10'3 

8.1 x KT2 

ejected per coalescence, we find that for 2000 white-dwarf colli- 
sions in the Galactic center a total of ~60 M0 of processed 
material has been ejected into the interstellar medium. 
Assuming the average value given in the table, we see that as 
much as 9% of it may be radioactive nickel which ultimately 
decays into Fe. This corresponds to an average of 0.01 M0 of 
Fe per collision, which is about an order of magnitude less 
than that ejected by SN 1987A. Collisions among white dwarfs 
are probably not serious competitors with supernovae in eject- 
ing nuclear-processed elements into the interstellar medium, 
except, possibly for some trace elements. 

M0 white dwarfs and ~8% for collisions between a 0.7 and a 
0.9 M© white dwarf. All the ejected material is highly nuclear 
processed. If we assume that, on average, the mass-loss cross 
section is 5.5% for all white dwarfs and the average combined 
mass of two colliding white dwarfs is 1.4 M0, so ~0.08 M0 is 
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