
19
8 

9A
pJ

. 
. .

34
2.

 .
83

4L
 

The Astrophysical Journal, 342:834-854,1989 July 15 
© 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

MOLECULAR CLOUD CORES AND BIMODAL STAR FORMATION 

Susana Liz ano and Frank H. Shu 
Astronomy Department, University of California, Berkeley 

Received 1988 May 23 ; accepted 1988 December 19 

ABSTRACT 
We review the phenomenon of bimodal star formation in the context of supercritical and subcritical states 

for molecular clouds that are supported against their self-gravitation by magnetic fields. For subcritical clouds, 
we formulate and solve the problem of the quasi-static condensation of a dense core from a more extended 
background by ambipolar diffusion. The computational space spans the tidal lobe, inside of which gravita- 
tional equipotential surfaces completely enclose the region of interest. In addition to magnetic support, we 
include the effects of thermal and “turbulent” pressures, with the latter receiving a semi-empirical treatment 
consistent with observational measurements of nonthermal line widths in molecular clouds. We find that sub- 
critical regions can be conceptually divided in accordance to whether their masses are greater than an umbral 
mass (superumbral) or less (subumbral). Ambipolar diffusion operating in a subumbral region yields a stable 
final configuration in which the (mean) magnetic field asymptotically become uniform and straight, and the 
region, which has typically failed to become either dense enough or big enough to excite measurable ammonia 
emission, is balanced against gravitation by thermal and turbulent support. In contrast, the diffusion of ions 
and magnetic fields relative to a contracting sea of neutrals in a superumbral region will lead to the pro- 
duction of a centrally condensed core, that ultimately collapses from inside out (to form a star). For typical 
interstellar parameters, the sizes and densities of such cores correspond well with the observed properties of 
ammonia cores in the Taurus dark cloud, and the time scale to form these objects is also consistent with 
observations. Our calculations also support the view that the epoch of major flux loss occurs, not during the 
stage of (quasi-static) core formation, but during the much denser dynamic stage of protostar formation. Fur- 
thermore, we confirm that the mass scale of forming stars is set not by the interstellar medium but probably 
by processes (e.g., stellar winds) that occur in the stars themselves. 
Subject headings : hydromagnetics — interstellar : molecules — stars : binaries — stars : formation 

I. INTRODUCTION 

a) Bimodal Star Formation 
In a recent review (Shu, Adams, and Lizano 1987, hereafter 

SAL), we argued that in self-gravitating molecular clouds, sup- 
ported primarily by magnetic fields, star formation proceeds 
bimodally (see also Mestel 1985). 

1. Clouds (or clumps) with a mass Mcl less than a critical 
value Mcr are subcritical and cannot be induced to contract 
indefinitely by any amount of increased external pressure if the 
magnetic flux <I> is conserved. With field freezing, any compres- 
sion of the cloud also increases the field in exact proportion for 
the magnetic forces to keep pace with the increased gravita- 
tional attraction. For a subcritical cloud, then, collapse will 
occur only by magnetic flux redistribution, which is driven, for 
a lightly ionized medium, by ambipolar diffusion (Mestel and 
Spitzer 1956; see also Mouschovias 1978). The frictional coup- 
ling is usually strong enough in the early stages to guarantee 
that the evolution occurs quasi-statically through a sequence 
of equilibrium states (Nakano 1979), wherein the neutral com- 
ponents gradually slip past the charged particles and the mag- 
netic fields that provide the basic support. With a large initial 
ratio of magnetic to thermal pressure (so that the Jeans mass 
Mj <lMcl), many small dense cores would slowly condense 
from the common envelope of an extended region, an outcome 
descriptive of the Taurus molecular cloud (e.g., Myers and 
Benson 1983). This mode constitutes an ongoing background 
process for the formation of individual or binary stars in nearly 
every self-gravitating molecular cloud. Empirically, by the time 
the cores acquire densities high enough (>3 x 104 cm-3 

within a radius of ~0.05 pc) to excite measurable ammonia 
emission, about half of them have collapsed to form low-mass 
stars (Beichman et al. 1986). Since the ages of deeply embedded 
infrared sources of modest luminosities (low-mass protostars) 
are estimated to lie between 105 and 106 yr (Stabler, Shu, and 
Taam 1980; Adams and Shu 1986; Adams, Lada, and Shu 
1987), this observation suggests that the lifetimes of molecular 
cloud cores, once they have reached central concentrations 
characteristic of the NH3 observations, cannot much exceed 
105-106 yr. This estimate provides an important constraint on 
proposed mechanisms for the origin of the small dense cores 
(see also Myers et al. 1987). 

2. Clouds (or clumps) with a mass Mcl greater than a critical 
mass Mcr are supercritical and can collapse dynamically as a 
whole, overwhelming the internal magnetic support, even if the 
fields remain frozen in the fluid (e.g., Scott and Black 1980). 
Shu (1987) suggested that the production of supercritical 
regions from an ensemble of subcritical clouds could naturally 
arise by the agglomeration of clumps of gas and dust that have 
been gathered together in a large complex (Giant Molecular 
Clouds, or GMCs). Such a picture may provide a basis for 
understanding the triggering of OB stars behind galactic 
shocks and within the nuclear regions of starburst galaxies. 
This mode of star formation requires basically a high surface 
density of molecular material. Upon the cloud’s flattening 
along the direction of the mean field, fragments of a size com- 
parable to the cloud’s thickness can themselves collapse as 
supercritical regions (Mestel 1965), yielding either a compact 
group of OB stars (e.g., Keto, Ho, and Haschick 1987; Welch et 
al. 1987), or a bound cluster if a high efficiency of star forma- 
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tion is not disrupted by the formation of too many luminous 
stars (e.g., Lada and Wilking 1984). The signature of a super- 
critical region would be coherent dynamical collapse involving 
large amounts (say, ~102-105 M0) of molecular gas. Other 
effects may be an elevation of the temperature of the gas rela- 
tive to the dust by the effects of ion-neutral frictional heating 
(e.g., Wilking and Lada 1983; Lizano and Shu 1987) and a 
more disordered overall field configuration (Strom 1988). 

b) Magnetic Critical Mass 
The numerical value of the critical mass Mcr can be ascer- 

tained by virial theorem arguments (Strittmatter 1966), or 
more accurately by detailed model calculations (Mouschovias 
1976). When magnetic fields alone provide support against 
gravity, the results can be expressed generically by the simple 
formula, 

Mcr = cG"1/20, (1) 

where G is the universal gravitational constant and c is a 
dimensionless coefficient having a value ~0.1-0.2, depending 
on the adopted mass-to-flux distribution and boundary condi- 
tions (Tomisaka, Ikeuchi, and Nakamura 1988, hereafter TIN). 
For example, an extrapolation of the Figure 1 by Mouschovias 
and Spitzer (1976) to zero (pj/pJ1'3 yields c = 0.13 for the case 
in which a uniform magnetic field initially threads a homoge- 
neous spherical cloud. In § VI, we shall generalize the defini- 
tion of the critical mass to take into account “ turbulence ” as a 
mechanism of cloud support in addition to magnetic fields (and 
thermal pressure). 

c) Goals of this Study 
In this paper, we make detailed three-dimensional models 

(with axial symmetry) of the mechanism of core formation by 
ambipolar diffusion from a larger subcritical region. Simple 
one-dimensional slab models (Shu 1983; Scott 1984; Nakano 
1985) yield adequate estimates for the overall time required to 
condense a core from a rarefied envelope; however, the satura- 
tion of the gravitational field associated with a slab of constant 
surface density gives misleading results for the total amount of 
flux redistribution during the later stages and for the condi- 
tions required to initiate ultimate gravitational collapse 
(compare, e.g., the views of Mouschovias, Paleologou, and 
Fiedler 1985 with those of SAL and Nakano 1988). The exten- 
sive set of three-dimensional axisymmetric calculations of 
Nakano (1979,1982,1983) are more trustworthy in this regard; 
unfortunately, they focus on a parameter regime correspond- 
ing to magnetic field strengths and gas densities that are gener- 
ally too large to be applicable to the ammonia cores observed 
as the sites of low-mass star formation (e.g., Myers and 
Goodman 1988; Goodman et al 1988). 

The above comments motivate the present set of calcu- 
lations, wherein we study the quasi-static evolution of an 
axisymmetric periodic chain of self-gravitating regions (“ tidal 
lobes ”) as ambipolar diffusion lowers the amount of magnetic 
and “ turbulent ” support in the dense cores. We choose bound- 
ary conditions that mimic the situation of many dense cores 
embedded within the common envelope of a much larger cloud 
(or clump). Our formulation of the condensation process 
allows us only to follow the quasi-static stages; an a posteriori 
check allows us to estimate the point at which the core evolu- 
tion would suffer a transition to dynamical collapse. 

In § II we derive the governing set of equations, subject to 
the quasi-static and axisymmetric approximations (and to 

appropriate boundary and initial conditions, which are dis- 
cussed in § IV). In § III we outline the method of numerical 
solution and tests of the resultant computer code. In § V we 
discuss the results of the evolutionary calculations, empha- 
sizing time scales, masses, and typical sizes of modeled cores 
that can be compared with observations. For a fixed mass, we 
find that the level of turbulent support determines whether a 
dense core forms or not. This allows us in § VI to generalize the 
concept of a critical mass to account for the contributions of 
turbulence and thermal pressure for helping magnetic fields to 
support a cloud. We then introduce the concept of an umbral 
mass that specifies the mass needed to overcome the remaining 
means of support after ambipolar diffusion has tried to 
straighten out the magnetic field lines in a subcritical cloud. 
Finally, in § VII we draw the implications of this work for the 
problem of star formation and comment on possible future 
work in this area. 

II. GOVERNING EQUATIONS 

a) Formulation of the Basic Problem 
Consider the situation of a large number of cloud cores, 

spaced at an average distance 2L apart from one another inside 
a much more massive clump of molecular gas. We isolate our 
attention on a single core, whose center lies at the origin of a 
cylindrical coordinate system (m, cp, z), embedded within a 
region of radius and half-height equal to L. If we assume local 
axial symmetry with the presence of only a poloidal magnetic 
field B, then B is derivable from a vector potential A that has 
only a cp component : 

<D(m, z, t) 
A = 2nm ^ 

(2) 

where <S>(m, z,t) = \SB ■ ez2nmdm is the magnetic flux at time 
t threading a circular area S of radius m located at height z. The 
magnetic field is given by 

1 / dO 
(3) 

We assume that the cloud cores are well separated, i.e., that 
the spacing 2L is appreciably larger than the typical radii of 
identifiable NH3 cores, so that the structure of the molecular 
cloud clump can be taken to be smooth in between cores. (The 
polarization observations of Vrba, Strom, and Strom 1976 and 
Moneti et al 1984 show that the magnetic fields of dark clouds 
are well ordered on a large scale.) This allows us to impose the 
requirement that the magnetic field has uniform strength B0 

and is directed along the z-direction on our cell walls. If, in 
addition, we impose periodic boundary conditions in the z- 
direction (see § III), we find that the magnetic flux O, the 
neutral gas density p„, and the gravitational potential V may 
all be taken to be even functions of z. 

By definition, the magnetic field B is tangent to flux tubes, 
i.e., B • V® = 0, and the numerical value of the enclosed flux <I> 
can be used to label field lines. The nonlinear diffusion equa- 
tion (16) for the magnetic field in SAL (hereafter abbreviated as 
eq. [SAL. 16]) can now be written 

P<D 
Dt -vd • VO) , (4) 

where D/Dt = d/dt + i#„ • V is the substantial (or Lagrangian) 
time derivative following the motion un of the neutrals, and 
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where the drift velocity of ions relative to neutrals (see eq. 
[SAL. 14]) is 

_ -1 fd2Q> d2® 1 d<&\ 
d I6n3ypnpiw

2 \dw2 + dz2 w dm/® * ^ 

In the above, y equals the frictional drag coefficient (see eq. 
[SAL. 13]) and has been estimated by Draine, Roberge, and 
Dalgarno (1983) to have a numerical value equal to 3.5 x 1013 

cm3 g~1 s -1 for the conditions of interest here (see also Mous- 
chovias and Paleologou 1981). 

For the ion mass density pf, we adopt the steady state calcu- 
lations of Elmegreen (1979) that result in the approximate 
relationship, 

Pi = Vp'n12 , (6) 

where ^ is a weak function of gas temperature and is pro- 
portional to the square root of the metal depletion. For 
average metal depletions (i.e., a factor of 0.1), a cosmic-ray 
ionization rate equal to £ = 1 x 10"17 s

_1, and gas tem- 
peratures 10-30 K, Elmegreen obtains results which corre- 
spond to # = 3 x 10-16 cm_3/2 g1/2. In this work we will 
ignore the effect of negatively charged grains because Nakano 
(1984, 1985) found that including their presence increased the 
ambipolar diffusion time scale by much less than a factor of 2 
at the neutral gas densities ^107 cm-3 that characterize 
typical ammonia cores. Henceforth, we shall use equation (6) to 
eliminate p, wherever it appears and simply denote pn as p. 

To account heuristically for the mechanical support provid- 
ed by interstellar “ turbulence ” (see Larson 1981), we suppose a 
total gas pressure P, 

P = Pth + Pturh, (7) 

given by the sum of the thermal pressure, 

Pth = a2p , (8) 

where a2 = kT/m is the square of the isothermal sound speed, 
and an isotropic “ turbulent ” contribution, 

Pturb = jrin(p/p0), (9) 

where JT has a constant value and p0 is some convenient 
reference density. We shall generally choose p0 so that it has 
values representative of the common molecular envelope; 
however, any arbitrary constant could be added to Pturb 
without affecting the details of the forces exerted in the interior. 
The motivation for the functional form adopted in equation (9) 
is the empirical power-law correlation At;ocp“1/2 found by 
various studies for the nonthermal part of molecular line 
widths (Solomon and Sanders 1985; Dame et al 1986; Myers 
1987; Scoville et al. 1987; see McKee 1989 for a review). If we 
interpret this correlation as an effective transport speed, 

"turb = (dPiurb/dp)i/2 = (JT/p)1/2 , (10) 

we obtain the identification, equation (9). The best fit for the 
data assembled by Myers and Goodman (1988) suggests that 
JT = 1.2 x 10"11 dyne cm-2; the “cold” and “hot” GMCs 
surveyed by Solomon et al. (1987) have values of JT which are 
1.5 and 6 times larger. Although equation (9) has an empirical 
basis, the ultimate reason for choosing this particular function- 
al form is for the mathematical convenience of having a baro- 
tropic equation of state when a2 and Jf are taken to be 

constants. Notice that the support provided by turbulence 
drops relative to thermal pressure at high densities. 

In our opinion (see SAL), the turbulence seen in molecular 
clouds, which is highly supersonic in the envelopes, reflects the 
presence of many nonlinear MHD waves (Arons and Max 
1975); thus, for the problem of the dissipation of these waves, 
we consider it important to demonstrate that consistent cloud 
models can be constructed in which the fluctuating fluid 
motions are sub-Alfvénic. This demonstration is carried out in 
§ V. We also need to enquire on the effects that Alfvénic turbu- 
lence would have for the problem of ambipolar diffusion. 
Zweibel (1988) has investigated the latter problem and con- 
cludes that, for the conditions likely to hold in molecular 
clouds, the effect is small. Consequently, in our further deliber- 
ations, we shall ignore all transport characteristics associated 
with the turbulence, apart from its ability to impart momen- 
tum changes through an effective scalar pressure (see the dis- 
cussion in § VII); and henceforth, when we speak of ambipolar 
diffusion, we shall implicitly refer only to the slippage of the 
mean magnetic field, not to the fluctuating components. 

With the above preamble, we are ready to consider the 
axisymmetric matter distribution of our equilibrium clouds. 
Within each diffusion time step, we assume quasi-static equi- 
librium (see Nakano 1979). The solution of this subproblem, 
with the mass-to-flux distribution fixed by its value at the pre- 
vious instant, is greatly facilitated by adopting the method 
introduced by Mouschovias (1976) for computing magneto- 
static equilibria (see also TIN). The existence of a barotropic 
equation of state follows us to introduce an enthalpy function 
K 

i ÇdP 
h = ]j + v- (H) 

Under the assumption that forces are balanced, equation 
(SAL. 18) can now be written as 

pVh =fd , 

where/d = ypnPiVd is the drag force between ions and neutral 
(see eq. [SAL. 13]), and is equal to the Lorentz force 
(l/47r)(V x B) x B. These considerations demonstrate that 
B • \h = 0 ; therefore, force balance along field lines is satisfied 
if /z is a function of <D and t alone, i.e., h = h(&, t). In what 
follows we shall suppress explicit display of the variable t when 
dealing with the quasi-static aspects of the problem. Force 
balance across field lines then requires 

dh _ -1 /d2Q> d2<P J_ d<I>\ 
^ dO 167t3m2 \da72 + dz2 m dm) 9 

where we have substituted equation (5) for the drift velocity in 
the drag force,/*. 

b) Nondimensionalization 
It pays to introduce dimensionless variables. Henceforth, we 

describe the density p in units of the fiducial value p0 (used to 
obtain a convenient, rather than a fundamental, set of units; 
see footnote 1), the gravitational potential V and the enthalpy 
function h in units of the square of the sound speed a2, and 
magnetic fields in units of a “ background value ” (in the molec- 
ular cloud envelope) B0. These are the primary scalings; sec- 
ondary scalings are lengths in units of /0 (for example, the 
dimensionless spacing between consecutive cores is 21 = 2L//0), 
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magnetic flux in units of O0, and time in units of t0, where the 
latter quantities are defined by 

i a __ a23t 
lo = (4¿G¿0F2 = G^F0’ 

a2B0 2na4ât2 

d'n = ^ = , 0 2Gp0 GB0 

F ^ T 1 ~| [~ 1 
to " |_(47tG)1/2JL(47rGp0)1/2J ~ |_(47tG)1/2J G1/2ß0 

(13) 

(14) 

(15) 

In the above, is the ratio 

01 = t;Ao/a (16) 

of the reference Alfvén speed, = B0/(4np0)112, to the sound 
speed a; and the combination y^/(4nG)il2 is the dimensionless 
large parameter of the problem whose square justifies a quasi- 
static treatment of the momentum equation (see Shu 1983). We 
further introduce a unit of mass, 

= (17) 

The coefficient in the above expression has been chosen to 
express the mass-to-flux distribution (see eq. [21]) in a conve- 
nient form. 

If we use the same symbols for the dimensionless variables as 
their dimensional counterparts, the equation (12) for force 
balance across field lines becomes the following partial differ- 
ential equation (PDE) for O: 

0t2 d2Q> d2<î> 1 ddQ>\ 2 dh. 
dw2 + dz2 m dm ) ^ dQ> 

(18) 

The enthalpy function, defined by equation (11), can be inte- 
grated to give 

h = — ^ + Inp + V , (19) 

where 

K = 
a2p0 

(20) 

is a dimensionless constant that yields (vtUTh/a)2 at the reference 
density p0. The function /i(O) is to be found so that a non- 
dimensional integration for the mass-to-flux distribution yields 
the desired dM/d<t> : 

dM _ f , tn(Q, z)p(<I>, z) 
dö J {d<S>ldm)z ’ 

(21) 

where the integration is performed from the equator to the 
tidal lobe along lines of constant <I> in the meridional plane. 

Poisson’s equation in nondimensional form becomes 

d2v d2V 1 dV 
dm2 + dz2 + m dm 

(22) 

Time dependence enters in the problem through the dimen- 
sionless version of the diffusion equation (4): 

DO) _ (0t\VQ>\)2 id2® ^ _ 1 
Dt ~ p3/2m2 \dm2 + dz2 m dm) 

Notice that the diffusion stops if the field lines ever become 
straight and uniform, O = ot2/2. 

We see from the above that two dimensionless parameters @ 
and K enter in our formulation of the nondimensional equa- 
tions. One more dimensionless parameter, / = L//0, enters from 
the periodic boundary conditions; a fourth, the degree of 
central concentration of the “ reference state”—or equivalently 
the total mass Mtot within the “ tidal lobe ” measured in units of 
m0—enters in the procedure that we use to define the mass-to- 
flux distribution in the initial state (see § IV). Because p0 is 
purely fiducial (there is no characteristic density in a molecular 
cloud, especially not near cores), only the three dimensionless 
combinations, l2K, 101, and Mtot/Z are truly independent.1 A 
space of solutions that varies in two spatial dimensions and 
time and that is controlled by three independent parameters is 
almost impossible to explore thoroughly. To date, except for a 
few isolated cases, we have only followed the complete evolu- 
tions of a sequence of models in which the 0t, 21, and Mtot are 
held fixed (R = 7.2, 21 = 4.0, and Mtot = 7.0), and the turbu- 
lence parameter K is allowed to vary within reasonable limits. 
The rationale for singling out this sequence is discussed below 
and in § IV. 

"Standard ” Choice of Parameters 
Our interpretation of the extensive observational literature 

concerning dark clouds like Taurus suggests a “standard” set 
of dimensional parameters : a kinetic temperature T = 10 K 
and mean molecular mass m = 2.3mH (resulting in an isother- 
mal sound speed a = 0.19 km s"1); a reference (envelope) 
density p0/m = 1 x 103 cm-3; and a background magnetic 
field of B0 = 30 pG. These choices yield 01 = 12 (he., and 
Alfvén speed equal to 1.4 km s "1 at a density of 103 cm 3), and 
we also have 

Z0 = 0.11 pc , <I>o = 2.5 pG pc2 , m0 = 0.96 M0. 

A choice of 21 = 4.0 therefore represents an average separation 
between cores of -0.44 pc, which is probably somewhat on the 
low side for the Taurus molecular cloud. Our adoption of the 
value 21 = 4.0 represents a compromise between realism and 
sufficient numerical resolution to model the interior structure 
of a condensing ammonia core (whose diameter character- 
istically spans only 0.1 pc). As an additional aside, we note that 
the coincidence between the above numerical value for m0 and 
typical observed masses of ammonia cores (the mass inside a 
density contour = 3 x 104 cm-3) is purely accidental. 

If we now further adopt the values of y and cited in the 
previous subsection, we have an intrinsic diffusion time scale 
(associated with contraction from the envelope) 

t0 = 6 x 106 yr 

1 A fundamental choice of units could be based on a, L, and G, from which 
we could arrange Jf, B0, and Jttot (as we temporarily denote the dimensional 
total mass inside the tidal lobe in order to avoid confusion) into the three 
dimensionless combinations: 4nGlljC/a^ = l2K, Gll2LB0/a = 1$, and 
GJÏ ¡La2 = M, ,//. Nondimensionalization of the equations could then be 
based on the scalings: pL = a2/4nGl}, mL = a2L/G, BL = a2¡Gll2L, = 
2na2L/Gi/2, tL = [y#(47tG)1/2](L/4 Because only the derivatives of Pturb and h 
enter in the’calculations, the fiducial density appears nowhere in this formu- 
lation, either in the governing equations or in the boundary conditions (see 
eqs. [31] and [32]). Hence, apart from numerical convenience in comparisons 
with observations, the only rationale for introducing p0 is conceptual so that 
we can think in terms of independently varying the core spacing (2/), the level 
of turbulence (K), the envelope magnetic field (^), and the total mass inside the 
tidal lobe (Mtot). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
2.

 .
83

4L
 

838 LIZANO AND SHU Vol. 342 

that is nearly an order of magnitude longer than the dynamical 
time of the material inside the tidal lobe. As we shall see, 
however, the evolutionary time for a condensed ammonia core 
(the central region of the tidal lobe) can become much shorter 
than t0. 

The adoption of JT = 1.2 x 10“11 dyne cm-2 gives 
K = 8.7. This value holds roughly in the envelopes of “cold” 
clouds as well as their cores. For example, in the ammonia 
cores of Taurus (densities >3 x 104 cm-3), Myers and Benson 
(1983) obtain a mean turbulent contribution to the line width 
that is typically only 60% of sonic (corresponding to K = 11). 
Moreover, if one eliminates the cores that have already formed 
stars (Fuller and Myers 1987), the turbulent contribution drops 
to only 45% of sonic (corresponding to K = 6). Our strategy, 
then, will be to compute a number of cases spanning such 
values for K. 

Even though we will discuss results bearing in mind the 
standard dimensional set of parameters above, models with 
given & and / can, of course, be scaled to other physical situ- 
ations by the judicious use of equations (13), (14), (15), and (17). 
For example, with a reference density p0/m = 500 cm-3, a 
background magnetic field B0 = 21 pG (to correspond to 
& = 7.2), and the same temperature T = 10 K, the scalings are 
l0 = 0.16 pc, O0 = 3.6 pG pc2, t0 = 8.5 x 106 yr, and the mass 
unit is m0 = 1.4 M0. With 21 = 4.0, these choices yield bigger 
physical separations between cores and contain (for a given 
nondimensional Mtot) 40% more mass and flux within a given 
cell than the “standard case.” The dimensionless critical 
density needed to excite NH3 emission is now p = 60 (instead 
of p = 30), and so the dimensionless calculation has few grid 
points inside the central core region, and therefore less numeri- 
cal resolution. Moreover, K needs to be increased by a factor 
of 2 if we are to have the same observed ratio for turbulent to 
thermal speeds in the ammonia cores. 

III. METHOD OF SOLUTION 
To compute the evolution of the region, the equations (18), 

(22), and (23) are put into a difference form (spatially centered 
to give second-order accuracy) and solved together with the 
transcendental equation (19) on an Eulerian grid with equal 
spacing A. As explained earlier, we follow Nakano (1979) in 
calculating the quasi-static evolution via a set of equilibrium 
states. In this scheme the time development enters only 
through the diffusion equation (23). 

a) Diffusion Step 
The principal computational trick that we adopt is to give 

an operator-splitting interpretation for the substantial deriv- 
ative D/Dt in equation (23). In the first part of the split, D/Dt is 
interpreted as d/dt, i.e., we diffuse the magnetic flux relative to a 
fixed distribution of neutrals. The explicit advance in time of 
equation (23) is performed with small time steps ~(A/l&)2 to 
avoid numerical instabilities. This typically requires tens of 
thousands of small time steps to be taken to complete one 
evolutionary calculation. After a number of small time steps 
(typically a hundred), whose aggregate we refer to as a 
“diffusion step,” we update the resulting configuration for 
force balance. We achieve a new force balance by solving the 
equations of mechanical equilibrium, (18) and (22), subject to 
the constraint oi field freezing, with the new mass-to-flux dis- 
tribution obtained from the first part of the operator-splitting 
calculation. Thus, in the second part of the split, we effectively 
treat D/Dt as i#n • V, except that the scheme requires no explicit 

calculation for the neutral velocity un, although it is recover- 
able after the fact (see Appendix). This step of finding the equi- 
librium configuration given a fixed mass-to-flux distribution, 
equation (21), is well described by Mouchovias (1976); we 
modify his technique only in the details by which we carry out 
the iterative relaxations for the numerical solution of the gov- 
erning elliptic equations (see below). 

b) Algorithm to Achieve Force Balance 
1. For a guessed density p, we obtain the gravitational 

potential V by solving Poisson’s equation (22). We choose a 
relaxation method (see below) rather than a direct solver 
because the evolution proceeds through many diffusion steps, 
and it would be wasteful not to use the information available 
from the solution at the previous configuration as the first 
guess to achieve by iteration a current solution (which involves 
only a slightly changed state). 

2. Given the potential V, a new specific enthalpy /i(O) and a 
new density p are found such that dM/dQ> is correct. This is 
done by solving the specific enthalpy equation (19), as a tran- 
scendental equation for the density p given a guessed function- 
al form for h(<&) and the given gravitational potential V. The 
guessed h(d>) is corrected using Newton’s method, until the 
correct mass-to-flux distribution (eq. [21]) is obtained. 

3. With this new density p and enthalpy h, force balance 
across field lines, equation (18), is solved as an elliptic PDE for 
the magnetic flux O, again using a relaxation technique (see 
below). 
These three steps are repeated until the gravitational potential 
V, the density p, and the magnetic flux O are self-consistent. 
We are then ready to take another diffusion step (see previous 
subsection). 

c) Elliptic Equations and Relaxation Method 
Given appropriate boundary and initial conditions (see 

§ IV), we outline below the relaxation method by which we 
solve the elliptic PDEs (18) and (22) for the magnetic flux 0) 
and the gravitational potential V. (More details are given in 
Lizano 1988.) Let 'F represent either O or V. 

1. We solve the centered difference equation algebraically 
for 'F on all interior grid points (i, j) in terms of their nearest 
neighbors (i ± l,j) and (i,j± 1). We denote this operation 
schematically by the equation, 

'F = ^'F , (24) 

where ^ is a discrete averaging operator that may contain 
inhomogeneous terms (i.e., terms that involve dh/d<& or p). 
Using the values of the previous iterate for the nearest neigh- 
bors on the right-hand side of equation (24), we call the formal 
solution obtained for the left-hand side, the intermediate 
iterate 'F*. 

2. A new iterate ¥ is constructed by taking a fraction (1 - £) 
of the intermediate *F* and a fraction £ of the previous iterate, 
resulting in the equation, 

'F = 'F*-£¿'F, (25) 

where represents the difference between the intermediate 
iterate and the previous iterate. The quantity Ç is the relaxation 
parameter, and it is commonly chosen to be 0.5, a value that 
works reasonably well, at least empirically, under a wide 
variety of circumstances. The technique to be described below 
uses a variable ^ that considerably speeds up the rate of con- 
vergence (often by an order of magnitude in benchmark tests). 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
2.

 .
83

4L
 

No. 2 1989 MOLECULAR CLOUDS AND BIMODAL STAR FORMATION 839 

Steps 1 and 2 are repeated to find a solution that satisfies 

if'!' = ¥ — ^ = 0 (26) 

on all nonboundary grid points. After any finite number of 
iterations, will, in general, not be zero ; we now outline our 
method for choosing the relaxation parameter so as to maxi- 
mize the rate at which JSf'F approaches zero in a global sense. 

We begin by defining a global error function, 

€2((j) = £ (^2 = £ ^ s^F)2 , (27) 
u U 

where the sum is over all interior grid points and where we 
have made use of the fact that if is a linear operator when p 
and h are regarded as known. When expanded out algebrai- 
cally, the global error is a quadratic function of £ : 

€2(£) = K2 -2qÇ + r, (28) 

where 

PeeX(J?0'?)2, (29a) 
ij 

q (£>'¥*)(& ÖV) , (29b) 
ij 

r = X (if'F*)2 . (29c) 
ij 

Therefore, the positive-definite error e2(^) will be minimized for 
each iteration step when £ is chosen to be 

Ç = q/p. (30) 

The relaxation parameter ^ determined this way can have 
any value, positive or negative, and, unlike other arbitrary 
choices, is guaranteed (almost) to produce convergence. (The 
worst that one could do is to choose the previous iterate as the 
next guess, i.e., choose £ = 1; thus, the minimized error 
decreases monotonically as one iterates. Values of Ç between 0 
and 1 correspond to underrelaxation; less than zero, to over- 
relaxation; greater than 1, to going “backward”—i.e., previous 
iterates were “ better ” than current ones.) In practice, this tech- 
nique greatly accelerates convergence at the initial stages, but 
the improvement in the solution at the final stages (when the 
solution is almost “correct”) is slow. The calculation of e2 

gives us an explicit estimate of the global error involved in the 
solution of the finite-difference representation of our governing 
PDEs ; we usually continue to iterate until the quantity | J*fTV 
'F I is less than 10“ 6 at each grid point. 

d) T ests of Numerical Code 
Differences in the adopted boundary conditions and the lack 

of tabular results in the published papers prevented a compari- 
son of the developed numerical code with the results of 
Nakano (1979, 1982, 1983) and the equilibria of Mouschovias 
(1976) and TIN. Instead, we conducted two other tests. First, 
we considered the toy problem of an infinite cylinder sup- 
ported against gravity in the w direction by magnetic pressure, 
gas pressure, and rotation at a uniform angular rate Q about 
the z-axis. For the infinite cylinder, solution of the governing 
one-dimensional equations can easily be found by the Henyey 
technique (linearization about a previous iterate followed by 
inversion of tridiagonal matrices). The two-dimensional 
(axisymmetric three-dimensional) code presented in this paper 
does not include rotation, but the case of uniform rotation can 
easily be introduced by replacing the gravitational potential V 
with an effective potential Feff = V — il2m2/2. On carrying out 

the test, we found agreement between the two methods of solu- 
tion to better than 1% for grids containing as few as 20 points 
(in both w and z-dimensions in the two-dimensional code). 

Cylindrical clouds have limited density contrasts in com- 
parison to configurations contracting axisymmetrically in 
three-dimensions. Our second test thus concerned the capabil- 
ity of the two-dimensional code to resolve a large dynamic 
range. To do this, we solved the ordinary differential equation 
(see, e.g., Chandrasekhar 1939) governing the structure of a 
self-gravitating sphere that has the barotropic equation of 
state, (7), considered in this paper. We then compared this 
accurate density distribution with that obtained by the two- 
dimensional code when we included a uniform magnetic field 
(one that exerts no forces) and the same boundary conditions. 
As long as we used grids with 40 or more points in each dimen- 
sion, our two-dimensional solutions gave density distributions 
that agreed everywhere to better than 5% with the exact results 
even for density contrasts between the center and the surface 
that reached 1000. For larger density contrasts, our ability to 
resolve the center diminishes rapidly. Fortunately, the evolu- 
tionary calculations in § V show that molecular cloud cores 
with such high degrees of central concentration are likely to be 
in a state of dynamical collapse, so our capacity for following 
the true quasi-static stages is not seriously impaired by the use 
of relatively coarse gridding (40 points in each dimension). 

IV. BOUNDARY CONDITIONS, REFERENCE STATES, AND INITIAL 
STATES 

a) Boundary Conditions 
To mimic the physical situation of the existence of many 

dense regions (cores) in a much larger molecular cloud, we 
consider an infinite periodic chain of identical cells strung out 
along the z-axis. Needless to say, our posed scenario is highly 
idealized; in fact, the global structure so envisaged is unstable, 
a condition which may be resolved by real cores possessing 
motions relative to one another. Such motions are ignored by 
our assumption that core centers maintain a constant spacing 
equal to the cell dimension, 2L. Nevertheless, there does exist 
observational evidence that suggests the relative motions of 
cloud cores in the Taurus cloud to be small (Benson 1983; 
Fuller 1988), perhaps less than even the isothermal sound 
speed, a = 0.19 km s“1. Thus, the idealization that the centers 
of the individual cells have no relative motion with respect to 
each other probably represents a reasonable first step in trying 
to model the substructure of as complicated an object as a real 
molecular cloud. 

Consistent with the above approximation, the gravitational 
potential associated with the chain of condensations will define 
(nearly fixed) tidal lobes, inside of which the equipotentials will 
form closed surfaces that encompass the condensing cores 
completely, and outside of which the equipotential surfaces will 
connect to the entire chain (i.e., open to the common envelope). 
To compute the location of the tidal lobe exactly through the 
actual implementation of periodic boundary conditions would 
require us to know the distribution of matter in the common 
envelope. Since we do not know how to give a realistic descrip- 
tion for the state of the common envelope, we choose to formu- 
late our problem so as to apply all boundary conditions on the 
tidal lobe of a given cell (centered on the origin). To locate the 
tidal lobe, we assume that no mass is exchanged between the 
condensing cloud core and the common envelope. This fixes 
the mass inside the tidal lobe for all times to be equal to that 
present initially. 
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To the extent that the actual mass distribution inside a cell 
can be approximated by an “equivalent” spherical one so that 
higher multipole contributions are negligible, we may compute 
the location of the tidal lobe by considering a chain of point 
masses. We can then easily demonstrate that the locus of the 
tidal lobe is given by 

(31) 

For a? = 0, the solution passes through X-shaped cusps (saddle 
points of the potential) at z = +/. (Notice all lengths in eq. 
[31] scale with /, i.e., the solution written in normalized vari- 
ables w' = m/l and z' = z/l is universal [see footnote 1].) On 
the locus ^(ü7, z) = 0, the (Dirichlet) boundary conditions (in 
nondimensional form) for equations (18) and (22) become 

^ ^chain and 0> = w2/2 at the tidal lobe, (32a) 
where VchaiB is the potential (an arbitrary constant) due to the 
chain of gravitating cells. 

The concept of an infinite chain of identical cells gives only 
one possible realization for the tidal lobe. As formulated above, 
an alternative procedure would have been to focus on a single 
self-gravitating region from the start, and to define the tidal 
forces on it implicitly by specifying V = constant on an arbi- 
tarily shaped locus, z) = 0, with X-points at (m, z) = (0, 
± l). In any case, with the specific form (fixed for all time) given 
by equation (31), the axial and reflection symmetries discussed 
in § I la make it unnecessary to solve the equations inside the 
entire tidal lobe. One can consider just the upper right quad- 
rant of the meridional plane by including the additional 
(Neumann and Dirichlet) boundary conditions for V and d>: 

dV 
— = 0 and at d> = 0 at m = 0 , (32b) 

— = ° and — = 0 at z = 0 , (32c) 

that correspond to no gravitational force normal to the m- and 
z-axes, no source of magnetic fields on the z-axis, and no com- 
ponent of Bm on the m-axis. 

Notice that the imposition of a fixed outer location (tidal 
lobe) for a given mass of gas (Mtot), together with equations 
(32a)-(32c), makes incompatible any further specification of 
outer boundary conditions; in particular, we do not (indeed, 
cannot) require that the density just outside the tidal lobe 
equals p0 (i.e., that the pressure just outside the tidal lobe have 
some given value). Thus, in what follows below, we shall find 
that p in the initial state varies as a function of position along 
the tidal lobe, and that, furthermore, as a function of time, it 
tends to drop slightly at each such position when the interior 
contracts because of ambipolar diffusion. Implicit in the fixing 
°f Mtot for the mass within the tidal lobe is the assumption that 
the common envelope behaves in whatever manner necessary 
to satisfy the resulting consequences imposed by our adopted 
boundary conditions. (Recall that boundary conditions lie 
external to the region governed by the differential equations of 
the problem and represent merely the prejudice of the scientist 
concerning what the rest of the world is like outside of the 
system under discussion.) We consider the resultant behavior 
(slight lowering of the boundary pressures as a function of 
time) reasonable for the present case of an infinite chain of 
identically contracting molecular cloud cores. For the opposite 
extreme of an isolated core, the tendency of a large reservoir of 

matter in the envelope to barostat the “ surface pressure ” of 
the cell at its initial value (by allowing matter to slide along 
field lines across the tidal lobe) should remove the restriction 
that Miot is a constant (or that dM/dd> is fixed between diffu- 
sion steps). This equally interesting alternative deserves a study 
of its own and will not be discussed further in the present 
treatment. We merely note that the total drop of “surface 
pressure ” of the cell before the core undergoes a transition to 
dynamical collapse is not large in the cases calculated in the 
present paper, so that the inclusion of a slow accretion of 
material across the tidal lobe would probably not have affected 
the results very much except to hasten the earlier stages of the 
core-formation process. 

In any case, if the tidal lobe is located sufficiently far from 
the central regions occupied by the condensing core, then the 
important part of the solution should not be sensitive to details 
of the outer boundary conditions. In the case of the gravita- 
tional potential, this expectation is borne out by a posteriori 
checks of the various contributions to the total gravitational 
energy associated with a given cell. We find that even in our 
initial states (described below), less than 10% of the total gravi- 
tational energy comes from the contribution of the external 
potential due to matter outside the tidal lobe. The self- 
gravitational isolation of the core increases as ambipolar diffu- 
sion enhances its central concentration; consequently, many of 
our conclusions concerning the evolution of molecular cloud 
cores should hold independently of the detailed implementa- 
tion of outer boundary conditions. 

b) Reference States 
With the boundary conditions described above for Poisson’s 

equation, we may compute by our relaxation technique a self- 
consistent reference state that includes the elongation imposed 
by the tidal forces. (An adequate zeroth-order guess is a spher- 
ical distribution supported against self-gravity by the gas pres- 
sure in eq. [7], as discussed for the second of the test problems 
in § Hid.) Once the self-consistent (nonspherical) mass distribu- 
tion has been found, we thread the gas with a straight and 
uniform magnetic field of unit dimensionless strength 
(dimensional strength B0). This defines the dimensionless mass- 
to-flux distribution for our reference state. A field configu- 
ration which has <I> = ü72/2 everywhere, and not just at the 
tidal lobe, exerts, of course, no magnetic force anywhere, so our 
reference state is still in exact magnetostatic equilibrium. 

The upper left diagram of Figure 1 shows the equipotential 
contours of a reference state, with the location of the tidal lobe 
appearing as a dark curve. The corresponding isodensity con- 
tours are shown in the upper right diagram of Figure 1. The 
jagged heavy line represents the nearest grid point to the tidal 
lobe. To simplify bookkeeping in the code, outer boundary 
conditions are imposed on these grid points by interpolation 
from the actual tidal lobe. The logarithmic density profiles of 
the reference state, along the w- and z-directions, are displayed 
in the lower left diagram of Figure 1. Notice that a high value 
for K (30) keeps the density contrast low—a factor of only 1.75 
from the center to the tidal lobe—so that the mass-to-flux 
distribution would be similar (but not identical), in a non- 
dimensional sense, to the completely uniform reference states 
of Mouchovias (1976) and TIN (called by them as “initial” 
states). This (somewhat arbitrary) prejudice limits the range 
over which the total mass Mtot can differ from the “surface” 
density times the volume of the tidal lobe. For the reference 
state described here, Mtot = 7.0 (in units of m0). The fractional 
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Fig. 1.—The reference state, (a) Equipotential contours, labeled by their values, V = —7.5, —7.0, —6.5, —6.0, —5.5, —5.0, —4.5, —4.0, —3.5, and —3.0, are 
shown in the upper left diagram for one quadrant of the merididional plane. The tidal lobe, characterized by J^hain = — 5.13, is drawn as a dark curve, and separates 
closed and open equipotential surfaces, (b) Isodensity contours are shown in the upper right diagram, with labels marking p = 9, 8, 7, and 6. The jagged heavy curve 
marks the nearest grid point to the tidal lobe. In the absence of magnetic forces, isodensity contours lie on equipotential contours, a fact obscured in these diagrams 
by the different scales adopted for the horizontal axes, (c) Logarithmic density profiles, along the w- and z-axes, are shown in the lower left diagram. Notice the 
relatively small degree of central concentration of the reference state, (d) The mass M(O) enclosed inside the flux tube O as a fraction of the total Mtot inside the tidal 
lobe is shown in the lower right diagram. The assumed spatial distribution for the magnetic field is uniform and straight, i.e., <I> = m2/2. 

mass M(Q>)/Mtot contained within a given flux tube <I> is shown 
in the lower right diagram of Figure 1. Since the total flux Otot 
is 0.91 (in units of O0), the total mass-to-flux ratio in the cell 
Mtot/^tot = 7.7, and has been adjusted, by our intention to 
focus on a self-gravitating region, to exceed the critical mass- 
to-flux ratio defined by equation (1) (5.9 if c = 0.13). Although 
our reference state is supercritical by this definition, it is, in 
fact, stabilized against dynamical collapse by the nonmagnetic 
means of support (principally “turbulence”). This comment 
alerts us to the necessity of a better definition for the “ critical ” 
mass in circumstances when forces other than magnetic fields 
contribute appreciably to cloud support (see § VI). 

c) Initial States 
The equilibrium of the reference state in Figure 1 is main- 

tained by an artificially high level of turbulence (K equal to 30). 

To obtain realistic initial states, we decrease the value of K (to 
14 or lower), while performing iterations to maintain force 
balance and field freezing. In this fashion, we gradually replace 
turbulent support by increasing amounts of magnetic support. 
This procedure automatically introduces curvature of the field 
lines, for the same mass-to-flux distribution as the reference 
state, and leads to a flattening of the inner portions of the 
cloud. Figure 2 shows the resulting equilibria for the values of 
the turbulent parameter K = 12, 10, 6, and 2. Notice that the 
densities at the tidal lobe (no longer a single value for a given 
K) become smaller than the reference state. The effect arises by 
gas settling along field lines and compressing the central 
regions to dimensionless densities of pc = 13, 16, 23, and 72, 
respectively. The last equilibrium state, X = 2, is highly con- 
densed. It already looks like an ammonia core and contains a 
mass of 0.94 (in units of m0) within the isodensity contour of 30. 
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If ambipolar diffusion were allowed to proceed (see § V), the 
core would increase its degree of central concentration 
extremely quickly (< 105 yr), and go into a state of dynamical 
collapse. 

We do not ask how the prior evolution of a molecular cloud 
clump (turbulent decay, or gas motions along field lines, or 
ambipolar diffusion in the envelope over the natural time of 
~r0) might have led to the production of the magnetostatic 
equilibria seen in Figure 2, but arbitrarily reset the clock at 
i = 0 for each of them. With these initial states, then, we follow 
their future evolution to develop (or not to develop) condensed 
cores through the subsequent process of ambipolar diffusion of 

the ions and magnetic field. The results of our evolutionary 
calculations are discussed in the next section. 

V. RESULTS OF QUASI-STATIC EVOLUTION BY 
AMBIPOLAR DIFFUSION 

The evolution of a large number of initial states was com- 
puted by varying the turbulent parameter K, in a sequence 
where the Alfvén parameter the dimensionless spacing 21, 
and the dimensionless total mass Mtot within the tidal lobe 
were held fixed at 12,4.0, and 7.0, respectively. We discuss here 
only three representative cases: K = 6, K = 10, and K = 12. In 
particular, we shall show that when the turbulent parameter is 

a & 

cr o 
Fig. 2.—Initial states, equilibria for the values of the turbulent parameter K = 12,10, 6, and 2, with isodensity contours as marked. The central densities are 

pc = 13,16, 23, and 72, respectively. The piling up of the contours at the position of the nearest grid point to the tidal lobe is an artifact of the plotting routine. The 
equilibrium state corresponding to K = 2 is already fairly condensed and would be observable as an ammonia core. 
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sufficiently small, ambipolar diffusion of the magnetic field in 
molecular clouds can quasi-statically produce, within the 
requisite time scale, centrally condensed pockets of gas and 
dust having the observed properties of ammonia cores. More- 
over, since the contraction is very nonhomologous, with the 
center evolving quickly compared to the outer regions, the 
developing core will eventually collapse from inside-out to form 
stars in the qualitative manner originally envisaged by Shu 
(1977). 

To check the quasistatic approximation, we estimate the 
velocity of the neutrals by the method explained in the Appen- 
dix. We do not carry the computations beyond the time when 
these velocities become sonic along field lines (see below). To 
show the evolution of the magnetic flux tubes in time, we will 
always plot the set of magnetic flux tubes that cross the tidal 
lobe (where O = ro2/2) at the axial positions w = 0.1-1.3 in 
steps of 0.1. For ease of visualization, the field lines beyond this 
point in the common envelope are plotted as being uniform in 
strength and vertical in direction, which introduces a very 
slight kink at the tidal lobe for the displayed models. This kink 
has no physical significance (e.g., in terms of current sheets) 
since no equations for the cloud or field structure were solved 
outside of the tidal lobe. 

a) Evolution with Turbulent Parameter K = 6 
The case K = 6 corresponds to a turbulent speed that is 

45% of the isothermal sound speed at the density p = 30. 
Figure 3 shows the isodensity contours and magnetic flux 
tubes for this case at the time t — 0.21 (solid lines). The dashed 
lines indicate the location of the flux tubes at time i = 0. (To 
compare the density contours at i = 0, see Fig. 2.) Although the 

Fig. 3.—The superposition of isodensity contours and magnetic flux tubes 
for the case with K = 6 at the time i = 0.21 {solid lines). The dashed lines give 
the magnetic flux tubes at t = 0. Compare the density contours here with those 
at i = 0 as shown in Fig. 2. 

magnetic flux has diffused outward relative to the matter dis- 
tribution by ambipolar diffusion, it has been dragged in, rela- 
tive to an Eulerian grid, by the gravitational concentration of 
the neutrals. Therefore, the field strength B increases even 
though ambipolar diffusion is occurring (see below). 

From f = 0 to t = 0.21, the central density pc has increased 
from an initial value 23 to a value 97, well in excess of the 
critical density 30 needed to excite ammonia emission (if we 
adopt the “standard set” of dimensional parameters men- 
tioned in § II). At the time t = 0.21, the mass inside the density 
contour p = 30 is 1.0 (in units of m0). 

For m0 = 0.96 M0, the mass contained within p = 30 is 
comparable to typical values measured for Taurus ammonia 
cores and to the inferred masses of the sunlike stars that they 
form. However, our calculations here explicitly demonstrate 
that the rough equality between the latter two masses is a pure 
coincidence; nothing special exists about the isodensity 
contour p = 30 that would distinguish it mechanically from 
p = 10 (or 100, or 1). If the material (1.0mo) inside p = 30 were 
to fall into a star, without the interference of a protostellar 
outflow, nothing would prevent the entire mass Mtot inside the 
tidal lobe (7.0mo) from following. Nor would the infall process 
stop there, because after this tidal lobe has emptied, material 
would be transferred over from neighboring tidal lobes (if 
gravitational collapse is not perfectly synchronized in all cells), 
as well as fall in from the common envelope. In other words, no 
consideration of the mechanical properties of molecular clouds 
leads to a natural identification of stellar mass scales; stellar 
masses are likely to be determined by additional processes that 
occur inside the stars themselves (see the review of SAL). 

Returning to the discussion of our cloud model, we note that 
the radial extent of the p = 30 contour also agrees well 
(assuming /0 = 0.11 pc) with the typical observed semidiameter 
of ammonia cores, ~0.05 pc. The statistics of the shapes of 
actual ammonia cores is not well known; the theoretical model 
here produces a modest axial ratio in z:w of ~2:3 at the 
density contour p = 30; at a later time t = 0.23 (see below), it 
becomes 1:2. 

The upper left and right diagrams of Figure 4 show the 
logarithmic density profiles along the m and z-axis for i = 0 
and i = 0.21, respectively. Both profiles in the w and z- 
directions exhibit a power-law behavior in the range 
— 0.6 < log (w, z) < 0.0. (The center is not resolved, and 
boundary conditions influence the results at large distances 
from the center.) In an intermediate range, the slope s of the 
power law, p oc Z~s, where Z corresponds to m or z, is s « 1.0 for 
t = 0, and s ä 1.8 for i = 0.21. The latter exponent is close to 
the value 2 that characterizes a singular isothermal sphere 
(dashed line), where the dimensional density p = (a2/2nG)r~2. 
(See Shu 1977.) 

The mass-to-flux distribution dM/dO> (for a flux tube which 
crosses the equator at the radius m) and the integrated mass 
M(Q>) interior to a given flux tube as a fraction of the total 
Mtot are shown, for both times, as the lower left and lower right 
diagrams of Figure 4. Because the magnetic field diffuses rela- 
tive to the matter, at i = 0.21 the quantity dM/d® for the 
central flux tube has increased by a factor of 1.5 relative to 
i = 0. This modest amount of flux loss can produce the dra- 
matic increase in central concentration seen in this model 
because of the relative importance of magnetic support com- 
pared to thermal support in the initial state. When even a 
fraction of this support is lost, the gas adjusts, not only by 
contracting across field lines, but also by sliding down them to 
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Fig. 4.—Evolution of the case K = 6. The logarithmic density profiles along the m- and z- axes i = 0 and i = 0.21 are given in the upper left and right diagrams, 
respectively. The dashed line gives the density profile for the singular isothermal sphere, p = (a2/3nG)r~2 expressed in nondimensional units. The lower left diagram 
displays, for both times, the mass-to-flux distribution dM/d<& for a flux tube which crosses the equator at xu; the lower right diagram, the mass M(<I>) enclosed within 
flux tube O as a fraction of the total Mtot in the tidal lobe. 

greatly concentrate the material in the central regions. Thus, 
ambipolar diffusion can play a crucial part in bringing pieces of 
molecular clouds much closer to conditions of (local) gravita- 
tional collapse without having (yet) had a large role in the 
resolution of the overall magnetic flux problem. This fact goes 
a long way to settling the ongoing controversy between Mous- 
chovias (1987) and Nakano (1988) concerning when clouds 
suffer dynamical collapse and magnetic fields decouple (see 
also SAL). Logically and mechanically, these issues involve 
two separate topics; tying them together with the name 
dynamical decoupling serves only to confuse the argument. In 
our models, dynamical collapse is initiated while the field is 
still reasonably well coupled to the bulk of the gas; the major 
episode of flux loss (decoupling) must occur at much higher 
central densities when self-gravitation has already over- 
whelmed the magnetic and thermal means of support. 

Up to i = 0.21, the velocities along field lines are subsonic. 
Across field lines the neutral velocities are not only sub- 
magnetosonic but also subsonic. The velocities increase as the 

core evolves. As was also found by Nakano (1982) for a differ- 
ent parameter regime, the evolution in the last stages proceeds 
very rapidly. Figure 5 shows the isodensity contours and mag- 
netic flux tubes, the logarithmic density profiles in the w- and 
z-directions, the mass-to-flux distribution, and the magnetic 
field versus density along the equator z = 0 at the slightly later 
time t = 0.23. At i = 0.23, the mass inside the density contour 
p = 30 has increased to 1.6, and the central density has risen to 
370, with a power-law exponent for the density distribution at 
intermediate scales of s æ 2. Along the z-axis, the coefficient in 
the dimensional relation p = Cr~2 is well represented by the 
thermal value C = a2/2nG; on the m-axis, C is larger because 
of the contribution of the magnetic support. Nevertheless, 
dM/d<!> for the central flux tubes have not increased very much 
compared to the time i = 0.21. Past t = 0.23, the available 
means of support (mostly thermal and magnetic in the densest 
parts of the cloud) are unable to prevent a runaway increase of 
the central density. 

We cannot follow the evolution during the stage when the 
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ST 

log(CT, z) 

Fig. 5.—Isodensity contours and magnetic flux lines at the time t = 0.23 are shown in the upper diagram; logarithmic density profiles along the m- and z-axes, in 
the upper left diagram. The density contours below p = 10 are 9, 8, 7, 6, 5, 4, 3, and 2. The dashed line gives the density profile for the singular isothermal sphere, 
p = (a2/2nG)r~2 expressed in nondimensional units. The mass-to-flux distribution {lower left) and the magnetic field at z = 0 vs. density {lower right) are displayed for 
the times i = 0.21 and t = 0.23. 

core tries to develop a central cusp (akin to a singular isother- 
mal sphere) because the flow velocities along field lines (as 
computed a posteriori via the method outlined in the 
Appendix) approach supersonic values, and the quasi-static 
assumption breaks down. The increasing density contrast also 
strains the dynamical-range capabilities of our finite-difference 
code. Nevertheless, the existing results do suggest that an 
inside-out collapse initiated from a power-law density distribu- 
tion is a good description of the dynamical stages of the evolu- 
tion of (low-mass) protostars (see the review of SAL). 

If t0 equals its “standard” value of 6.0 x 106 yr, this model 
evolves in i ~ 1.3 x 10° yr from an “initial” state with no 
ammonia emission to a configuration that looks, in its inner- 
most parts, like a classical ammonia core (Fig. 3). After this 
point, the evolution in the center of the ammonia core proceeds 
very quickly, reaching a stage of dynamical collapse in another 
~105 yr. Such short time scales imply that by the time 
ammonia cores are observed, an appreciable fraction of the 

cores should have formed stars. This is in qualitative agree- 
ment with the observation (see § la) that roughly half of the 
ammonia cores show embedded infrared sources (Beichman et 
al 1986) and with the simple statistical arguments employed by 
Myers et al (1987). A change in the value of the (somewhat 
uncertain) fractional ionization coefficient, would linearly 
affect the scaling for the basic time scale t0, without changing 
any other part of our calculation (except for the numerical 
estimates for flow and drift speeds). 

b) Evolution with Turbulent Parameter K = 10 
The case K = 10 corresponds to a turbulent speed that is 

58% of the isothermal sound speed at the density p = 30. 
Figure 6 shows a superposition of isodensity contours and 
magnetic flux lines at the time i = 1.4 (solid lines). The dashed 
lines indicate the location of the flux tubes at i = 0. By outward 
drift of the ions and field, the core has condensed from an 
initial central density pc = 16 to pc = 103. The mass inside the 
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ü 
Fig. 6.—The superposition of isodensity contours and magnetic flux tubes 

for the case with X = 10 at the time i = 1.4 (solid lines). The dashed lines give 
the magnetic flux tubes at i = 0. Compare the density contours here with those 
at i = 0 as shown in Fig. 2. 

density contour p = 30 is 0.86; inside p = 10, it is 2.45. The 
axial ratio of the p = 30 contour is nearly 1:1. From this figure 
we see that, unlike the case K = 6, the magnetic flux tubes have 
not yet been much dragged in at the center, relative to their 
position at i = 0. 

The upper left and right diagrams of Figure 7 show the 
logarithmic density profiles along the w- and z-axes for i = 0 
and i = 1.4, respectively. The density contrast along the z-axis 
has increased from 4.4 at i = 0, to 35 at i = 1.4. The slope of 
the density power law in the range —0.6 < log (w, z) < 0.0 is 
s ä 1.0 for i = 0 and s ^ 1.6 for t = 1.4. The mass-to-flux dis- 
tribution dM/d<t> and the fractional mass M enclosed within 
flux O as a fraction of the total are shown, for both times, as the 
lower left and lower right diagrams of Figure 7. 

We conclude that this model evolves toward a state that 
looks like an ammonia core in a time scale ~107 yr. This 
should be contrasted with the model where X = 6 for which 
the corresponding time scale is -106 yr. The present model 
takes longer to condense because the drift speed, driven by the 
Lorentz force (l/47r)(V x B) x B (see eq. [5]), is smaller in a 
cloud for which turbulence provides a greater fraction of the 
total support against self-gravitation. 

c) Evolution with Turbulent Parameter K = 12 
The trend noted above leads to a threshold phenomenon 

beyond which ammonia cores will not form. The case K = 12 
corresponds to a turbulent speed that is 63% of the isothermal 
sound speed at the density p = 30. Figure 8 shows a super- 
position of isodensity contours and magnetic flux lines at the 
time i = 1.2 (solid lines). The dashed lines indicate the location 
of the flux tubes at i = 0. The core condensed from an initial 
central density pc = 14 only to pc = 20, not enough to excite 

ammonia emission. We stopped the evolution at this time 
because the mass distribution has remained virtually 
unchanged since t = 0.3, when the magnetic field straightened 
almost completely by drifting outward relative to the Eulerian 
grid at all positions in the cloud. Although the magnetic field 
plays no direct part in cloud support past this point, in a more 
realistic treatment of interstellar turbulence, even field lines 
that are straight and uniform on the average may have a crucial 
role as the carrier of momentum transport by Alfvén waves. 

The upper left and right diagrams of Figure 9 show the 
logarithmic density profiles along the m- and z-axes for i = 0 
and i = 1.2, respectively. In the range -0.6 < log (m, z) < 0.0, 
the slope s of the density power law is s » 0.9 for i = 0 and 
s & 1.0 for t = 1.2. The outer parts of the final configuration 
has the exponent, but not the coefficient, of a singular logatro- 
pic sphere (dashed line), which corresponds to an equation 
of state P = jrin(p/p0) and a density distribution p = 
(X'/27iG)1/2r~1. (See Adams, Lizano, and Shu 1988.) This 
region thus satisfies the empirical relationship for sufficiently 
large parts of molecular clouds (away from cloud cores) that 
the column density remains roughly constant independent of 
size (see, e.g., Solomon et al 1987). The mass-to-flux distribu- 
tion dM/dQ> and the mass M((¡>) contained within flux are 
shown, for both times, as the lower left and lower right dia- 
grams of Figure 9. 

The case K = 12 has failed to form an identifiable ammonia 
core because a stable equilibrium state is accessible to it where 
the (mean) magnetic field can evolve asymptotically to become 
straight and uniform, with the total support against self- 
gravitation taken up by the turbulent and thermal pressure. 
The evolution from the “initial” state is very slow 
(characteristic of envelope values) because the drift velocity is 
proportional to the magnetic stress, and the latter is almost 
zero. The same conclusion holds with greater force for all 
models with higher values of the turbulent parameter K. It is 
reasonable to ask, of course, how a high level of turbulent 
support in molecular clouds can be physically sustained 
without the formation of cores and stars (with energetic 
outflows), but this is a complicated topic whose discussion we 
defer to § VII. 

d) Summary of Results 
Table 1 shows a summary of results that we obtained with 

& = 7.2, 21 = 4.0, and Mtot = 7.0, with different values of the 
turbulent parameter K. The entries contain (1) the elapsed time 
since the “ initial ” state before the formation of a recognizable 
dense ammonia core; (2) the masses within the fiducial den- 
sities p = 60, p = 30, and p = 10; (3) the average strength of 
the magnetic field inside the p = 30 contour. 

TABLE 1 
Summary of Results 

M60
b M30

b M10
b B30

c 

6  0.21 0.26 1.00 2.84 1.29 
8  0.46 0.53 1.15 2.75 1.18 

10  1.40 0.31 0.86 2.45 1.10 
a The time scale t for the formation of an ammonia core is 

given in units of t0. 
b M60, M30, and M10 are, respectively, the mass, in units of m0, 

inside the density contour p = 60, p = 30, and p = 10. 
c B30 is the average magnetic field, in units of B0, inside the 

density contour p = 30. (For values of the scalings i0, m0, and B0 ; 
see § II.) 
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log(0, z) log(&, z) 

Fig. 7.—Evolution of the case K = 10. The logarithmic density profiles along the w- and z-axes i = 0 and t = 1.4 are given in the upper left and right diagrams, 
respectively. The dashed line gives the density profile for the singular isothermal sphere, p = (a2/2nG)r~2 expressed in nondimensional units. The lower left diagram 
displays, for both times, the mass-to-flux distribution dM/dQ> for a flux tube that crosses the equator at w; the lower right diagram, the mass M(<!>) enclosed within 
flux tube O as a fraction of the total Mtot in the tidal lobe. 

The average magnetic fields inside the density contour 
p = 30 are larger for models with smaller K because the mag- 
netic field shares a greater fraction of the burden for support 
against self-gravity. Figure 10 shows that the magnetic field on 
the equator at i = 0 is proportional to pK where k ~ 0.2-0.4, in 
qualitative agreement with the behavior found by other 
authors for self-gravitating clouds with similar (relatively flat) 
mass-to-flux distributions (e.g., Mouschovias 1976). However, 
only limited density contrasts and magnetic field variations are 
attainable for stable configurations having such relatively flat 
mass-to-flux distributions, in conflict with observations of real 
molecular clouds. Fortunately, when the turbulent parameter 
K is less than a threshold value (K æ 11), the density at the 
center can increase with time due to the occurrence of ambipol- 
ar diffusion. The accompanying increase of magnetic field 
demonstrates that, at the characteristic densities associated 
with cloud cores, good frictional coupling still exists between 
neutrals and ions (and magnetic field). Notice that a power-law 
scaling B cc pK holds only in the innermost regions. In the 

outer regions, B actually drops below the envelope value 
(because no flux has been allowed to cross the tidal lobe) 
through the inward movement of interior field lines. (Since 
magnetic fields are frozen to the ions, relative motion between 
ions and neutrals can act, in general, to increase the field 
strength at one place in the cloud only at the expense of 
decreasing it elsewhere.) Figure 11 shows that the magnetic 
field in the center tends to increase with density as a function of 
time roughly as p£ where /c ~ 0.5 (see, e.g., Scott and Black 
1980), but only in circumstances when the gravitational con- 
traction along and across field lines more than makes up for 
the losses due to ambipolar diffusion (case K = 6 and the later 
stages of X = 10 as compared to X = 12; see also Nakano 
1984). All in all, then, Figures 10 and 11 should provide strong 
caution against the indiscriminate use of scaling relationships 
of the type £ oc pK to interpret observational data, since the 
nonunique coefficient of proportionality depends sensitively on 
the evolutionary history of the self-gravitating region. 

Finally, we note that the tubulence in these models is always 
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0      —JJ kL-lil 1,1 
0 .5 1 

a 
Fig. 8.—The superposition of isodensity contours and magnetic flux tubes 

for the case ^ = 12 at the time i = 1.2 (solid lines). The dashed lines give the 
magnetic flux tubes at i = 0. Compare the density contours here with those at 
i = 0 as shown in Fig. 2. 

sub-Alfvénic. The ratio of the turbulent and Alfvén speeds at 
any point is 

tw> _ K112 

vA MB 

With M = 12 and B>\, this ratio is always less than unity for 
the models presented here; indeed, it is everywhere less than 
0.48 for K = 12 and less than 0.34 for X = 6. For real molecu- 
lar clouds, some sort of self-regulating mechanism involving 
nonlinear waves may be at work to keep the density depen- 
dence of pturb the same as vA (thereby “explaining” eq. [10]) 
when B does not have large spatial variations (see the dis- 
cussion in SAL). 

VI. CRITICAL AND UMBRAL MASSES 
The name “ critical mass ” has traditionally been reserved for 

the mass that can be supported against self-gravity by the 
global magnetic field (e.g., Mestel 1965; Mouschovias and 
Spitzer 1976; Mestel and Ray 1985; but see TIN). If thermal 
pressure is the only other agent of support, this nomenclature 
causes little confusion for large molecular clouds where mag- 
netic fields play a much more important role. However, turbu- 
lence can modify conditions in the envelope of a cloud (which 
contains the bulk of the mass) by factors of order 2, so we 
propose to modify the standard convention by using the name 
“ magnetic critical mass ” for the expression in equation (1), and 
by defining another kind of critical mass via the virial theorem. 
For a static distribution of gas, well coupled to magnetic fields, 

the scalar virial theorem, in dimensional units, reads (see the 
trace of eq. [22] on p. 580 of Chandrasekhar 1961): 

i(3p+ 

^ (I B\2x - 2x • BB) + Pxj -n^x, 

where the right-hand side involves an integral over a surface 
(with outward unit normal n) that encloses the volume 
involved in the integration on the left-hand side. If we sche- 
matically perform the integrations over the tidal lobe, we can 
write the resulting expression as 

2cta2M + ß2(2nJT)L3 + y2B2
0 L

3 - GM2/L = 0 , (33) 

where we have normalized the coefficient of the self- 
gravitational term and absorbed the effects of the surface terms 
and the details of the volume integration into the dimension- 
less coefficients a, /?, and y (not to be confused with the drag 
coefficient y in eqs. [5], [15], and [39]). In particular, a 
straightforward application of the divergence theorem demon- 
strates that the surface and volume terms cancel identically for 
a constant pressure P or magnetic field B. 

If we apply the virial theorem to the critical state and regard 
it as a quadratic equation for the critical mass, we may solve 
equation (33) to obtain 

Mcr = Ma + (M2 + + M|)1/2 . (34) 

In the above, Ma is the thermal mass 

Ma = cc(a2/G)L (35) 

and equals a/2 times the mass inside a radius L of a singular 
isothermal sphere; MKis the turbulent mass 

Mk = ß(2nX'/ G)1121} (36) 

and equals ß times the mass inside the radius L of a singular 
logatropic sphere; and MBis the magnetic critical mass 

Mb = y(B0/Gll2)L2 , (37) 

with y = 1.4c if we wish to bring our configurations in accord 
with equation (1). 

Without referring to the fiducial envelope density p0, note 
that Ma, Mk, and MB are the only three masses one can obtain 
with the dimensional parameters of the problem: the gravita- 
tional constant G, the sound speed a, the turbulent parameter 
JT, the magnetic field J50, and the separation between the cells 
2L. Given the actual total (dimensional) mass Mtot inside the 
tidal lobe, we can form only three independent nondimensional 
mass ratios: Ma/MioV MK/Mtot9 and MB/Mioi. For the models 
in § V, these three dimensionless ratios are related to /, K, and 
M through MJm0 = a/, MK/m0 = ß(K/2)1/2l2, and MB/m0 = 
yMl2, with Mtjm0 = 7.0. Our experience (see below) leads us 
to advocate the values, a = 1.1 and ß = 0.47, for centrally con- 
densed states that are marginally stable to gravitational col- 
lapse. 

All of the models presented in this paper have masses Mtot 

less than the critical mass defined by equation (34); by our new 
definition, they correspond to subcritical states. Initially sub- 
critical states that are magnetically supercritical, Mtot > MB, 
could, in principle, be induced to collapse gravitationally 
without any loss of magnetic flux (conservation of Mß oc B0 L2) 
by a large external compression (e.g., decrease of L) that suffi- 
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Fig. 9.—Evolution of the case K = 12. The logarithmic density profiles along the w- and z-axes t = 0 and t = 1.2 are given in the upper left and right diagrams, 
respectively. The dashed line gives the density profile for the singular logatropic sphere, p = (X'/2nG)il2r~i, expressed in nondimensional units. The lower left 
diagram displays, at both times, the mass-to-flux distribution dM/dO for a flux tube that crosses the equator at the lower right diagram, the mass M(<&) enclosed 
within flux tube O as a fraction of the total Mtot in the tidal lobe. 

ciently lowers Ma and MK to make the final state supercritical. 
In the absence of such effects, secular evolution of subcritical 
states can be achieved only by flux redistribution, in which case 
the evolutionary outcome bifurcates into two distinct regimes. 
Ambipolar diffusion acts so as to try to straighten out the 
magnetic field lines and make them uniform. If the cloud can 
succeed in doing this, the magnetic forces ultimately vanish, 
and the cancelling of the surface and volume terms in the virial 
theorem gives y = 0 in the expression (37) for MB. When = 
0 in the final state, we call the resulting expression for equation 
(34), the umbral mass (pronounced úmbrál, the Spanish word 
for threshold) : 

Mum = Ma + (Ma + M2
k)

112 ■ (38) 

If the mass Mtot (inside the tidal lobe) exceeds Mum (e.g., the 
case X = 6 in the previous section), we say the region is super- 
umbral, and ambipolar diffusion will sooner or later cause the 
formation of a dense core that becomes increasingly dark 

(invoking the sense of the latin root “umbra”). In the super- 
umbral case, the self-gravitation is strong enough to continue 
to pull in the field lines, despite the ongoing ambipolar diffu- 
sion. If, on the other hand, the mass Mtot is less than Mum (e.g., 
the case X = 12 in the previous section), we say the region is 
subumbral and ambipolar diffusion can straighten out the field 
lines without the production of an ever denser central region 
that eventually leads to the birth of a star. 

By constructing a closely spaced evolutionary sequence of 
models for Mtot/m0 = 7.0, 21 = 4.0, = 7.2, we determined 
K = 11 to correspond to the umbral case. We subsequently 
built a set of equilibria (like our initial states) with Mi(Jm0 = 
7.0, 21 = 4.0, & = 4.5, and artificially lowered K until force- 
balance iterations no longer converged. In this manner, we 
found that K = 4.0 corresponds to the critical case for the new 
set of parameters. From equations (38) and (34), with y = 0.19 
in the latter, we obtain two constraints for the coefficients a 
and ß. Solving these constraints yields the values a = 1.1 and 
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r. 10, . Relatlonships between log (B) and log (p) m the equatorial plane. In the case K = 6 (upper left), ambipolar diffusion has failed to prevent the magnetic held irom being dragged in by the neutrals as the core condenses gravitationally. In the case K = 10 (upper and lower right), the magnetic field succeeds is drifting out 
(even relative to an Eulenan description) for times earlier than t = 1.2, but the strong gravity eventually wins and begins to drag the field in along with the 
condensing core. In the case K = 12 (lower right corner), the magnetic field monotonically drifts from the inside to the outside, and by the time i = 1.2, ambipolar 
diflusion has nearly established a uniform (and straight) field configuration. 

ß = 0.47 mentioned earlier. (It is possible to derive the same 
conclusions by performing the virial integrations directly.) The 
formulae (34}-(38) now permit us to extend the overall results 
of our study to portions of parameter space not directly 
covered by our model survey. In particular, notice that if the 
turbulence is negligible, equation (38) gives Mum = 2Ma, nearly 
equal to the mass of the singular isothermal sphere (because 
a » 1) inside a radius L. 

Figure 12 shows a plot of the ratio of umbral mass to critical 
mass, Mum/Mcr, versus the ratio of the mass inside the tidal 
lobe to the critical mass, Mtot/Mcr, for the set of models with 
dimensionless spacing 21 = 4.0 and magnetic parameter 
& = 7.2, when the turbulent parameter varies from K = 0 
(leftmost solid triangle) to K = 11 (umbral case) to K = 30 
(rightmost open triangle). There are three regions in the plane: 
supercritical (Mtot > Mcr), subcritical-superumbral (Mum < 
Mtot < Mcr) and subcritical-subumbral (Mtot < Mum < Mcr). In 
the first case, the cloud as a whole collapses dynamically, frag- 
ments, and forms either a bound cluster or a tight group of OB 
stars (see § I). In the second case, dense ammonia cores are 
formed by ambipolar diffusion; these cores will collapse from 
inside-out and form (predominantly low-mass) stars. In the 
third case, unless the turbulence decays, no runaway core col- 
lapse or star formation will occur. 

When cores do form with central densities that exceed either 
P.r = Jf'/a2 = Kp0, or pB = Bl/Ana2 = $2p0(>Po if magnetic 
fields dominate over thermal pressure in supporting the 
envelope), they tend to acquire power-law profiles, p & Cr~2, 

where r is the dimensional distance from the center of the core, 
with an effective C somewhat greater than the value a2/2nG 
appropriate for a singular isothermal sphere (or “equivalent 
sound speed” aeff somewhat greater than a; see Stabler, Shu, 
and Taam 1980, and SAL). If we assume slip speeds vd to 
approach sonic values, the formation of a central cusp and 
attendant core runaway can be estimated to occur with a char- 
acteristic time scale i* (cf. eq. [5] with lengths that scale as at* 
and densities that scale as 1/47tGí^): 

11/2/ * \ 
(47iG)1/2J \G1/2Bo/ ’ (39) 

~ 3 x 105 yr using “ standard ” molecular cloud parameters.2 

VII. CONCLUSIONS 

a) Limitations of the Present Study 
In this paper we have studied the origin of dense cores by the 

process of ambipolar diffusion in molecular clouds. To obtain 
a tractable problem, we have made a number of simplifying 
assumptions—quasi-static evolution, axial symmetry, fixed 
tidal lobe, and so on—the most serious of which are the follow- 
ing. 

2 Notice that the quantity in the second bracket of equation (39) equals the 
time scale (4nGpB)~112. For “standard” parameters, notice also the numerical 
coincidence between pB and the critical density needed to excite ammonia 
emission. 
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Fig. 11.—Evolution of the central values of the magnetic field and gas density. The quantities log (Bc) and log (pc) are plotted for the different cases, demonstrat- 
ing that the formation of an ammonia core (K = 6 and K = 10) is accompanied (eventually) by an increase of Bc, while failure to produce a dense core {K = 12) 
results in the gradual straightening of the magnetic field lines. 

Fig. 12.—The ratio of umbral mass to critical mass, Mum/Mcr, vs. the ratio of the total mass in the tidal lobe to the critical mass, Mtot/Mcr. The symbols refer to 
the set of models with dimensionless spacing 21 = 4.0 and magnetic parameter ^ = 7.2, with the turbulent parameter varying from K = 0 (leftmost solid triangle) to 
K = 11 (umbral case) to K = 30 (rightmost open triangle). In the supercritical case, Mtot > Mcr, the cloud as a whole collapses and possibly fragments; in the 
subcritical-superumbral case, Mum < Mtot < Mcr, dense ammonia cores form by ambipolar diffusion and collapse from inside-out to form stars; in the subcritical- 
subumbral case, Mtot < Mum < Mcr, unless the turbulence decays, no core or star formation will occur. 
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1. Cloud turbulence, which probably represents an ensem- 
ble of nonlinear Alfvén waves (Arons and Max 1975; Zweibel 
and Josafatsson 1984; Myers 1987; Shu 1987), has been mim- 
icked in an ad hoc manner as a scalar pressure, satisfying the 
simple barotropic equation of state Pturb = jrin(p/p0). Unlike 
the isothermal sound speed a, for which we do possess a good 
theoretical understanding (see, e.g., de Jong, Boland, and Dal- 
garno 1980 or Lizano and Shu 1987), our treatment of turbu- 
lent motions—in particular, the value of the constant JT 
(whose nondimensional analog is K)—currently rests entirely 
on a semi-empirical foundation. 

2. We do not have an a priori explanation (from consider- 
ations of the global structure of the cloud clump, for example) 
for the mean separations 2L of cloud cores. In our calculations, 
we merely rely on observations to give us the value for 2L (or 
its nondimensional analog 21). 

3. The calculations of Moushovias (1976) and TIN do 
provide some theoretical guidance to estimate the strength B0 

of the magnetic field in the common envelope of a molecular 
cloud. However, construction of such models depends on a 
specification of the mass-to-flux distribution, which requires a 
theory of molecular cloud formation. In the absence of a defini- 
tive theory, we need to call upon observations (see, e.g., 
Goodman et al 1988) for knowledge concerning B0 (or its 
nondimensional analog ^). 

4. We have ignored the motions of individual cores in a 
larger cloud clump with respect to one another; we have also 
ignored the dynamical effects of rotation; and by adopting the 
assumption of force balance at the outset, we have forfeited the 
ability to follow the transition to the fully dynamical stages of 
contraction. 

Of these limitations, a simple extension of the existing calcu- 
lations could help to include the main effects of rotation. Until 
the cloud goes into dynamical collapse, magnetic fields tend to 
enforce uniform rotation at an angular rate Q parallel to the 
mean field (Gillis, Mestel, and Paris 1979; Mouschovias and 
Paleologou 1980; Strom et al. 1985; Hey er 1986). Such a state 
of affairs could easily be accounted for by the introduction of 
an effective potential Kf( = V — Q2m2/2. In contrast, the 
development of powerful multidimensional magnetohydro- 
dynamic codes may be necessary to make fundamental theo- 
retical progress on some of the other problems. In particular, 
the elucidation of the global structure and evolution of large 
molecular clouds (both of the supercritical and subcritical 
variety) constitutes one of the dominant challenges for future 
developments. 

b) Accomplishments of the Present Study 
Within the objectives of the present study, where we regard 

l2K, and MtJl (see footnote 1) as adjustable free param- 
eters (to be obtained from observations), we have derived 
several useful results. In particular, we have learned that : 

1. The process of ambipolar diffusion can naturally explain 
the sizes, densities, and time scales for the production of dense 
cores of the type first surveyed by Myers and Benson (1983) in 
the Taurus dark cloud. For quiescent regions (in terms of turb- 
ulent support), the time required to produce regions character- 
ized by appreciable ammonia emission is 106 yr or less; for 
more active regions, it can exceed 107 yr. 

2. Unless the turbulence decays, ammonia cores will not 
form in very active regions, where the total mass Mtot inside the 
tidal lobe is less than a threshold value Mum defined by equa- 
tion (38). The existence of such a threshold implies that the 

molecular clouds may have many “failed” cores in regions 
where the turbulence has been increased, say, by the winds 
from neighboring low-mass protostars. Such a picture might 
even form a physical basis for current suggestions concerning 
the role of “ self-regulation ” in star formation (e.g., Norman 
and Silk 1980; Franco 1984). 

3. Dense ammonia cores will only be produced in super- 
umbral regions, where Mtot > Mum. During the last stages of 
the evolution of such objects, a core runaway develops on a 
characteristic time scale of a few times 105 yr, in which the 
density profile steepens into a power-law form, p oc r-s, with s 
approximately equal to 2. In the models, the magnetic field 
inside the ammonia core increases relatively little with respect 
to the background, not because there is a large amount of 
ambipolar diffusion, but because a bit, together with gas set- 
tling along field lines, goes a long way toward producing a 
central density cusp and the beginning of an inside-out core 
collapse. In agreement with the results of Nakano (1988) and 
Nakano and Umebayashi (1986a, b), we find that the onset of 
dynamical collapse (when the neutral velocities approach sonic 
values) occurs typically before the mass-to-flux ratio for the 
central flux tube has been enhanced by more than a factor of 2 
from the initial state. The resolution of the magnetic flux 
problem for forming stars must therefore occur at densities 
much higher than we normally associate with ammonia cores. 

4. Molecular-line radio astronomers have found numerous 
instances of large flattened structures surrounding newly 
formed stars, having a scale of ~ 0.01-0.1 pc (e.g., Kaifu et dl. 
1984; Sargent et al. 1988; Rudolph 1988). Unless the structures 
can be shown to be centrifugally supported, we would warn 
against their interpretation in terms of disks. In many (perhaps 
most) cases, they may be the remnants of the magnetically 
supported cores calculated in this paper (for example, after a 
bipolar outflow has blown away the polar caps; see Mathieu et 
al. 1988). Magnetic support by itself naturally produces flat- 
tened configurations, although the flattening is typically not 
very severe for the regime of parameter space relevant to 
Taurus molecular cloud cores. Rotation parallel to the mag- 
netic field would produce additional flattening in the cores, 
but, observationally, rotation is not dynamically important at 
the stage of the ammonia cores (Myers, Goodman, and Benson 
1989). Core shapes, then—especially at the lower density- 
contour levels—are generally not good indicators of physical 
conditions (thereby causing perhaps some of the ambiguity in 
Heyer’s 1986 results) because they are too easily influenced by 
extraneous factors (such as tidal forces). 

5. The size and mass of a cloud core depend on the molecule 
with which it is observed, since different molecules trace differ- 
ent critical densities. In this paper we have concentrated on the 
masses and sizes of the cores as observed with the NH3 mol- 
ecule. Fuller (1988) has observed these cores in an optically 
thin transition of C180, which traces less dense material 
(~2 x 103 cm-3). In a preliminary analysis, he obtains sizes 
that are a few and masses that are several times larger than 
obtained by the ammonia measurements, in qualitative and 
semiquantitative agreement with the predictions of the models 
in this paper. 

6. The above comments (see also § Va) support the view that 
the reservoir of material potentially available in subcritical 
clouds to form stars is much greater than the mass that 
actually ends up in the completed objects. We believe that it is 
a stellar wind which reverses the infall of matter onto the pro- 
tostar and ultimately defines its mass (see the review of SAL). 
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APPENDIX 

ESTIMATE OF NEUTRAL VELOCITIES 

Because of the quasi-static assumption, there is no direct information about the vector velocity of the neutrals iin. Nonetheless, it 
is possible to estimate it in the following way. 

a) Velocity Perpendicular to the Flux Tube 

Let s be the length coordinate measured along the flux tube from the midplane z = 0. The drift velocity vd = if* — iin at a point s of 
a flux line labeled by O is parallel to VO, i.e., perpendicular to the flux tubes. Because the magnetic field is tied to the ions, 
dd>/dt + ut • VO = 0, the velocity of the ions in the direction perpendicular to the flux tubes is given by 

d<J>/dt 
- ~ |VO| 

(Al) 

The quantity VO is known, and we obtain ddï/dt in the first part of the operator splitting of D/Dt discussed in § III. The component 
of the neutral velocity perpendicular to the flux tubes, unl, at the point s can now be calculated as 

UnL = «¡1 - Vd ■ (A2) 

b) Velocity Parallel to the Flux Tube 
In the second part of the operator splitting, the neutrals try to “ settle ” along field lines to achieve hydrostatic equilibrium. A 

complication enters because vector force balance prevents the flux tubes from remaining fixed on an Eulerian grid after a diffusion 
time step, but this (perpendicular) motion does not affect the velocity component parallel to flux tubes. The total rate of change of 
the mass m between two flux tubes labeled <S> and + dQ> and lying between the equatorial plane z = 0 and the point s has two 
contributions, 

(A3) 

where (dm/dt)d is due to ambipolar diffusion and dm/dt)s is due to the settling along flux tubes. 
The first part of the operator split (the diffusion step) yields (dm/dt)d, which is of no interest to us here. Dividing the change in m at 

a given s resulting from the second part of the operator split (force balance with flux freezing) by the elapsed time (between net 
combined steps) yields (dm/dt)s. Kinematically, however, this quantity also equals 

2nw dQ> 
(dd>/dw)s 

d2m 
ds dQ> 

dd> = -w„|,(s)l 
dm 
ds 

(A4) 

where the minus sign indicates that a negative parallel velocity of the neutrals w„n increases the mass m in the flux tube below the 
position s. From equation (A4), we deduce the reasonable result that the velocity parallel to the flux tube d) at a point s is simply the 
Lagrangian velocity associated with the settling to come into force balance : 

w„n = (ds/dt)m . (A5) 

Equation (A5) provides a simple prescription to compute the parallel component of the neutral velocity. 
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