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ABSTRACT 
The expected population of rich clusters in a cold dark matter (CDM)-dominated universe is extremely 

sensitive to the spectrum normalization, the inverse of which defines the bias parameter b. Recent observations 
of three high-velocity dispersion clusters at redshifts z ä 0.5 indicate an alarmingly low value of b for the 
theory. If taken at face value, the observations imply an unbiased model, b ~ 1. However, this value of b 
predicts roughly 10 times as many low-redshift clusters (z < 0.1) as are observed. The low-redshift data favor 
values in the range b ^ 1.5-1.9. It is argued that poor statistics and the uncertainty in recovering intrinsic 
velocity dispersions from redshift measurements preclude a reliable determination of b at present. A survey of 
cluster X-ray temperatures complete to moderate redshifts would prove invaluable in deciding this issue. 
Subject headings: clusters: open — cosmology 

I. INTRODUCTION 
One of the most appealing aspects of the cold dark matter 

(CDM) model is the small number of free parameters in the 
theory. If one assumes that physics of the early universe pro- 
duces a constant curvature spectrum with random phases, 
there remain only three parameters to determine the theory— 
the density parameter Q, the expansion rate h = Ho/100 km 
s-1 Mpc-1, and the present linearly extrapolated amplitude 
(tp(M) for the rms fluctuations in mass within a sphere which, 
on average, contains mass M. Theoretical prejudice argues for 
Q = 1, leaving only h and ap to be quantified. 

The first determination of these parameters by Davis et al 
(1985) required a biased model of galaxy formation to repro- 
duce the observed slope of the galaxy correlation function and 
obtain acceptable values h > 0.5 for the Hubble constant. In 
the biased model, the fluctuations in galaxies will in general be 
different from those of the underlying mass (Bardeen et al 
1986). This difference is conventionally expressed by the bias 
parameter 

^(S ft-1 Mpc)_ 1 
<rp(8 h~l Mpc) <rp(8 h~l Mpc) ’ 

which is the ratio of galaxy to mass fluctuations in a sphere 
of radius 8 /i-1 Mpc, corresponding to a mass scale 
M = 6 x 1014 h'1 Mq, roughly the mass scale of rich clusters. 
Since the level of fluctuations in galaxy counts on this scale is 
observed to be unity, ag(S h~1 Mpc) = 1 (Davis and Peebles 
1983), b can be interpreted simply as a measure of the inverse of 
the spectrum normalization on the mass scale of rich clusters. 

The value of b is of central importance to the CDM model. It 
normalizes the level of fluctuations in the microwave back- 
ground at all scales. On small scales, it controls such observa- 
bles as pairwise galactic velocities, mass-to-light ratios of 
groups and clusters, and the abundance of halos with given 
circular velocities. Many of the successes of the model on 
galaxy group and smaller scales (Frenk et al 1988) will evapo- 
rate if b ^ 1 rather than b ~ 2. The redshift of the “ epoch of 
galaxy formation” scales inversely with b (Evrard 1989h), 
affecting interpretation of galaxies observed at high redshift. 
On large scales, the amplitude and statistics of linear flow 
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velocities are sensitive to b (Kaiser and Lahav 1989; Bert- 
schinger and Juszkiewicz 1988; Gorski et al 1989). 

The abundance and properties of rich clusters should 
provide a sensitive measure of the spectrum normalization, 
since in the model they correspond to objects lying in the tail of 
an initially Gaussian distribution with variance ctp(M) oc h-1. 
Recently, Gunn (1989), in collaboration with Dressier, has rel- 
eased velocity dispersions for several high-redshift clusters. 
Among them are some of the highest velocity dispersion 
systems ever measured. The purpose of this Letter is to investi- 
gate what these observations tell us about the CDM normal- 
ization or, equivalently, the “ level of biasing ” b. 

II. THE MODEL 

To test CDM model predictions against observations, we 
need to calculate n(v, z)d In v dz, the abundance per unit redshift 
of clusters with one-dimensional velocity dispersion v. The 
approach taken here is to start with the Press-Schechter (1974) 
formula which predicts number density as a function of mass at 
a given redshift 

n(M, z)d ln M = 
Í2 Po d log <tp 

yj n M d log M 
vz(M) 

x exp M , (2) 

where vz(M) = 1.68(1 + z)/ap(M). The predictions of equation 
(3) agree well with the multiplicity functions determined by 
iV-body experiments over a wide range of initial conditions 
(Efstathiou et al 1988). For simplicity, we use a power-law 
approximation to the CDM spectrum <7p(M) = 1.05b_1 

^i5 1/3> where M15 = M/1015 M0 which is accurate to better 
than 5% for 0.5 < log10M15 < 1, the mass range of the richest 
clusters. The number of clusters per comoving cubic mega- 
parsec is then (b = 0.5 is assumed hereafter) 

n(M,z)dlnM = 2.95 x 10"5b(l + z)Ml5~2/3 

x exp {—0.5[1.60b(l + z)M15
1I3]}d\nM . (3) 

We now use a relation between velocity dispersion and mass 
to predict abundance as a function of velocity dispersion. 
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Fig. 1.—The velocity-mass relation determined by N-body simulations is 
compared with the theoretical expectation, eq. (4), using / = 0.9 at redshifts 
z = 0.5 (asterisks) and z = 0 (circles). The mass scale M in the experiments is 
defined as the mass enclosed within a region of overdensity ôp/p =170 from 
the cluster center. This corresponds to the overdensity of the mass scale just 
collapsed in the analytic model. Note the ~ 10% residual scatter in the numeri- 
cal results about the analytic estimate. 

Using a spherical shell approximation (Gunn and Gott 1972) 
in which mass shells contract by a factor of 2 from their 
maximum expansion values and “ virialize,” we obtain 

v = /(727 km s_1Xl + z)1/2M15
1/3 , (4) 

where v is the one-dimensional velocity dispersion and / is a 
“fudge factor” which accounts for deviations of real clusters 
from the simple model. Comparison of this expression with 
results of V-body experiments is shown in Figure 1. The simu- 
lations are CDM realizations designed explicitly for the 
purpose of studying the internal properties of rich clusters 
(Evrard 1989c; see also Evrard 1989a). The numerical results 
are in good agreement with the analytic model using / = 0.9. 
More importantly, the simulations show a ~10% scatter 
about the analytic line. 

The v — M relation is used with equation (2) to produce an 
abundance expression n(v, z)d\nv which, when integrated, 
gives JS'iv, z), the expected number density of clusters with 
velocity dispersion greater than v 

jV'iv, z) = 5.28 x 10-5h3(l + z)3F[— 1, t(v, z)] Mpc“3 , (5) 

where t(v, z) = 1.28h2(l + z)(v/650 km s-1)2 and F[ — 1, t(v, z)] 
is an incomplete gamma function. 

This equation assumes a one-to-one correspondence 
between velocity v and mass M. In reality, there is bound to be 
some dispersion about this mean relation. The scatter may be 
partly intrinsic, arising from different dynamical histories of 
clusters of a given mass (Fig. 1). Further scatter will arise from 
observational error. An estimate of the cluster velocity disper- 
sion based on Nz redshifts will differ from the true value by 
some amount ôv. In the ideal case of sampling an isotropic 
Gaussian velocity distribution with true dispersion v, the 
expected error ôv/v without contamination will be Gaussian 
distributed with variance l/(2iVz)1/2 for Nz > 30. This ideal 
case represents a lower bound on the actual error, since it 
ignores contamination by projected galaxies not physically 
associated with the virialized portion of the cluster. 

In the model, these uncertainties can be incorporated by 
convolving with a probability distribution P(ôv) for deviations 
of the measured dispersion from the mean relation. The 

number density of clusters expected with observed velocity dis- 
persion greater than v can be expressed as 

^obs(v, z) = Jd ôvP(ôv)J^(v + ôv, z). (6) 

Finally, we can use this expression to estimate the expected 
number of objects on the sky with velocity dispersions greater 
than v lying within a redshift z 

fl+z 
N(v, z) = 5.73 x 108h3 J dyy-3/2(l - y~1/2)2 

x IdôvP(ôv)ri- 1, t(v + ôv,y- 1)] . (7) 

III. RESULTS 

The sensitivity of the predicted abundances N(v, z) to veloc- 
ity cutoff and assumed scatter in the v — M relation is shown in 
Figure 2. The solid line shows the results of using the mean 
relation, equation (4), with no dispersion. Note the sensitivity 
of the abundance to the limiting velocity v : the density drops 
four orders of magnitude as v changes by only a factor of 2. The 
dot-dashed and dashed lines assume a Gaussian distribution of 
uncertainties P(ôv) with variance 0.125i; and 0.20f, respectively. 
The effect of including dispersion with 10%-20% amplitude 
can be dramatic at large velocities—a direct consequence of 
working on the tail of an exponentially sensitive distribution. 

a) High-Redshift Analysis 
Gunn (1989) has listed three clusters with velocity disper- 

sions i; > 1350 km s-1 (based on ~30 redshifts per cluster) 
lying within a redshift z ^ 0.5. They are 9HF otß (z = 0.391, 
v = 1600 km s"1), Cl 0024+16 (z = 0.407, v = 1350 km s"1), 
and Cl 0016 + 16 (z = 0.546, v = 1600 km s-1). The cluster 
3C 295 (z = 0.467, v = 3000 km s-1) is labeled by Gunn as 
“dynamically peculiar”—probably a collection smaller clus- 
ters seen in projection—and so is not included here. 

In matching to model predictions, it is necessary to know 
what fraction of the sky was surveyed to this depth in order to 

Fig. 2.—The number of clusters expected within a redshift z = 0.5 having 
observed velocity dispersions greater than v is shown for the case b = 2. The 
solid line assumes that observed velocity dispersions follow the mean v — M 
relation with no scatter. The dot-dashed and dashed lines assume Gaussian 
scatter with variance 0.125i; and 0.20t>, respectively. The expected number of 
clusters is clearly very sensitive to both the velocity cutoff v and the assumed 
level of scatter. 
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uncover the underlying abundance on the whole sky. One of 
the clusters (9HF ccß) is from the deep survey of Gunn, Hoessel 
and Oke (1986) which covered about 40 deg2 and is complete 
to z ^ 0.5. The other two were serendipitous findings, one 
(0016+16) arose in the deep pencil beam surveys conducted by 
Koo and Kron (1987) which covered only a few square degrees 
of sky. Although it is difficult to estimate precisely the sky 
coverage for the accidental clusters, it is probably <10 deg2 

(H. Spinrad, private communication). This tells us that the 
three clusters were discovered over a total area of ~ 50 deg2. 
Since there are ~ 40,000 deg2 on the sky, the observations 
imply that there are N ^ 2500 clusters with velocity disper- 
sions v > 1350 km s -1 and redshifts z < 0.5 over the entire sky. 
The statistical uncertainty in this number is impossible to 
quantify, but only the most optimistic would believe it to better 
than a factor of 2. 

Figure 3a shows the model estimates derived from equation 
(7) as a function of the bias parameter b. Different line types 
indicate results for different assumed amounts of scatter in the 
v — M relation—0, 12.5%, and 20%—as in Figure 2. The two 
long dashed lines delimit a range a factor of 2 on either side of 
the number determined above from the observations, 
N - 2500. 

The expected number predicted by the model is clearly very 
sensitive to the value of b. However, it is also sensitive to the 
amount of assumed v — M scatter. It is unlikely that the com- 
bined effects of intrinsic v — M dispersion and observational 
uncertainties result in a scatter smaller than 20%. Assuming 
20% scatter is appropriate, the expected number of clusters 
falls within a factor of 2 of that observed for values of the bias 
parameter in the range b ~ 0.9-1.3. 

b) Low-Redshift Analysis 
The same approach used above can be applied to a nearby 

sample. Here, we use Abell’s statistical sample of 104 clusters 
within distance classes D < 4 and richness classes R > 1. This 
sample covers one-third of the sky and is complete to z ^ 0.1. 
The heterogeneous compilation of velocity dispersions by 
Struble and Rood (1987) contains measurements for 62 of the 
104 clusters. Of these, five are greater than 1350 km s-1: A85 

(z = 0.052, v = 1443), A399 (z = 0.071, v = 1424), A1775 
(z = 0.070, v = 1539), A2029 (z = 0.077, v = 1430), and A2319 
(z = 0.056, v = 1627). Abell 2319 is believed to possess signifi- 
cant substructure (Faber and Dressier 1977) although its X-ray 
temperature is among the highest known T = 12.5Í4;o keV 
(Mushotzky et al. 1978). Abell 2029 is listed by Jones and 
Forman (1984) as having a dispersion of only v = 1100 km s- ^ 
The remaining three clusters are listed in Jones and Forman 
(1984), the data for which are unpublished. 

These five clusters with v > 1350 km s -1 imply a population 
of ~15 such clusters covering the whole sky out to redshift 
z = 0.1. Figure 3b shows the predicted numbers as a function 
of b. Again, assuming 20% scatter as typical, the expected 
abundance falls within a factor of 2 of that observed for values 
of the bias parameter in the range b ^ 1.5-1.9. 

The abundance expected when h = 1 is an order of magni- 
tude greater; 50 are expected rather than five. Assuming 
Poisson statistics, the probability that five are observed when 
50 are expected is minute, 0(10"10). Although such a dramatic 
statistical statement is unwarranted given the present uncer- 
tainties, it appears fair to say that the low-redshift data do not 
support the value of h ^ 1 inferred from the high-redshift 
observations. 

IV. DISCUSSION 

For the cold dark matter model to retain its attractive ability 
to reproduce observed small-scale structure, it is necessary to 
have a substantial level of bias b ^ 1.5-2.5. Gunn and Dress- 
ler’s observations of a few high-velocity dispersion systems dis- 
covered over a very small portion of the sky seem to require an 
unbiased CDM spectrum b ~ 1. However, an unbiased model 
is discounted by nearby cluster abundances, which instead 
favor moderate biasing b ^ 1.5-1.9. This inconsistency pre- 
vents firm conclusions regarding the level of bias from being 
deduced from rich cluster observations at the present time. 

There are several ways to interpret this finding. One possi- 
bility is that the high-redshift cluster dispersions are overesti- 
mated either because of contamination by projected galaxies 
not physically residing within the relaxed cluster volume or 
because the cluster as a whole has not yet relaxed and pos- 

u, 0) 

B 
3 
Ö 

T3 0) 
o <D 
Oh 
X (D 

o 

<D rd 
G 
3 
l=¡ 

TJ <D -4-> O 0) 
Pi 
X 0) 
ta/) 
O 

+1 

(a) (b) 
Fig. 3.—The number of clusters expected to be observed with velocity dispersion v > 1350 km s_1 is shown as a function of the bias parameter b for (a) 

high-redshift observations, z < 0.5; and {b) low-redshift observations, z < 0.1. The long dashed lines in both panels bracket a range of a factor of 2 around the 
abundances inferred from observations. See the text for a discussion. 
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sesses significant substructure. The observed trend in preferred 
b values between high and low z can be understood if the 
systematic errors associated with these effects increase with 
redshift. Another possible interpretation of the results is that 
we are seeing a fluctuation spectrum different from that of 
CDM, and so the theory is wrong. Without better statistics, 
there is simply no way to tell. 

Frenk (1989) has performed a different analysis on nearby 
clusters. He attempts to recover the full distribution function 
Jf(v) over a range of v from present data. This is not an easy 
task, as there is no statistically complete sample of cluster 
velocity dispersions. The shape of his derived observed velocity 
distribution is not reproduced by model estimates for any 
single value of b. Instead, the abundance of high-velocity clus- 
ters is matched by b ~ 1.6 while data below v = 1000 km s_1 

indicate b >2. This trend probably reflects sampling 
incompleteness—a few rich systems will attract more attention 
from observers than will more sedate, but more numerous, 
low-dispersion clusters. For this reason, I have concentrated 
my analysis on the high-velocity tail of the distribution. The 
chosen cutoff of 1350 km s_1 is special only in that it arose 
naturally from a break in the sparse high-redshift data—of 
seven clusters listed by Gunn (1989), four were above this 
value. The highest dispersion of the remaining three was only 
590 km s-1. 

An alternative approach which would avoid many of the 
pitfalls associated with contamination by projected galaxies 
would be to use the X-ray temperature of the intracluster 
medium as a measure of potential well depth instead of velocity 
dispersion. The velocity cutoff used here corresponds to an 
X-ray temperature T* ~ 9.1 keV. Unfortunately, present data 
on X-ray temperatures are even more incomplete than those 
for velocity dispersions. The upcoming all-sky survey by the 
ROS AT satellite will provide only an indirect measure of tem- 
perature abundances, since the satellite will carry no sensitive 
spectroscopic instruments. Eventually, AXAF could make 
follow-up observations to determine X-ray temperatures for 
the distant clusters expected be identified in the ROS AT 
survey. Unfortunately, these data are several years off, and 
perhaps the biased CDM theory will not survive until that 
time. However, the approach taken here can be applied to the 
general class of hierarchical clustering from Gaussian initial 
conditions. Constraints on the amplitude and perhaps the 
shape of the fluctuation spectrum could be placed with a suffi- 
ciently sensitive, complete sample of X-ray temperatures. 

This work was supported by The Miller Foundation for 
Basic Research in Science at the University of California, 
Berkeley. 
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