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ABSTRACT 
Similarity solutions are presented for the time-dependent evolution of cooling flows. A cooling flow expands 

when the cooling time computed from the initial gas distribution increases with radius. If certain simplifying 
conditions are met, the evolution of the resulting cooling wave becomes self-similar. The similarity solutions 
obtained here assume subsonic flow, which is valid in the outer parts of observed cooling flows; they are 
matched to transsonic accretion solutions valid in the central parts. The models are applied to the cooling 
flow onto M87, with unsatisfactory agreement at small radius. A local linear stability analysis shows that the 
similarity solution suffers isobaric thermal instability, suggesting that the neglect of star formation may be 
responsible for the poor agreement. The similarity solution suggests that the cooling flow around M87 was 
more vigorous in the past. 
Subject headings: galaxies: clustering — galaxies: individual (M87) — galaxies: intergalactic medium — 

galaxies : X-rays — hydrodynamics 

I. INTRODUCTION 

Hot gas in hydrostatic equilibrium in clusters of galaxies or 
in galaxy halos cools by the emission of X-rays. Observation of 
this X-ray emission (Jones and Forman 1984, and references 
therein) shows that in many cases the gas is sufficiently dense 
near the center of the potential well to lose most of its thermal 
energy in less than the age of the system, usually estimated to 
be ~ 1010 yr. In the absence of heating, the cooling gas must 
move toward the center, initiating a “cooling flow” (Fabian, 
Nulsen, and Cañizares 1984; Sarazin 1986). The cooling gas 
augments and may even create (Silk 1976) the galaxy onto 
which it accretes. Thus, cooling flows may present the 
opportunity for studying galaxy formation in cosmologically 
nearby objects. 

X-ray observations do not directly yield the gas accretion 
rate or other desired characteristics of a cooling flow; theoreti- 
cal modeling of the X-ray emission is necessary to derive this 
information. Ideally, one can derive the gas density and tem- 
perature distributions from X-ray imaging and spectroscopic 
measurements. With the X-ray telescopes flown to date, fairly 
accurate density profiles have been obtained, but only approx- 
imate temperature distributions have been derived, by depro- 
jection of the X-ray surface brightness profile combined with 
hydrostatic equilibrium and an assumed gravitational mass 
distribution (Fabian et al 1981). Given the density and tem- 
perature profiles and a variety of assumptions, theoretical 
models can be constructed yielding the mass accretion rate. 

Much work has been done on the theoretical modeling of 
cooling flows, including papers by Fabian and Nulsen (1977), 
Cowie and Binney (1977), Mathews and Bregman (1978), 
Cowie, Fabian, and Nulsen (1980), Binney and Cowie (1981), 
Fabian et al (1981), Takahara and Takahara (1981), Nulsen et 
al (1982), Tucker and Rosner (1983), Stewart et al (1984), 
Bertschinger and Meiksin (1986), Silk et al (1986), White and 
Sarazin (1987), and others. All of the cited work has assumed 
steady spherical inflow, with various assumptions made 
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regarding energy transport and star formation. Spherical sym- 
metry is probably a good assumption for the best observed 
cooling flows, except very close to the center (Cowie, Fabian, 
and Nulsen 1980). The assumption of steady flow, however, 
while approximately correct close to the center of a cooling 
flow, is violated in the outer parts. Numerical simulations have 
provided models of the time-dependent evolution of intraclus- 
ter gas (Gull and Northover 1975; Lea 1976; Takahara et al 
1976; Cowie and Perrenod 1978; Perrenod 1978; Friaca 1986; 
Bregman and David 1988; Meiksin 1988), and an approximate 
analytic description of time-dependent cooling has been given 
by Fabian and Nulsen (1979). However, until the recent work 
of Chevalier (1987) utilizing self-similarity, no detailed models 
had been published discussing the role of time dependence on 
the structure of a cooling flow. The assumptions made by Che- 
valier concerning initial conditions probably prevent the appli- 
cation of his specific model to real cooling flows. The present 
paper relaxes these assumptions in order to construct more 
general time-dependent cooling flow models. A preliminary 
report of this work was given by Bertschinger (1988). 

As a cooling flow evolves, the central region of steady 
cooling generally expands to encompass an increasing amount 
of gas. This increase in the size of a cooling flow with time will 
be denoted a “cooling wave” since, although the region of 
cooling expands, the gas itself does not move outward. The 
boundary of the cooling region is set by the cooling radius, i.e., 
the radius at which the cooling time equals the present age. 
Because the gas density decreases away from the center 
(otherwise convective instability would result), the cooling time 
generally increases outward, and the cooling radius therefore 
increases with time. At any fixed time, beyond the cooling 
radius the gas is nearly at rest with the density and temperature 
profile set by initial conditions, while interior to the cooling 
radius the gas has begun to cool and flow inward. Far inside of 
the cooling radius the flow is steady, but near the cooling 
radius the flow is not steady as each successive element dis- 
covers that it must cool and begin a slow fall in to the center. 
Thus, there are two major consequences of time dependence on 
cooling flows: the cooling flow expands with time and the 
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structure of the cooling flow changes qualitatively across the 
cooling radius. 

In general, the description of a time-dependent, inhomoge- 
neous flow requires numerical solution of the full partial differ- 
ential equations of gas dynamics. However, when the time 
dependence arises through a single physical process (in the 
present case, cooling), the problem reduces to a self-similar one 
requiring solution of only ordinary differential equations 
(Sedov 1959). Although similarity solutions cannot include all 
of the detailed physics that a realistic time-dependent cooling 
flow model requires, they do provide valuable insight, are 
much easier to obtain numerically, and may in some cases 
provide a satisfactory model. Similarity solutions are thus an 
appropriate stepping stone from steady models to time- 
dependent numerical models of cooling flows. 

The outline of this paper is as follows. In § II, self-similar 
cooling waves are derived. The derivation assumes subsonic 
flow, which is invalid close to the center, where the flow must 
pass through a sonic point. In § III transsonic accretion solu- 
tions with cooling are derived which join on to the similarity 
solutions between the sonic radius and the cooling radius, 
yielding a complete description of the cooling flow. The models 
are applied to the cooling flow onto M87 in § IV. Time depen- 
dence of the similarity solution does not solve the problems 
found earlier by others with steady flows neglecting star forma- 
tion or heating. A local linear stability analysis shows that the 
similarity solution is thermally unstable and suggests that star 
formation may resolve the problems modeling observations. 
Conclusions are presented in § V. 

II. SIMILARITY EQUATIONS AND SOLUTIONS 

Cooling wave similarity solutions are derived in this section. 
Readers not interested in the mathematical details may wish to 
skip § lib. 

a) Basic Assumptions 
The evolution of a cooling flow will be self-similar, provided 

that the flow is characterized by a unique scale length, the 
cooling radius Rc(t). This requires that the gravitational force 
and the exponential of the specific entropy of the gas be (for 
r P Rc) power laws in radius. Equivalently, for rpRc, the 
density and pressure must approach the static solution 

p0(r) = Ar-* , p0(r) = , (2.1) 

where A, B, a, and ß are constants. The gas is bound by a 
gravitating mass distribution 

MG
(r) = ^r«-"+1 . (2.2) 

The gravitational potential arises from the galaxy or cluster 
accreting the gas and is assumed to be static. A singular iso- 
thermal mass distribution has a — ß = 0, while a Keplerian 
distribution has cc — ß = —1. For ß = 0, there is no gravity 
and the cooling gas is confined by the pressure of hot gas at 
large r. The self-gravity of the gas is neglected. Equation (2.2) is 
assumed to hold for all r and t. 

Equations (2.1) imply that, for rpRc, the gas distribution is 
polytropic with index F : 

Pc <x > r = ß/a . (2.3) 

The polytropic index F is determined by events (e.g., cluster 
collapse and relaxation) occurring before the cooling flow 
begins. Convective stability requires 0 < F < y, where y = 5/3 

is the adiabatic exponent of the gas, but F is otherwise arbi- 
trary. 

The cooling function is assumed to be given by a power law 
of temperature: A oc TA. Specifically, the gas cools by optically 
thin emission at a rate (per unit volume) 

if = p2A0(p/p)x , (2.4) 

where A0 and À are constants. Thermal bremsstrahlung 
cooling, which dominates for T > 5 x 107 K, gives À = j. At 
lower temperatures, line cooling dominates, with 2 ä — ^ to 
— 1 for a gas of near-cosmic metal abundances (Gaetz and 
Salpeter 1983). The cooling radius is defined to be the radius at 
which the cooling time, evaluated using the static initial gas 
distribution, equals the present age t : 

yielding 

where 

. (R)= Po(flc) _ , 
w J " (r - imRc) ’ 

Rc(t) = [(y - l)A0/l2-'lßA-1]’'i’' : 

>/ = [> + («- /?)(! - 2)] ‘ 

(2.5) 

(2.6) 

(2.7) 

Thus, the region of cooling expands (for rj > 0) with a power- 
law dependence on time. For r ^ Rc(t), the cooling time is 
short compared to t, while, for r P Rc(t), the cooling time is 
long and the gas has not yet cooled appreciably. 

The present treatment requires several assumptions in addi- 
tion to those of power-law forms for the binding mass and 
entropy profiles and the cooling function. First, spherical sym- 
metry is adopted, which should be a good approximation 
except close to the center, where angular momentum may 
become important (Cowie, Fabian, and Nulsen 1980). Second, 
gas is not removed from the flow (by thermal instability and 
star formation; see White and Sarazin 1987) for r > 0; the only 
sink for gas is at the center. Likewise, mass input from stars or 
galaxies (Cowie and Binney 1977) is neglected. The absence of 
a mass source or sink does not imply constant accretion rate, 
because the flow is not steady. Third, the cooling wave is 
assumed to propagate slowly compared to the sound speed at 
Rc. Finally, heat conduction is neglected, although it may be 
important for cooling flows (Takahara and Takahara 1981; 
Tucker and Rosner 1983; Bertschinger and Meiksin 1986; but 
see Bregman and David 1988) if it is not suppressed by mag- 
netic fields (Stewart et al 1984). The introduction of heat con- 
duction adds a new length scale with a generally different time 
dependence than the cooling radius, destroying the self- 
similarity. There is at present considerable uncertainty over the 
role of heat conduction in cooling flows. Thus, it is useful to 
construct theoretical models including and neglecting conduc- 
tion, to attempt to determine observable differences. 

b) Fluid Equations and Self-Similarity 
The fluid variables must satisfy the usual equations of mass, 

momentum, and energy conservation : 

dp 1 d / „ 
ot /• or 

dv dv 1 dp GMg 
T7 + l;T_ + -T_ = —   ’ ot dr p dr r 

d d 
Ft + VIr 

(y — l) 
ln(pp_v) = — — ’-J? 

(2.8) 

(2.9) 

(2.10) 
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To derive similarity solutions, one first defines nondimensional 
fluid variables by removing the explicit time dependences 
arising through Rc(t) : 

r = xRc(t), p = Po(Rc)D , 

dR (2.11) 
P = Po(Rc)P » v= - -¿fxW ■ 

The independent variables are transformed from (r, t) to (x, i), 
and the dependent variables become W, D, and P. The Ansatz 
is now made that, with the explicit time dependences factored 
out, the dimensional fluid variables are functions of only the 
dimensionless radius x : W = W(x), and so on. If there are no 
length scales other than Rc(t), then by dimensionless analysis 
the time dependence must disappear from the dimensionless 
fluid variables. In dimensionless form, the fluid equations 
become 

dP 
dlnx 

(! + W) + 3^ + a = 0 , (2.12) 
alnx dlnx 

-ßDxa~ß — yeDx2W „+w)^+w+ 
dmx S' 

(2.13) 

(1 + W) 
d\nx 

In (PD'1’) : ya — ß + - d2~>'Px~1 

n 
(2.14) 

In equation (2.13), 

e = e(t) = Po(^c) 
yPo(Rc) 

(2.15) 

is the square of the ratio of the propagation speed of the 
cooling wave to the sound speed in the undisturbed gas at Rc. 
By assumption, e 1, and the acceleration terms may be 
neglected in equation (2.13) provided Dx2W2 is not large com- 
pared with the pressure gradient term. Were this condition to 
be violated, equation (2.13) would contain (except for special 
choices of a, ß, or 2 yielding e = const.) an explicitly time- 
dependent term, and the dimensionless fluid variables would 
necessarily depend on both x and t. When € ~ 1, self-similarity 
is broken by the presence of two length scales: Rc(t) and 
^s(0 ^ (yPo/Po)ll2t- The second length scale corresponds to the 
outward propagation at the sound speed of a rarefaction wave. 
If the gas were not already cooling, this wave would signal the 
gas to begin moving inward, as in the protostellar expansion 
wave-collapse model of Shu (1977). In the present case the gas 
is already falling in slowly because cooling decreases the pres- 
sure even before the rarefaction wave arrives. 

Self-similarity is restored even if e ~ 1, provided that Rc(t) 
and Rs(t) have the same time dependence so that e = constant. 
This is the case considered by Chevalier (1987). The condition 
e = constant imposes the restriction (3 — 22)(a — ß) = 2(1 — a) 
on the parameters of the model. Chevalier considered the case 
oc = ß = 1, an initially isothermal gas distribution with 
peer*1. This distribution is too shallow and extended to 
provide a realistic cooling flow model. 

If e # constant, the flow may still be self-similar in a 
piecewise sense. If the rarefaction wave travels much faster 
than the cooling wave, i.e., e 1, then the acceleration terms in 
equation (2.13) will be negligible for Rc <^r Rs. This state- 
ment is proven in Appendix A. A necessary and sufficient con- 
dition for the validity of this method is given by requiring that 

e remains small as i -► oo : 

ß-(x + 2<2/ri . (2.16) 

If e 1, the acceleration terms are negligible over much of the 
flow, and equation (2.13) reduces to the equation of hydrostatic 
equilibrium. The system of equations (2.12)-(2.14) then con- 
tains no explicit time dependence and so admits self-similar 
solutions. The effect of the small time-dependent terms pro- 
portional to e(i) may then be calculated using perturbation 
techniques. However, this approach breaks down near the two 
critical points created by the acceleration terms (Chevalier 
1987): an outer rarefaction wave and an inner sonic point. The 
present paper is concerned only with the flow well inside of the 
rarefaction wave, since typically Rs ~ 10 Mpc is much larger 
than the observed part of a cooling flow atmosphere. In 
Appendix A it is shown that the rarefaction wave does not 
significantly disturb the flow for r <£ Rsi by showing that the 
present results agree with those of Chevalier in the case of 
e = constant 1. 

However, it will be shown below that for any e > 0, the 
acceleration terms may become large for sufficiently small x, 
requiring the cooling flow to pass through a sonic point. The 
self-similarity is therefore broken for x 1, and it may appear 
hopeless to determine the cooling flow evolution without inte- 
gration of the fully time-dependent equations (2.8H2.10). 
Fortunately, the problem is still tractable using analytic tech- 
niques. For e 1, the cooling flow may be divided into two 
regions: an outer subsonic region, where hydrostatic equi- 
librium applies and the flow is self-similar, and an inner trans- 
sonic region, where the flow is quasi-steady. In § III solutions 
will be presented for the inner transonic region, and it will be 
shown how to match these solutions to the similarity solutions 
for the outer subsonic region. In the remainder of this section, 
the acceleration terms are neglected in equation (2.13) in order 
to find similarity solutions valid in the region of subsonic flow. 

To integrate equations (2.12)-(2.14), it is helpful to change 
variables. Define 

Ee= - Dx°t“<1/',, . 
r\ 

(2.17) 

In these new variables, the dimensionless fluid equations 
reduce from a third-order system to a second-order system 
plus a quadrature for x(W) : 

d\nQ d\nE 
dlniy + dlnW 

dlnQ d\nE _ G 
d\nW dlnW = “ (1 + W)F 

x [riEQ2*1 + (y - 1)(1 + IF) - rj(y* - ß)W] , 

where 

Inx = 
Cw G(W') dW' 
J w"^+const' 

(2.18) 

(2.19) 

(2.20) 

F(W) s 1 + [1 + rç(3 - àftW , 

GiW),W + ^ + W)^. 
(2.21) 

Note that a cooling wave similarity solution is specified by four 
independent dimensionless constants: a, ß9 y, and X. All 
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numerical examples presented below set y = 5/3, appropriate 
for a monatomic gas. 

Outer boundary conditions for the similarity solutions are 
given by the requirement that as x oo the fluid state must 
approach the static solution obtained in the absence of cooling, 
since for x > 1 the cooling time greatly exceeds the age. Thus, 

, Dxa-► 1 , Pxß^\ as x-► oo , (2.22) 

or, in terms of the new variables, 

ß->l, £->(), x-oo asJF->0. (2.23) 

Inner boundary conditions for the self-similar part of the 
cooling waves are not as easy to specify, since it is necessary to 
match the similarity solutions to accretion solutions (§ III). 
The proper inner boundary condition is that the cooling flow 
pass smoothly through a sonic point. It will be seen that this 
condition specifies an eigenvalue problem, where the eigen- 
value is essentially the central accretion rate. 

Solutions to equations (2.18) and (2.19) have not been found 
in closed form, so that a numerical solution is necessary. Since 
it is not possible to start numerical integrations at IF = 0 
(x = oo), a power series solution is desirable for small W : 

2 = 1 + + ß2 W
q2 + e3 W™3 + • • • > 

E = E0 W
eo(l + E.W61 + £2 IF*2 + • • •), 

(2.24) 
x = (rjE0 IF

eo)-^{l - rjEiW61 - r¡E2 W
62 - r¡ 

x[l — £?o>/(3 -a)]IF + •••}, 

where E0 >0, e0> 0, e2> el> 0, and <?3 > g2 > > 0; 
equations (2.17) and (2.20H2.23) have been used. Equations 
(2.24) implicitly assume IF > 0, i.e., the gas is flowing inward at 
infinity. While solutions can be found with IF < 0, they are 
probably unphysical. The physical significance of the many 
possible mathematical solutions to equations (2.18)-(2.23) will 
be discussed later. 

Expressions for the power series exponents and coefficients 
of equations (2.24) are given in Appendix B, where it is shown 
that there are two mutually exclusive forms of asymptotic 
behavior, depending on the values of the parameters a, ß, y, 
and 2. The first type of solution has e0 = 1 and Ex (or E2) 
arbitrary; all the other constants are determined once E1 (or 
E2) is specified. The second type has e0 < 1 and E0 arbitrary, 
with the other constants determined from E0. It is easily shown 
that these limiting solutions correspond to subsonic flow as 
x -► oo if equation (2.16) is satisfied. For either type of solution, 
there is one arbitrary constant (E0, or E2) specifying the 
solution. This freedom exists because inner boundary condi- 
tions have not yet been imposed on the solution. 

c) Numerical Solutions 
Figures 1 and 2 demonstrate the effect of varying the eigen- 

value I?! on the solution for the case oc = ß = 2, A = j, corre- 
sponding to a singular isothermal sphere binding mass 
distribution, with constant gas temperature at large radius, and 
bremsstrahlung cooling. Figure 1 presents density profiles, 
while Figure 2 graphs the accretion rate as a function of x, 
where the accretion rate m has been nondimensionalized as 

m = —4nr2pv = 4nR2 p0(Rc) ^ p(x). (2.25) 

From equation (2.11) it follows that 

ju(x) = x3DW . (2.26) 

log X 

Fig. 1.—Dimensionless density profiles for cooling wave similarity solu- 
tions with a = ß = 2, A = j. All curves satisfy the outer boundary conditions, 
but only the solid curve (the eigensolution) satisfies the inner boundary condi- 
tion. The dotted curves have the density diverging at a stagnation point, while 
the dashed curves have gas flowing in too rapidly for cooling to be important 
at small radius. 

Recall that m is constant for a steady flow, and that the simi- 
larity solutions are not steady. 

As Figures 1 and 2 show, similarity solutions satisfying the 
outer boundary conditions have three possible types of limit- 
ing behavior near the center (see White and Sarazin 1987). The 
first type of solution is given by the dotted curves. In this case 
the density becomes infinite, while the pressure remains finite, 
at some x = x0 > 0. These solutions are similar to the steady 
cooling flow solutions with stagnation points found by Fabian 
and Nulsen (1977). In the present case the flow stagnates at a 
fixed value x0 (for a given Fi) of the self-similar coordinate, 
corresponding to a surface moving outward with velocity 

log x 
Fig. 2.—Dimensionless accretion rate profiles, corresponding to the 

density profiles of Fig. 1. The accretion rate is positive for inflow. The dotted 
curves have outflow close to a stagnation point, which must be driven outward 
by a piston. The dashed curves correspond to solutions with excessive central 
accretion rates. Only the solid curve (the eigensolution) passes smoothly 
through a sonic point at small radius. 
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x0(dRJdt). The gas settles onto this surface; hence, W(x¿) = 
— 1. The inflowing gas comes to a halt and then begins moving 
outward, so the accretion rate drops to zero, and actually 
becomes negative, for this type of solution. Solutions of this 
type are unphysical, since they require a piston moving 
outward to hold back the inflow. Even if the flow should stag- 
nate because of angular momentum (Cowie, Fabian, and 
Nulsen 1980) or some other effect (e.g., central heating), there is 
a priori no reason why the stagnation radius should increase 
with time in the same way as the cooling radius. 

The second type of inner solution is illustrated by the dashed 
curves in Figures 1 and 2. In this case the flow extends all the 
way to x = 0, but cooling becomes unimportant for small x. 
That is, as x -► 0, the flow time 

ifiow(*> t) = r/v = t/(r,W) (2.27) 

becomes much less than the cooling time 

tcool(x,t) = tD*-2P1~x . (2.28) 

The flow time for x <0 is also small compared to the age i, i.e., 
W $> 1. From the heat equation (2.14), this implies that the 
specific entropy \n(PD~y) approaches a constant at x = 0. The 
gas flows in too rapidly to cool much at small x. These solu- 
tions will be referred to as adiabatic solutions, although it 
should be noted that cooling does occur at x > 1. 

When the flow time becomes short compared to the age 
(W > 1), as occurs at small x in the solutions extending to 
x = 0, the flow becomes quasi-steady. Consequently, the 
dimensionless accretion rate p0 = constant as x 0 (see 
eqs. [2.12] and [2.26]). Although the dimensional central 
accretion rate m(r = 0) changes over a time scale t as the 
cooling wave propagates outward, at small x the gas flows in 
on a much shorter time scale. This fact allows the similarity 
solutions to be joined to steady transsonic accretion solutions 
(§ HI). 

The solid curve in Figures 1 and 2 shows the third kind of 
inner behavior for the similarity solutions. This is a unique 
solution, which will be referred to as the eigensolution, having 
¿now ^ ¿cooi as x -► 0. The eigensolution may be thought of as 
the limit of the family of solutions with stagnation points as the 
stagnation radius x0 -► 0. Alternatively, the eigensolution cor- 
responds to the minimum m solution of the family of adiabatic 
solutions. For m larger than that of the eigensolution, the gas 
flows in too quickly to cool, while, for smaller m, the gas cools 
completely before reaching the center. It will be shown in § III 
that the eigensolution is the only solution of the similarity 
equations satisfying the outer boundary conditions and passing 
smoothly through a sonic point. The eigensolution is therefore 
the only physically interesting solution for self-similar cooling 
waves. White and Sarazin (1987) find a similar classification in 
their steady cooling flow solutions with star formation. 
However, their model is physically different from the present 
one—they include star formation and they do not satisfy time- 
dependent outer boundary conditions—so the agreement in 
classification of the solutions is not trivial. 

It is possible to have mathematical solutions of the similarity 
equations beginning at x = 0 with a smaller central accretion 
rate /i0 than the eigensolution. However, integration of the 
similarity equations shows that such solutions either do not 
satisfy the outer boundary conditions (eq. [2.23]), or they have 
outflow as x ^ oo. Outflow at large distances can lead to 
decreased m because the gas is first pushed outward before it 
begins to flow inward. This type of behavior is implausible for 

astrophysical cooling flows, because there is no obvious 
mechanism for making the gas flow outward in a self-similar 
fashion. 

It is straightforward to derive the limiting behavior of the 
eigensolutions for x 1. As they must, the results agree with 
those obtained by Nulsen et al (1982) and Fabian et al (1984) 
for steady cooling flows. When gravity is unimportant, which is 
the case if/? = 0ora — /?> 3/(3 — 2), the density, temperature, 
and inflow velocity approach power laws in x, with logarithmic 
slopes 

d\nD 
d\nx 

3 d\n(P/D) 
_3-r d\nx 

d\n(xW) 2À-3 

3-2' 
(2.29) 

dlnx 3-2 

This case will be referred to as a pressure-dominated cooling 
wave. Note that the pressure approaches a constant in the 
center, even though there is a nonvanishing gravitational force, 
provided T > Tgrav = (m^k^GMQ/r). This inequality fails for 
a — ß < 3/(3 — 2) and ß # 0; in this case, denoted gravity- 
dominated cooling, the power-law exponents become 

d\nD — 3 + (a — ß)(l — 2) d\n(P/D) 
d\n x 2 ’ d\n x 

d\n(xW) -1 -(a-ffll -2) 
dlnx 2 

= oc- ß , 

(2.30) 

Equations (2.29) and (2.30) assume IT > 1, or iflow i, for 
x 1. This condition is likely to be satisfied in the central 
regions of real cooling flows. 

The total mass of gas contained within a sphere of radius 
r = xRc(t) at time t may be obtained as an integral of the 
similarity equations. From mass conservation and the contin- 
uity equation, it follows that 

m(r, t) = 
4n 

Po(Rc)Rc
3[x3D(1 + IT)] . (2.31) 

At small x, the quantity in brackets approaches fi0. Thus, the 
amount of gas accreted by the central sink is proportional to 
the total amount of gas interior to the cooling radius. For 
a = /? = 2, 2 = ^, numerical integration of the eigensolution 
gives fi0 = 1.304. Equations (2.25) and (2.31) also show that the 
accretion rate is approximately equal to the gas mass enclosed 
within the cooling radius, divided by the age (Nulsen, Stewart, 
and Fabian 1984): 

tm(r = 0) _ rj(3 - oc)p0 

m(r = Rc)“[x3D(l + ir)L=1 
(2.32) 

For a = /? = 2,2 = i, the right-hand side equals 0.359. 
Equation (2.32) allows a simple estimate of mass accretion 

rates to be made from X-ray observations of cluster cooling 
flows, if the assumptions made in deriving the similarity solu- 
tions are valid. It should be noted, however, that in the present 
analysis Rc(t) is defined as the radius where icool = t from the 
initial static gas distribution, while observationally one deter- 
mines the radius where icool = t from the actual cooling flow. 
These radii are not very different, and only a small error is 
made in neglecting the difference between them. Defining xc 
such that iCOoi(x> ¿) = ¿ (cf. eq. [2.28]), numerical integration 
gives xc = 0.780 for ot = ß = 2, À = j. If m(r = Rc) is then 
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TABLE 1 
Constants of the Similarity Solutions3’b 

ß = 0.0 ß = 0.5 ß= 1.0 ß = 1.5 

TABLE 2 
Constants of the Similarity Solutions3 

J = 2.0 0 = 0.0 ß = 0.5 /= 1.0 ï= 1.5 ? = 2.0 

À = 0.5 À = -0.5 

1.589 
0.674 
1.225 
0.337 
1.100 
0.182 
1.038 
0.080 

2.250 
1.108 
1.310 
0.430 
1.123 
0.216 
1.044 
0.092 

1.500 
0.600 
1.159 
0.267 
1.052 
0.108 

1.225 
0.347 
1.064 
0.131 

2= -1.0 

J 1.480 
j 0.438 
í 1.216 
I 0.239 

1.103 
0.133 
1.040 
0.059 

1.714 
0.632 
1.267 
0.300 
1.119 
0.158 
1.045 
0.068 

2.523 
1.169 
1.345 
0.400 
1.139 
0.193 
1.051 
0.080 

1.500 
0.600 
1.163 
0.248 
1.056 
0.097 

1.190 
0.342 
1.061 
0.122 

3 For each (a, ß. À), the upper entry gives the dimensionless central 
accretion rate /¿0; the lower entry gives tm(r = 0)/m(r = Rc). See eq. 
(2.25) and (2.32). 

b Entries are omitted for solutions which are convectively unstable 
or violate eq. (2.16). 

replaced by m(r = xc Rc) in equation (2.32), the right-hand side 
becomes 0.391, only 9% larger than the value obtained above. 

Tables 1 and 2 list, for a grid of parameter values (a, ß, 2), 
the dimensionless central accretion rate /¿0 and the dimension- 
less ratio tm(r = 0)/m(r = Rc), for the cooling wave eigen- 
solutions. The eigensolutions were integrated numerically 
starting at large x with the series expansions of equations 
(2.24), varying the coefficient E0, El9 or E2 until the correct 
inner behavior was realized, as described above. Since the 
series coefficients have little physical significance, they are not 
given here. 

Tables 1 and 2 show that the dimensionless central accretion 
rate is usually quite close to /¿o = 1 for the eigensolution. 
However, the ratio tm(r = 0)/m(r = Rc) can be small for large a 
and small ß. For such cases, the simple estimate of the accre- 
tion rate, m « m(r = Rc)/t, leads to a large overestimate. The 
reason is that, for large a and small /?, rj(3 — oc) 1, and the 
mass enclosed by the cooling wave increases much more slowly 
than m(r = Rc)/t. Thus, a better estimate of the central accre- 
tion rate is given by 

m{r = 0) æ — m(r — Rc) = r](3 
at 

a) 
m(r = Rc) (2.33) 

Equation (2.33) leads to an underestimate of the accretion rate. 
However, the resulting m will be approximately correct if 
multiplied by (1.80, 1.50, 1.33, 1.15) for a = (1.0, 1.5, 2.0, 2.5); 
this coefficient has a weak dependence on ß and 2. 

III. TRANSSONIC ACCRETION WITH COOLING 

Section II presented similarity solutions for cooling waves, 
under the assumption of subsonic flow. This assumption was 
shown to be valid outside of and somewhat interior to the 
cooling radius Rc(t) if the cooling wave propagates slowly com- 
pared to the sound speed at Æc (e 1; see eq. [2.15]) and if 
equation (2.16) is satisfied. However, for r Rc(t) the Mach 
number may increase toward the center, and the assumption of 

1 See notes to Table 1. 

subsonic flow may be violated. The similarity solutions give 
the square of the Mach number as 

f^p-= 
yp 

2 ex2W2 

e 
(3.1) 

where 0 = P/D is the dimensionless temperature. From equa- 
tions (2.26), (2.29), and (2.30), it is easily shown that / for the 
eigensolution increases without limit as x -► 0 if 2 < 9/4 for 
pressure-dominated cooling, or if (a — ß)(2 — 2) > — 1 for 
gravity-dominated cooling. Although it is possible that/-► 0 as 
x —► 0 (e.g., a = 2, /? = 3, 2 = f ), such cases are not expected to 
arise in practice. Thus, the similarity solutions break down 
sufficiently close to the center, where transsonic accretion solu- 
tions with cooling must be found. 

For small x the self-similar flow becomes quasi-steady, since 
the gas flows in on a time scale much less than the age (iflow t 
or IF 1 ; see eq. [2.27]). This fact allows the cooling wave 
similarity solutions to be matched to steady transsonic flow 
solutions. Consider the nondimensional fluid equations (2.12)- 
(2.14). In the equation of motion (2.13), the acceleration terms 
(oce <0) were neglected in deriving the similarity solutions; 
their inclusion would have led to an explicit time dependence 
[since 6 = e(i)], violating self-similarity. It was shown in § lib 
that the acceleration terms can be ignored outside of and 
somewhat interior to the cooling radius. These terms cannot be 
neglected in the vicinity of the sonic point, where /= 1. 
However, for e <0 the sonic point occurs at x = x* 1, where 
¿now ^ then, since e changes on a time scale much longer 
than the flow time, it may be treated as a constant in equation 
(2.13). If IF 1 a further simplification occurs, since the accre- 
tion rate approaches a constant (¡i = /i0), eliminating the con- 
tinuity equation. Thus, for x 1 the nondimensional fluid 
equations become 

x3DIF = fi0 

yf d\nx 
In(xIF) + 

dlnP 
d\nx 

ßx*' 

(3.2) 

■=-</>, (3.3) 

í/lnx 
\n(PD~y) = 

D0k 

rjW 
(3.4) 
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Solutions to these equations are sought which match on to the 
similarity solutions for 1 and W 1, and which pass 
smoothly through a sonic point/= 1 at x = x*. It should be 
noted that, although they are written in nondimensional form, 
equations (3.2)-(3.4) are equivalent to the steady (ô/ôt = 0) 
fluid equations (2.8H2.10), and therefore the transsonic 
cooling accretion solutions presented below find application in 
contexts other than cooling waves. 

Mathews and Bregman (1978) also considered transsonic 
accretion with cooling. Their equations (2.1H2.3) are equiva- 
lent to equations (3.2)-(3.4). Their work differs from the present 
work in that they assumed the flow to be steady everywhere, 
but they used more realistic forms of the gravitational mass 
distribution MG(r) and cooling function A(T). The present 
treatment includes the nonsteady (self-similar) behavior near 
the cooling radius, but requires power-law approximations for 
MG(r) and A(T) (see eqs. [2.2] and [2.4]). 

Before transsonic flow solutions to equations (3.2)-(3.4) are 
given, it is necessary to show that such solutions exist only for 
the eigensolutions. In § lie (see Figs. 1 and 2) it was shown that 
there are two classes of solutions to the similarity equations 
satisfying the outer boundary conditions and extending to 
small x: a family of adiabatic solutions and a unique (for given 
a, ß, y, and X) eigensolution. (The third type of solution found 
in § II requires the cooling flow to be pushed outward by a 
piston and is unphysical.) The adiabatic similarity solutions 
have the specific entropy approaching a constant at small x, or 

S = PD~y -+ constant as x -► 0 . (3.5) 

In this case the equation of motion may be integrated to give 
(for a 7*^ /?; see Bondi 1952) 

^ y€x2IF2 H ^ + (—^—¿)xa~ß = constant . (3.6) 
2 y — 1 D \ol — ßj 

To demonstrate that there is no solution passing smoothly 
through a sonic point, assume the contrary. Then, for 1 
(x x*), the first term of equation (3.6) dominates the second 
term, while, for / <0 (x > x*), the reverse is true. For a > /? 
and x 1, it is straightforward to show that for / ^ 1 (subsonic 
region), /ocx-4, while, for /> 1 (supersonic region) faz 
x2(y-i) jkg solution therefore does not extend to x x* 

and is double-valued for larger x, which is impossible for a 
fluid. Similar results obtain for a < / and a = ß. Thus, the 
assumption that the adiabatic solutions pass smoothly through 
a sonic point is incorrect. Either the flow must be nonsteady, or 
a shock transition from a supersonic to a subsonic branch of 
the solution must occur. Intuitively, one expects such a flow to 
be nonsteady, with the central accretion rate dropping because 
the pressure is too high, until the gas can cool as quickly as it 
flows in and the eigensolution is obtained. Numerical hydrody- 
namical simulations would be helpful in studying this type of 
evolution. 

For the eigensolution, the specific entropy is not constant, 
but decreases due to cooling as x -> 0. Unfortunately, in this 
case the fluid equations (3.3) and (3.4) can no longer be inte- 
grated analytically, but must be solved numerically. For this, it 
is convenient to recast the equations in a slightly different form. 
First, normalize the radius and the exponential of the specific 
entropy to their values at the sonic radius : 

£ A L _ PD~y 

X* ’ _ S* 
(3.7) 

where x* and S* depend on e and are to be determined. After 
some algebra, the fluid equations become 

rflnS 
dln^ = z;i4‘,“1/a 1S' (3.8) 

din/ (y/+ 1) dlnS (y+1) 
(/-1)dií = 4 + 2^-1^ y dln<¡; 

</> = <M4c+a~',/cEc~1 , 

where 

- (W1Y 

.4a-1 
* 

and 

a = y - 1 
y + 1 

i(2_A), /-i 
y + 1 ’ \y + 1 

(3.9) 

(3.10) 

(3.11) 

(3.12) 

It is not possible to integrate numerically through the sonic 
point, so one must begin integrations at the sonic point with a 
series expansion: 

z = i + z;(£-i), /=i+/;(£-!), 

l£-i|<t i. 

Requiring/J, to be finite yields 

z; = 2y-<)>*■ (3.14) 
In addition, one obtains a quadratic equation for /, : 

/;2 - 2A/; - ß = 0 , (3.15) 
where 

A = (|^)[y - i? - 1,(2 - A)], 

B = - 4a + 1) - (y + 1)/, ^ 

X [(c - l)z; + 4c + a - /?]} . 

As is usual in transsonic flow problems, there are two solutions 
passing through the sonic point. One root, f* = A + (A2 

+ B)112 > 0, corresponds to a cooling, outflowing wind. The 
other root, f* = A — (A2 + £)1/2 < 0, corresponds to the 
desired transsonic cooling accretion solution. 

To integrate equations (3.8) and (3.9), one must first specify 
</>*, the ratio of the “gravitational” temperature to the gas 
temperature at the sonic radius. In the case of pressure- 
dominated cooling (see eq. [2.29]), T > Tgrav for x 1, and 
thus </> <^ 1 throughout the entire steady accretion region. In 
this case of gravity-dominated cooling (see eq. [2.30]), 
however, 0 ~ 1 for x 1. Now </>* is an eigenvalue of the 
transsonic solution which is determined by requiring that the 
solutions match onto the cooling wave similarity solutions for 

l andx 1. 
Figure 3 illustrates the transsonic accretion solution for the 

gravity-dominated cooling case a = / = 2, 2 = ^, for whiöh 
</>* = 2.013. Other cases are qualitatively similar. Several fea- 
tures are worth noting. First, moving outward from the sonic 
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Fig. 3.—Transsonic cooling accretion solution for a = /? = 2, A = ^. The 
Mach number squared / {solid curve) and the exponential of the specific 
entropy Z {dashed curve) are plotted on the same scale against the radius in 
units of the sonic radius. 

radius £ = 1, the Mach number (=/1/2) decreases and the spe- 
cific entropy of the gas (oc InZ) increases. This is as expected: 
as the gas flows in it cools and accelerates. The surprising 
result is that the gas cools completely before reaching the 
center—in the present case, £ = 0 at £ = 0.313. This behavior 
occurs because the power-law cooling allows a thermal 
runaway. A similar effect occurs behind radiative shock waves 
(Chevalier and Imamura 1982; Bertschinger 1986). As in the 
case of radiative shocks, thermal instabilities may be expected 
to occur here. Thus one should not expect the theoretical solu- 
tion to model accurately real cooling flows interior to the sonic 
radius, where the flow is likely to be complicated because of 
thermal instabilities, repressurizing shocks, star formation, and 
so on. 

Given the accretion solution in the form /(£), £(<!;), it is 
straightforward to determine the fluid variables. The dimen- 
sionless temperature follows from equations (3.3) and (3.10): 

0 = 5 = €(^T_")1 C(x*0~4cf~c^-c ■ (3.17) 

The velocity xW now follows from equation (3.1), and the 
density D from equation (3.2). It is found that, as expected, at 
large ^ the fluid variables have the same power-law depen- 
dences on Ç as the self-similar eigenfunctions have on x = 
for small x. Thus, the steady accretion solutions may be joined 
to the similarity solutions. To accomplish the matching, one 
requires expressions for the sonic radius x* and the entropy 
normalization constant S* in terms of the parameter e. 
Extrapolating the similarity solution (eqs. [2.29] and [2.30]) all 
the way in to the sonic radius and using equation (3.1) yields a 
proportionality between e and a power of x* : 

_ ÍKx{£ ~ 4A)/(3 “ A), pressure-dominated cooling ; 
(ICx*+ (a gravity-dominated cooling. 

The constant of proportionality K is determined by actually 
matching the fluid variables of the steady and self-similar solu- 
tions. Once x* is determined, S* follows from £'* and fi0 

through equations (3.11) and (3.14). For the case a = /? = 2, 
À = j, one obtains K = 0.501. It does not matter exactly where 
the matching is done, provided ^ ^ 1 and x 1. Of course, this 
requires x* <0, and hence e <0. If e is not small, the sonic 
radius is not far inside of the cooling radius, and the flow 
cannot be divided into regions of self-similar and steady flow. 
It is interesting that the properties of the cooling flow air = Rc 
determine the location of the sonic radius. 

Figure 4 presents the complete dimensionless density and 
temperature profiles for the steady accretion and self-similar 
cooling wave solutions, for the standard case a = /? = 2, 2 = ^. 
The parameter e has been set to 5 x 10 “6, corresponding to a 
sonic radius x$ = 10"5. The matching has been performed at 
x = 1.5 x 10, but because of the large region of overlap of 
the two solutions, the matching point could have been selected 
anywhere in the interval 10-3,5 < x <; 10“15. For x > 1 the 
fluid approaches its unperturbed state, with D = x~2 and 
0=1; because of the low density the gas has not had time to 
cool appreciably. As the gas flows through the cooling radius 
x = 1 (more precisely, as the cooling wave reaches an initially 
static gas element), cooling becomes important. Paradoxically, 
the temperature increases because as the gas cools, it begins to 
flow inward, and is therefore compressed and heated adia- 
batically. The time scales for cooling (rcool) and compression 
(¿now)are similar, so it is not unreasonable that the temperature 
increases somewhat. As the gas passes through the cooling 
radius, the density profile bends over to D oc x_3/2. Interior to 
the cooling radius there is a large range in radius where the 
flow is steady and subsonic, but as the gas flows in, its velocity 
increases (v oc x-1/2), and eventually the flow becomes super- 
sonic. Interior to the sonic point the temperature drops rapidly 
and the density becomes large. For smaller e (e.g., at later 
times) Figure 4 would look the same except that the region of 
steady, subsonic flow would be more extended. 

IV. APPLICATION TO M87 

In this section the cooling wave solutions developed in §§ II 
and III are applied to the cooling flow onto the giant elliptical 

log X 

Fig. 4.—Combined self-similar cooling wave and transsonic accretion solu- 
tion, for a = /? = 2, 2 = ^. The dimensionless density D {solid curve, vertical 
scale on the left) and temperature 6 {dashed curve, vertical scale on the right) are 
plotted against the radius in units of the cooling radius. The sonic radius is at 
x= 1(T5. 
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galaxy M87 in the Virgo cluster. Because of its relative proxim- 
ity (a distance of 15 Mpc is adopted here) and strong X-ray 
emission, M87 is the best observed cooling flow and provides 
the best test of theoretical models. Many groups have pre- 
viously modeled the X-ray emission around M87, including 
Binney and Cowie (1981), Fabricant and Gorenstein (1983), 
Tucker and Rosner (1983), Stewart et al (1984), Bertschinger 
and Meiksin (1986), and others. All of these previous treat- 
ments have assumed steady flow, which as shown in § II, is 
valid only well interior to the cooling radius. The present treat- 
ment relaxes the assumption of steady flow but does not 
include the effects of star formation or heat conduction con- 
sidered by previous investigators. 

The cooling wave models derived in this paper require 
power-law approximations to the binding mass profile, cooling 
function, and initial gas density profile. The binding mass and 
gas density are obtained from Stewart et al (1984), who com- 
bined the available X-ray imaging and spectroscopic data for 
M87. The gas density follows rather directly from the X-ray 
surface brightness distribution measured with the Einstein 
Observatory (e.g., Fabricant and Gorenstein 1983). A good fit 
to the electron density distribution obtained by Stewart et al, 
valid to within 5% for 2 kpc <r < 200 kpc, is given by 
(Bertschinger and Meiksin 1986) 

ne(r) = 1.46 x 10"2 (r/30 kpc)"0 8 _3 

1 + (r/30 kpc) Cm (4.1) 

The binding mass profile is considerably more uncertain. In 
principle, it follows from the density and temperature profiles 
through the equation of hydrostatic equilibrium, but the dis- 
tribution of temperature around M87 is not well known. An 
extensive discussion of this problem is given by Stewart et al, 
whose results are adopted here. A reasonable fit to their mass 
distribution, correct to ~ 15% for 5 kpc < r < 100 kpc, is 

MG(r) = 2.4 x 10lo(r/l kpc)13 M0 . (4.2) 

The cooling rate is taken to be 

if = 1.2 x 10-23nenH ergs cm-3 s_1 , (4.3) 

appropriate for a gas of half-solar metal abundances and tem- 
perature in the range 0.6-3 x 107 K (Gaetz and Salpeter 1983). 

Equations (4.1)-(4.3) imply that the dimensionless exponents 
describing the M87 cooling flow are (see eqs. [2.1], [2.2], and 
[2.4]) 

a = 1.8 , ß=1.5, À = 0.0, (4.4) 

assuming that the cooling radius exceeds 30 kpc. If the cooling 
flow has an age 1010t10 yr, the cooling radius is (eq. [2.5]) 

Rc = 82t]0 kpc , ^ = 1/2.1 « 0.48 . (4.5) 

The propagation speed of the cooling wave is R = 3.8Tf0°‘52 

km s“1, much less than the sound speed at Rc. The square of 
the cooling wave Mach number is therefore small (eq. [2.15]), 

6 = 3.4 x 10- 5t[o* 19 » (4-6) 

and the separation of the cooling flow into regions of self- 
similar subsonic flow and steady transsonic flow is well justi- 
fied. 

The cooling wave similarity solution determined by equa- 
tions (4.4) is gravity-dominated, with n0 = 1.231 and tm/m(r = 
Rc) = 0.382, yielding the rather high central accretion rate 

Fig. 5.—Electron density profiles for the cooling flow onto M87. The 
observationally inferred density profile (from Stewart et al 1984) is given by 
the dashed curve; the solid curve gives the prediction of the similarity solution 
matching the observations at large radius. The disagreement at small radius is 
significant. 

(even higher in the past) 

m(r = 0) = 15Tro0-43 M0 yr"1 . (4.7) 

The sonic radius occurs inside 1 kpc. The similarity solution 
does not provide a good fit to the observationally inferred gas 
distribution. Figure 5, comparing the observed electron density 
profile (eq. [4.1]) and the profile computed from the similarity 
solution, illustrates the problem. Beyond the cooling radius, 
the two profiles agree very well; this agreement has been forced 
by matching the densities at large radius. Interior to ~20 kpc, 
however, the density computed from the similarity solution is 
systematically too high, by an amount almost certainly exceed- 
ing the observational uncertainties. It is difficult to quantify 
this statement because Stewart et al (1984) did not assign 
errors for their density profile. Figure 6 shows that the tem- 
perature profiles agree somewhat better—although there is still 
a systematic difference between theory and observations, the 
disagreement is probably smaller than the observational 
uncertainties. 

The discrepancy between the similarity solution and the 
observations of M87 shows that the time dependence of the 
outer boundary conditions does not explain the failure of 
models without heating or star formation found by Stewart et 
al (1984). Following Takahara and Takahara (1981) and 
Tucker and Rosner (1983), Bertschinger and Meiksin (1986) 
suggested that heat conduction might decrease the inflow rate 
at small radius enough to solve this problem. However, the 
Fe xvii line emission reported by Cañizares, Markert, and 
Donahue (1988) suggests that heat conduction is not a large 
factor in the energetics. The explanation favored by many 
workers is that star formation removes gas from the cooling 
flow, preventing excessive central X-ray emission. 

Star formation is plausible in the context of the cooling wave 
solutions presented here. Mathews and Bregman (1978), 
Balbus (1986), and White and Sarazin (1987) show that cooling 
flows are unstable to ^short-wavelength, isobaric, comoving 
thermal instabilities if A < 2. For such a perturbation of ampli- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
0.

 .
6 

6 6
B 

EVOLUTION OF COOLING FLOWS 675 No. 2, 1989 

Fig. 6 
log r (kpc) 
Fig. 7 

Fig. 6.—Theoretical (solid curve) and observationally inferred (points, from Stewart et al. 1984) temperature profiles for the M87 cooling flow. Observational 
errors are difficult to assign, but the observational results are probably consistent with the theoretical model. 

Fig. 7.—Linear growth factor, normalized to unity at r = Æc, for comoving isobaric density perturbations of the cooling wave solution presented in Figs. 5 and 6. 

tude S = ôp/p, the perturbation at r is given up to an arbitrary 
normalization factor by 

In <5 
2 f00/ ¿InAWA(r) dr 

5 Jr V din 77 p \v\ ' 
(4.8) 

Although equation (4.8) suggests exponential growth, ô grows 
only as a power of radius because the gas flows in essentially as 
fast as it cools. 

Equation (4.8) is readily evaluated for the similarity solution 
fit to M87. The result is shown in Figure 7. The normalization 
has been chosen so that <5 = 1 at r = Æc. Since the growth is 
slow for r Rc, large preexisting density perturbations must 
be present if gas is to drop out near Rc. A more conservative 
view is that ~ 10% density perturbations are present at Rc due 
to entropy perturbations produced during cluster virialization 
or gas injection. These perturbations would become nonlinear 
within r « 15 kpc. While the evolution of these perturbations 
may be complicated by buoyancy (Malagoli, Rosner, and Bodo 
1987), it is plausible that once the perturbations become suffi- 
ciently nonlinear, dense blobs would cool below X-ray emit- 
ting temperatures. Demonstrating this in detail would require 
multidimensional numerical hydrodynamic simulations. If the 
gas does begin to drop out near 15 kpc, then the theoretical 
density profile (Fig. 5) might be brought into satisfactory 
agreement with observations (Stewart et al. 1984). 

V. CONCLUSIONS 

Time-dependent models of cooling flows can be constructed 
without resorting to numerical integration of the full partial 
differential equations of gasdynamics. Such models are self- 
similar, meaning that there is a unique scale length—the 
cooling radius, where the cooling time equals the age—which 
expands as a power-law function of time. Similarity solutions 
generalize the steady cooling flow solutions considered by pre- 
vious investigators by incorporating time-dependent effects 
important in the vicinity of the cooling radius. Self-similar 

cooling waves present a model for the evolution of the inter- 
galactic medium in clusters of galaxies containing a central 
dominant galaxy. 

The evolution of a cooling flow is self-similar only if the 
cooling function and the binding mass profile are given by 
power-law functions, and the gas distribution at large radius is 
polytropic. Also, the cooling wave must propagate sub- 
sonically, and optically thin gas cooling is the only non- 
adiabatic physical process allowed; otherwise, multiple length 
scales would exist. Subject to these limitations, there is a three- 
parameter family of similarity solutions which has been 
explored in this paper. It has been shown that the similarity 
solutions can be extended to pass through a sonic point at 
small radius, by matching the similarity solutions to transsonic 
cooling accretion solutions. 

The self-similar cooling wave model does not provide a good 
fit to the X-ray emission around M87 at small radius, indicat- 
ing that time dependence of the outer boundary conditions 
alone does not explain the discrepancy between observations 
and steady state models without star formation or heating. 
Nevertheless, the cooling wave model is instructive. From the 
similarity solutions it is clear that time-dependent effects are 
small well inside of the cooling radius, but that they are impor- 
tant near Rc. Time dependence causes a steepening of the 
X-ray brightness profile (since it steepens the gas density 
profile) even if the initial density and pressure profiles are pure 
power-laws of radius. 

A local linear stability analysis has shown that isobaric per- 
turbations may grow enough for gas to drop out of the M87 
cooling flow at small radius, suggesting that the neglect of star 
formation may account for the disagreement with observa- 
tions. However, perturbations do not grow much beyond the 
cooling radius, so that the amplitude of density perturbations 
outside of the cooling flow must be large if gas is to drop out 
before reaching Rc. Finally, the results imply that, at least in 
the case of M87 and even neglecting cluster dynamical evolu- 
tion, cooling flows should have been more vigorous in the past. 
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APPENDIX A 

JUSTIFICATION FOR NEGLECTING ACCELERATION TERMS 

The similarity solutions of § II are derived under the assumption that the time-dependent acceleration terms in the momentum 
equation (2.13) can be neglected outside the sonic radius and interior to the rarefaction wave. This assumption appears plausible 
since the flow is highly subsonic, but a rigorous demonstration of its validity is presented here. The demonstration consists of two 
parts: first, showing that the solution obtained is self-consistent, in that the acceleration terms are indeed small out to the rarefaction 
wave; and second, showing that in the particular case a = /? = 1, the solution agrees with that of Chevalier (1987), who included the 
acceleration terms in a fully self-similar solution. 

A rarefaction wave travels outward through the gas at the local sound speed, dRJdt = i; + (yp/p)1/2. To lowest order in e (the 
square of the cooling Mach number; see eq. [2.15]), 

m = 
/? — a + 2 ypoiK) 

. Po(Rs). 

1/2 
(Al) 

For e <0, the acceleration terms in equation (2.13) are negligible near the cooling wave, x ~ 1. But these terms are clearly important 
at the rarefaction wave, which is a weak discontinuity where the fluid variables have cusps (Chevalier 1987). With the neglect of 
these terms, a similarity solution can be found, but it is not valid at the rarefaction wave. The question addressed here is whether the 
solution is therefore invalid interior to the rarefaction wave. 

For x = r/Rc > 1, the ratio of the acceleration terms to the gravitational term in equation (2.13) is monotonie in radius. Since the 
ratio is small at x = 1, self-consistency is ensured, provided that the ratio is also small at x = xs(i) = Rs(t)/Rc(t). The ratio of the 
acceleration to gravity terms at x = xs is 

z to 
0L 

a + 2) 
!M' 

d\nW 
a + w) —— + if + 

a In x rj d’ 
(A2) 

where the subscript indicates that the quantity is to be evaluated at xs. It is assumed that 0 < rjiß — oc + 2)/2 < 1. From equation 
(2.24), for e 1 andxs oc w-a+2) i? 

Ws « (rjE0) - l/eo n(ß -oí+ 2) -2/eoti(ß-<x + 2) 
cl/eov(ß-* + 2) < 1 (A3) 

Since Ws<^ 1 and d\nW/d\nx & —l/(rje0), it is clear from equation (A2) that for e 1 the acceleration terms are negligible 
compared to the other terms in equation (2.13) between Rc and Rs. This result is not surprising; it simply reflects the extreme 
weakness of the rarefaction wave for e 1. Only in the immediate vicinity of the rarefaction wave are the acceleration terms 
important. 

The second part of the demonstration is to show that even though the acceleration terms are important right at the rarefaction 
wave, this does not affect the validity of the similarity solution downstream of the wave. The proof consists of comparing the fully 
self-similar solution found by Chevalier (1987) for the case a = ß = 1 with the piecewise self-similar solution found here. Chevalier’s 
restriction to cases for which e = constant ensures that the flow is fully self-similar even including the acceleration terms. For 
e = constant 4 1 the solution found here neglecting the acceleration terms should agree Chevalier’s solution between the cooling 
and rarefaction waves (his region III). 

For a = /? = rç = 1, the solution found by Chevalier (1987) for Rc Rs yields (his eq. [21]) 

v 

c0 

4 p 2a 
IIa’ pci lit]” 

(A4) 

where c0 = (B/A)112 is the initial isothermal sound speed, a is a small parameter proportional to the cooling wave Mach number, 
and rj' = r/(c01). To first order in e the density equals its initial value p0(r). Using equations (4) and (8) of Chevalier and equations 
(2.1), (2.6), and (2.15) in the present paper, one finds 

a = (ye)ll2/(y - 1), rjf = (ye)1'2 , (A5) 

with y = 5/3. 
Now equations (A4) may be compared with the results obtained in this paper. Fora = /? = rç = l, equation (Bl) of Appendix B 

gives <5 = x = 2; from equations (B2) and (B4) it follows that e0 = 1, £ = — 1, ßi = -i, and E0 = 11/6. By assumption, x > 1, so 
that IF 1. Then equation (2.24) yields 

*=xW=±=± 
Rc E0 11 ’ 

-^ = 0=1+01^=! 
PCo 

W . (A6) 
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Using equations (A5) to convert to Chevalier’s units, these results agree exactly with equations (A4). Therefore, even though the 
rarefaction wave is neglected in the present work, the flow interior to it is followed correctly provided that the flow beyond the 
cooling wave is extremely subsonic. 

APPENDIX B 

ASYMPTOTIC FORM OF THE SIMILARITY SOLUTIONS FOR LARGE x 

Since the cooling wave similarity solutions derived in § II are integrated numerically inward from x > 1, a power series expansion 
of the solutions for large x is necessary to provide starting values. Equations (2.24) give the form of the series expansions satisfying 
the outer boundary conditions equations (2.23). This Appendix provides expressions for the power series exponents and coefficients 
satisfying the nondimensional fluid equations (2.18)-(2.21). 

Substitution of the power series expansions equations (2.24) into the fluid equations provides a set of equations for the series 
coefficients and exponents, which must be satisfied order by order in the expansion in powers of W. These equations are tedious and 
are not reproduced here, although the results are used below. For convenience, the following frequently occurring groups of 
constants are defined : 

S = — oc), Ç=l-ôe0, * EE (7 - 1)<5 + rj(y<x - ß) . (Bl) 

It will be assumed throughout that a < 3 so that the gas mass converges as x -► 0, and that ya > /?, so that the initial equilibrium 
state is convectively stable. Since only expanding waves are under consideration, rj > 0, and therefore <5 > 0 and x > ()• 

The lowest order terms in the expansion of equation (2.18) yield the results 

1 > Qi - 
c 

1 + e0 rjß 
(B2) 

Equation (2.19) implies e0> 1; thus, there are two cases to be considered: e0 = 1 and e0 > 1. In both cases, the exponents of W in 
the series for Q and E are simply related : 

g2 = 1 + > ¿73 = 1 + ^2 • (B3) 

Consider first the case e0 = 1. Equation (B2) gives directly, while the lowest order terms in the expansion of equation 
(2.19) give E0: 

r. X - (ôi + 7 - 1) h0 — 
n 

The case e0 = \ applies provided this expression yields E0 > 0. The next order in the expansion yields a quadratic for ^ : 

yef + [1 - 6i - r¡E0 + (Q1+y- 1)(1 + riß)^! - (1 + riß)riE0 = 0; 

(B4) 

(B5) 

for Eo>0 there is exactly one positive root. 
The caset'o = 1 is subdivided into three different possibilities^ < j, j < e1 < l, ande1 > 1. (The caseset = 4 ande¡ = 1 may 

be obtained by taking limits.) In the first two cases, e0 = 1 and e¡ < 1, E¡ is arbitrary (an eigenvalue). Given E1, Q2 follows : 

If c0 = 1 and t'j < I, then 

~(¿ + qßQJei 
1 + + t/ß 

Ei. (B6) 

e2 = 2e¡ , (B7) 

and E2 and Q3 follow from solving the pair of linear equations 

(<5 + rjßQ1)e2E2 + (1 + e2 + rjß)Q3 = [(<5 + rjßQ^Ei - rißQ^e^i , 

[(1 + e2)r]E0 - xe2]£2 + (1 + e2)Q3 = . (B8) 

Once E1 is specified, E2 and Q3 follow simply. 
If e0 = 1 and ^ < ex < 1, then 

e2 = l, (B9) 

with E2 and Q3 following from solving 

(Ô + rjßQi)E2 + (2 + nß)Q2 = -í(¿ + rjßQi + 1 - Qi), 

(2rjE0 - x)E2 + 2ß3 = C(ßi + 7 - 1) + ßi(ßi - 1) + (1 - m^E0 . (BIO) 

When e0 = 1 and equation (B5) gives e1 > 1, the power series for E and Q must be reordered, because the series contain terms 
ccW^To maintain a proper ordering, one must have e2 > el5 so in this case one sets ^ = 1, while e2 is set equal to the positive root 
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of equation (B5) (formerly ej. Now Ei and Q2 are fixed as the solution of equations (BIO) (with£2 andQ3 -> Q2), while £2 
ls 

an arbitrary eigenvalue, with Q3 following from equation (B6), with ^ e2 and 
If equation (B4) gives E0 < 0, the assumption e0 = 1 is incorrect, since the density must be positive. In this case e0 is the positive 

root of the quadratic 

flßx4 + ynO - ß)eo-y=0. (Bl 1) 

It is straightforward to show that there is a root e0 > 1 for x > 0 if and only if equation (B4) gives E0 < 0. Now E0 is an arbitrary 
eigenvalue. 

As in the earlier case e0 = 1, the case e0 > 1 is divided three ways: e0 < 3/2, 3/2 < e0 < 2, and e0 > 2. In the first two cases, 
1 < e0 < 2, one obtains 

¿i = ¿o - 1 • 

Now Et and Q2 follow from solving the pair of linear equations 

(S + rjßQJe^i + (1 + <?! + e0 nß)Q2 = 0 , ie1E1 - (1 + ei)ß2 = e0 • 

If 1 < e0 < 3/2 {e1 < 1/2), then e2 = 26^ (see eq. [B7]) and E2 and ß3 follow from 

(¿ 4- rjßQl)e2E2 + (1 + e2 + e0rjß)Q3 = [(<5 + ^Qi)Ei — » 

Xe2E2 - (1 + e2)Q3 = (e0 + + X^iEl ■ 

Once E0 is specified, Eu E2, Q2, and ß3 follow. 
If 3/2 < e0 <2 (1/2 < ex < 1), then e2 = 1 (see eq. [B9]), with E2 and Q3 following from the solution to 

(<5 + f]ßQ1)e2E2 + (1 + g2 + e0rjß)Q3 = — C(^ + qßQi + 1 — Qi), 

Xe2E2 - (1 + e2)Q3 = -Ç* + ßi(l - ßi). 

(B 12) 

(B 13) 

(B 14) 

(B 15) 

Finally, when e0 > 2, equation (B 12) would give e > 1 ; as before, there are terms oc W1 in the series. Thus, a reordering is again 
necessary. The correct solution is obtained by setting e1 = 1 and e2 = e0 — 1. The series coefficients E^ E2, ß2, and ß3 follow from 
solution of equations (B13) and (B15), after exchanging the pairs (el5 e2), (El9 E2), and (ß2, ß3). 
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