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ABSTRACT 
Hercules X-l exhibits a 35 day cycle in its X-ray intensity and 1.24 s and 1.7 day periodicities in its pulsar 

rotation and orbit, respectively. The features of the 35 day clock and the presence of a precessing tilted accre- 
tion disk have been discussed by many authors. A ring of matter at a given radius in the accretion disk will 
precess if it is tilted relative to the orbital plane. Under the assumption of a uniform precession of the disk, 
the periodic perturbation of the uniform precession has been analyzed by Levine and Jernigan. In this paper 
we present a complete expression for both uniform and perturbed precession of the disk. The result is com- 
pared with observations, and it is in agreement with the analysis of the observations given in the literature. 
Subject headings: stars: accretion — stars: individual (Her X-l) — X-rays: binaries 

I. INTRODUCTION 

The pulsating X-ray binary Her X-l shows an unusual kind of periodic behavior in the form of an on-off cycle of ~35 days 
(Tananbaum et al 1972; Giacconi et al 1973). During the 35 day cycle, Her X-l normally has a high state lasting for ~ 10 days with 
a 2-6 keV intensity of ~ 100 mCb, and a ~5 day secondary high state with peak intensity of ~30 mCb that occurs ~ 180° out of 
phase with the primary high state. For the remainder of the 35 day cycle, referred to as the low state, Her X-l is much fainter at ~ 5 
mCb (Parmar et al 1985). 

The 35 day clock mechanism has been discussed by many authors. Kondo, Van Landern, and Wolff (1983) suggested that it is 
caused by nonlinear oscillations of the normal star, which provide the modulations of the mass flow. Trümper et al (1986) proposed 
that the clock mechanism resides in the free precession of the neutron star, but the concept of a precessing accretion disk in one form 
or another is quoted most frequently in discussions of this X-ray binary (Górecki et al 1982; Levine and Jernigan 1982; Katz and 
Grandi 1982; McCray et al 1982; Howarth and Wilson 1983). There is evidence that the 35 day cycle is due to a precession of the 
tilted accretion disk which obscures the X-ray source when the disk is in a certain range of orientation. 

Roberts (1974) suggested that an inclined rotational axis for HZ Her could have a dramatic effect on the observed behavior of the 
binary system. He discussed the possible connections between certain observations and the precession of the axis of HZ Her, calling 
his model the “slaved disk model.” Petterson (1975) suggested that the disk should not just be tilted and precessing, but that it also 
should be warped. Katz (1973) estimated the precession period of the disk rim due to tidal forces from the companion star. On the 
assumption of a uniform precession of the disk, Levine and Jernigan (1982) and Katz and Grandi (1982) analyzed certain 
perturbations. 

Based on dynamical analysis, both uniform precession and perturbation of the disk are discussed in this paper. Some compari- 
sons of the theoretical results and the observations are given, and the results are in agreement with the basic observations. 

II. DYNAMICAL ANALYSIS 

a) Geometry and Parameters 
The geometry of the system is given in Figure 1, where Mr, a, and co are the mass, the radius, and the angular velocity of the ring, 

respectively, co = à; Mopt is the mass of the optical star (HZ Her); R is the distance between HZ Her and Her X-l ; Mx is the mass of 
Her X-l; Q is the orbital angular velocity (Q = 2n/Torh) of the binary; <p, 6, and a are Euler angles (see Fig. 1); XY represents the 
orbital plane; and X is the projection of the line of sight into the orbital plane. 

The parameters known with a high degree of confidence from X-ray and optical observations are the following: the orbital period 
^orb = ld70 (Deeter, Boynton, and Pravdo 1981); the projected maximum radial velocity for Her X-l, Vx sin i = 169.05 km s 1 (i is 
the inclination of the orbital plane to the plane of the sky); the mass function fx(M) = Ml sin3 i/(Mx + Mopt)

2 = 0.85 M0; the 
orbital eccentricity e < 0.0002; the projected semimajor axis of the orbit, axsin i = 3.95 x 1011 cm; and the inclination i = 87° 
(Middleditch and Nelson 1976). 

The mass ratio, q = Mx/Mopt, has been determined by various authors, but the derived ratio depends somewhat on the model 
used: q = 0.60 (Middleditch et al 1976); q = 0.65 (Koo and Krön 1977); q = 0.49 (Hutchings et al 1985). For the approximate 
calculation below, we shall use a mass ratio of q = 0.60. So, Mopt = 2.2 M0, Mx = 1.3 M0, aopt = 2.37 x 1011 cm, R sin i = 
6.32 x 1011 cm, and R = 6.33 x lO^cm. 

1 This project was supported by the National Natural Science Foundation of China. 
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b) Potential Function 
Now we analyze the motion of a rigid ring with radius a which is tilted with respect to the binary orbital plane; 6 is the angle 

between the orbital plane and the ring. We take the origin of coordinates as the center of the neutron star, so that HZ Her will move 
around the origin. The Z-axis is taken as normal to this orbital plane, as shown in Figure 1. The quantity r is the distance between a 
differential arc doc at the ring and the optical star with the mass Mopt : 

r2 = Æ2 + a2 + 2JRa[cos 9 cos (Qi — q>) cos a + sin (Qt — cp) sin a] . (1) 

The mass of a differential arc is 

and the gravitational potential is 

Mr i M -— adoc = —— doc, 
2na In 

-f 2n 
r [2n da =_ GM^M, f*^2 

Jo r 271 Jcy: 

2dß 

'c/2 y/Ä — B sin2 ß 

GMODiMr 4 'nil dß 
271 Jo y/l - (B/A) sin2 ß 

GMmlMr J_ J B\ 

J~Ä \\ AJ’ 
(2) 

where 

2ß = oc + C , C = arctan 
sin (Qi — (p) 

cos 9 cos (Qi — cp) 

A = R2 + a2 + 2Ra[cos2 9 cos2 (Qi — <p) + sin2 (Qi — <p)]1/2 , 

B = 4Æa[cos2 9 cos2 (Qi — (p) + sin2 (Qi — cp)]1/2 , 

and F(yjB/A) is the complete elliptical integral of the first kind. When Æ P a, B/A 1, the integration can be written as 

So 

i 1 B 

1+4Ä + 
9_ 

64 

V 
GMopiMr [ 

J-A L 4A + 64 

(3) 

(4) 

(5) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

34
0.

 .
50

3Q
 

ACCRETION DISK OF HER X-l 505 No. 1, 1989 

Accurate to order (a/R)2, equation (5) becomes 

V = — GMJtMr 1^1 + ^ [cos2 e cos2 (Qt - (?) + sin2 (fit - (?)] - 1 jj . 

c) Euler Equations 
When à = 0) (jp, and co^> Ó, the kinetic energy of the ring is 

T = \Mra
2{0L + cp cos Q)2 + ^Mra

2{62 + cp2 sin2 0) ~ jMra
2(à + cp cos 0)2 . 

Lagrange’s equations are 

Mr a\u. + <p cos 6) « Mr a
2w = L0 = const. , 

r • • n 0V 
L0(p sm6 = - — , 

ÔV 
L0 0 sin 6 = —— . 

dç 

Substituting V and L0 into equations (8b) and (8c), we have 

3 GM, 
(p= -- opt 3 GMn 

4 R3a> 
cos 0[1 + cos 2(fit — <?)], i) = + - ,opt sin 6 sin 2(fit — w) 

4 R co 

Letting t = fit. Equation (9) becomes 
d) The Solutions of Equation (9) 

~ = t e cos 0[1 + cos 2(t — <?)] , -(- = + 7 e sin 6 sin 2(t — <?). 
at 4 at 4 

Here 

(6) 

(7) 

(8a) 

(8b) 

(8c) 

(9) 

(10) 

e = 
GMopt 

R2œCi (11) 

is a dimensionless quantity. 
In our case e 1, we can get the solution by averaging methods (Sanders and Verhulst 1985, p. 33). The first-order approx- 

imations are 

dcp 3 1 C2n 3 d0 
~<h=~4€2n\0 

coseili+cos2(r~(PÏ]d^=--^ecosOi, =0 > (12) 

and 

<Pi=<Po~ (|e COS 0o)t , 01 = 0O • (13) 
The second-order approximations are 

<p2 = <Po~ lh cos 90 - ¿e2(cos 20o + cos2 0O)> ~ cos 60 sin 2{[1 -h |€ cos 0O - ^e2(cos 20o + cos2 0O)]T ~ ^0} ? 

#2 = 0o — Ie sin 0o cos 2{[1 -h cos 0O — ¿e2(cos 20o -h cos2 0o)]t — (p0} . 

Substitute e, t into equation (14) to obtain 

GMn 
<P2 —[3 

1opt 
R3o) 

cos 0O 
9 G2M2 

65^(COS20O + COS2^ 

3 GM, 

02 — 0Q 

8 R3mCl 

3 GM, 

^ cos 0O sin 2 ~ 3 GM. 
a+i 

8 R3coÇl 
^ sin 0O cos 2 

jM 9 G2M2 ”1 
C0S 00 - (COS 200 + COs2 04 - ^ 

0)^ — 
3 GM 9 G2M2 

Q + "7 ^ ^ 9£t COS 00 — 77 p6 2r\ (C0S 20o + COS2 0( 4 R3w 64 R6(o2Q Vo 

Let represent the uniform precession angular velocity of the ring : 

3 GM, opt 
4 R3(o 

9 G2M2 

cos 0o -77 d6_2T (cos 20o + cos2 0O). 

(14) 

(15) 

(16) 
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When the terms which are smaller than e2 are ignored, the amplitude of the perturbation for 02 is 

3 GMt 

8 R3œQ 
^ sin 0O = sin 0, 

{: 
 1_ e

: 

2Q cos 0O 128 
cos 20o 4- cos2 0O~| co, 

cos 90 2Q 
tan 60 . 

The final results are 

(17) 

<p = <p2 = <Po-a>vt-^^ sin 2[(£2 + mjt - <p0] , 

e = e2 = e0 - tan e0 cos 2[(fi + w^t - <p0]. 

(18) 

III. COMPARISON WITH THE OBSERVATIONS 

a) The Radius of the Ring 
For Her X-l, co^ ä 2n/35d, so from equation (16) we have 

œ 3 GMopt 35d 

cos 0o~ 4 R3 2n ' 

If 60 ~ 35° (see Jones and Forman 1976), using the value given in § lia, we have 

co » 0.34 x 10“3 . 

If the material of the ring moves with Keplerian velocity, then 

G(Mx + Mr) GMx 

CO2 ~ CO2 ' 

and 

a = 1.1 x 1011 cm . 

(19) 

(20) 

(21) 

The radius of the disk was estimated from the optical study by Middleditch and Nelson (1976), a = 1 x 1011 cm. Our value agrees 
with it very well. 

h) Precession Direction 
A detailed numerical comparison of photometric data with the tilted precessing disk model led to the conclusion that the disk 

precesses with period 35 day in opposite direction to the orbital motion (Crosa and Boynton 1980). 
From equation (18), 

<f>= cos 2[(i2 + cov)t - <p0] . (22) 

From the second expression given in equation (18), we can see 

0max = + 2 "if tai1 ö° ’ 

and at this point, 

But for </> > 0 it is only limited in the region 

>0. 

cos 2[(Q + co^t - (p0J < 
Q 

coy + n* 
-0.95 . 

(23) 

(24) 

For most situations <p < 0. This means that the disk precesses in the sense opposite to the orbital motion, and on average it is in 
agreement with that given by observations. 

c) The Change of 35 day Period 
No report has been published that the 35 day period has a long time change. This is in agreement with our result. 
Boynton, Crosa, and Deeter (1980) reported that over intervals of order 10 cycles the 35 day period changed as: 36d4 + 0d5, 

35d2 ± 0d2, 34d5 ± 0d2,35dl ± 0^2, 36d2 ± 0d2, and 33d6 ± 0d3 (1 <7 confidence). 
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From equation (18) we see that for one cycle of precession the perturbation times are 

2(Q + O 

V 
» 43.2 ; (25) 

this means that for about five cycles of the 35 day period, the changes of it make a cycle. 
The difference between the long period and the short period comes from the fact that the 0.2 phases [see Eq. (25)] are spent in 

different ranges. The longest time for the 0.2 phases satisfies 

and the shortest time for the 0.2 phases satisfies 

So the maximum difference of the periods is 

AT = (26) 

Substituting 

1 2rc 2n 
2A(P = 432’ W‘l, = 35i’ 

^ 2n 
ÇÎ = ÏI7, 

we get 

imax = 0d431 , fmin = 0d080 , AT = 0d351 . (27) 

The changes of the period may come from the disk structure. For example, if the radius of the ring is changed from a to from 
equations (21), (16), we get 

^ = (V)3/2 

\aj 
(28) 

If the 35 day period changes from 34 to 36 days (about +2.5%), co^Jco^ changes from 1.026 to 0.976, respectively, and a1 changes 
from 1.12 x 1011 to 1.08 x 1011 cm, respectively. This is just a small change in the structure of the disk. 

Indeed, EXOSAT observations suggest that a temporary change in the disk structure may have occurred (Parmar et al 1985). 

d) The Value and Influence of 6 
It was assumed by Levin and Jernigan (1982) that the value of 6 is small. This limit is not needed in our calculation. 
From the discussion above we can see that the width of the ring responsible for the absorption of the X-rays cannot be large, but 

the thickness of the ring can be large. For the value of 0 ~ 30°, i ~ 87°, the shadows of the X-ray illumination are estimated to be 
~20° (Middleditch, Puetter, and Pennypacker 1985). In fact, most authors use the value of 0 ~ 30° (Jones and Forman 1976). 

From equation (18) the maximum change of 6 is 

A6 = + — tan 0, o • (29) 

For 0O ~ 35°, À0 æ ±1°. 
The changes of 0 can influence the value of the 35 day period, but its important influence is on the turn-on and turn-off scale, the 

values of T0JT0{{ are from 0.33 (Tananbaum et al 1972) to 0.52 (Jones and Forman 1976). 

e) Is the Neutron Star in Free Precession*! 
Jones and Forman (1976) have observed X-ray emission from Her X-l during the 23 days, the low state, of the 35 day cycle. 

During this time they observed all the activities normally presented in the high state: regular eclipses, absorption “dips,” and 1.24 s 
pulsations. This fact is contrary to the model of the precession of the neutron star suggested by Trümper et al (1986) and supports 
the model of the precession of the accretion disk. 

IV. CONCLUSION 
From our results we can see the following: 
1. The change of the precession angular velocity co^ and the changes of 0 are periodical; there are no secular changes for the 

period of 35 days. 
2. The precession is a common effect for the accretion disk if it is tilted relative to the binary orbital plane as pointed out by other 

authors (see, e.g. Katz 1973; Levine and Jernigan 1982). The uniform precession has been discussed by Katz (1973). On the 
assumption that the motion is an approximately uniform precession (the uniform precession is assumed), Levine and Jernigan (1982) 
explored the dynamics of tilted accretion disks in binary systems and showed that the expected motion of a ring of matter in an 
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accretion disk is more complicated than simple precession at a uniform rate. Our result for the description of the disk “wobble” is 
similar to that given by Levine and Jernigan (1982). But there are two important differences : 

a) We do not need the assumption of a uniform precession. The uniform precession is obtained as the first-order approximation 
of our calculation, and is shown in equation (16). 

b) In the analysis given by Levine and Jernigan (1982), there was another assumption: 60 is small. In our analysis, we do not need 
this assumption either. Owing to this cause, comparing equation (18) with Levine’s equation (8) (Levine and Jernigan 1982), we shall 
find that there is a difference between the two results, when 60 is not small. 

3. The motion of the ring discussed either in this paper or in the paper of Levine and Jernigan (1982) is approximated as that of a 
rigid ring. The actual motion will deviate somewhat from this description since a real accretion disk is a fluid object. 

We thank Professors H. S. Yang, X. J. Wu, and Y. F. Li for very helpful discussions. We are particularly grateful to Professors J. 
A. Petterson, J. I. Katz, U. Anzer, R. A. McCray, and D. A. Leahy for invaluable criticism, suggestions, and instruction. Professors 
U. Anzer, J. A. Petterson, J. I. Katz, and D. A. Leahy read and revised the manuscript very carefully. 
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