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ABSTRACT 
We calculate the propagation of y-rays around neutron stars with a dipole magnetic field, including the 

effects of general relativity and the absorption by the one-photon magnetic pair production process, as a 
model for the high-energy transport in gamma-ray burst sources and pulsars. We discuss the escaping photon 
beam characteristics as seen by distant observers at different angles with respect to the magnetic axis, for 
radiation arising from the polar caps of neutron stars of varying degrees of compactness and surface field 
strengths. The observed beaming depends strongly on the surface field only up to B ä 0.05 times the critical 
field value, being essentially constant above the value 0.1. The gravitational light bending contributes signifi- 
cantly to broaden the beam profiles especially at low energies above threshold, being sensitive to the stellar 
radius to mass ratio. 
Subject headings: gamma rays: general — pulsars — radiative transfer — relativity — stars: atmospheres — 

stars: neutron 

I. INTRODUCTION 
The process of gamma-ray propagation in relativistic magnetospheres is of relevance for models of bursting gamma-ray sources, 

as well as for rotation-powered pulsars such as the Crab and Vela pulsars, which are observed at energies including the range 
0.3-100 MeV. The presence of hard (E > 10 MeV) radiation in a large fraction of the gamma-ray bursters (GRBs) detected by the 
SMM spacecraft (Matz et al 1985) provides an important constraint on the models of these objects which are based on a 
magnetized neutron star origin. This is because absorption by one-photon pair creation in the strong magnetic field can suppress 
radiation above a threshold £ > 1 MeV, depending on the angle between the photon wave vector and the local magnetic field 
direction. Monte Carlo simulations in the weak gravity limit indicate that for increasingly strong magnetic fields the escaping 
high-energy photons would be concentrated on a narrow beam along the magnetic axis, which would act as a strong observational 
antiselection effect. This has led to estimates of a typical surface field strength of £ < 4 x lO^-lO12 G (e g., Matz et al 1985), in 
order to explain the SMM observational statistics. This is about one order of magnitude less than the measured magnetic fields in 
accreting pulsars, or than the values inferred for young rotation-powered pulsars. A low field is acceptable in principle, but to make 
this compatible with the report by Mazets et al (1981) of cyclotron lines in the 20-60 keV range in a number of GRBs (implying 
£«4-6 x 1012 G may require two-component or more involved models (Lamb 1988; Brainerd 1989; Zdziarski 1987). The 
importance of settling this point is made more urgent by the recent report (Murakami et al 1988) of two GRB events detected with 
Ging a showing absorption features at 20 and 40 keV which are also most easily interpreted as cyclotron first and second harmonics. 
Given the controversy concerning the association of GRBs with neutron stars and the strength of their magnetic field, it is 
important to reexamine in greater physical detail the dependence of the escaping y-ray flux on the various processes and on the 
physical characteristics of the star. 

Most discussions of high-energy photon propagation and absorption in a neutron star magnetic field have been either qualitative 
or simplified, due to the complication of dealing with a process depending on the relative angle of propagation and the field strength, 
both of which vary in space. Detailed transport calculations have not been performed so far, previous results having been based on 
mean free path considerations or on Monte Carlo simulations involving single photons at a time. The validity of the asymptotic 
absorption cross section which is generally used needs to be considered at arbitrary photon energies and field strengths. More 
importantly, one needs to take into account the effects of general relativity on the field configuration, and the effects of gravitational 
bending and focusing of the photon orbits in the Schwarzschild metric of a compact neutron star. Only when the neutron star has a 
large radius, say RNS > 4RS [(where the Schwarzschild radius Rs = IGM/c2 = 4.2Km(M/1.4 M0)] can one neglect this effect in an 
approximate treatment. For smaller radii, the gravitational light bending is expected to be strong enough to broaden appreciably 
the beam of escaping high-energy photons, and any estimate of the GRB detectability based on beam sizes must take this effect into 
account. 

II. MAGNETIC ABSORPTION IN SCHWARZSCHILD SPACETIME 
The mean absorption length ka(X) for a photon moving at an angle À with respect to the magnetic field direction has been 

calculated in detail by Tsai and Erber (1974). The threshold for this process is at 

hco . „ 
  r sin /I > 2 . 
me

c (1) 

1 Also Eötvös University, Budapest. 

443 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



444 RIFFERT, MÉSZÁROS, AND BAGOLY Vol. 340 

h) a 

They also calculated simpler asymptotic expressions, valid well above threshold, which were improved upon by Daugherty and 
Harding (1986). Defining 

X = (d\B'I2) sin X , 

hco 
co' = ■ B' = 

m^c Br ’ 

where Bc = c3/he = 4.414 x 1013 G is the critical field, the asymptotic expressions are 

, í [1 + 0-42(o/ sin ^-^.v^-o.ooas] 
KaW = 0.23 -f ß Sin À exp < .....—  

l (3/4)x 
and 

for x ^ 1 , 

(2a) 

(2b) 

(3a) 

ka(â) = 0.38 3Í X 1/3 , for z > 1 , (3b) 

(see Daugherty and Harding 1983), where oe^ = 1/137 and Xc = 3.8616 x 10-11 cm is the Compton wavelength. While most 
treatments use only equation (3a), we are here interested in a broad range of field strengths, frequencies, and angles, so that equation 
(3b) is also necessary. In the intermediate x region, one can use the full form of the approximate expression from which equations 
(3a) and (3b) are derived, namely 

/nx 1 OCr 1 f1 9 — v2 8 1 
3Bf sin Xco' 1 — v2 (4) 

(see Tsai and Erber 1974). The integral (4) is too cumbersome for frequent use, so that we have fitted its values with a second-degree 
polynomial interpolation to join the large and small x regimes described by equation (3), 

Ka(ÍX) = Ka(1 10-oo^ O6^^2 + 1-77^^^ , (5) 

where ka(X, / <0) is given by expression (3a). Equation (5) fits the integral (4) within the range —1.5 < log / < 3.0 to better than a 
few percent accuracy. Expressions (3), (4), and (5) are valid above threshold, i.e., for co' sin 2 > 2, and ka = 0 for co' sin X <2. Well 
above threshold they are accurate, while close to threshold they overestimate the exact opacity containing the sawtooth structure 
caused by the quantized Landau levels in the final electron and positron (see Daugherty and Harding 1983). Since the exact 
expressions are too complicated for extensive use, in this paper we shall use the asymptotic expressions, making allowances where 
necessary for their approximate nature. 

The magnetic field is taken to be given by the multipole expressions in an exterior Schwarzschild metric (see Wasserman and 
Shapiro 1983). Thus, the magnetic dipole is [in terms of polar coordinates (r, 0, <I>)] 

2JÍ 
Br = —cos 0 #\(r) (6a) 

Bq = —r sin 0 #'2(r), (6b) 

where 

^1W=-3r2[rln(l-^+l+¿]) 

and the magnetic moment. // can be expressed in terms of the surface magnetic field B0 at the pole, 

(7a) 

(7b) 

B0 = ß,(© = 0) =-^¿^(K), 

where R is the neutron star radius, and all radii are in Schwarzschild units. The modulus of the magnetic field at (r, ©) is given by 

(8) 

B = —r [-^(r) sin2 © + 4#'f(r) cos2 ©]1/2 . (9) 

The polar cordinates (r, ©, 4>) refer to the observation point, while the coordinates (/x, <p, co), where /< = cos 1 6, refer to the photon 
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four-momentum quantities, the first two being direction and the third the photon frequency. The cosine of the angle between the 
photon wave vector and the magnetic field is 

cos X = sin2 0 + 4^l(r) cos2 0]_1/2[2/x cos + ^/l — fi2 cos (/> sin ©^(r)] . (10) 

at the position point (r, 0). Thus, we have the dependence À = X(r, 0, /¿, </>). 

III. EMISSION AND TRANSPORT MODELS 
In order to investigate the survival of the high-energy photons in a nonuniform magnetic field including general relativistic effects, 

it is convenient to use a simplified emission model. We shall assume that there is a source of photons of various energies, which will 
be taken to be at or near the stellar surface, and that these photons are depleted by the process of equations (3)-{5), giving rise to 
pairs. The pairs loose their perpendicular energy by synchrotron emission, and the remaining parallel energy plus the rest mass can 
be used to create secondary photons by annihilation. However, these secondary synchrotron and annihilation photons can be 
approximately neglected, as far as the transport in the 1-10 MeV region is concerned. This can be seen as follows. Consider the 
center of mass frame (k • B = 0). From the pair production attenuation coefficient one can calculate the pair energy distribution (see 
Daugherty and Harding 1983), and it turns out that the most significant final states are those with almost no parallel momentum 
(p « 0). In addition, for œ'B' < 1 the initial photon energy is shared almost equally between the positron and the electron. Then all 
the energy goes into Landau level excitation with 

J ^ J max 2mJ j 2B 

(we use natural units h = c = i throughout). We get a typical de-excitation time scale from the synchroton loss rate (Rybicki and 
Lightman 1979) 

-1 _ Psync _ 4 m _ /B\2 

h - e ~ 9 Ac e (Tl 1\bc) ’ 

where the Lorentz factor yL follows from 

= - * , /1 + 2/n m 
B co 
Br ~ 2m 

(note that co/m> 2), and e = £ — m is the excitation energy of the pairs. From that 

‘•“3-97*io_">fe+i) ’(! 
This time scale, which is usually quite short, has to be compared to a typical annihilation time scale tA. For B/Bc > 0.2 one-photon 
annihilation is the dominant process, with a time scale given by (see Daugherty and Bussard 1980) 

s . (11) 

= nn0LfX? 
m B( 

p^f^c 2 m2 + p2 B 
exp[-2|(l+¿)], 

where np is the pair density. Since p2 m2 for the annihilating pairs (see above), we have 

tA « 3.06 x 1012- exp (2§ np Bc \ B 

and thus 

— « 1.30 x 10"31n.( 1 
tA \ 2m. 

The function of B/Bc has its maximum value at B/Bc = 0.667 ; therefore 

t 

exp 

<1.0x 10-32n„[ 1+^ 1 
(12) 

For smaller fields (B/Bc < 0.2) two-photon annihilation becomes more important, and the corresponding cross section can be 
approximated by the free space value (Daugherty and Bussard 1980); for small pair momenta (p2 m2) we have 

t4 
1 = Inoiffi npK 1.50 x 10 

and thus 

6.0 x 10“33 nj 1 + 
2m (13) 
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; Typically Mp « 3 x 102OL38^6 cm 3, and Bc/B < 100, so that the ratios (12) and (13) are quite small except for extremely high 
^ luminosities or low magnetic fields. In general, the y-photons will create pairs in a high Landau level, which decay rapidly to the 

ground state. The energy of the synchroton photons is approximately given by 

© fm] • o*» 

and they are emitted essentially perpendicular to the magnetic field (note that our considerations so far are valid in the center of 
mass frame). Returning to the stellar frame we have 

CO = CU* sin 2 , COSync Ä ^íync ¿ > (14b) 

with À being the local angle of propagation for the primary photons respect to the magnetic field. If cosync > 2m, the secondary 
photons will be reabsorbed, making pairs which will further cool. For B < 0.1BC and primary photons co < 10 MeV, however, a 
large fraction of secondaries has energies below threshold (i.e., cosync < 2m). In the stellar frame of reference the energy of these 
particular photons, which will not be absorbed by pair production, can be either above or below 2m, depending on the propagation 
angle 1 In fact, from equations (14a) and (14b) it is possible to derive a range of angles such that co*ync > 2m. In our transport 
calculations, however, we will neglect this local source of high-energy photons, because we are considering a primary emission 
function which is essentially isotropic, and the above range of 2-values is always less than a few percent of n. 

Depending on the model of production, the initial photons might arise at some distance above the surface, but in practice this 
would be similar to the case of emission from a star of larger radius (this being the radius of emission), since we need only be 
concerned with the outward emission. This is because, unless the emission occurs very high, the downward directed photons would 
either be absorbed in the increasing field or be thermalized and degraded at the surface. In this type of model the emission is usually 
assumed to come from a small fraction of the total surface, typically around the magnetic pole. The size of the active polar caps 
depends on the specific mechanism of energy production or deposition. Without going into actual model details, which is not our 
purpose, we shall investigate the effect of varying the cap opening half-angle a. The dependence of the absorption process on the 
stellar radius, or strength of the surface gravity, needs to be considered in some detail, since it affects the relative escape probability 
of photons emitted at different energies and in different directions. In addition, one must consider also the variations in the 
absorptivity as a function of the magnetic field strength radius. However, since the absorption begins and is strongest at the surface, 
in order to distinguish the surface gravity effects from the absorption effects we shall consider situations with a varying radius (in 
Schwarzschild units) and the same surface field strengths. 

If we consider only photon absorption by e+-e~ pair production in the external magnetic field of a neutron star neglecting photon 
emission, the transfer equation for the high-energy 2-rays reads 

CD*, m; 

ds -KAf- (15) 

The transport equation (15) can be expressed in terms of characteristic coordinates in a Schwarzschild metric, and cast as a 
differential equation dependent on a single variable t along the curved photon path, whose integration gives a solution for the 
invariant photon distribution function/(see Appendix A). The solution for an observer at the distance robs is 

f=foe~z, (16) 
where t is the optical depth along the curved photon path between the surface at R and the observation point atrobs. Details of the 
transfer equation and the method of solution are given in Appendix A. This deceptively simple looking equation, which must be 
solved numerically, gives the evolution of the phase space distribution function/ which contains more information than the simple 
survival probability of a single photon available from Monte Carlo calculations. The quantity r at different points along each 
photon orbit depends implicitly on the local coordinates and photon four-momentum quantities as well as on the initial values of 
these quantities. The total photon flux and the energy flux are obtained from /by multiplying with the square or the cube of the 
frequency, respectively, and integrating over the entire emission regime. 

IV. ESCAPING PHOTON FIELD 
The numerical results for the escaping photon flux depend on the surface field value and on the stellar radius in Schwarzschild 

units, i.e., on the strength of the surface gravity. For a relatively weak magnetic field of B0 = 0.01BC (i.e., B0 = 4.413 x 1011 G), 
specified at the pole, the absorption is weak, and most photons above <w £ 2 (in units of the electron rest mass) are able to escape 
over a range of angles determined by the curvature of the field lines and, to a varying amount, by the gravitational light bending. 
The escaping beam shape for this value of the field and one polar cap only with opening half-angle a = 5° is shown in Figure 1. For 
two caps, the beam can be obtained by adding the contribution of the same beam as a function of it — ©. For R = 1.7 Schwarzschild 
units (Fig. la), the high-energy photons (E > 10 MeV) must originate with initial angles close to the field and are only able to escape 
within a cone of 30o-35° width about the polar axis, while in the range 4-5 MeV the escape occurs over a broad range extending to 
~ 80°. At lower energies the photons escape over essentially the whole range of initial angles, and reach final escape angles up to n, 
being bent and focused in the direction of the antipodal polar cap. This causes the cusping seen in Figure la at angles near »it at 
low energies. This cusping would appear near 0 in a two-pole configuration, due to the reflection symmetry. For a larger radius of 
R = 2.5 (see Fig. 1, middle panel) the E > 10 MeV beam is only slightly less than 30°, and around 4-5 MeV slightly less than 80°. For 
E <3 MeV the difference from the previous radius is more drastic, the beams no longer bend over, and them cut off at ~ 120°. For 
two poles, however, this still gives a high chance of detection. For large radii R = 5 (see Fig. 1c, lower panel), the > 10 MeV beam is 
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Fig. 1.—Beam shape for B0 = 0.01BC, and one polar cap of opening half-angle a = 5°, for radii in Schwarzschild units of (a) R = 1.7 (b) R = 2.5, and (c) R = 5, 
plotted as a function of the energy in MeV and angle © at the observer. The z-axis gives log10/between 0 and 10 “4, the x-axis in the plane of the figure is © between 0 
and it in linear steps of 4? 5, and the y-axis (out of the plane of the figure) is the photon energy E going up to 12 MeV in linear steps of 1 MeV. These are all observer 
quantities. The value of the invariant photon distribution/at the origin of E and © is the initial, unattenuated value. 

down to 25°, while at 1-3 MeV it is ~90°. While for the more relativistic configurations of R = 1.7 and R = 2.5 the beam close to 1 
MeV is almost flat at all angles (except for the focusing cusp near n), for radii where the light bending is very weak, such as for R = 5, 
the 1-3 MeV beam shows a noticeable tapering between 0 and 90°. 

For a stronger surface magnetic field of B0 = 0.05ÆC, the results are shown in Figure 2 for one polar cap of 5° opening half-angle. 
The effects of gravity are not able in this case to modify the stronger magnetic absoption effects significantly. In the top panel, for 
R = 1.7, the £ > 10 MeV beam is constrained within <10°, the 4-5 MeV is less than ~15°, and at 3 MeV the beam is only 
~ 25o-30°. It is only below ~ 1 MeV that photons are able to escape over a broad range of angles, when the absorption condition is 
close or below threshold. For £ = 2.5 (see Fig. 2, middle panel) the beam widths at the same energies are somewhat narrower, and 
down to 120° for < 1 MeV. For £ = 5 the beams above >2 MeV narrow down only very slightly, the magnitude of the angular 
beam widths not being very strongly dependent on gravity. Rather, it is the magnetic effects that dominate, and the beam shape 
variation is in good part due to the magnetic field line direction dependence on the field strength (eqs. [6a]-[6b]). A further increase 
of the surface magnetic field leads to beam shapes that remain practically the same. The beam shapes for B0 = 0.1 Bc are shown in 
Figure 3, and qualitatively they do not differ much from those for B0 = 0.05BC. A further increase of the field does not lead to 
anything new, the beams for B0 = Bc being identical to those for B0 = 0.1BC. This is due to a saturation of the magnetic absorption 
effects, which can be understood from a qualitative discussion of the transport (see § V and Appendix B). 

Another parameter which has an influence on the size of the beams is the cap size. For larger polar cap opening half-angles the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



log/ 

e 

log / 

e 

Fig. 2.—Same as Fig. 1, for B0 = 0.05ÆC 
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beam shapes become correspondingly broader. To illustrate this, the results for a half-angle of 15° and a radius ofR = 2.5 are shown 
for different fields in Figure 4. It seen that the broadening is especially noticeable at low energies. This broadness is largely caused by 
the fact that the cutoff angles are displaced by an amount comparable to the cap half-angle. For two poles (the beams for which can 
be obtained from the one pole ones by reflection at 90°) this already represents a sizable fraction of the total half hemisphere. The 
escape profile near the axis is particularly simple at high energies near the axis, for the larger cap sizes. This is caused by the 
energy-dependent cutoff angle, which depends on the angle of origin within the cap. This triangular escape spike becomes more 
prominent as the energy and the cap opening angle is increased. 

It is of interest also to investigate the dependence on the field symmetry. As an example, we considered the 1-12 MeV beam 
shapes for GRBs in the case when the magnetic field is assumed to be a quadrupole. We have derived the magnetic quadrupole 
components in the relativistic case, and used them instead of equations (6)-(10)- Since the quadrupole is more complicated, the 
photons have a higher probability of crossing field lines at a large angle, and as a result, the beam shape of all but the lowest energies 
are strongly suppressed. If the emission region at the surface is taken to be again centered on the polar caps around the axis of 
symmetry, the escaping beam at £ > 1 MeV is confined to a small angular region about the axis. 

v. DISCUSSION 
The results of § IV show that for fields larger than a certain value B0 ä 0.05Bc the escaping photon beam shapes do not depend 

significantly on further increases of the field strength. This saturation of the magnetic absorption effect is a consequence of the 
exponential dependence of the absorption coefficient on the field strength Bf = B/Bc (see eq. [3]), and this dependence is made even 
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Fig. 3.—Same as Fig. 1, for B0 = 0.1BC 

more sensitive by the fact that the absorption coefficient itself appears once more in an exponent, as seen in equation (16). While in 
the relativistic case this simple looking equation is rather involved, it is useful to look at this double exponential saturation behavior 
of the magnetic absorption under some approximations. This is done in Appendix B, where some simple analytic approximations 
are derived which describe the qualitative behavior of the solutions. We can summarize the propagation behavior of the beam as 
follows : 

1. Photons always escape freely to an observer located in the angle range 0 < 0 < 0C (see eq. [B3]), where 0C is a function of the 
metric and of the initial photon energy. This result does not depend on the magnetic field strength. 

2. For 0 > 0C, complete absorption occurs close to the stellar surface if the magnetic field at the surface on the polar axis B0 

satisfies 

B0 > 0ABc . (17) 

The observed intensity distribution is under this condition independent of magnetic field B0. A sharp transition is obtained between 
a free escape and a complete absorption regime ; 0C is then a cutoff angle. 

3. For © > 0C, photon initial energy m0, and angle fi0, there will be (almost) no absorption if 

B0 ^ yi - Mo < 0ABc ; (18) 
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Fig. 4.—Magnetic field dependence of an Æ = 2.5, a = 15° one-cap configuration, for (a) B0/Bc = 0.01, (b) B0/Bc = 0.05, and (c) B0/Bc = 0.1 

a necessary condition for this is 

B0 < 0.05BC . (19) 
Equations (17)-(19) have been derived in Appendix B for the case of a beam emitted from the magnetic pole of a relativistic star. A 
nonrelativistic discussion has also been given by Mitrofanov et al (1986). In our complete relativistic transfer calculation, however, 
we assumed the emission to occur from a polar cap of finite size. But if the opening angle a of the cap is small, the above approach is 
a reasonable approximation (the agreement with the a = 5° calculations is in fact quite good). For the strong field case the transition 
between free escape and complete absorption will then be spread over a regime of the order a around the cutoff angle. A comparison 
of the analytical estimates with the numerical results is most simple in the strong field case in the nonrelativistic limit, where we can 
identify fic % cos 0C. This should be valid for the case R = (RJRS) = 5 (see Figs. 1c, 2c, 3c). For photon energies hco0 =1., 1.5,2.5, 5., 
10. MeV we get from equation (B3) the cutoff angle values 0C = 72°., 42°., 24°., 12°., 6°. Note that since in Figures 1-3 the emission 
occurs from caps of 5° angular size, there is a tolerance by the same amount in the values of 0C. Comparing these values with those 
in Figure 3c for B0 = 0.1BC (and also for B0 = Bc), the agreement is quite good. For B0 = 0ABc and B0 = Bc, the quantity ae~1/a 

defined in equation (Bl) is greater than 1.2 x 10“7 and 0.197, while the total optical length t is greater than 104 and greater than 
109. Thus in both cases there is complete absorption for 0 > 0C and free escape otherwise, i.e., the emission pattern is essentially 
identical for both (and also for higher) field strengths. For B0 = 0.01BC, the necessary condition for no absorption at some energies 
even at large angles is satisfied. Using equation (B6) for fi0 « 0, we get ha>0 = a)'0 mec

2 < 5 MeV in order to avoid absorption, again 
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in good agreement with Figure 1c. In the relativistic case, for stellar radii in Schwarzschild units R <4, these values are modified by 
^ the light bending, and this effect gets stronger the smaller the radius (see Figs, la, lb, 2a, 2b). 
§ The calculations discussed here are useful in describing the high-energy characteristics of magnetic neutron star GRB models, and 
S for testing these models against such observations as, e.g., the SMM statistics of the incidence of GRBs with emission above a given 
2 photon energy (Matz et al 1985). The present calculations can also be used for comparison with models of the emission from 

rotation pulsars which are detected in the MeV range. Both classes of objects are expected to become much better studied 
observationally in this range by the detectors on board the future GRO, Granat, and Spectrum X-ray Gamma satellites. A detailed 
comparison with observations would require a number of additional assumptions about the specific input spectrum and direction- 
ality, and specific model-oriented calculations, which would require a separate study. A detailed modeling of the expected detection 
rates of GRBs or pulsars at various energies would depend on the specific instrument characteristics, the detection criteria, and 
additional assumptions concerning the distribution of physical properties and the spatial densities. In the case of GRBs, this has 
been done by us elsewhere (Mészáros, Bagoly, and Riffert 1989). 

The results of the present paper provide a fairly unencumbered and physically complete description of the essential characteristics 
of y-ray-emitting relativistic magnetospheres, making a minimum of model-dependent assumptions. There are a number of relevant 
conclusions which emerge from these relatively assumption-free simple models. One can see from the beam shapes of Figures 1-4 
that the general relativistic effects can have a significant impact on the detection probability by broadening the escaping beam in the 
more compact stellar configurations. In fact, the detectability of high-energy photons (>5 MeV) is significantly greater than one 
would derive from a flat space mean free path argument using the cross section of equation (3a). The less massive neutron stars, 
which for a standard equation of state are expected to have a smaller radius in Schwarzschild units, should be easier to detect at high 
energies than the higher mass ones. A very interesting result is that for B0 > 0.05£c, the escaping high-energy photon beams do not 
depend on the field strength. Since for B0 = 0.05BC the beam shapes are still of reasonable angular size, there should be a fair 
probability of detecting high-energy emission (E > 10 MeV) even from high field neutron stars (B0/Bc > 0.1-1), if such photons are 
produced and are not absorbed by some process other than magnetic absorption. 

We are grateful to A. Harding for her suggestions. This research has been supported in part through NSF grants AST 85-14735 at 
Penn State and NSF 83-51997, NASA Astrophysical Theory Center Grant NAGW-766, and grants from Ball Aerospace Systems 
Division, Rockwell International Corporation, and Exxon Education Foundation at JILA. 

APPENDIX A 

RADIATIVE TRANSFER 

The radiative transfer equation (15) can be written in a Schwarzchild metric [with coordinates (t, r, 0, <I>)], assuming rotational 
symmetry (d/dQ> = 0) and stationarity (d/dt = 0) as follows (Riffert 1986; Riffert and Mészáros 1988) 

ör r 
cos (j) jr 

Ô© 
df 

sin </> cot 0 — 
dç 

+ ■ 
^_dA d¿ 
d¡i dr dw -KARsf, (Al) 

where/is the invariant photon distribution function, co is the photon energy, n is the cosine of the angle between the radial direction 
and the photon momentum, and cj) is the corresponding azimuthal angle. The radius r is measured in units of the Schwarzschild 
radius Rs = 2GM/c2 and A = 11 — (l/r)]1/2. The absorption coefficient ka is discussed in § II; it contains a dependence of the 
magnetic field and of the photon four-momentum. Thus it is a function of all the variables 

*a = 0, n, (/>, co). 
The transfer equation (Al) can be solved by the methods of characteristics (see Riffert and Mészáros 1988, for the vacuum case), and 
the boundary conditions are specified on the stellar surface; i.e., we assume a given distribution/=/0 at r = R. Then, for an observer 
at large distances (robs > R), the solution can be written as 

f = foe~\ 

where t is the total optical depth along the photon path: 

t = R 
K

A(r/z, 02, /zz, coz dz (A2) 

(R* = RRS is the stellar radius in cm). The variable z parameterizes the photon path from the stellar surface (z = 1) to infinity 
(z = 0), and from the characteristics of equation (1) we have : 

Hz = 1 (07 = (Or 

sin </>z = 
sin 0 sin (¡) 

sin 0r 
K=u 

V-zsJ 1 - z/r 

eri 

1 — 1/A1/2 

°\1 z/r/ ’ COS = COS ® C0S K* + cos ^ s^n ® s^n Kz ? (A3) 

1 - W 1 
-1/2 
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The relations (A3) contain a number of integration constants from the characteristic equations: the observer’s coordinates are 
(robS> and the photons arrive there with a three-momentum 

k = co(n, y/l — n2 cos </>, y/l — fi2 sin 0), 

where 

ß = ».«.0 

These photons have been emitted from the stellar surface with the frequency œ0 in a direction given by (/¿0,0O). The relation between 
the emission and the observation parameters can be easily obtained from equation (A3) taking the limits z = 1 and z = 0. 

The observationally relevant quantity is the radial flux component at large distances : 

F = 0,3 II ^dß= 2<0°(^b~) J1 II ^o(0, iU°’ ^0^0# • 
We have used here the characteristics of equation (Al) to express the solid angle integral at the observer’s location in terms of the 
emission quantity n0. However, for practical reasons we retain the variable ÿ (instead of </>0); S0 stands for the part of the 
/V</>-regime, where/0 # 0, and it is a subset of the rectangle (0 < < 1, 0 < </> < tc). For the case that the emission is confined to a 
fraction of the stellar surface around the pole given by the (half) opening angle a, the (/»-integration is limited by 0 < </> < </>L, where 

{arccos 'F, — 1 < 'F < 1, 

¥>1, 
XF< -1, 

and 

'F = 
cos a — cos 0 cos K 

sin © sin K 

with K = Kz(z = l)(see also Riffert and Mészáros 1988). 

APPENDIX B 

PHOTON PROPAGATION 

In this Appendix we derive some simple relations in order to describe the propagation and absorption behavior of a photon beam 
in the magnetic field of the neutron star. Although we restrict ourselves to a special case, the results show some general aspects of the 
complete transfer problem described in § IV of this paper. For a beam of photons emitted from the stellar surface at the pole of a 
dipole magnetic field, the photon path is characterized by (see Appendix A) : 

sin (/>z = 0 , cos 0Z = cos Kz , K = u ^ [1 - u2(l - i/R)i2] "1/2 dt 

(u and the remaining variables fiz and coz are defined in equation [A3]). 
We now estimate the optical length t (eq. [A2]) for this beam. For simplicity the following expression for the absorption 

coefficient will be used : 

where 

ka = 
I 4.347 x 107— sin A exp ■c œ • , if — sin 2 > 1 , 

2m 

otherwise , 

co ß . 
'=s;5;s,nW- 

and 2(z) is the local angle between the magnetic field and the beam direction. This expression is a reasonable approximation, not too 
close to the threshold energy. We rewrite the optical length integral as 

t = b 
E Vz 

Q(z) exp 
[ az3Q(z)\dZ ’ 

(Bl) 
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where 

« = * = 4.347 x 10^,^7^, 

and B0 is the surface field defined in equation (8). The photons are emitted with frequency co0 and an angle arccos fi0 respect to the 
polar axis. The set £ defines those parts of the z-integration interval for which ka^0; i.e., 

£ = ^ sin À(z) > 1 ; 0 < z < 1 
2m 

The function Q(z) contains the details of the field geometry and the local propagation direction; for a dipole magnetic field, 

Q(z) = 
1 

^i(R) 

[note that for m ^ 0 (or fi0 -► 1) sin (Kz)/u = 1 — z + 0(u2)]. 
The kinematic relation appearing in the definition of E can be written as 

^z) s g 7l - Mo^z) > 1 , 

where 

ß = |z cos Kz - gl(l/u) sin £j7(l - z/R)~1 - m2z1| 
cos2 Kz + g2 sin2 Kz 

and 

_ ^iWz) 
9 2^2(ä/z) ' 

It can be shown that Q < 1 holds for all R,go>0; thus, if the photons are emitted in the range of angles 

lic < li0< 1, where ¡ic = 1 
2m\2 

(B2) 

one has 'F(z) < 1, and there will be no absorption at all because the kinematic condition is not fulfilled anywhere along the photon 
path. Photons emitted under fi0 = gc travel to an observer located at 0 = 0C, where 

0, 
-r 

[i -u2(i-t/R)t2y1/2dt, (B3) 

and 

2m 
uc = — I 1 

(o0\ R 
IV1'2 

Assuming 0C < tt (which holds for a>0/2m > 1.01 and R > 1.58), the relation between g0 and gc can be transformed in a simple way 
into one for 0 and 0C. At large distances from the star the beam will be observable for 

0 < 0 < 0C . 

For the emission regime g0 < gc the kinematic relation defines a set of integration intervals for the optical length integral. 
However, there is always one of those intervals close to z = 1, because Q(l) = 1 ; i.e., for g0 < gc some absorption occurs close to the 
stellar surface. This regime gives the main contribution to the integral (Bl) because of the factor 

We therefore write for the optical depth 

i = be llíT(p0, R, cOq, B0), 

where 

T = — Q(z)exp 
Jz Mz 

1 1 
a _z3Q(z) 

- 1 dz , 

and, if g0 is not too close to gc (where F = 0), then F depends only weakly on the parameters /z0, R, (o0,B0. 
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In the regime we are interested in, i.e., 10 2 < B0 < 10,2 < co0/m < 103, R > 1.5, F varies between 0.01 and 0.5 (this can be shown 
by a detailed numerical study of F). From the definition of the constant b we get 

T (B4) 

The depth t will be of the order of unity only for small values of a, where the function a exp (—1/a) is extremely steep (for 
0.03 < a < 0.07 it varies between 10“16 and 4.0 x 10“8). For n0 < /ic, we have a > 3B0/4BC, and thus 

T|>1’ if 0.1. (B5) 

All photons will be absorbed then. In order to avoid complete absorption the parameter a has to be typically a < 0.04 (independent 
of oj0), and we get 

Boçoo 
Br m Vi < o.i. 

From the kinematic relation <x>0/m(l - ^)1/2 > 2, therefore, 

(B6) 

I < 0.05 

is a necessary condition for the photons to escape from the emission regime f¿0 < fic. 

(B7) 
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