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ABSTRACT 
Neutrinos observed from SN 1987A by the Kamioka and IMB detectors are interpreted in terms of thermal 

emission from a cooling proto-neutron star. This star is the residue of the gravitational collapse of the core of 
a massive star at the end of its life. It has been shown that the time scale and energy of the neutrino burst is 
in accord with this scenario. Using both moment and maximum-likelihood methods, the average temperature 
of the emitted antineutrinos is inferred to be 3-5 MeV, and the total energy emitted in electron antineutrinos 
is estimated to be 5 ± 2 x 1052 ergs. However, 1 <j errors for the temperature and total energy determinations 
are large, due primarily to counting statistics. Care has been taken to include the detector response function, 
which improves, marginally, the agreement between the two detections we analyzed. Also investigated was the 
statistical significance of the so-called gaps in the arrival times of the neutrinos, especially in the Kamioka 
data. It is argued that these gaps are due to low counting statistics and not to any pulsing or bursting behav- 
ior of the source. 
Subject headings: neutrinos — stars: individual (SN 1987A) — stars: supernovae 

I. INTRODUCTION 
It has long been known that neutrino emission dominates 

the last phases of the evolution of massive stars (Chiu 1964) 
and reaches its peak during and after core collapse, when a 
neutron star, or a black hole, is formed. Such a core collapse is 
thought to be the mechanism for generating type II supernovae 
in massive stars (Colgate and White 1966). However, the super- 
nova energy ~1051 ergs is only a small fraction of the total 
energy, which is mainly released in the form of neutrinos. In the 
case of a 1-1.5 M0 neutron star, the binding energy which is 
released is 1.5-3 x 1053 ergs. Recent theoretical work on 
supernovae has shown that the bulk of the neutrinos are 
emitted over a multisecond period as thermal neutrino pairs, 
with a temperature on the order of a few Mev, and with 
roughly equal numbers of electron, muon, and tau neutrinos 
(Burrows and Lattimer 1986; Bruenn 1987; Mayle and Wilson 
1987). 

A proto-neutron star is, to a good approximation, in hydro- 
static equilibrium, and the neutrino emission from it occurs in 
two phases (Burrows and Lattimer 1986). The initial emission 
is dominated by the cooling and neutronization of the outer, 
shocked collapsed core, and by matter accreted through the 
shock and falling onto the hydrostatic residue. This emission 
lasts perhaps half a second, but contains a substantial fraction, 
one-third or more, of the total energy. (This phase should not 
be confused with the “neutronization burst” expected to 
accompany the breakout of the shock through the neutrino- 
sphere a few milliseconds after the core’s bounce. The energy of 
this burst is only -1-2 x 1051 ergs.) It blends into the long- 
term diffusion from the inner core. The bulk of the neutrinos in 
the inner core of the proto-neutron star are ve’s and have an 
average energy near 200 MeV. As they diffuse to the surface, 
their degeneracy energy is converted into heat, resulting in 
thermal production of v-v pairs of all types (Burrows, Mazurek, 
and Lattimer 1981). Additional paris are created in the hot, 
shocked, matter at the inner core’s edge (Mayle, Wilson, and 
Schramm 1987). By the time neutrinos are finally emitted from 
the neutrinosphere, their energies range from 10 to 20 MeV. 
The long-term emission time scale is primarily determined bv 

the opacity of dense matter (Burrows, Mazurek, and Lattimer 
1981 ; Sawyer and Soni 1979). It is uncertain by at least a factor 
of 3. The standard model thus predicts that neutrinos of all 
species should carry away the binding energy in roughly equal 
amounts. It is expected that ve’s, because of their large absorp- 
tion cross section on protons, will dominate the signal in water 
Cerenkov detectors. 

The gross theoretical predictions were dramatically con- 
firmed by the simultaneous observation of a neutrino burst 
from SN 1987A by the Kamioka (Hirata et al 1987), IMB 
(Bionta et al 1987), and Baksan (Alekseev et al 1987) experi- 
ments. The eight IMB neutrino events, of average energy 34 
MeV, spread over 5.6 s, and the 11 Kamioka events (17 MeV, 
12.5 s) are clearly in broad agreement with theory. 

The purpose of this paper is to analyze in detail what can, 
and also what cannot, be learned about the supernova from the 
observed events. A statistical analysis of the observed neutrino 
spectra is performed in § II, resulting in estimates of the 
average temperature and total energy of the neutrinos. These 
are compared to similar analyses of other workers, and also to 
some recent simulations of neutron star formation and cooling. 
In § III we turn to Monte Carlo simulations of the time behav- 
ior of the neutrino events, to investigate the statistical signifi- 
cance of the “ gaps ” observed in the neutrino data. 
Conclusions are presented in § IV. 

II. SPECTRAL ANALYSIS 
The uncertainties in supernova theories, and the small 

number of observed neutrinos, which are supposed to confront 
these theories, make it desirable to characterize the spectrum 
and its time development in some simple parametric form. The 
analysis of arrival times is deferred to § III. Here we analyze 
the time-averaged spectrum, which we assume to be Fermi- 
Dirac, with (average) temperature, T,1 and zero chemical 
potential. This is a good assumption for the case of a cooling 
neutron star (Myra, Lattimer, and Yahil 1987). The data are 
anyway too meager to allow more spectral parameters to be 

1 Neutrino energies and temperatures are always expressed in Mev. 
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fitted; the addition of a nonzero chemical potential parameter 
neither significantly improves the fits to the data, nor changes 
our estimates for the average temperature and total emitted 
energy. We discuss this below. 

It has been claimed (Bludman and Schinder 1988) that 
allowing for some time dependence in the cooling and in the 
neutrino fluxes significantly improves the likelihood of model 
fits. Incorporating such a time dependence has the effect of 
increasing the inferred total energy. We will return to these 
points later. 

The published data (Hirata et al. 1987, Bionta et al. 1987) 
that we use consist of detection times and estimated electron 
energies and angles with respect to the Large Magellanic 
Cloud. It is not possible, except in a statistical sense, to deter- 
mine which events are due to v scattering and which to ve 
absorption on protons. The distribution of angles suggests that 
all but at most one or two of the detections were absorptions. 
Since theoretical expectations are that less than 5% of the 
events were due to scattering (e.g., Schramm 1988), we assume 
here that none were. Our conclusions are not sensitive to this 
assumption. 

For the assumed spectrum, the differential energy distribu- 
tion function of the neutrinos incident on the detector is pro- 
portional to e2/(e/T), where f(e/T) = [1 4- exp(€/r)]_1 is the 
Fermi distribution, and T is the effective temperature. Because 
the energies and temperature we are interested in are those 
observed at the Earth, there is no need to include redshift 
corrections. Redshift corrections must, however, be included in 
the simulations discussed in the previous section and were 
indeed used there. The average incident neutrino energy is then 

föe3f(e/T)de 
^e2f(e/T)de 

3.15T, (1) 

where the Ff are the standard Fermi integrals. 
In order to obtain the energy distribution function of the 

detected neutrino events, the distribution at the source must be 
multiplied by the neutrino absorption opacity, K(e) = K0eepe, 
the detector mass, M, and its detection efficiency W(e). Here, k0 
is a constant, and ee and pe are the electron energy and momen- 
tum, respectively. The existence of a detector threshold, H, the 
energy below which events are rejected as noise, must also be 
included. In practice, W(H) < 0.5. 

Additional account must be taken of the experimental errors 
in the determination of the neutrino energy. Let the detector 
response function R(e, x) be the differential conditional prob- 
ability for measuring an observed neutrino energy e, given a 
true neutrino energy x. (Unless otherwise stated, we henceforth 
maintain the distinction between the two energies by using e 
and x to refer only to the observed and true neutrino energies, 
respectively.) The differential distribution of observed energies 
is therefore an integral over all possible true neutrino energies, 

V(e) oc J x2f(x/T)K(x)W(€)R(€, x)dx . (2) 

Kolb, Stebbins, and Turner (1987) have pointed out that, 
since the combination of opacity, efficiency, and incoming 
spectrum is a steep function of the energy, the error in the 
determination of the detected neutrino energy is not evenly 
distributed among lower and higher energies. Hence, neglect of 
the detector response results in a systematic bias. The sense of 
the bias is that observed energies below the median neutrino 
energy are underestimated, and those above it are overesti- 

mated. Thus, it is likely that the true energy of a neutrino event 
lies closer to the median energy of the distribution. While it is, 
of course, hopeless to determine the true energy of a single 
event from the observed energy, a collection of observations 
can be corrected for this bias. 

We take the energies of the detected electrons, as well as the 
detector masses, thresholds, and efficiencies, from the discovery 
papers (Hirata et al. 1987; Bionta et al. 1987; recent updates, 
e.g., Matthews 1988, do not affect our conclusions, although 
the decrease in the energy error bars for the IMB experiment 
reduces somewhat our quoted errors). The neutrino energies 
can be determined from the electron energies and angles with 
respect to the direction of the supernova (Kolb et al. 1987); we 
use the values listed in their Tables 1-2. 

The IMB detector is characterized by a threshold energy of 
~ 20 MeV, as compared to 7 MeV for the Kamioka detector. 
The former will thus only sample the high-energy tail of the 
spectrum and will provide estimates of somewhat lower relia- 
bility. It is interesting that since the characteristics of these 
detectors are so different, a determination of the temperature 
can easily be made on this basis (see below). 

The errors in the observed energies are reported in the above 
references to be Gaussian, so the response function can be 
written as 

R(e, x)= J- e-<c-*>2/2A2, (3) 
y/2n A 

where A is the observed error. We have fitted the reported 
neutrino energies and their errors to determine the following 
empirical error functions (in mega electron volts): 

A(€) = 
0.20 + 0.196 

-0.38 + 0.266 
Kamioka 
IMB (4) 

In order to assess the importance of the detector response bias, 
we have also considered the limit of negligible errors, in which 
the response function becomes a ¿-function, and there is effec- 
tively no integral in equation (2). 

Two general methods are used to analyze the spectrum. The 
so-called moment method uses only the average energy of the 
detected neutrinos to determine the temperature, and their 
number to estimate the total neutrino energy of the supernova. 
It is alternatively possible to use the mean square energy (the 
second moment) rather than the mean energy, or even higher 
moments. We find that this has rather small effect on the 
results. The maximum-likelihood method, on the other hand, 
employs the individual energies of the events in the estimate of 
the temperature, and should, therefore, be more reliable. In 
fact, both approaches give nearly identical results. 

The moment method requires an evaluation of the average 
detected neutrino energy, obtained by the integration of equa- 
tion (2) over the observed energy 6. At this juncture, we use the 
standard approximation of treating both W and A as functions 
of x instead of 6. Then, the integrated response function, and its 
first moment, become 

^R(e, x)de ee A(x) = ; (5) 

j* eR(e, x) de = xB(x) = xP^j + A2R(x. H). (6) 

Here P(z) = [1 + erf (z/21/2)]/2 is the cumulative normal dis- 
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tribution function. Equations (5) and (6) serve to define the 
functions A and B, which in the limit of negligible errors, are 
simply step functions: zero for x < H, unity for x> H. The 
average detected energy is thus 

, , ¡I xif(x/T)K(x)W(x)B(x) dx= G5(T) 
“ j? x2f(x/T)K(x)W(x)A(x)dx GJT) ' , j 

We find it useful to refer separately to the integrals in the 
numerator and denominator of equation (7), which we denote 
by G5T

6 and G4T
5, respectively. They may be viewed as 

modified, truncated Fermi integrals. (The notation becomes 
obvious when we recall that k is essentially proportional to x2.) 
Thus the rate of energy absorption by the detector is pro- 
portional to G5 T

6, while the detection rate of neutrinos is 
proportional to G4 T

5. In the limit that the efficiency W is 
unity, the electron-neutrino energy difference can be ignored, 
and the observational errors are negligible, the ratio G5/G4 ^ 
F 5/F a- — and the determination of the temperature from 
equation (7) is trivial. In general, G5/G4 is a function of T, and 
equation (7) must be solved implicitly for T. A plot of <e>d 
versus T, for both detectors, is shown in Figure 1. 

In the maximum-likelihood method, one uses the entire 
energy distribution function AT(e), given by equation (2). In this 
method, one maximizes the likelihood function, or equivalently 
minimizes the quantity 

A = —2 ¿ lnAf(e,), (8) 
i = 1 

where n is the number of events, with respect to the fitted 
parameters, in this case T. The minimum value of A is arbi- 
trary, but the deviations from the minimum follow the usual y2 

distribution law, thus allowing error estimates in the usual way 
(e.g., Kendall and Stuart 1973). 

Note that the maximum-likelihood method requires the nor- 
malization constant in equation (2) to be set so that the total 
count is independent of the fitted parameters. Thus, as in the 

moment method, only shape parameters of the spectrum, i.e., 
T, can be determined, but not the overall flux. We set the 
normalization integral to Jg N{e)de = n. For simultaneous fits 
to both detectors, the sum of the two integrals of the two 
detectors is set to the total count. The fit is therefore sensitive 
to the relative counts in the two detectors but not to the total 
number of neutrinos observed. 

Once the temperature of the spectrum is determined, the 
total emitted ve energy can be calculated: 

4nD2nF3(0) 
Npk0 G^T 

= 78.5 x 1051 
—y 50 kpc/ 

FM_n_ 
g4 mt 

ergs . 

(9) 
Here, D is the distance to the supernova and Np is the number 
of protons in the detector. We have Np = 6.1 x 1031 M for an 
H20 detector of mass M, in kilotons. We use the value k0 = 9 
x 10~44cm2/proton. 

Characterizing the neutrino spectrum by a finite chemical 
potential does not significantly affect the results from equa- 
tions (1), (7), or (9). In the cases of interest, the integrands of Ft 
and Gf peak near the energy x ~ iT. Thus, the 1 in the Fermi 
factor / becomes negligible compared to the exponential for 
small or moderate chemical potential /¿, and we may write 
/ jhg term eM/r |s common to all such integrals. 
In equations (1), (7), and (9) these terms cancel, leaving essen- 
tially no n dependence. On the other hand, if one were to 
attempt to derive a neutrinosphere radius R from the relation 
Eÿecc4nR2F3T

4 (Spergel et al 1987; Lamb, Melia, and 
Loredo 1988), the unbalanced chemical potential factor in F3 
renders the result very sensitive to the assumed value of fi/T. 
For example, compared to the case of zero chemical potential, 
if n/T were 1(3), the derived radius is smaller by a factor of 0.63 
(0.27). It is therefore difficult to extract reliable information on 
the radius of the emitting surface in the case of SN 1987A. 

Some results for these approaches are presented in Table 1 
and in Figures 2 and 3. It is seen that the temperatures in Table 

o 2 4 6 8 10 
T [MeV] 

Fig. 1—Average detected neutrino energy as a function of neutrino temperature from the moment method. K refers to Kamioka, / to IMB. Solid curves include 
detector response (see text); dashed curves do not. Solid horizontal lines are the observed values, and dashed lines are 1 <7 deviations. 
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TABLE 1 
Derived Temperatures (MeV) and Total Energies (1051 ergs) 

Method Of Analysis ^Kamioka ^Kamioka ^IMB 

Without Detector Response 

Moment      2.8 ± 0.6 4.6 ± 0.8 61í^ 29í^ 
Maximum-likelihood    2.8 ± 0.4 4.7 ± 0.8 59^28 ¥l-\o 

Maximum-likelihood (combined)  3.8 ± 0.4 43tjg 

With Detector Response 

Moment     2.8 ± 0.5 4.0 ± 0.7 
Maximum-likelihood     2.8 ± 0.4 4.2 + 1.0 

Maximum-likelihood (combined)  3.7 ± 0.4 
Relative counts  5.0+};£5 26Í 16 

1 derived from the two detections differ by a factor of 1.5, 
although this is not statistically significant (within 1 g). Con- 
sidering the simplicity of the assumptions, this is comforting. 
What is surprising is that the two methods give nearly identical 
results for each experiment. We find that more complex, e.g., 
time-dependent, spectra do not give better fits to the observed 
neutrino energies. The basic problem is low counting statistics, 
which frustrates multiparameter fits. 

For comparison, in the case of negligible errors and unity 
efficiency, we would have T ^ <e)d/5. For Kamioka and IMB, 
this would imply temperatures of 3.3 and 6.7 MeV, respec- 
tively. The total ve energy would be E^e ^19.1 x 1051 n/MT 
ergs for D = 50 kpc, or 30.3 and 4.6 x 1051 ergs, respectively. It 
is clear that the combinations of efficiency and threshold are 
more energy dependent for IMB, in that the effective orders of 
the modified Fermi integrals become larger, and the effective 
corrections become greater. 

Note from equations (5)-(6) that for a finite observed error 
Á, A(x) < B(x). From equation (7) we can therefore deduce 
that, for a given mean observed neutrino energy, including the 
detector response results in a decrease of the estimated tem- 
perature. It similarly follows from equation (9) that the esti- 

mated total emitted energy increases. Because the IMB v’s lie 
in the tail of the Fermi distribution, beyond the peak in the 
spectrum, the effect of detector response is much greater for the 
IMB detector. Therefore, the IMB and Kamioka temperatures 
and, in particular, the total energies are pushed even closer 
together. 

The effects of detector response are more easily seen in 
Figure 2, which displays the total energy per detected neutrino 
as a function of the average energy. This quantity, E^Jn, is 
independent of n, as can easily be seen from equation (9), 
keeping in mind that T does not depend on n. Results with and 
without detector response are shown for each detector. 
Although this figure is drawn from the moment method 
analysis, it is clear that the maximum-likelihood case is very 
similar, and Figure 1 can be used to convert one to the other. 
Clearly, the high threshold energy of the IMB detector makes 
it depend more sensitively on detector response effects. In addi- 
tion, note that the one sigma error estimates lead to a rather 
large uncertainty in the determination of the total energy 
whether or not detector response is included. Figure 3 displays 
EVe as a function of the temperature and n, in the maximum 
likelihood method, for the (a) Kamioka and (b) IMB data. 

Fig. 2.—Inferred total ve energy per detected neutrino in units of 1051 ergs as a function of the average detection energy. The notation is the same as in Fig. 1, 
except that the vertical lines refer to observed values and 1 a deviations. 
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0 2 4 6 8 10 
T [MeV] 

FiG. 3a 

0 2 4 6 8 10 
T [MeV] 

Fig. 3b 
Fig. 3.—Contours of the total energy, in units of 1051 ergs, as a function of the number of detected neutrinos and the temperature for the (a) Kamioka and (b) 

IMB experiments. The squares mark the maximum likelihood fit; error bars are 1 a (including Poisson counting errors). 

It is possible to combine data from both detectors, assuming 
that they both observed the same event (i.e., the total energies 
and temperatures were the same). This should result in 
improved estimates. In the moment method, this is accom- 
plished by examining the ratio of events seen by Kamioka to 
those seen by IMB. For identical detectors this ratio is, of 
course, insensitive to the spectrum. Owing to the different 
detection efficiencies and thresholds, however, it becomes a 
measure of the neutrino temperature. Specifically, forcing the 
total energies and temperatures inferred by the two experi- 
ments to be equal gives the condition (see eq. [9]) that the 

quantity G4M/n must also be the same for both. Figure 4 
shows the temperature as inferred from this condition for the 
two cases in which the response function is and is not included. 
Results from this calculation are included in Table 1, and 
overlap, within the errors, with the other methods. 

When the maximum-likelihood method is applied to the 
combined data, a temperature estimate results which is inter- 
mediate between the temperatures derived for each data set 
separately. By contrast, the temperature deduced from the 
ratio of counts is in excess of those determined individually 
from the two detectors, although within their error estimates. 
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Fig. 4.—The ratio of expected Kamioka counts to Kamioka plus IMB counts as a function of temperature. The solid curve includes detector response, the dashed 
curve does not. The solid horizontal line is the observed ratio and the dashed lines represent 1 a errors. 

This behavior underscores the higher reliability of maximum- 
likelihood estimates, which probe the entire probability dis- 
tribution, and hence all its moments, in contrast with moment 
methods, which are sensitive to only a ratio of two moments. 

When one attempts to determine the total energy of the 
supernova, the Poisson uncertainties associated with the 
number of detected neutrinos must be added to those in the 
temperature estimates. This is illustrated in Figure 5, in which 
contours of E^e are plotted as functions of the number of 
detected neutrinos and (a) the temperature derived in the 
maximum-likelihood fit to the combined data set and (b) the 
ratio of counts in the two detectors. In both cases there are 
large uncertainties. 

Spergel et al. (1987) have also analyzed, in a maximum likeli- 
hood, constant temperature, model the Kamioka and IMB 
data, but restricted their study to the first eight Kamioka neu- 
trinos. The temperature they derived, 4.1 MeV, is close to what 
our analysis would give for the same data. Bludman and Schin- 
der (1988) have obtained 3.7 MeV for this case. For the entire 
19 neutrino data set, Bludman and Schinder found 3.3 ± 0.3 
MeV. While this temperature estimate lies just 1 a from ours, 
we do not understand this difference. 

Both Spergel et al. and Bludman and Schinder also con- 
sidered models in which the temperature decayed with time. In 
the case of exponential decay, these groups found best-fit initial 
temperatures of 4.2 and 3.8 MeV, respectively, luminosity 
decay times of 4.5 and 4.8 s, respectively, and E¿e of 6.1 and 
6.7 x 1052 ergs, respectively. (Lamb et al. 1988 have also 
reported very similar results.) Bludman and Schinder further 
considered a power-law decay, which introduces one addi- 
tional fitting parameter. In their best-fit power-law case, they 
find Eÿe = 9.2 ± 3.3 x 1052 ergs. This marginally significant 
increase in E¿e is curious when compared to neutron star for- 
mation and cooling simulations (Burrows and Lattimer 1986; 
Mayle and Wilson 1987) that explicitly calculate the time- 
varying temperature and luminosity in a consistent fashion. 
These models fit the observed number of neutrino counts for 

E^e in the range 3-4 x 1052 ergs (Burrows 1988; Mayle and 
Wilson 1987). These are consistent with that inferred from con- 
stant temperature models. The difference cannot be attributed 
to that fraction of the energy emitted after the last neutrino was 
detected, which the constant temperature models ignore, 
because this fraction is small. In the power-law case it is less 
than 4% of the total. 

The resolution of this discrepancy may reside with the overly 
simple nature of the exponential or power-law cooling, com- 
pared to what is expected from physical models. The latter 
imply an initially rapidly decaying (luminosity time constant 
<0.5 s) flux and temperature as the neutron star shrinks from a 
beginning radius of ~ 100 km to a radius of 20 km. This stage 
is followed by a slower, quasi-static, cooling phase (time con- 
stant ~5-10 s). The observations tend to support this interpre- 
tation in that about half the counts accumulate within 1 s; 
compare this to the best-fit exponential models referred to 
above, in which the 4.5 s decay times imply that it takes 2-2.5 s 
for half the signal to accumulate. The introduction of a 
smoothly decaying temperature is equivalent to changing the 
spectrum from that of a Fermi-Dirac in that the high-energy 
tail becomes suppressed. As a result, the overall flux must be 
increased to compensate, which results in an increased total 
emitted energy. Therefore, surprisingly, the constant tem- 
perature models may more accurately portray the energetics of 
SN 1987A, in which counting statistics are poor. 

We conclude this section by noting that the inferred total ve 
energy can be used to estimate the mass of the neutron star 
that might have formed. According to detailed models of neu- 
trino emission, each of the six known neutrino species carries a 
nearly equal share of the total energy. Thus, the total binding 
energy of the neutron star is ~6 times E^e, or 2.5 ± 1 x 1053 

ergs. In spite of the relatively large uncertainties in the equa- 
tion of state above nuclear densities, the binding energy versus 
gravitational mass relationship for neutron stars is rather well 
determined. We show this relation in Figure 6, which contains 
a compendium of models with widely varying stiffnesses 
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0 2 4 6 8 10 
T [MeV] 

Fig. 5a 

Fig. 5—Contours of total ve energy, in units of 1051 ergs, as a function of the total number of detected events and (a) the temperature estimate from the 
maximum-likelihood fit to the combined data set, and (b) the ratio of counts (from the moment method) from the two detectors. The squares mark the best fit and the 
error bars are 1 a (including Poisson errors). 

(Glendenning 1988a,b; Prakash, Ainsworth, and Lattimer 
1988). The role of differences between equations of state is 
limited to the determination of the neutron star’s maximum 
mass and binding energy, at least for stars more massive than 
one solar mass. While the true stiffness of an equation of state 
is ultimately measured by its value for the neutron star’s 
maximum mass, one quantity that is often referred to is the 
bulk compression modulus of nuclear matter. In Figure 6, the 
equations of state compared have compression moduli ranging 

from 60 to 300 MeV, which encompasses most recent experi- 
mental and theoretical estimates. Nevertheless, the spread in 
binding energies, for a given gravitational mass, is only ~ 15%. 
For M > 1 Mq, an acceptable fit is given by 

F = 1.5 x ergs » (10) 

where M is the neutron star’s gravitational mass. The above 
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Fig. 6.—Binding energy vs. neutron star mass from a variety of equations of state (see text). Each is labeled by that equation of state’s nuclear matter compression 
modulus, in MeV, and ends in a dot which marks the maximum mass configuration. Plus signs show an approximate fit (eq.[10]). 

energy thus translates into neutron star gravitational masses in 
the range 1.0-1.6 M0. It is difficult to determine from the 
energetics alone the mass and, therefore, which explosion 
mechanism might have occurred in the case of SN 1987A. 

III. ANALYSIS OF ARRIVAL TIMES 

Many authors have commented on the bunched structure 
that the Kamioka data show in the arrival times. It has 
prompted some to conclude the distribution is inconsistent 
with that predicted by a simple cooling model, namely, an 
exponential or power-law signal decay, and instead to propose 
a variety of explanations for this behavior. Without detailing 
the list of ideas, which range from pion condensates and quark- 
baryon phase transitions, through rapid rotational breakup 
and reaccretion scenarios, to secondary collapses to black 
holes, we feel motivated to determine just how likely the 
observed structure might be. We will concentrate on the 
Kamioka data alone, although it is well worth pointing out 
that the last few IMB events fill in the largest gap in the 
Kamioka data, and probably render this entire discussion aca- 
demic. 

Based on the ability of straightforward models of neutron 
star cooling to give the right number of counts, the right 
average energy, and the correct time scales over which neu- 
trino emission occurs, it seems sensible to test the significance 
of gaps by simple parametrizations of such models. Another 
approach is to fit a smooth curve through the observations 
themselves. Choosing a model for the signal accumulation, one 
can then perform a series of Monte Carlo simulations with a 
Poisson distribution of total counts about a mean, and simply 
ask : what is the probability that a gap will occur that is longer 
than At seconds, and has a certain number of neutrinos coming 
after it? 

We have used two model functions: first, a smooth curve 
fitted to the data (it was not required to pass through the data 
points), and second, a double exponential decay model that fits 
both the data and models of neutron star cooling. For the 

latter, the signal accumulation rate is 

^ oc «r"“ + ^ e-'/'2, (11) 
dt t2 

where ^ ^ 0.5 s and i2 — 6 s. The adopted form of this equa- 
tion has the property that both time scales contribute equally 
to the integrated signal. The two time scales correspond to the 
two phases of v emission discussed previously. 

Results are shown in Figure 7. We interpret them as follows: 
the situation of having a gap of 7 s duration, with at least three 
neutrinos following the gap, occurs ~5% of the time. This 
result is sensitive to the functional form of the signal accumula- 
tion. Functions that have a much greater or much smaller 
amount of accumulation at late times (i > 10 s) will result in 
correspondingly higher or lower probabilities of having 
lengthy gaps in the data. The point made here is that reason- 
able signal accumulation functions, which adequately fit the 
data, have acceptable probabilities for showing a gap in an 
observation with a small number of detections. 

Before we decide that this gap is even marginally significant, 
however, two additional questions need to be asked. First, if 
the gap is real, how can we understand the absence of a gap in 
the IMB data? Secondly, would a gap of the same duration, 
but having only two trailing neutrinos, or a gap of, say, 5 s 
duration with three trailing neutrinos, have elicited the same 
response (i.e., number of preprints)? We think that the IMB 
data can not easily be reconciled with a real gap, and that a 
gap, whose probability under the null-hypothesis of no gap 
was higher than 5%, would not have prevented speculation 
about its reality. We take the opposite view, and recommend 
caution. The fact is that small number statistics is at play, and 
gaps are not uncommon in such data sets. 

IV. CONCLUSIONS 
Both the maximum-likelihood and the moment analyses of 

the neutrino observations from SN 1987A show that the 
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received spectrum was consistent with being thermal with an 
average temperature 3-5 MeV, and that a total energy of 
5 ± 2 x 1052 ergs in electron antineutrinos was emitted. The 
importance of including the detector response function was 
pointed out. Fits incorporating a simple power law or expo- 
nential cooling behavior seem to raise this energy estimate by 
up to a factor of 2. However, neutron star formation and 
cooling simulations seem to favor constant temperature esti- 
mates, because of the two-stage nature of the cooling. The 
equivalence of the emitted energy with a neutron star’s binding 
energy leads to the conclusion that a 1.0-1.6 M0 neutron star 
was created. (Theoretical simulations of neutron star cooling 

imply a somewhat smaller range, 1.0-1.4 M0.) Statistical 
analyses of the arrival times of the neutrinos reveals that the 
observed bunches and gaps are what can be reasonably 
expected from the standard neutron star cooling scenario. 
Some recent statements to the contrary are probably due to a 
posteriori statistics. 

We appreciate conversations with E. Beier, G. E. Brown, A. 
Burrows, J. Cooperstein, S. Kahana, A. Mann, and E. Myra. 
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FG02-87ER40317.A000. 

REFERENCES 
Alekseev, E. N., Alekseeva, L. N., Volchenko, V. I., and Krivosheina, I V 1987 

Soviet Phys.—JETP Letters., 45,589. 
Bionta, R. M., et al. 1987, Phys. Rev. Letters, 58,1494. 
Bludman, S. A., and Schinder, P. J. 1988, Ap. J., 326,265 
Bruenn, S. A. 1987, Phys. Rev. Letters, 59,938. 
Burrows, A., and Lattimer, J. M. 1986, Ap. J., 307,178. 
Burrows, A., Mazurek, T. J., and Lattimer, J. M. 1981, Ap. J., 251 325. 
Chiu, H. Y. 1964, Ann. Phys., 26,364. 
Colgate, S. A., and White, R. H. 1966, Ap. J., 143,626. 
Glendenning, N. K. 1988a, Nucl. Phys., A480, 597. 
 . 19886, LBL preprint 25032. 
Hirata, K., et al. 1987, Phys. Rev. Letters, 58,1490. 
Kendall, M. G., and Stuart, A. 1973, The Advanced Theory of Statistics, Vol 2 

(New York: Hafner). 
Kolb, E. W., Stebbins, A. J., and Turner, M. S. 1987, Phys. Rev., D, 35,3598. 
Lamb, D. Q., Melia, F., and Loredo, T. J. 1988, in Supernova 1987A in the 

Large Magellanic Cloud, ed. M. Kafatos and A. Michalitsianos (Cambridge- 
Cambridge University Press), p. 204. 

Matthews, J. 1988, in Supernova 1987A in the Large Magellanic Cloud, ed. M. 
Kafatos and A. Michalitsianos (Cambridge: Cambridge University Pressé 
p. 151. 

Mayle, R., and Wilson, J. R. 1987, Livermore preprint UCRL-97355 
Mayle, R., Wilson, J. R., and Schramm, D. N. 1987, Ap. J., 318,288. 
Myra, E. S., Lattimer, J. M., and Yahil, A., in Supernova 1987A in the Large 

Magellanic Cloud, ed. M. Kafatos and A. Michalitsianos (Cambridge: Cam- 
bridge University Press), p. 213. 

Prakash, M, Ainsworth, T. and Lattimer, J. M. 1988, Phys. Rev. Letters, 61, 
2518. 

Sawyer, R. F., and Soni, A. 1979, Ap. J., 230,859. 
Schramm, D. N. 1988, in Proc. 22d Recontre de Moriond, in press. 
Spergel, D. N, Piran, T., Loeb, A., Goodman, J. and Bahcall, J. N. 1987 

Science, 237,1471. ’ 

James M. Lattimer and A. Yahil: Astronomy Program, State University of New York, Stony Brook, NY 11794-2100 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

