THE ASTROPHYSICAL JOURNAL, **339**:84–92, 1989 April 1 © 1989. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE AGE OF THE LMC GLOBULAR CLUSTER NGC 1783

JEREMY MOULD¹

Palomar Observatory, California Institute of Technology

JEROME KRISTIAN Mount Wilson and Las Campanas Observatory

JAMES NEMEC

Caltech and University of British Columbia

MARC AARONSON^{1,2} Steward Observatory, University of Arizona

AND

JOSEPH JENSEN California Institute of Technology Received 1988 June 15; accepted 1988 September 1

ABSTRACT

The age of the LMC red globular cluster NGC 1783 is estimated as 0.9 ± 0.4 billion yr by photometry of the main-sequence turnoff. The accuracy of the estimate is limited chiefly by uncertainty in the distance modulus of the cluster. At $(m - M)_0 = 18.2$ the cluster is aged 1.1 ± 0.2 Gyr; at $(m - M)_0 = 18.7$ it is 0.7 ± 0.2 Gyr. NGC 1783 is a sufficiently rich cluster that one can see the full development of red giants on the asymptotic giant branch from the M type, through S, to carbon rich atmospheres.

Subject headings: clusters: globular — galaxies: Magellanic Clouds — photometry — stars: evolution

I. INTRODUCTION

The Large Magellanic Cloud star cluster NGC 1783 has an absolute magnitude of $\sim M_v = -7.5$ and lies 3.8 kpc SW of the center of the LMC. The first photometric studies were by Sandage and Eggen (1960) and Gascoigne (1962), who noted the much greater red extent of the cluster's giant branch than was seen in Galactic globular clusters. That observation was later understood when Mould and Aaronson (1979) found a carbon star in NGC 1783 and explained that it was formed during the evolution of intermediate-mass stars up the asymptotic giant branch (AGB). The AGB was fully surveyed by Lloyd Evans (1980), allowing Mould and Aaronson (1982) to estimate the age of the cluster from the extent of the AGB as 4 ± 2 Gyr. NGC 1783 has a type V classification by Searle, Wilkinson, and Bagnuolo (1980), and lies in between the old and young disk rotation curves of Freeman, Illingworth, and Oemler (1983).

In this paper we present a deep color-magnitude diagram for NGC 1783 which permits its age to be estimated from the main-sequence turnoff. As shown in § III, the cluster is apparently a further member of the population of 1 to 3 billion yr clusters in the LMC.

II. THE COLOR MAGNITUDE DIAGRAM

We observed NGC 1783 at the du Pont telescope of the Las Campanas Observatory with the CHUEI reimaging CCD camera on 1983 October 9. Conditions were photometric, and the seeing was good, yielding images of 1"4 FWHM. A total of 2500 s was accumulated in the red in four separate exposures, together with three 1000 s green frames (see Fig. 1 [Plate 2]). Two short exposures were also obtained.

¹ Visiting Astronomers at Cerro Tololo Interamerican Observatory, a division of N.O.A.O., operated by AURA for the National Science Foundation.
² Deceased 1987 April 30.

The methods of picture processing and calibration (Nemec, Kristian, and Mould 1988) and photometry within the cluster (Jensen, Mould, and Reid 1988) have been described in two previous papers. Within 2' of the cluster center 653 stars were automatically selected for photometry using the DAOPHOT program (Stetson 1987) with due regard for criteria such as image quality and freedom from contamination. These stars are identified in Figure 2 (Plates 3-4). Photometry of these stars on the Thuan and Gunn (1976) system is presented in Table 1 in the columns headed R and G-R. The columns headed x and y give the coordinates of these stars in pixel numbers with an origin at the bottom left of Figure 2a and a scale of 0.415" pixel⁻¹. For comparison purposes photometry was also carried out in a subfield of equal size west of the cluster. To determine the relative efficiency of the program in finding stars in these two samples, artificial stars were inserted into the data with the same point spread function as was determined for the data itself. We found that the completeness was ~92% at 18th magnitude in the field sample, and ~ 52% in the cluster, falling to $\sim 25\%$ at 20th magnitude in the field, compared with $\sim 17\%$ in the cluster. The color-magnitude diagram for the stars in Table 1 is shown in Figure 3 after a field star subtraction procedure. The subtraction procedure allows field and cluster stars to mutually annihilate if they lie within 0.5 in magnitude and 0.1 in color of one another. This procedure is clearly only statistically valid and is an approximate one, since completeness is a function of radius in the cluster. The procedure is best regarded as equivalent to choosing in an unbiased way a subset of the cluster sample to represent the cluster color-magnitude diagram. We also cut off Figure 3 at R > 21.5, because of the low completeness and high probability of error due to confusion at this magnitude. Between R = 18.5 and R = 21.5 we required two field stars to eliminate one cluster star, and thus 439 field stars allowed us to represent NGC 1783 by 433 stars in Figure 3.

FIG. 1.—The accumulated green image of NGC 1783. North is up, and west is to the left. The limiting magnitude is G = 23.7. MOULD et al. (see 339, 84)

FIG. 2.—(a) Part of the averaged red frame of NGC 1783 is shown with stars from Table 1 identified. The star number is placed a constant distance above and to the right of the relevant box. Unlabeled stars can be identified from their relative (x, y) coordinates in the table. The orientation here is the same as Fig. 1. The limiting magnitude is R = 23.5.

MOULD et al. (see 339, 84)

FIG. 2.—(b) The averaged red frame of NGC 1783 is shown with stars from Table 2 identified. The orientation here is the same as Fig. 1. MOULD et al. (see **339**, 84) 1989ApJ...339...84M

	G-R	0.39	-0.18	-0.22	-0.04	-0.07	0.18	-0.27	0.34	-0.16	0.32	0.07	0.41	0.22	-0.09	0.35	0.34	0.34	-0.31	0.22	-0.15	-0.06	-0.37	-0.31	-0.17	-0.10	-0.14	-0.22	-0.42	0.52	0.20	-0.45	-0.39	-0.28	0.29	-0.16	-0.12	0.35	0.07	-0.20	-0.34	-0.34	0.47	-0.35	-0.33	-0.21	0.13	0.47	0.28
	R	17.92	20.66	20.58	21.33	20.71	19.18	20.98	18.43	20.64	19.27	20.89	17.96	18.85	21.28	18.88	20.03	18.91	20.72	17.70	21.30	19.51	19.19	20.57	20.47	20.91	20.97	20.75	21.14	18.11	22.10	21.02	19.74	20.24	18.94	20.13	20.21	19.82	20.28	21.03	21.18	20.50	18.64	20.92	21.39	20.64	19.94	18.20	19.06
	y	500	499	500	501	500	502	501	502	502	504	504	505	504	503	505	504	506	506	507	508	509	510	510	510	511	511	511	511	512	514	514	514	514	516	516	516	516	517	516	517	517	518	518	518	520	520	521	526
	x	194	357	244	256	386	271	382	460	237	217	250	278	400	448	158	232	167	173	181	241	345	273	493	194	310	327	332	350	204	232	219	292	487	260	284	347	354	368	381	324	479	274	389	456	296	463	182	220
	Star	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192
$\left \right $	-																				1				1					-																	<u>.</u>		
	G-R	-0.04	0.19	0.45	-0.11	-0.05	-0.14	-0.30	-0.09	0.35	-0.22	-0.14	-0.49	0.00	-0.26	-0.03	-0.25	-0.31	-0.31	-0.14	0.52	-0.39	-0.29	0.33	-0.30	-0.24	-0.08	0.48	0.03	-0.10	-0.16	-0.10	-0.35	0.07	-0.15	-0.18	0.39	-0.25	-0.17	0.38	0.13	-0.05	0.35	0.19	0.27	-0.02	0.46	-0.32	-0.12
	R	20.89	18.66	17.79	20.47	21.16	20.71	21.38	20.49	20.22	20.67	20.47	19.80	21.07	21.19	21.00	19.27	20.66	20.34	20.83	19.36	21.07	19.85	18.82	20.23	19.63	21.26	18.55	20.83	20.63	20.36	20.51	19.45	21.30	20.50	21.10	18.94	21.15	20.57	18.92	21.31	19.26	18.29	18.88	18.92	19.59	18.88	20.46	20.52
	y	474	474	474	475	476	476	476	476	478	478	477	478	479	480	481	479	479	480	481	482	483	482	483	483	484	486	490	486	487	487	489	490	490	489	490	492	492	494	494	494	494	495	497	497	497	498	497	498
	x	361	400	241	189	206	273	314	346	197	320	326	449	423	456	231	400	429	443	252	338	437	494	385	488	397	212	241	285	192	420	276	252	290	357	494	183	214	262	279	295	401	231	373	392	422	323	416	448
	Star	26	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144
1	~ 1																												_		~					~	_									•			
	G-R	0.34	0.28	0.43	0.18	0.35	-0.09	-0.37	-0.27	-0.19	-0.23	-0.23	-0.38	0.44	-0.33	-0.27	-0.13	-0.20	-0.21	-0.24	-0.25	0.35	0.43	-0.24	0.47	-0.45	-0.09	-0.14	-0.24	-0.11	-0.38	-0.16	-0.15	-0.24	0.32	0.38	-0.21	-0.21	-0.06	-0.22	-0.37	-0.27	0.33	-0.16	-0.14	-0.52	0.14	-0.04	0.27
	R	18.68	18.98	18.86	18.57	18.48	20.86	21.42	21.48	20.19	20.13	19.73	21.11	18.93	20.19	20.30	21.05	21.45	20.62	20.22	20.45	19.08	18.73	20.14	17.84	20.50	20.44	20.20	21.41	20.68	21.06	21.04	21.04	20.65	19.05	18.72	19.94	20.96	21.56	21.23	21.40	21.03	18.77	20.79	20.74	20.05	21.25	21.20	19.40
	y	442	444	445	446	447	449	450	450	450	451	451	452	453	454	454	453	455	456	457	457	457	456	457	459	459	459	460	460	461	461	461	460	462	464	464	466	466	466	466	467	469	469	469	470	475	473	473	473
	r	406	267	399	463	442	259	344	364	386	370	377	479	405	243	374	390	471	224	419	204	258	349	482	283	215	237	246	487	206	407	424	475	399	344	495	331	420	215	404	424	319	368	486	450	265	251	331	376
	Star	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64	65	99	67	68	69	20	11	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86	87	80	68	06	61	92	93	94	95	96
																																	-																
	G-R	-0.18	-0.19	-0.43	0.45	-0.42	-0.15	0.14	-0.19	0.02	0.08	0.43	-0.24	-0.14	-0.18	-0.17	-0.58	0.35	-0.54	-0.30	0.13	0.42	0.36	-0.22	-0.60	-0.15	0.05	-0.12	-0.08	0.36	0.41	-0.14	0.36	-0.41	-0.42	-0.01	0.59	-0.19	-0.29	0.31	-0.12	-0.24	-0.03	-0.23	0.27	-0.21	-0.22	0.37	0.04
	R	21.20	20.26	19.76	18.34	20.56	19.93	21.37	21.21	20.49	21.31	19.02	19.99	20.78	20.39	20.34	22.55	18.86	19.19	20.25	19.91	19.15	18.89	21.44	19.07	21.20	21.19	21.12	20.30	22.01	19.38	20.79	18.74	20.15	21.02	21.20	18.17	20.42	19.61	18.89	20.23	20.73	21.19	21.11	19.33	21.50	21.14	20.38	20.03
	y	396	397	402	405	405	406	409	408	410	411	412	414	415	415	417	417	417	418	418	421	420	420	422	422	423	425	425	428	429	429	429	430	432	433	434	433	434	434	433	435	436	437	437	438	438	440	440	440
	x	369	380	387	372	412	351	364	438	322	398	311	289	329	388	399	424	441	492	460	263	353	404	344	496	396	280	338	362	343	399	435	407	244	441	281	291	253	471	491	338	368	274	332	403	443	248	340	436
	Star	-	2	en en	4	2	9	2	œ	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
- 11	-																																																

TABLE 1 Photometry of NGC 1783

*								TABLE 1-	-Continued									
Star	r y	R	G-R	Star	x	y	R	G-R	Star	x	y	R	G-R	Star	H	y	R	G-R
193 30	33 521	20.52	-0.41	241	451	545	19.25	0.23	289	351	572	18.95	0.55	337	487	603	20.03	-0.26
194 3.	75 521	1 20.18	-0.13	242	485	546	21.24	0.19	290	299	574	20.36	-0.22	338	129	600	20.70	-0.17
195 2	59 522	3 19.53	-0.20	243	494	546	20.15	-0.16	291	382	574	17.81	0.15	339	259	600	18.54	0.18
196 3	52 525	20.20	0.25	244	131	547	20.67	-0.20	292	492	574	21.02	0.15	340	224	601	20.57	-0.09
197 30	38 52:	3 18.23	0.53	245	165	547	17.99	0.30	293	173	574	20.63	-0.22	341	230	601	20.03	-0.10
198 4	75 521	18.91	0.37	246	341	547	19.70	-0.22	294	269	575	20.86	-0.27	342	477	600	19.84	-0.19
199 3	35 52:	3 20.11	-0.03	247	210	548	18.78	0.40	295	333	576	20.70	1.19	343	342	604	17.83	0.43
200 3:	97 52:	3 18.36	0.54	248	372	547	19.95	0.12	296	133	577	20.17	0.19	344	427	605	19.39	0.00
201 4	38 52:	3 20.62	-0.23	249	440	549	17.86	0.59	297	213	577	20.41	-0.20	345	212	605	21.39	-0.20
202 2:	29 524	1 18.95	0.34	250	466	550	17.88	0.47	298	307	577	19.19	0.32	346	244	605	18.25	0.41
203 4	38 524	1 20.90	-0.17	251	331	550	18.88	0.36	299	435	579	20.17	-0.25	347	322	605	19.60	1.20
204 1	36 525	5 18.29	0.51	252	495	550	20.83	0.00	300	450	579	18.77	0.38	348	459	605	18.80	0.52
205 3.	27 524	1 18.81	0.41	253	129	552	20.42	-0.23	301	398	580	19.43	-0.07	349	474	605	21.13	0.93
206 28	50 526	3 20.16	-0.12	254	349	552	18.94	0.43	302	301	582	21.28	-0.29	350	142	606	21.38	-0.21
207 23	33 527	7 18.62	0.16	255	414	552	18.56	0.34	303	461	582	19.76	-0.25	351	398	606	18.24	0.32
208 2.	14 527	7 21.45	-0.21	256	448	552	20.40	-0.03	304	474	583	18.43	0.15	352	235	606 606	21.25	0.02
209 3.	10 527	7 20.75	-0.05	257	181	552	20.77	-0.26	305	124	584	18.00	0.53	353	422	607	18.63	0.62
210 3.	18 52'	7 20.99	-0.11	258	242	552	18.76	0.30	306	417	583	18.43	0.50	354	449	609	18.67	0.31
211 4	J7 52(3 - 20.06	-0.20	259	269	553	19.14	0.57	307	219	584	18.78	0.26	355	436	609	21.32	-0.11
212 4	58 525	7 20.58	-0.22	260	381	553	19.12	-0.50	308	348	584	18.81	0 34	356	155	800	19 71	0.91
213 3	57 525	7 20.73	-0.15	261	477	553	20.08	-0.16	300	040	100	10.01	96.0	967	106 106	800 800	10.01	0.25
0 017	70 590	10.02	01.0-	107	000	2000	10.70	0.06	909 910	479	104	10.04	0.10	0.00	400	600	10.10	0.00
214 I	10 97 10 17	07.00 0	17.0	707	707	000	10.10	0.20	310	138	000 101	20.20	-0.10	202 202	152	010	17.88	10.0
7 017	170 07	9 20.4U	11.0-	70?	322	000	19.24	0.04	311	061	585	GU.UZ	-0.02	359	315	611	18.66	0.52
210 3	120 AU	y 20.33	-0.27	204	204	166	19.40	-0.33	312	439	586	19.28	0.40	360	344	611	19.27	0.52
21/ 2	20 031	00.41 U	0.00	C07	3/4	100	19.98	-0.01	313	482	585	20.38	-0.32	361	471	611	20.06	0.17
218 4	37 53(0 20.74	-0.30	200	135	558	19.65	0.29	314	162	588	19.54	-0.37	362	493	611	18.74	0.29
219 4	15 53(0 18.86	0.50	-267	328	558	19.76	-0.07	315	466	588	20.53	-0.11	363	107	612	19.54	0.45
220 4	42 53.	1 20.62	-0.18	268	486	557	20.55	-0.27	316	400	589	17.81	-0.08	364	138	612	21.76	0.36
221 3.	35 53.	20.42	-0.34	269	463	559	20.39	-0.33	317	430	590	17.80	0.49	365	199	611	19.04	-0.29
222 1	37 53;	3 20.04	-0.28	270	170	560	18.91	0.39	318	111	590	20.05	-0.04	366	182	613	18.76	0.38
223 1	47 53-	4 18.00	0.48	271	295	559	20.95	-0.22	319	127	590	20.27	-0.06	367	214	613	19.12	0.45
224 1	59 53-	4 20.29	-0.47	272	333	562	20.07	-0.52	320-	201	589	20.84	0.00	368	399	613	20.03	0.01
225 1	64 53-	4 19.62	-0.39	273	449	563	21.08	-0.23	321	242	590	21.06	0.18	369	406	613	18.76	0.24
226 4	98 53	5 19.15	0.27	274	461	562	20.64	-0.20	322	218	591	21.20	-0.14	370	475	616	20.02	-0.26
227 1	95 538	8 20.33	-0.51	275	489	561	21.07	0.03	323	486	592	21.20	-0.46	371	315	616	19.11	0.49
228 4	56 53	7 20.82	-0.17	276	244	563	18.76	0.32	324	148	594	20.86	-0.12	372	362	615	18.25	0.56
229 4	33 53	8 18.77	0.37	277	404	563	20.18	-0.13	325	404	593	17.86	0.27	373	114	618	21.45	-0.18
230 1	75 54	0 19.92	0.08	278	387	564	21.07	0.75	326	477	595	19.09	0.21	374	337	617	19.03	0.50
231 2	71 54	0 19.43	-0.49	279	185	565	18.81	0.32	327	166	596	20.98	-0.15	375	430	618	18.89	0.48
232 3	25 54	0 20.79	0.55	280	257	565	21.18	0.08	328	295	596	19.15	-0.07	376	442	619	17.91	0.57
233 3	05 54	2 18.91	0.14	281	273	565	18.75	0.47	329	427	595	18.74	0.36	377	484	618	18.67	0.33
234 1	34 54	2 20.36	3 -0.13	282	347	564	20.84	-0.11	330	492	596	18.57	0.51	378	145	618	18.80	0.36
235 1	99 54	2 19.07	-0.45	283	359	565	20.58	-0.05	331	119	597	20.60	-0.01	379	263	620	20.84	-0.04
236 4	14 54	2 18.27	0.51	284	457	565	20.79	-0.27	332	195	597	18.86	0.47	380	305	618	17.90	0.52
237 4	27 54	2 20.30	0.01	285	174	567	18.98	0.34	333	393	598	18.83	0.52	381	207	619	21.47	0.06
238 3	35 54	4 20.64	1 -0.28	286	206	571	18.06	0.41	334	337	600	19.74	-0.02	382	326	619	17.88	0.23
239 4	08 54	4 19.93	90.0-1	287	326	569	19.83	-0.13	335	432	599	19.66	-0.08	383	271	623	19.05	0.41
240 4	58 54	3 20.28	1 -0.06	288	304	573	20.03	-0.08	336	469	598	20.51	-0.25	384	419	622	18.75	0.81

1989ApJ...339...84M

86

G-R	0.00	0.54	-0.05	-0.30	0.31	-0.19	0.34	-0.27	0.40	0.36	-0.03	0.20	0.11	0.40	0.09	0.25	0.69	0.38	-0.19	0.58	0.55	-0.20	-0.30	0.50	0.52	-0.16	0.38	-0.16	0.26	-0.42	-0.27	0.25	-0.50	0.37	0.04	97.0-	-0.40	-0.54	EP.0-	0.40	0.43	0.29	0.44	0.04	-0.06	0.57
R	20.41	17.91	19.35	21.24	18.06	20.25	19.79	19.92	18.81	18.81	20.21	18.67	18.54	18.97	19.05	18.50	18.88	18.79	21.22	17.91	19.21	20.14	20.37	19.32	18.70	20.87	18.69	20.79	18.84	20.84	21.46	20.47	18.65	19.78	90.01 90.01	10.02	20.40	00.00	10.00	10.60	19.15	19.13	18.68	20.08	20.18	18.36 20.18
y	730	730	730	731	730	732	732	733	733	732	733	732	735	736	736	737	737	737	739	740	739	740	740	740	741	741	742	743	744	749	746	747	747	141	749	140	740	750	100	0012	097	752	753	752	753	754 755
x	307	478	490	244	321	452	354	496	184	227	297	429	259	199	433	209	460	179	128	237	161	255	303	439	476	185	298	119	203	246	446	208	225	202	109	100	100	007	707	295	450	119	382	473	301	388 245
Star	529	530	531	532	533	535 535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551	552	553	554	555	556	557	558	559	560	561	562	503	564 565	000	200 5.6.7	200	000	909	570	571	572	573	574	575 576
	╞								÷																											_				_						<u></u>
G-R	0.38	0.38	-0.13	0.60	-0.18	-0.09	-0.44	-0.06	-0.12	-0.47	-0.06	0.52	-0.14	0.05	0.41	-0.40	-0.21	-0.13	-0.22	-0.16	-0.53	-0.14	-0.22	0.51	-1.23	0.38	0.24	-0.07	0.13	-0.19	0.23	0.35	-0.33	-0.27	0.45	80.0	0.34	-0.19	71.0	80.U	0.46	0.46	-0.05	0.71	-0.05	0.04 -0.41
R	18.65	18.69	20.48	18.80	21.23	10.91 20.49	20.36	20.49	20.89	20.07	20.67	19.60	20.52	20.21	18.68	20.66	21.10	20.16	20.29	21.08	19.91	20.40	20.71	20.37	20.00	18.86	18.78	20.98	19.43	20.45	18.51	18.71	21.66	21.34	20.08	10.09	10.79	19.12 19.65	10.03	18.58	18.37	17.78	20.20	18.56	20.59	20.43 19.75
y	698	698	700	701	702	205	705	706	602	602	710	710	710	712	712	715	714	714	716	716	716	716	717	718	718	718	719	719	720	722	722	722	723	124	725	120	07.J	796	071	130	726	727	728	728	729	728 730
H	467	137	153	457	100	163	179	455	205	239	201	279	474	124	232	454	191	240	154	178	461	131	218	275	424	248	284	223	475	154	454	479	167	125	162	104	1/1 000	777	467	459	474	203	247	468	255	289 117
Star	481	482	483	484	485	400 487	488	489	490	491	492	493	494	495	496	497	498	499	500	501	502	503	504	505	506	507	508	509	510	511	512	513	514	515	516	110	518	500	070	521	522	523	524	525	526	527 528
G-R	-0.03	-0.10	1.11	0.69	0.11	-0.20	-0.09	1.05	0.35	-0.05	0.23	0.35	0.42	0.48	0.48	-0.01	-0.01	0.63	0.36	0.63	0.36	0.67	0.08	0.62	0.45	0.47	-0.18	1.53	-0.02	-0.10	-0.19	0.54	0.25	0.29	0.65	0.15	-0.14	-0.08	0.27	0.43	1.38	-0.08	0.11	-0.20	-0.21	-0.02 -0.12
R $G-R$	20.12 -0.03	21.01 -0.10	19.01 1.11	17.83 0.69		20.61 - 0.20	20.40 -0.09	19.28 1.05	18.76 0.35	20.70 -0.05	19.91 0.23	18.55 0.35	18.82 0.42	18.71 0.48	18.96 0.48	19.99 -0.01	19.65 -0.01	18.16 0.63	18.34 0.36	$17.76 ext{ 0.63}$	18.82 0.36	18.69 0.67	20.25 0.08	18.02 0.62	18.77 0.45	18.24 0.47	19.85 -0.18	18.65 1.53	20.79 -0.02	19.33 -0.10	20.20 -0.19	18.08 0.54	18.54 0.25	18.20 0.29	18.54 0.65	19.30 0.15	20.28 -0.14	20.25 -0.05	18.49 0.27	18.68 0.43	18.52 1.38	20.42 -0.08	20.51 0.11	20.77 -0.20	20.12 -0.21	21.03 - 0.02 21.05 - 0.12
y R G-R	657 20.12 -0.03	658 21.01 -0.10	658 19.01 1.11	659 17.83 0.69	659 20.27 0.11 250 20.20 0.24	661 20.61 -0.20	662 20.40 -0.09	662 19.28 1.05	665 18.76 0.35	666 20.70 -0.05	667 19.91 0.23	669 18.55 0.35	671 18.82 0.42	672 18.71 0.48	672 18.96 0.48	674 19.99 -0.01	674 19.65 -0.01	677 18.16 0.63	676 18.34 0.36	678 17.76 0.63	680 18.82 0.36	680 18.69 0.67	681 20.25 0.08	684 18.02 0.62	685 18.77 0.45	686 18.24 0.47	686 19.85 -0.18	686 18.65 1.53	688 20.79 -0.02	686 19.33 -0.10	688 20.20 -0.19	688 18.08 0.54	688 18.54 0.25	689 18.20 0.29	688 18.54 0.65	690 19.30 0.15			692 18.49 0.2 <i>l</i>	693 18.68 0.43	694 18.52 1.38	697 20.42 -0.08	696 20.51 0.11	697 20.77 -0.20	698 20.12 -0.21	698 21.03 -0.02 698 21.05 -0.12
x y R $G-R$	249 657 20.12 -0.03	168 658 21.01 -0.10	282 658 19.01 1.11	447 659 17.83 0.69	162 659 20.27 0.11 228 250 20.20 0.21	236 039 20.30 0.24104 661 20.61 -0.20	126 662 20.40 -0.09	453 662 19.28 1.05	152 665 18.76 0.35	491 666 20.70 -0.05	457 667 19.91 0.23	203 669 18.55 0.35	165 671 18.82 0.42	218 672 18.71 0.48	325 672 18.96 0.48	234 674 19.99 -0.01	243 674 19.65 -0.01	$328 \ 677 \ 18.16 \ 0.63$	453 676 18.34 0.36	224 678 17.76 0.63	169 680 18.82 0.36	458 680 18.69 0.67	231 681 20.25 0.08	273 684 18.02 0.62	211 685 18.77 0.45	109 686 18.24 0.47	151 686 19.85 -0.18	332 686 18.65 1.53	189 688 20.79 -0.02	266 686 19.33 -0.10	287 688 20.20 -0.19	311 688 18.08 0.54	161 688 18.54 0.25	166 689 18.20 0.29	342 688 18.54 0.65	147 690 19.30 0.15	194 690 20.28 -0.14	234 09U 2U.25 -U.U8 001 000 1040 0.07	284 692 18.49 U.2/	265 693 18.68 0.43	419 694 18.52 1.38	126 697 20.42 -0.08	239 696 20.51 0.11	111 697 20.77 -0.20	120 698 20.12 -0.21	159 698 21.03 -0.02 193 698 21.05 -0.12
Star x y R G-R	433 249 657 20.12 -0.03	434 168 658 21.01 -0.10	435 282 658 19.01 1.11	436 447 659 17.83 0.69	437 162 659 20.27 0.11	430 230 039 20.30 0.24439 104 661 20.61 -0.20	440 126 662 20.40 -0.09	441 453 662 19.28 1.05	442 152 665 18.76 0.35	443 491 666 20.70 -0.05	444 457 667 19.91 0.23	445 203 669 18.55 0.35	446 165 671 18.82 0.42	447 218 672 18.71 0.48	448 325 672 18.96 0.48	449 234 674 19.99 -0.01	450 243 674 19.65 -0.01	451 328 677 18.16 0.63	452 453 676 18.34 0.36	453 224 678 17.76 0.63	454 169 680 18.82 0.36	455 458 680 18.69 0.67	456 231 681 20.25 0.08	457 273 684 18.02 0.62	458 211 685 18.77 0.45	459 109 686 18.24 0.47	460 151 686 19.85 -0.18	461 332 686 18.65 1.53	462 189 688 20.79 -0.02	463 266 686 19.33 -0.10	464 287 688 20.20 -0.19	465 311 688 18.08 0.54	466 161 688 18.54 0.25	467 166 689 18.20 0.29	468 342 688 18.54 0.65	469 147 690 19.30 0.15	470 194 690 20.28 -0.14	4/1 234 09U 20.25 -0.05	4/2 284 692 18.49 0.2/	473 265 693 18.68 0.43	474 419 694 18.52 1.38	475 126 697 20.42 -0.08	476 239 696 20.51 0.11	477 111 697 20.77 -0.20	478 120 698 20.12 -0.21	479 159 698 21.03 -0.02 480 193 698 21.05 -0.12
Star x y R G-R	433 249 657 20.12 -0.03	434 168 658 21.01 -0.10	435 282 658 19.01 1.11	436 447 659 17.83 0.69	437 162 659 20.27 0.11	430 230 039 20.30 0.24 439 104 661 20.61 -0.20	440 126 662 20.40 -0.09	441 453 662 19.28 1.05	442 152 665 18.76 0.35	443 491 666 20.70 -0.05	444 457 667 19.91 0.23	445 203 669 18.55 0.35	446 165 671 18.82 0.42	447 218 672 18.71 0.48	448 325 672 18.96 0.48	449 234 674 19.99 -0.01	450 243 674 19.65 -0.01	451 328 677 18.16 0.63	452 453 676 18.34 0.36	453 224 678 17.76 0.63	454 169 680 18.82 0.36	455 458 680 18.69 0.67	456 231 681 20.25 0.08	457 273 684 18.02 0.62	458 211 685 18.77 0.45	459 109 686 18.24 0.47	460 151 686 19.85 -0.18	461 332 686 18.65 1.53	462 189 688 20.79 -0.02	463 266 686 19.33 -0.10	464 287 688 20.20 -0.19	465 311 688 18.08 0.54	466 161 688 18.54 0.25	467 166 689 18.20 0.29	468 342 688 18.54 0.65	469 147 690 19.30 0.15	470 194 690 20.28 -0.14	4/1 234 090 20.23 -0.06	4/2 284 692 18.49 0.27	473 265 693 18.68 0.43	474 419 694 18.52 1.38	475 126 697 20.42 -0.08	476 239 696 20.51 0.11	477 111 697 20.77 -0.20	478 120 698 20.12 -0.21	479 159 698 21.03 -0.02 480 193 698 21.05 -0.12
G-R Star x y R $G-R$	-0.12 433 249 657 20.12 -0.03	-0.69 434 168 658 21.01 -0.10	0.34 435 282 658 19.01 1.11	0.35 436 447 659 17.83 0.69	0.13 437 162 659 20.27 0.11	-0.20 $+300$ 230 039 20.30 0.24 0.38 $+339$ 104 661 20.61 -0.20	0.42 440 126 662 20.40 -0.09	0.33 441 453 662 19.28 1.05	-0.07 442 152 665 18.76 0.35	0.21 443 491 666 20.70 -0.05	-0.18 444 457 667 19.91 0.23	0.53 445 203 669 18.55 0.35	0.31 446 165 671 18.82 0.42	-0.24 447 218 672 18.71 0.48	-0.12 448 325 672 18.96 0.48	-0.30 449 234 674 19.99 -0.01	0.37 450 243 674 19.65 -0.01	0.38 451 328 677 18.16 0.63	0.51 452 453 676 18.34 0.36	-0.02 453 224 678 17.76 0.63	-0.57 454 169 680 18.82 0.36	0.23 455 458 680 18.69 0.67	0.25 456 231 681 20.25 0.08	-0.15 457 273 684 18.02 0.62	0.22 458 211 685 18.77 0.45	-0.18 459 109 686 18.24 0.47	-0.11 460 151 686 19.85 -0.18	0.30 461 332 686 18.65 1.53	0.30 462 189 688 20.79 -0.02	0.35 463 266 686 19.33 -0.10	-0.60 464 287 688 20.20 -0.19	-0.01 465 311 688 18.08 0.54	0.25 466 161 688 18.54 0.25	-0.14 467 166 689 18.20 0.29	-0.33 468 342 688 18.54 0.65	-0.11 469 147 690 19.30 0.15	-0.34 470 194 690 20.28 -0.14	0.31 4/1 234 090 20.25 -0.08	0.50 $4/2$ 284 692 18.49 $0.2/$	0.52 473 265 693 18.68 0.43	0.30 474 419 694 18.52 1.38	-0.31 475 126 697 20.42 -0.08	-0.02 476 239 696 20.51 0.11	-0.29 477 111 697 20.77 -0.20	0.21 478 120 698 20.12 -0.21	0.25 479 159 698 21.03 -0.02 0.18 480 193 698 21.05 -0.12
R G-R Star x y R G-R	21.06 -0.12 433 249 657 20.12 -0.03	20.81 -0.69 434 168 658 21.01 -0.10	18.76 0.34 435 282 658 19.01 1.11	17.98 0.35 436 447 659 17.83 0.69	20.40 0.13 437 162 659 20.27 0.11	20.04 - 0.20 $4.00 - 2.00 0.09 - 20.00 0.2419.30 0.38 439 104 661 20.61 -0.20$	18.49 0.42 440 126 662 20.40 -0.09	18.52 0.33 441 453 662 19.28 1.05	19.92 - 0.07 442 152 665 18.76 0.35	19.27 0.21 443 491 666 20.70 -0.05	20.35 - 0.18 444 457 667 19.91 0.23	19.22 0.53 445 203 669 18.55 0.35	18.26 0.31 446 165 671 18.82 0.42	20.40 -0.24 447 218 672 18.71 0.48	20.41 -0.12 448 325 672 18.96 0.48	20.54 - 0.30 $449 234 674 19.99 - 0.01$	18.88 0.37 450 243 674 19.65 -0.01	18.33 0.38 451 328 677 18.16 0.63	18.65 0.51 452 453 676 18.34 0.36	19.37 -0.02 453 224 678 17.76 0.63	18.47 - 0.57 454 $169 680$ 18.82 0.36	18.90 0.23 455 458 680 18.69 0.67	19.29 0.25 456 231 681 20.25 0.08	20.24 - 0.15 $457 273 684 18.02 0.62$	18.13 0.22 458 211 685 18.77 0.45	19.86 - 0.18 $459 109 686 18.24 0.47$	21.39 -0.11 460 151 686 19.85 -0.18	18.52 0.30 461 332 686 18.65 1.53	18.64 0.30 462 189 688 20.79 -0.02	18.82 0.35 463 266 686 19.33 -0.10	20.12 -0.60 464 287 688 20.20 -0.19	21.21 -0.01 465 311 688 18.08 0.54	18.15 0.25 466 161 688 18.54 0.25	21.21 -0.14 467 166 689 18.20 0.29	20.24 -0.33 468 342 688 18.54 0.65	19.52 -0.11 469 147 690 19.30 0.15	21.01 -0.34 470 194 690 20.28 -0.14	18.85 U.31 4/1 234 09U 2U.25 -U.08	18.14 0.50 472 284 692 18.49 0.27	19.20 0.52 473 265 693 18.68 0.43	18.73 0.30 474 419 694 18.52 1.38	20.08 -0.31 475 126 697 20.42 -0.08	20.17 -0.02 476 239 696 20.51 0.11	20.81 -0.29 477 111 697 20.77 -0.20	19.82 0.21 478 120 698 20.12 -0.21	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
y R G-R Star x y R G-R	626 21.06 -0.12 433 249 657 20.12 -0.03	626 20.81 -0.69 434 168 658 21.01 -0.10	626 18.76 0.34 435 282 658 19.01 1.11	626 17.98 0.35 436 447 659 17.83 0.69	626 20.40 0.13 437 162 659 20.27 0.11	627 19.30 0.38 439 104 661 20.61 -0.20	627 18.49 0.42 440 126 662 20.40 -0.09	628 18.52 0.33 441 453 662 19.28 1.05	629 19.92 -0.07 442 152 665 18.76 0.35	630 19.27 0.21 443 491 666 20.70 -0.05	629 20.35 -0.18 444 457 667 19.91 0.23	630 19.22 0.53 445 203 669 18.55 0.35	631 18.26 0.31 446 165 671 18.82 0.42	631 20.40 -0.24 447 218 672 18.71 0.48	632 20.41 -0.12 448 325 672 18.96 0.48	632 20.54 -0.30 449 234 674 19.99 -0.01	632 18.88 0.37 450 243 674 19.65 -0.01	632 18.33 0.38 451 328 677 18.16 0.63	632 18.65 0.51 452 453 676 18.34 0.36	633 19.37 -0.02 453 224 678 17.76 0.63	633 18.47 -0.57 454 169 680 18.82 0.36	633 18.90 0.23 455 458 680 18.69 0.67	633 19.29 0.25 456 231 681 20.25 0.08	635 20.24 -0.15 457 273 684 18.02 0.62	636 18.13 0.22 458 211 685 18.77 0.45	637 19.86 -0.18 459 109 686 18.24 0.47	638 21.39 -0.11 460 151 686 19.85 -0.18	638 18.52 0.30 461 332 686 18.65 1.53	638 18.64 0.30 462 189 688 20.79 -0.02	639 18.82 0.35 463 266 686 19.33 -0.10	640 20.12 -0.60 464 287 688 20.20 -0.19	642 21.21 -0.01 465 311 688 18.08 0.54	642 18.15 0.25 466 161 688 18.54 0.25	643 21.21 -0.14 467 166 689 18.20 0.29	646 20.24 -0.33 468 342 688 18.54 0.65	646 19.52 -0.11 469 147 690 19.30 0.15	647 21.01 -0.34 470 194 690 20.28 -0.14	049 18.85 U.31 4/1 234 09U 2U.23 -U.08 640 1011 070 170 001 000 1010 007	049 18.14 0.50 472 284 692 18.49 0.27	650 19.20 0.52 473 265 693 18.68 0.43	650 18.73 0.30 474 419 694 18.52 1.38	652 20.08 -0.31 475 126 697 20.42 -0.08	654 20.17 -0.02 476 239 696 20.51 0.11	653 20.81 -0.29 477 111 697 20.77 -0.20	654 19.82 0.21 478 120 698 20.12 -0.21	656 18.54 0.25 479 159 698 21.03 -0.02 657 19.45 0.18 480 193 698 21.05 -0.12
x y R G-R Star x y R G-R	208 626 21.06 -0.12 433 249 657 20.12 -0.03	218 626 20.81 -0.69 434 168 658 21.01 -0.10	263 626 18.76 0.34 435 282 658 19.01 1.11	331 626 17.98 0.35 $436 447 659 17.83 0.69$	455 626 20.40 0.13 437 162 659 20.27 0.11	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	355 627 18.49 0.42 440 126 662 20.40 -0.09	172 628 18.52 0.33 441 453 662 19.28 1.05	201 629 19.92 -0.07 442 152 665 18.76 0.35	278 630 19.27 0.21 443 491 666 20.70 -0.05	131 629 20.35 -0.18 444 457 667 19.91 0.23	311 630 19.22 0.53 445 203 669 18.55 0.35	414 631 18.26 0.31 446 165 671 18.82 0.42	$103 \ 631 \ 20.40 \ -0.24 \ 447 \ 218 \ 672 \ 18.71 \ 0.48$	122 632 20.41 -0.12 $448 325 672 18.96 0.48$	$161 \ 632 \ 20.54 \ -0.30 \ \ 449 \ 234 \ 674 \ 19.99 \ -0.01$	191 632 18.88 0.37 450 243 674 19.65 -0.01	295 632 18.33 0.38 451 328 677 18.16 0.63	339 632 18.65 0.51 452 453 676 18.34 0.36	291 633 19.37 -0.02 $453 224 678 17.76 0.63$	473 633 18.47 -0.57 454 169 680 18.82 0.36	264 633 18.90 0.23 455 458 680 18.69 0.67	280 633 19.29 0.25 456 231 681 20.25 0.08	273 635 20.24 -0.15 457 273 684 18.02 0.62	370 636 18.13 0.22 458 211 685 18.77 0.45	$158 \ 637 \ 19.86 \ -0.18 \ 459 \ 109 \ 686 \ 18.24 \ 0.47$	130 638 21.39 -0.11 460 151 686 19.85 -0.18	294 638 18.52 0.30 461 332 686 18.65 1.53	488 638 18.64 0.30 462 189 688 20.79 -0.02	104 639 18.82 0.35 $ $ 463 266 686 19.33 -0.10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	120 642 21.21 -0.01 465 311 688 18.08 0.54	315 642 18.15 0.25 466 161 688 18.54 0.25	165 643 21.21 -0.14 467 166 689 18.20 0.29	247 646 20.24 -0.33 468 342 688 18.54 0.65	134 646 19.52 -0.11 469 147 690 19.30 0.15	161 647 21.01 -0.34 470 194 690 20.28 -0.14	1/2 049 18.85 0.31 4/1 234 090 20.20 -0.08 109 240 1014 0.70 470 001 000 1040 0.07	183 049 18.14 0.50 472 284 092 18.49 0.27	269 650 19.20 0.52 473 265 693 18.68 0.43	284 650 18.73 0.30 474 419 694 18.52 1.38	132 652 20.08 -0.31 $475 126 697 20.42 -0.08$	114 654 20.17 -0.02 476 239 696 20.51 0.11	153 653 20.81 -0.29 477 111 697 20.77 -0.20	237 654 19.82 0.21 478 120 698 20.12 -0.21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

1989ApJ...339...84M

TABLE 1—Continued

MOULD ET AL.

TABLE 1—Continued

Star	x	y	R	G-R	Star	x	y	R	G-R
577	455	755	18.88	0.87	616	252	776	18.27	0.45
578	273	757	20.12	-0.01	617	140	777	19.22	0.38
579	350	757	20.72	-0.38	618	312	778	20.46	-0.22
580	256	759	20.52	-0.04	619	434	777	19.40	0.91
581	322	758	19.89	0.04	620	291	779	19.17	0.10
582	357	759	18.01	0.27	621	178	779	21.40	-0.02
583	331	760	18.55	0.53	622	429	780	19.81	0.38
584	160	761	20.69	-0.27	623	469	779	19.75	0.33
585	290	760	20.84	-0.11	624	283	781	18.81	0.43
586	142	762	18.41	0.45	625	156	782	21.01	-0.11
587	364	761	18.99	0.46	626	381	782	17.37	0.44
588	449	763	19.60	0.19	627	198	784	19.45	0.48
589	137	765	19.12	0.29	628	227	784	19.39	-0.47
590	320	765	20.12	0.12	629	298	784	19.84	-0.45
591	389	765	19.22	0.53	630	462	784	21.06	1.05
592	444	766	19.00	0.69	631	285	787	20.15	-0.04
593	163	767	19.65	-0.52	632	441	787	20.47	0.34
594	189	767	20.91	-0.51	633	166	788	21.35	-0.29
595	495	766	21.32	-0.29	634	452	788	19.69	0.27
596	216	768	20.49	-0.09	635	374	789	21.24	0.41
597	200	769	20.31	-0.05	636	410	790	18.73	0.32
598	227	769	20.74	-0.24	637	186	790	21.07	-0.14
599	233	768	19.94	-0.24	638	194	790	18.99	0.14
600	325	769	21.03	-0.02	639	362	790	19.59	-0.12
601	403	769	18.80	0.56	640	147	791	20.94	-0.33
602	135	770	18.61	0.31	641	256	792	19.10	-0.45
603	290	770	20.74	0.34	642	138	793	21.34	0.15
604	438	770	18.79	0.71	643	244	793	18.80	-0.01
605	166	771	20.70	-0.16	644	281	794	19.09	-0.41
606	428	772	17.76	0.74	040	235	794	19.90	-0.10
607	173	772	19.49	0.42	040 647	400	794	20.00	-0.30
608	244	773	20.50	0.01	640	415	793	19.01	0.30
609	319	773	22.17	0.50	048 640	492	794	10.60	0.25
610	361	774	18.95	0.41	650	110	790 706	19.09	0.17
011 619	133	775	18.00	U.33 0.36	651	442 916	790	20 78	-0.18
012 619	334 20e	110	10.02	0.30	652	210	797	18 13	0.33
013 614	300 197	114	19.90	-0.04	653	284	796	19.77	-0.06
615	107 917	776	21.21	-0.04	000	204	100	10.11	0.00
010	211	110	20.89	-0.10					

A check of the photometric zero points was carried out by identifying 32 stars in common with Gascoigne (1962). Gunn magnitudes were predicted from Gascoigne's photographic magnitudes by means of the transformations described in the next section. After rejection of 2 σ residuals (probably mostly misidentifications) the difference between predicted and observed G-R was 0.02 \pm 0.04 mag and the difference between predicted and observed R was -0.01 ± 0.03 mag.

Stars brighter than R = 17.5 are not included in Table 1 because their images are saturated on the red frames. We compared the photometry of stars in the next half magnitude to R = 18 between the long and short exposures. The magnitude difference was found to be identical to that obtained for a sample of stars at R = 19. The photometry in Table 1 is therefore free from any CCD saturation problems.

III. THE AGE OF THE CLUSTER

To fit isochrones and determine the age of the cluster, we need first to determine the reddening, metallicity, and distance modulus. The reddening maps of Burstein and Heiles (1982), based on H I data for the Galaxy, show E(B-V) between 0.03 and 0.06 in the direction of N1783. The H I map of the Magellanic system by Mathewson and Ford (1983) shows N1783

superposed on a region of high H I column density with a value of $\sim 10^{21}$ atoms cm⁻² at the position of the cluster. This corresponds to an additional possible reddening of E(B-V) = 0.04, if the calibration of Burstein and Heiles is appropriate. The cluster would therefore seem to be reddened by between 0.03 and 0.10 in E(B-V).

The metallicity of NGC 1783 has been determined by Cohen (1982), who finds $[M/H] = -0.45 \pm 0.3$. We can check this by means of the color of the giant branch at the luminosity of the horizontal branch, which is $0.42 < (G-R)_{0,g} < 0.57$ from Figure 3 with allowance for the reddening uncertainty. This corresponds to -1.0 < [M/H] < -0.5, if the age is close to 2 Gyr (see Da Costa, Mould, and Crawford 1985 [hereafter DMC] for details of the calibration). A correction to [M/H] of approximately +0.2 dex is required for an age of 1 Gyr according to the Yale isochrones, indicating consistency with the spectroscopic determination.

Superposed on Figure 3a and 3b are Vandenberg (1985) isochrones for Z = 0.006 for a distance modulus $(m - M)_0 = 18.2$ and reddenings of E(B-V) = 0.03 and 0.10. We have referred to this value of the distance as the *short modulus* in previous papers on this subject. DMC and Rich, Da Costa, and Mould (1984) discuss the distance modulus uncertainty for the

FIG. 3.—(a) A color magnitude diagram for NGC 1783 from the data of Table 1. Isochrones of Z = 0.006 and ages 0.8 and 1.25 Gyr are superposed at $(m - M)_0 = 18.2$. A reddening equivalent to E(B - V) = 0.03 is assumed. Open circles indicate stars which have been "oversubtracted" by the field subtraction procedure described in the text. In (b) everything is the same except the isochrones are reddened by E(B - V) = 0.10.

© American Astronomical Society • Provided by the NASA Astrophysics Data System

© American Astronomical Society • Provided by the NASA Astrophysics Data System

Magellanic Clouds in more detail. The distance dichotomy relates to both the LMC and SMC. The Vandenberg isochrones have a helium content appropriate to the LMC of Y = 0.25. Transformations to the Gunn system are required for the Vandenberg isochrones. We took the relations given in Bell and Vandenberg (1986, Figs. 1 and 2) and interpolated them appropriately in metallicity. The isochrones are not a good fit to the data, comparing very unfavorably with the excellent fit that can be obtained by CCD photometry of less crowded fields (see Hesser et al. 1987 for 47 Tuc). In order to use them to evaluate the age of the cluster, one must attempt to isolate the tip of the main sequence and fit to that. The lower, 1.25 Gyr isochrone passes 0.4 to 0.6 mag fainter than five stars in Figure 3 in the range 19.1–19.4 in R and -0.1 to 0 in G-R. Most of these stars are likely to be cluster members, and thus represent the tip of the main sequence in NGC 1783 with an uncertainty of ~ 0.2 mag. Regardless of the quality of the fit and cluster membership, however, there are also systematic uncertainties to consider relating to the structure of stars exhausting their core hydrogen (Bertelli, Bressan, and Chiosi 1985). We treat this matter, following DMC, by allowing 0.3 mag of convective overshooting above the maximum mainsequence luminosity of this isochrone, and obtain an age estimate of 1.1 ± 0.2 Gyr for NGC 1783 at the short distance modulus.

Figure 4a and 4b show isochrones for the same chemical composition and ages of 0.6 and 0.8 Gyr superposed on the

TABLE 2 AGB Stars in NGC 1783

LE	$M_{\rm bol}$	Spectrum
1 2 3 4 5 6 7 8	$ \begin{array}{r} -5.35 \\ -4.5 \\ -4.95 \\ -4.65 \\ -4.55 \\ -4.4 \\ -4.2 \\ -4.3 \end{array} $	C S4/2 C S5/2 M3 M3 M3 M3 M3
9 10 11 15	-4.8 -4.4 -4.3 -4.1	S5/3 M4 M1

SOURCES.—For Identification: Lloyd Evans 1980. For Photometry: Frogel and Cohen 1983, Mould and Aaronson 1982, and Aaronson and Mould 1982. For Spectra: this paper; Lloyd Evans 1983, 1984; Bessell, Wood, and Lloyd Evans 1983; and Mould and Aaronson 1979.

FIG. 5.—Spectra from top to bottom of LE 9, LE 10, LE 7, and LE 8. The wavelength scale is in angstroms and the vertical scale is in F_{λ} units. LE 9 and LE 10 were vertically offset by two and four vertical divisions respectively.

91

color-magnitude diagram at a larger assumed distance: (m $(-M)_0 = 18.7$. The fit to the data is worse than for the short distance modulus in Figure 3b, but, following the arguments presented by Paczyński (1984), we should pay less attention to color discrepancies in isochrones than to the luminosity fit. With the same allowance for the effects of convective overshooting we obtain an age estimate of 0.7 ± 0.2 Gyr. The uncertainty in metallicity given by Cohen of 0.3 dex contributes to a further uncertainty of 0.1 Gyr in age. The tendency for isochrones to be bluer than the observed main sequence seems to be general in Magellanic Cloud clusters of ~ 1 Gyr, and independent of photometric system (see DMC, Mateo and Hodge 1987). This suggests the effect is real³ rather than a transformation error.

IV. THE ASYMPTOTIC GIANT BRANCH

NGC 1783 is significantly younger than the other rich LMC clusters, whose AGB properties are discussed by Mould, Da Costa, and Wieland (1986). The AGB of NGC 1783 is well populated, as shown in Table 2, which summarizes our knowledge of its stellar content. The AGB is not seen in Figure 3; these stars are beyond the saturation limit of the long exposures. Spectra of four of these stars are shown in Figure 5, obtained with the RC spectrograph and GEC CCD detector at the 4 m telescope of the Cerro Tololo Inter-American Obser-

³ An anonymous referee has suggested that an error in the envelope opacities used in calculating the models might be the source of this general problem. Color magnitude diagrams free of crowding noise will probably be required before this suggestion is entertained.

vatory. The spectra were obtained on 1982 November 25, and include two stars with no previously reported spectroscopy. Figure 5 illustrates the transition from M type to S type on the AGB. The ZrO band at 6472 Å is present also in the three (lower) M type spectra, but increases greatly in strength in the top spectrum of LE 9.

The AGB of NGC 1783 follows ideally the expectations from the theory of third dredge up (e.g., Iben and Renzini 1983). This was first noted by Bessell, Wood, and Lloyd Evans (1983), but can now be fully appreciated from the more complete data in Table 2. M stars populate the luminosity range $-4.5 < M_{bol} < -4$ exclusively. The four S stars fall entirely in the range $-4.9 < M_{bol} < -4.5$. And the brightest stars (-4.95 and -5.35) are both carbon stars.

Particularly noteworthy is the fact that the transition luminosity range, over which M stars turn into carbon stars through S stars on their way up the AGB is half a magnitude brighter in NGC 1783 than in the 2 Gyr clusters discussed by Mould, Da Costa, and Wieland. This supports a claim made by Lloyd Evans (1983, 1984), based on the integrated color classes of clusters. The result can be understood in terms of the higher luminosity at which more massive stars commence thermal pulsing on the AGB (e.g., Lattanzio 1987; Boothroyd and Sackmann 1988).

This work was supported in part by NSF grant AST 85-02518 and in part by a NASA contract to the HST Wide Field and Planetary Camera team.

REFERENCES

- Aaronson, M., and Mould, J. 1982, Ap. J. Suppl., **48**, 161. Bell, R., and VandenBerg, D. 1986, Ap. J. Suppl., **63**, 335. Bertelli, G., Bressan, A., and Chiosi, C. 1985, Astr. Ap., **150**, 33. Bessell, M., Wood, P., and Lloyd Evans, T. 1983, M.N.R.A.S., **202**, 59.
- Boothroyd, A. I., and Sackmann, I.-J. 1988, Ap. J., 238, 671.

- Boothroyd, A. I., and Sackmann, I.-J. 1988, Ap. J., 238, 671.
 Burstein, D., and Heiles, C. 1982, A.J., 87, 1165.
 Cohen, J. G. 1982, Ap. J., 258, 148.
 Da Costa, G. S., Mould, J., and Crawford, M. 1985, Ap. J., 297, 582 (DMC).
 Freeman, K., Illingworth, G., and Oemler, A. 1983, Ap. J., 272, 488.
 Frogel, J., and Cohen, J. 1983, Ap. J., 253, 580.
 Gascoigne, S. C. B. 1962, M.N.R.A.S., 124, 201.
 Haeser, I. Harris, W. Vandanbarg, D. Allwright, J. Shott, P. and Stateon

- Hesser, J., Harris, W., Vandenberg, D., Allwright, J., Shott, P., and Stetson, P. 1987, Pub. A.S.P., 99, 739.
- Iben, I., Jr., and Renzini, A. 1983, Ann. Rev. Astr. Ap., 21, 271. Jensen, J., Mould, J., and Reid, I. N. 1988, Ap. J. Suppl., 67, 77. Lattanzio, J. C. 1987, Ap. J. (Letters), 313, L15.
- Lloyd Evans, T. 1980, M.N.R.A.S., 193, 87.

- lanic Clouds, ed. S. van den Bergh and K. de Boer (Dordrecht: Reidel), p. 125
- Mould, J., and Aaronson, M. 1979, Ap. J., 232, 421.
- Mould, J., 1982, Ap. J., 263, 629.
 Mould, J. R., Da Costa, G. S., and Wieland, F. P. 1986, Ap. J., 309, 39.
- Nemec, J., Kristian, J., and Mould, J. 1989, in preparation.

- Nemec, J., Kristian, J., and Mouid, J. 1989, in preparation. Paczyński, B. 1984, *Ap. J.*, **28**, 670. Rich, R. M., Da Costa, G., and Mould, J. 1984, *Ap. J.*, **286**, 517. Sandage, A., and Eggen, O. 1960, *M.N.R.A.S.*, **121**, 232. Searle, L., Wilkinson, A., and Bagnuolo, W. 1980, *Ap. J.*, **239**, 803. Stetson, P. 1987, *Pub. A.S.P.*, **99**, 191. Thaun, T., and Gunn, J. E. 1976, *Pub. A.S.P.*, **88**, 543. Vander Berge, D. 1985, *Ap. J. Surgl.* **59**, 711.

- VandenBerg, D. 1985, Ap. J. Suppl., 58, 711.

JOSEPH JENSEN and JEREMY MOULD: Caltech 105–24, Pasadena CA 91125

JEROME KRISTIAN: M.W.L.C.O., 813 Santa Barbara St., Pasadena, CA 91101

JAMES NEMEC: Geophysics and Astronomy Department, University of British Columbia, Vancouver BC V6T 1W5, Canada

92

1989ApJ...339...84M