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ABSTRACT 
The principal objective of the investigations described in the present paper is the demonstration of the via- 

bility of the modal approach to global spiral structures in galaxies of all Hubble morphological types. This is 
done through (1) the identification of the appropriate basic states of galaxy models from the dynamical point of 
view, and (2) the demonstration of their compatibility with observations from the physical point of view. The 
modal approach is preferred to a direct evolutionary approach because it is believed that the observed spiral 
structure in the majority of galaxies is associated with the late states of an evolutionary process and that the 
pitch angle of the spiral arms of a galaxy can be used as a criterion for determining its Hubble type. 

From a dynamical point of view, it is shown that barred spiral modes are likely to occur for relatively large 
disk masses. Specifically, the ratio RA for active disk/total mass (see § III) within four exponential scale lengths 
for such spiral galaxies should be on the order of 30% or larger. There is in general only a single important 
unstable mode; thus, a regular quasi-stationary barlike structure may be expected. Normal spirals occur for 
lower active disk masses, especially those with lower pitch angles (Sa and Sb galaxies). From the physical 
point of view, this lower active disk mass is associated with the three-dimensional distribution of the stellar 
component, including the relatively large nuclear bulge. 

A long-standing challenge in the case of normal spirals of small pitch angle is resolved. A new perception of 
the basic structure of these galaxies is proposed. For such normal spirals, the gaseous component plays an 
essential role, both in the excitation of the unstable spiral modes and in the stable maintenance of the final 
spiral structure. Indeed, dynamical studies indicate that a condition of marginal instability must be realized at 
large galactocentric distances and that a large part of the active galactic disk, with the possible exception of 
the central part, must be relatively “cool.” Physically, this is realistic because of the three-dimensional dis- 
tribution of stellar mass, especially in the central regions. The length scale of the active mass distribution is 
often found to be about twice as large as the exponential length scale of the optical disk. For the type of basic 
states considered, we expect in many cases two-armed spiral structures extending over a few exponential 
length scales, often with multiple winding. In particular, when the number of important spiral modes is small, 
the spiral structure is expected to have a highly regular grand design and to evolve in time in a quasi- 
stationary manner. 
Subject headings: galaxies: internal motions — galaxies: structure — stars: stellar dynamics 

I. INTRODUCTION 

Hubble’s classification scheme (Hubble 1926; de Vaucou- 
leurs 1959; Sandage 1961) is based on a number of observa- 
tional criteria such as the gas content, the size of nuclear bulge, 
the resolution of the spiral arms, and the pitch angle of the 
spiral arms. One of the principal challenges in the study of 
galaxies is to try to understand the physical basis of these 
criteria and their interrelationship (see, e.g., Whitmore 1984). 
For example, one would wish to know how normal spirals 
differ from barred spirals, and how the (small) pitch angle of an 
Sa galaxy is related to the (large) size of the nuclear bulge. 
Specifically one may pose the following questions: How can we 
construct a galactic model that simulates a galaxy or classes of 
galaxies of a given morphology? How can we account for the 
transitions observed among the various morphological types? 
How much can we infer on the basic state of a galaxy from its 
observed spiral structure? Why are there galaxies like NGC 
6951 (Sandage 1961, p. 46) that exhibit characteristics of both 
SBb(s) and Sb systems? Why are regular spiral structures gen- 
erally two armed? 

In the context of the density wave theory, it is natural to 
attempt to interpret the various Hubble types by associating 
the large-scale structure of each of them with a global mode of 
oscillation, or a superposition and interaction of such modes, 
in an appropriate galaxy model. Here we assume that, in the 
galaxies we observe now, we are dealing with the “ late ” stages 
of an evolving dynamical system, where the modal description 
is usually preferable over nonmodal descriptions. If this modal 
approach is to be successful as a general perception, it is neces- 
sary to demonstrate the possibility to do so for all principal 
Hubble morphological types. Indeed, the main purpose of this 
study is to address the issue of the identification of the basic 
state that is to generate and to support spiral structure of a 
given shape. Besides possessing internal dynamical consis- 
tency, such a basic state must be realistic, so that astrophysical 
applications are justified. This is not a simple matter, as 
we shall see presently; in particular, the physical nature of 
the basic state of normal spirals poses a major challenge (see 
§§IIUV). 

From the dynamical point of view, it is essential that the 
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viability of the modal approach should be established; for it 
provides a clear perception and a basis for the discussion of a 
number of important issues such as the resolution of the 
winding dilemma in morphological classification and the 
nature of the hypothesis of quasi-stationary spiral structure 
(QSSS hypothesis). Although the latter is essentially a working 
hypothesis based on empirical grounds, the dynamical support 
for its plausibility, and indeed the proper limit to its applicabil- 
ity, can be best provided in the modal perception. Indeed, it 
would be very difficult to provide a theoretical basis for the 
QSSS hypothesis unless the modal approach is viable. The 
discussion of the regularity and the evolution of the spiral 
structure, can also be best carried out in the modal context. In 
a previous publication (Bertin and Lin 1987) we have reviewed 
several aspects of the issues related to the adoption of the 
QSSS hypothesis to describe grand design spiral galaxies. In 
that article we have also emphasized the role of self-regulation 
(see also Bertin and Romeo 1988) as a crucial process in the 
identification of the relevant basic states. In the following, self- 
regulation will be described mostly in § III, and a discussion of 
the morphology and the evolution of spiral structure will be 
given in § V. 

These modal studies, in addition to providing a unified 
framework for the classification of spiral galaxies and for the 
structure of the corresponding basic states, can also provide a 
first step for the construction of detailed models for given gal- 
axies (such as the Milky Way or M81). 

Our study will be presented in two parts. In Paper I, by first 
illustrating the results of a modal survey of a family of basic 
states, we offer a unified approach to the dynamical basis of the 
morphological types in the Hubble diagram. The focus will be 
on the identification of the relevant basic states and on their 
physical justification. We also discuss other issues of direct 
astrophysical interest, such as the amount of mass in the dark 
halo. Paper II, as a separate self-contained analysis, gives a 
unified account of the relevant dynamical mechanisms at the 
basis of the processes of the excitation and maintenance of 
spiral modes in terms of waves governed by a simple cubic 
dispersion relation. Of course, the two articles are intimately 
related. On the one hand, much of the guidance to our numeri- 
cal survey of Paper I derives from the analytical methods 
developed in Paper II. On the other hand, much of the con- 
fidence in the asymptotic methods and in the resulting physical 
interpretation proposed in Paper II is based on the concrete 
examples produced by the numerical survey of Paper I. 

We shall now proceed to describe the issues addressed in 
Paper I. 

a) Modal Approach to Spiral Structure: A Description of the 
Adopted Method of Investigation 

Since global modes are the intrinsic characteristics of a given 
system, in order to cover all Hubble types in a coherent per- 
spective (e.g., to determine whether it is true that normal spirals 
are associated with low active disk mass and barred spirals 
with high active mass), we have considered a family of basic 
states so that all of them could be covered through the natural 
variation of certain general parameters such as the ratio of disk 
mass to total gravitational mass. An atlas of modes is provided 
for hundreds of models (Thurstans 1987) together with their 
dynamical characteristics. Technically, this is made possible by 
devising a method of automated extrapolation in locating 
eigenvalues in order to overcome the difficulties that often 
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occur with the calculation of modes of low growth rate. The 
equations used are presented in Paper II. 

A modal investigation of this kind is quite complex and, as 
we shall demonstrate, involves a number of important physical 
issues. Therefore, we have adopted the following strategy. We 
begin our study with an extensive exploratory survey of basic 
states by following the properties of one representative two- 
armed spiral mode and the way these properties change while 
several parameters characterizing the basic equilibria are 
changed. 

Already at this stage, a good fraction of the models that are 
considered can be discarded on the basis of the growth rate of 
the mode. In fact, we should focus on cases where the mode is 
characterized by moderate growth rate (yP < 1 ; see text for 
definitions). These are the modes that can be stabilized through 
nonlinear mechanisms. Basic states subject to violent insta- 
bilities are expected to evolve rapidly, and observed galaxies 
are presumably beyond such a stage of rapid evolution (also 
through mechanisms of self-regulation). 

At this point we are still only in the middle of the investiga- 
tion, because two important physical issues have yet to be 
faced. First of all, we should check that the basic states finally 
adopted do have physical justification. In particular, we should 
carefully examine the nature of the profiles of the parameters 
that govern the distribution of mass and random motions. 
Some of these considerations can be made and indeed were 
made in advance, that is, in the initial choice of basic states for 
the exploratory survey. In fact, our survey gives reasonable 
barred morphologies in very reasonable basic states. However, 
the need for a further examination of the nature of the basic 
state may become apparent, should the survey indicate special 
difficulties. This was indeed the case for spiral morphologies of 
the normal type, especially those with a small pitch angle. Some 
of these difficulties may be intrinsic to the family of models 
adopted. Given the importance of this issue (which is at the 
core of Paper I, §§ III-IV), we shall elaborate further on it in 
the Introduction (§ lb). 

Finally, after the appropriate set of basic states is identified 
and assured of its physical justification, the characteristics of 
all the global modes for each of these basic states must be 
studied in order to determine the expected morphological type, 
the appearance of the spiral structure, and its evolution in time. 
In particular, three-armed modes must be studied to see 
whether, as we expect, they may be easily weakened or elimi- 
nated by Landau damping at the inner Lindblad resonance. It 
should also be determined whether and how the morphologi- 
cal type of the spiral structure for a given basic state will 
change over a long period of time. 

This discussion clearly shows why preliminary results 
published earlier (Berlin et al 1911; Haass, Bertin, and Lin 
1982) represent only an incomplete step in the direction just 
described. The major limitation of those studies, besides the 
somewhat small number of investigated cases, is that too little 
attention was given to the roles of gas and self-regulation, and 
that moderate instabilities were not considered. An adequate 
discussion of the choice of the basic state was also not 
provided. 

b) A Major Physical Issue: How Do We Explain Tightly 
Wound Normal Spirals? 

There is a long-standing difficulty in identifying models 
appropriate to normal spirals, especially those with small pitch 
angles. In the literature, failure to find two-armed normal 
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spirals modes with small pitch angles has been reported by 
several authors. As we shall see as a result of the exploratory 
survey of § II, the cause of these difficulties may be traced to 
the type of basic states adopted (see detailed discussion in 
§11/). 

Tightly wound spiral modes with moderate growth rate are 
found only in cool disks. In addition, their morphology and 
radial extent are realistic (see § IV) only if the mobile part of the 
disk mass in the modal calculation differs significantly from the 
exponential profile suggested by photometric studies. The issue 
of the cool disk is often recognized as a crucial point of dispute 
(see, e.g., van Albada and Sancisi 1986, p. 455; see also Bertin 
and Romeo 1988). The term cool is used here to denote a 
condition close to that of marginal stability with respect to 
local axisymmetric disturbances. The resolution of the diffi- 
culties found in our exploratory survey of § II depends on the 
recognition of the following physical characteristics of the 
galactic disk in the construction of our models. (A quantitative 
description will be given in the main text later, especially in 
§ HI)* 

First, the galaxy is composed of at least two components: 
stars and gas. With reference to the stellar component, it is 
necessary to recognize the finite thickness of the galactic disk 
and the presence of a nuclear bulge which merges smoothly 
with the disk, and of an invisible halo. The three-dimensional 
configuration of mass distribution significantly reduces the 
Jeans instability of the stellar component, and the aciire disk 
mass to be used in the theoretical model with an infinitesimally 
thin disk. This enhances the importance of the gaseous com- 
ponent relative to the stellar component. With reference to the 
gaseous component, we note that the disk is thinner and the 
dispersive velocity is lower, and consequently it is much more 
responsive to the gravitational field. Furthermore, the disper- 
sive velocity in the gas is dissipative, since it is turbulent. There 
is thus a process of self-regulation that may keep the disk cool 
when there is a moderate amount of gas. In the end, the conclu- 
sion is reached that the gaseous component plays essential 
roles both in the excitation and in the maintenance of normal 
spirals, even in those of types Sa and Sb where the total 
gaseous component is small. The crucial point is then the deter- 
mination of the amount of gas needed to ensure that the outer 
disk may be maintained in a condition of marginal stability 
with respect to axisymmetric disturbances. We found that it is 
likely that there is in general sufficient gas to do so, especially 
in view of the presence of molecular gas. The reduction of the 
effective mass density of the thicker stellar disk, often by as 
much as a factor of 2, is another essential element. 

The mechanism of dynamical instability of such normal 
spirals differs significantly from that in barred spirals, where 
the disk thickness and the gaseous component play less signifi- 
cant roles. Nevertheless, the mechanism of instability for 
normal spiral modes is still gravitational in nature, in contrast 
to other mechanisms that may be proposed (see, e.g., dis- 
cussion after the paper by Rubin 1987, p. 64). 

c) Summary of the Main Results 
1. The main conclusion of the exploratory survey is that all 

morphological types can be represented through a systematic 
change of parameters of the relevant basic states. The results 
show surprising simplicity. If one considers the ratio RM of disk 
mass to total mass within four scale lengths of the exponential 
disk adopted in our model, all morphological types may be 
obtained for a mass ratio below 0.5. Normal spirals are typi- 
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cally obtained for active disk mass ratio RA of the order of 
0.1-0.3; barred configurations show up for higher active disk 
masses. (See §§ III, IV for the precise defintions of active disk 
mass.) There is thus a one-dimensional sequence of morpho- 
logical types with increasing disk mass, provided that the con- 
dition of moderate instability is imposed. 

2. A closer examination reveals that the physical basis for 
the normal spiral modes obtained in the exploratory survey 
appears unsatisfactory. The roles of gas and three-dimensional 
distribution of mass must be properly incorporated. Without 
such an inclusion, the corotation radius of the spiral pattern is 
generally only a little larger than the luminous exponential 
length scale h*. Within a realistic model it is of the order of 
three length scales so that the corotation zone lies in a region 
where the gaseous mass is sufficiently plentiful to play a signifi- 
cant dynamical role. (See §§ III, IV for the detailed discussions.) 
In general, the primary part of the spiral pattern is found to 
extend over the range h*<r < 3h*. This seems to be in 
general agreement with observations. The disk is cool roughly 
for r > 2h*. In barred spirals, the role of the gaseous com- 
ponent is less crucial. 

3. It turns out that, within the framework just described, the 
results originally obtained in the exploratory survey can be 
reinterpreted by suitable rescaling so that they can still be 
useful as a crude first approximation, with the size of the spiral 
pattern roughly 3 times the size of the luminous exponential 
disk. 

4. A final assessment of the results obtained and a proper 
consideration of the role of inner Lindblad resonance indicate 
that we have established the general viability of the modal 
approach to cover all Hubble types. A number of implications 
on regularity, morphology, and evolution of spiral structure 
are discussed (§ V). Several open questions for future research 
are identified, where explicit inclusion of nonlinearities and full 
two-component calculations appear to be needed (§ VI). Most 
of these call for an improved theoretical and observational 
study of the interstellar medium in galaxies. 

5. The present work is mostly concerned with the properties 
of classes of spiral galaxies, rather than with individual objects. 
However, we think that substantial progress is now made and 
that we can offer now a good basis for a modal study of specific 
galaxies. In particular, it would be desirable to reexamine the 
model of M81 constructed by Visser and Haass (see Haass 
1982) in the present perspective, since that study was made 
only with the asymptotic theory for tightly wound spirals, and 
not all the relevant factors, such as the role of the gaseous 
component, were taken into account in the determination of 
the basic state of the model. 

II. EXPLORATORY SURVEY OF GLOBAL MODES 

We shall now carry out the program outlined in § Ic, begin- 
ning with an extensive exploratory survey of a family of basic 
states. In this exploratory survey, our aim is to get a general 
idea of how the characteristics of a representative unstable 
mode vary with the change of the parameters in the basic state 
adopted. We shall therefore give only a brief description of the 
justification of the type of basic state adopted in our survey but 
defer the detailed discussion to later sections (§§ III, IV). It is 
expected that the survey would exhibit linear sequences of 
basic states that support spiral modes of the normal type and 
of the barred type. It is also expected, however, that not all of 
the models will have a sound physical justification, especially 
those subject to tightly wound spiral modes. Emerging diffi- 
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culties will be discussed together with those experienced by 
other investigators (§§ lle-f). In order to overcome 
these difficulties, we are led to a thorough examination of the 
physical basis of the models adopted and to their modification 
(§§m,iv). 

a) Simple One-Component Dynamical Models 
As a model of a flat galaxy we consider an infinitesimally 

thin disk of active mass in the presence of a “ fixed ” or inactive 
component. For simplicity in describing the thin disk, a one- 
component fluid model of zero thickness is adopted. (See Paper 
II for the relevant mathematical description.) Therefore in the 
following, but also in any calculation of this kind, special atten- 
tion must be paid to the choice of the basic state and to the 
evaluation of the relevant results, in view of the complex nature 
of the actual physical system that is being represented. 

A real galaxy contains a number of components (stars, gas, 
etc.), distributed in a three-dimensional geometry. Only a part 
of these materials may be said to lie in the galactic disk. It is 
therefore not easy to construct a single-component model to 
mimic the essential dynamical characteristics of the galactic 
disk. The simple family of basic states described in § lib is 
indeed constructed in view of these physical issues. However, 
the proper physical justification will be best discussed (§ III) 
after we evaluate the results obtained from an extensive modal 
investigation of such a family of galaxy models. We shall find 
that the three-dimensional distribution of mass makes a crucial 
difference between the dynamics of open spiral modes and 
barred modes, on the one hand, and that of tightly wound 
normal spirals, on the other. The effect of the three- 
dimensional distribution of matter is clearly larger in the latter 
case. This discussion will allow us to proceed to identify the 
most appropriate basic states corresponding to the observed 
spiral morphologies (§§ III-V). 

b) A Simple Family of Basic States 
The family of basic states adopted has a simple rotation 

curve suggested by observations (see, e.g., van Albada and 
Sancisi 1986; Rubin 1987). It has an exponential disk, but with 
the active disk mass resulting from the modification through a 
correction for the three-dimensional distribution of mass. The 
linear velocity of rotation F(r), the active surface density o(r), 
and the Q-parameter for our models are given by the following 
formulae. (See Paper II for a systematic listing of definitions.) 
The active disk density has two contributions: the first term 
represents the stellar mass; the second term <rg represents the 
gaseous mass (in this section, we shall set for simplicity = 0): 

a = <j0e 
rlhf+og, <70 = (1 + A)ct00 , (2.1) 

Q = ßoDd + qe-(rlr°)2l, 

where rn, h, rQ are the scale length parameters, and F^, 
(1 + A)(700, 0od> and q are the magnitude parameters (OD 
refers to outer disk). The reduction factor/is introduced essen- 
tially to account for the presence of a bulge and the effect of 
finite thickness. It is taken to be of the form 

/= 1 -fo(r/rcJ + y0(r/rcJ exp (r/h), (2.2) 
where f0(r/rcJ = [1+ 4(r/rcut)][l - (r/rcut)]

4 for r < rcut and 
/o = 0 for r > rcut. At this stage, the adopted analytic forms for 
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Q and / are just a convenient smooth choice. The basic state 
with rcut = (j)h is illustrated in Figure 1. The effect of the 
reduction factor is shown in Figure 2, where cr is plotted for the 
cases rcuJh = j, 1, 2, 3,4, 5, 6. Note that in all the cases shown, 
the reduction operates mostly in the inner disk. The reference 
scale length is h, which is fixed to be 4, and the reference 
velocity is F^, which is taken to be 140. If lengths are measured 
in kiloparsecs and velocities in kilometers per second, then the 
disk density turns out to be expressed in M0 per square parsec. 
(^G = 13.54 in these units.) 

R 
Fig. 1.—Properties of the basic states in the present survey. Quantities are 

plotted as a function of R- r/h. Top: rotation curves for rjh = 1/2, 3/4, 1. 
Middle: surface mass density for rcut = (l/2)h. Bottom: ß-profiles for rQ/h = 
1/2,1,3/2. 
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Fig. 2.—Effect of reducing the mass density from the basic exponential disk. The density a is shown as a function of R = r/h for rcut//i = 1,2,3,4, 5,6 (from top 
to bottom). 

The rotation curve defined in equation (2.1) is partly sup- 
ported by an inactive component which we may associate with 
a spheroidal bulge halo. Part of the inactive mass could also be 
in the form of a thick disk. In this paper we do not discuss the 
relative “composition” of the inactive mass since it does not 
change the stability analysis. If, for simplicity, we refer to the 
model with rfi = 2, / = 1 for the case where the inactive com- 
ponent is taken to be spherically distributed, then the disk to 
total mass ratio RM9 at the location r = 4h9 is approximately 
given by 

Rm » 0.38(1 + A). (2.3) 

For the survey presented in this section, since we are taking 
/cü 1, the whole disk mass is regarded as active (RA ^ RM)9 and 
a decrease of A implies a “ transfer ” of mass into the spherical 
distribution. In some cases, this may even introduce a mass 
concentration in the central regions that tends to simulate a 
nuclear bulge. Observationally, there is a corresponding uncer- 
tainty in the determination of disk mass since the mass to 
luminosity ratio M/L is usually thought to be known only 
within a factor of 2. Referring to this basic state, the so-called 
“maximum disk” solution (see van Albada and Sancisi 1986) 
corresponds to A ~ 0.25, i.e. RM » 0.5. For cutout models with 
sizable values of rcut, the maximum value of A can change from 
this number. 

The family of models described above is characterized essen- 
tially by six dimensionless parameters (q9 gOD, A; rjh9 rQ/h9 
rcJh). A routine survey with 10 values chosen for each param- 
eter would lead to 106 cases, which would be a nightmare to 
attempt to analyze. As it turns out, it is possible to reduce the 
number of cases needed in a significant survey down to 102, 

without missing any essential morphological type. For com- 
pleteness, especially for a better understanding of the dynami- 
cal mechanisms (see Paper II), ~ 103 basic models were 
actually considered (Thurstans 1987). On the other hand, for 
application to morphological studies, there is a natural divi- 
sion of models into subgroups within which law and order 
prevail. Thus, the number of representative cases can be 
actually reduced to ~ 12. 

The present survey begins with a three-parameter survey in 
which the changing parameters are essentially A, ßOD, and 
(rQ//i). These parameters are expected to be especially impor- 
tant for the determination of stability characteristics. In future 
work, we shall deal with the variation of the other dimension- 
less parameters, particularly q and rjh. In the following 
q = 1.5 and = h/l (unless specified otherwise). Variation of 
the parameter (rcuJh) is partly considered here (see following 
definition of the 5-surveys and the discussion of tightly wound 
normal spiral modes). Because of these limitations, we shall 
refer to the models adopted in the present survey as the 
“ rudimentary models.” 

c) Modal Survey of the Family of Basic States: A Set of 
Two-Parameter Subsurveys 

By following the properties of the fastest rotating two-armed 
spiral model we have systematically studied the family of basic 
states introduced in § lib. As explained above, this is only a 
preliminary survey to provide a general perspective. 

We shall describe a three-parameter survey based on the 
changes of the basic state through changes in the three param- 
eters rQ, Qod, and A. Three types of two-parameter subsurveys 
are considered: type A, surveys with rQ specified; type B, 
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surveys with QOD specified; type C, surveys with A specified. 
The details of these surveys may be found in Thurstans (1987). 
Here we focus on the properties of the following four major 
subsurveys, all with rcut = rQ : 

Survey A1: rQ — h/2 . 

Survey A2: rQ = h. ^ 

Survey : QOD = 1 . 

Survey B2: Qod = l-2 • 

For each case we have a systematic diagnostics in terms of six 
charts: (a) modal shape (perturbed density contour), (b) oc- 
spectrum, (c) propagation diagram, (d) density eigenfunction 
(real and imaginary part), (e) stability characteristics, and (/) 

conditions at the corotation circle. Items (h), (c), and (/) are 
mostly of theoretical interest and are discussed in Paper II, 
although we may note that the a-spectrum has also been used 
as diagnostics of observed galaxies (see lye et al. 1982). (The full 
set of data available from the various surveys can be found in 
Thurstans 1987.) In § V below we show a sample of these data 
that are more relevant for astrophysical applications. Here we 
highlight surveys Ai and by giving modal shapes in Figures 
3 and 4. Note the coherence and gradual transitions realized in 
the surveys. In general, barlike spirals appear at higher disk 
masses, and normal spirals appear at lower disk masses. The bar 
modes found here are the long bars (see Bertin 1983a for an 
example of such a mode with the propagation diagram); some 
of them extend directly to the corotation circle. Short bars 
were found by Haass, Bertin, and Lin (1982) through a lower- 

Fig. 3.—Modal shapes for the A i survey. Here, and in the following diagrams of modal shapes, perturbed density contours are given in arbitrary units m steps of 
one-seventh of the peak value, from the (4) contour upward; dotted circles identify corotation, solid circles correspond to v = 0.75. This survey is characterized by 
rQ = 2. Top frames have QOD = 1.5, second row QOD = 1.3, third row QOD = 1.1, bottom frames have QOD = 1. From left to right A changes in the following way : 
-50, - 35, -15, -1- 5, + 25(%). The six frames of the right low triangular corner are associated with large growth rate (yP > 1). 
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ing of the wave barrier in the interior part (sometimes called 
“the ß-barrier”). Further discussion of these morphological 
types will be given in § V. 

d) Overall Perception of Instability Characteristics 
As noted in § la, strongly unstable modes cannot be present 

in observed galaxies; yet for certain parameter regimes, excita- 

tion processes may be very powerful. How can such regimes be 
avoided? Obviously, the answer lies in either (i) high velocity- 
dispersion for a given value of the disk mass, or (ii) low disk 
mass for a given velocity dispersion. 

The stability characteristics of the four major subsurveys are 
presented in Figure 5. These results conform to, and actually 
were to some extent anticipated by, the studies of a single 

Fig. 4.—Modal shapes for the B1 survey. This survey is characterized by QOD = 1. From the top downward rQ decreases from 6 to 2 in equal steps. From left to 
right A increases from —25% to + Î5% in equal steps. The frames on the diagonal boundary on the upper left are associated with unstable modes with moderate 
growth (yP < 1). The others are violently unstable (yP >1). 
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simple local dispersion relation, which will be discussed in 
Paper II. Here we shall only present the results obtained; the 
dynamical mechanisms supporting the modes found and the 
relation of their morphology to the dispersion relationship will 
be described in Paper II, through the use of diagrams in a 
plane of two parameters (J, Q) defined there. 

From the survey (rQ = h/2), we see a sharp change of 
stability characteristics between the condition Qod >1-1 and 
the condition QOD < U. For the A2 survey (rQ = 4), we see 

85 

that the separation of the two domains occurs at QOD = 1. The 
disk in the case Q0d ä 1 is already quite massive and has a 
quite open spiral inside of the corotation circle. There is a more 
tightly wound spiral outside of the corotation circle, as is 
typical in baried spirals. In the B2 survey (QOD = 1.2), insta- 
bility is in general weak. We find SBO (and SBa) galaxies simu- 
lated. In survey B^Qqd = we see the conditions of 
moderate or low instability may occur over a wide range of 
disk masses, provided that there is an associated change of the 

A(%) 

Fig. 5.—Stability diagrams for various surveys. These diagrams give a synthetic view of the relevant regimesjof instability and of the change of character of the 

survey, <20d = 1-2; tracks at constant rQ in steps of 1.0 from rQ = 2 (top). The character of the stability diagrams can also be recovered by using a simple ordinary 
differential equation as suggested by the asymptotic theory of various regimes (see Paper II). 
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scale length rQ. With high values of rQ, the overall value of the 
g-parameter is high, so that Q > QOD at the relevant corota- 
tion circle, and we find moderate instability even at fairly high 
disk masses. 

The A survey indicates the existence of two types of insta- 
bility characteristics, depending on whether gOD >1.1 or 
gOD <1.1. (This is why survey B was done in the manner given 
above.) It turns out that cases with gOD >1.1 correspond to 
open spirals or barred spirals, whereas Q0d <11 corresponds 
to normal spirals. Through an examination of the data for the 
cases goo = 1-1.05, in the surveys Ai and A2, we can thus see 
that all barred spirals are stabilized if A < —15% ; i.e., if RM < 
0.3. This same conclusion is obtained from the other surveys 
too. However, it should also be noted that Figure 5 clearly 
shows that there is still room for instability with respect to 
(normal) spiral disturbances at much lower values of RM; signifi- 
cant instability exists even for RM « j. In surveys A2 and B2, 
instabilities are not found at such low disk masses. To be more 
precise, our survey shows that, if barlike modes are to be 
present, RM must exceed the lower limit 0.3 (at A = —20%). 
This implies an upper bound of 2.3 for the ratio MH/MD of 
halo-to-disk mass at four exponential scale lengths. For 
normal spirals, however, this upper bound of MH/MD may be 
as high as 4. 

Therefore we recognize that some limits on important quan- 
tities such as Rm can be set on the basis of instability argu- 
ments, but only if the morphology of the spiral mode is properly 
taken into account. This contrasts with the approach taken by 
Athanassoula, Bosma, and Papaioannou (1987). 

Note that all the bar modes discussed here are long bars, i.e., 
the bar has a length comparable to the diameter of the corota- 
tion circle. Under different circumstances, e.g., those expected 
to favor short bars like the case of the SBc(s) spiral NGC 7741 
(which is close to an Sc spiral), we argue that there could be 
more halo mass (e.g. MH/MD close to 3). Questions of this kind 
give another reason for pursuing our survey further, beyond 
the limitations of the present three-parameter investigation. 

Finally, we note that morphological properties of the rele- 
vant unstable modes, such as the length of the bar, as a fraction 
of the diameter of the corotation circle, are very important for 
the study of the reaction of the gaseous component. In our 
work, we can provide quite specific information about this and 
other dynamical characteristics of the mode for a given basic 
state (see following discussions in §§ IV, V). 

e) Merits and Limitations of the Survey 
As outlined in § la, a survey of this kind has a few limi- 

tations that must be removed when astrophysical applications 
are considered. In particular, we should select models for 
which the relevant modes have moderate growth rate. Then we 
should consider in detail the physical justification of the basic 
states thus selected, and we should make sure that other modes 
(especially those with multiple arms) do not change the picture 
suggested by the representative two-armed mode that we have 
been tracking. As we have stated at the end of § la, a solution 
to the issue of other competing modes is to be found in the role 
of the inner Lindblad resonance, which can inhibit three-armed 
modes even when these are expected to be strongly unstable on 
the basis of the overreflection mechanism at corotation (see 
Paper II); this point will be addressed in detail later in § IVc. 

Here we draw the attention of the reader to the issue of the 
physical justification of the basic state. In particular, while 
barred morphologies with moderate growth rate are associated 

with a broad class of galaxy disks with relatively high mass and 
occur with shapes and properties that look consistent with 
those of many SB’s, the tightly wound normal spiral modes 
obtained in this rudimentary survey are found for models 
which are not satisfactory. First of all, in order for tightly 
wound spiral modes with moderate growth rate to emerge 
from the survey, the models must be characterized by a cool 
disk (gOD = 1) in a very narrow “ temperature ” range. In par- 
ticular, Q should be “ tuned ” to be very close to unity over a 
large fraction of the galaxy disk (e.g. for the survey Ai we must 
take r/rQ = 2 at r = h so that Q = 1.03). Such a fine tuning is 
likely to be realized in actual galaxies only when specific physi- 
cal mechanisms concur to this goal (i.e. self-regulation; see 
§ Illh). We should stress that the major physical problem here 
is not so much the “ coldness ” of the disk (after all, we can get a 
relatively “warm” disk with Q = 1.2 just by increasing by 15% 
the value of the velocity dispersions used in some cases of the 

survey), but rather the narrowness of the “temperature” 
range. Therefore we should be ready to explain how the system 
can maintain a given value of the velocity dispersion, even 
when most dynamical mechanisms are likely to induce a 
(secular) increase of random motions. The second reason for 
concern for tightly wound spiral modes, emerging from this 
rudimentary survey, is that they seem to be too small in linear 
size, while observational evidence indicates that regular spiral 
arms often extend over several exponential length scales in the 
whole galactic disk. 

Identifying these difficulties in clear terms is also among the 
merits of the survey; we shall see in the next two sections how 
the role of gas and a more realistic description of the active 
mass disk can resolve these difficulties. In addition, there are 
other obvious merits in the extensive survey that has been 
performed. First, by means of diagrams of the kind shown in 
Figure 5 we have produced an enormous data base for dynami- 
cal studies (see Paper II). Second, smooth transitions among 
various morphologies are clearly demonstrated and the basic 
physical regimes are thus identified. Third, a large fraction of 
models, mostly those leading to barred morphologies but also 
some of the cases displaying normal spiral structure, appear to 
have a reasonable physical justification and a good chance of 
applicability. Finally, as we shall make clear in the following 
sections, most of the survey can actually be used for astro- 
physical applications, even for tightly wound spirals, provided a 
proper reinterpretation and physical rescaling of the model are 
made (see § IVb). 

f) Other Modal Studies 
Before we proceed to present the resolution of the difficulties 

in our own case, let us digress to note that other authors did 
not find adequate basic states for supporting normal spiral 
modes. 

In a pure stellar disk, the disk mass density approaches zero 
at large distances but the stellar velocity dispersion may not. 
To be sure, the gravitational instability of a low-mass disk may 
not lead to g > 1, but if the velocity dispersion in the stars 
should be increased by any means, there is no way for it to be 
reduced. Thus, the g-parameter can become very large at large 
radii. This is indeed true in the distribution 

ßM = ßo[l+(r/2a)2]1/2 t (2.5) 

adopted by Aoki, Noguchi, and lye (1979). Note that another 
contrast with our g-distribution (eq. [21]) is the absence of a 
peak in g(r) near the center. Thus choices as in equation (2.5) 
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ignore the presence of a nuclear bulge and a disk with high 
velocity dispersion near the center. 

The sharp contrast between equations (2.1) and (2.5) results 
in normal modes with completely different characteristics. As 
pointed out by Haass (1982), the low value of ß at r = 0 and 
the rise of Q outside lead to a resonant cavity for which the 
wave pattern tends to show a peak density near the center in 
the form of a short bar. Tightly wound spirals and long bars 
were therefore not found by Aoki et al Most of the modes 
found by these authors also have excessive growth rates, since 
a full mass disk is used. 

Haass also pointed out that the Q-distribution simulated 
with the device of the “softened gravity” model used by 
Toomre (1981) and Erickson (1974) has characteristics similar 
to that used by Aoki et al. if one identifies the velocity disper- 
sion (or acoustic velocity) with the product of the epicyclic 
frequency and the “softening length.” Unlike Aoki et al, 
Toomre (1981) studied higher modes at full mass or uniformly 
reduced mass and obtained the “edge mode” (D-mode) as the 
dominant modes for reduced mass. The growth rate of this 
mode remains very high, even at reduced disk masses; its shape 
is a very open spiral. Tightly wound normal spirals are not 
found to be dominant for these models of basic states. 

Another situation was reported by Haass (1983) with models 
subject to too many modes with high growth rate, especially 
three-armed and four-armed modes. In realistic models, inner 
Lindblad resonance is expected to limit considerably the 
number of modes (see § IVc) and lighter disks would be less 
unstable. 

Therefore, we should be aware that certain properties of 
modes and instabilities may just reflect the special properties of 
the choice of the basic state, and therefore need not be of physi- 
cal concern. As an example we may cite the singular model 
used by Zang (1976) which lacks a nuclear bulge and systems 
with exaggerated gradients which may lead to the edge mode 
just mentioned. Before rushing to general conclusions, the 
physical justification of such basic states should be carefully 
examined. 

The results of Athanassoula and Sellwood (1986; see Fig. 2 
of their paper), who found that there is modal instability only if 
the disk/total mass ratio is approximately one-third or more, 
are apparently consistent with our survey, to the extent that 
they are restricted to open bar modes. Strictly speaking, the 
basic distribution functions for their basic states are quite dif- 
ferent from ours, and any obvious comparison would not be 
expected. The fact that there is this degree of agreement with 
respect to barlike instability is somewhat surprising. (There is 
perhaps underlying some general dynamical principle, in the 
nature of that suggested by Ostriker and Peebles 1973). On the 
other hand, normal spiral modes have not been found in their 
model, for dynamical reasons explained elsewhere in this 
paper. Basically these are traceable to the failure to simulate 
the role of the gaseous component and to acknowledge the 
three-dimensional distribution of the stellar mass. 

One should not think that the difficulties that are described 
in the construction of tightly wound normal spirals are special 
to the modal approach. Other scenarios are found to face even 
more serious difficulties, and they have not yet produced quan- 
titative results for suitable application to observational data. 

We shall not pursue further the study of the type of physical 
objects represented by models described in this subsection, but 
return to the type of models described in § lib and show how 
the difficulties described in § lie can be resolved. 
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III. PHYSICAL BASIS OF MODELS WITH COOL OUTER DISKS! THE 
ROLES OF THE GAS COMPONENT AND OF THE 

THREE-DIMENSIONAL DISTRIBUTION OF MATTER 
In view of the difficulties identified in our exploratory survey 

we shall carefully review the physical basis of the modeling 
process. We shall first describe the essential physical nature of 
the issues to be examined (§ Ilia), to be followed by a dis- 
cussion (§ Illh) of the roles of the gas, and the specific process 
of self-regulation that ensures a cool disk in the outer parts 
(r > 2/iJ. This analysis will provide us with the tools to 
respond to the specific difficulties raised above in the case of 
tightly wound two-armed spirals. The issue of three-armed 
spirals and other competing models will be discussed later 
(§ IVc). 

a) Dynamical Models versus Real Galaxies 
We begin by considering a number of essential points to be 

noted in the construction of simple models for galaxies. 

i) Stellar Dynamics 
In a first approximation, the thin disk would be best rep- 

resented as a collisionless stellar system governed by the equa- 
tions of stellar dynamics. Thus, in the simpler and more flexible 
fluid model, we may have to invoke a proper interpretation in 
the stellar context in order to avoid any unrealistic features. 
One important feature to be kept in mind is the role of the 
inner Lindblad resonance for the weakening or elimination of 
spiral modes with more than two arms. In general, an indis- 
criminate use of a fluid model can be misleading, since reson- 
ances, pressure anisotropy, and other subtle issues can be 
improperly overlooked. Some of these important effects can be 
easily included by a judicious use of appropriate boundary con- 
ditions in the modal calculations (see discussion by Lin and 
Bertin 1981). 

ii) Active Mass 
For dynamical studies we must keep in mind that the lumin- 

ous bulge is essentially inactive and that there is also an inac- 
tive “ halo ” mass. Both contribute to the support of the 
observed rotation curve. Indeed, even a sizable fraction of the 
observed disk mass is also to be considered inactive because of 
the finite thickness of the disk. Thus the disk surface density o 
of the basic state that will be perturbed in the linear stability 
analysis is in general not the same as the projected density of 
the observed disk. Some inactive mass would be counted as 
disk mass by observers and should not be counted as active 
disk mass by dynamicists studying the problem of stability. 

To be more specific on the role of thickness, Shu (1971, 
especially p. 322) finds that in the solar vicinity the responsive- 
ness of the gas component is larger by a factor of ~6 and that 
the reduction factor for the stellar component is ~0.57. Values 
for the reduction factor close to 0.5 are easily derived (see 
Vandervoort 1970; Yue 1982) when the vertical structure of the 
disk is taken to be of the kind reported by Bahcall and Caser- 
tano (1984) for NGC 891, NGC 4565, and NGC 5907. In addi- 
tion, one should note that, for a disk with constant thickness z0 

and with approximately constant pitch angle of spiral struc- 
ture, the reduction factor is smaller (i.e. less mass is active) at 
small radii, because the ratio z0/r is larger. 

Another point to keep in mind is that observations suggest 
that the disk thickness z0 is constant only in the cases where 
the bulge contribution is small (see van der Kruit and Searle 
1982). On the other hand, little is known about the structure 
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and, indeed, the very existence of the disk inside the bulge. It 
may well be that when a bulge is observed, it actually replaces 
the disk. If this is the case, the active mass inside the bulge is 
likely to be reduced to insignificant values (cf. Fig. 7 in Lin and 
Lau 1979). 

A direct consequence of this discussion is that the disk of 
active mass, to be used in dynamical studies, can easily be 
lighter than the observed disk by a factor of 2; this reduction 
may have dramatic implications for the dynamics of the disk. 

Even by adopting the maximum disk models that are com- 
patible with a given rotation curve (see van Albada and Sancisi 
1986), one may turn out to find relatively light disks for the 
dynamical context. For example, a model of NGC 3198 very 
close to the maximum disk solution (Begeman 1987; Casertano 
1988, private communication) characterized by RM « 0.65 
would have J ^ 0.83, 0.5, 0.45 at r = 2h, 3h, 4h, respectively, if 
zero thickness is assumed; thus a very reasonable thickness 
correction can bring even the maximum disk model into the 
domain of normal spiral structure (see discussion of the J, Q 
diagram in Paper II). In addition, we note that the maximum 
disk solutions need not be realized as a general rule, since there 
is growing evidence for lighter disks in spiral galaxies (see, e.g., 
van der Kruit 1988; Kuijken and Gilmore 1988). 

iii) Scales 
Related to the above discussions is the problem of identify- 

ing the scales of the dynamical model with the scales of the 
actual system. For example, as the simplest first approximation 
for the mass distribution in observed disks, one can take an 
exponential law with the scale length h* of the luminous disk. 
The mass distribution corresponds in sizable part to inactive 
mass. Thus it is reasonable to start out with equation (2.1) with 
an exponential disk with scale length h = h*, but it should be 
emphasized that, especially since gas is more abundant outside, 
the mass scale length hc{f of the active disk is expected to be 
significantly larger than h* and the distribution of active mass is, 
in general, not exponential. In addition, in the presence of a 
bulge the active mass in the center is highly reduced and often 
negligible (see specific choices in § I Va). Thus, as we often 
stressed, even though cutting the active disk mass by a factor 
1 + A evenly at all locations may often be the simplest way of 
reducing the disk mass in dynamical studies, distributing the 
mass reduction by cutting more at the center and less in the 
outer regions is the better choice for astrophysical applications. 
Indeed, this choice can make the whole difference in the results 
of dynamical studies of spiral structure. 

iv) Dispersion Speed 
Another crucial step is the proper choice of the equivalent 

acoustic profile a(r) in the construction of a one-component 
fluid model. It is best discussed by focusing on the equivalent 
Q-parameter. (See following § Illh for its proper definition.) 
Again we must stress that a(r) does not represent the velocity 
dispersion of the stars, nor the turbulent speed of the gas com- 
ponent. Instead, in the one-component model, it is an equiva- 
lent quantity to be eventually chosen so as to represent the 
process of self-regulation in the more complex multiple- 
component/multiple-thickness real system. In turn, results from 
stability investigations of simple one-component systems 
should always be interpreted in view of the physical processes 
occurring in actual galaxy disks. Results of iV-body simula- 
tions, for example, if taken at face value and not interpreted 
properly, can be completely misleading. In fact, N-body experi- 
ments naturally overestimate the amount of heating in the disk. 

Vol. 338 

On the one hand, their fluctuation level is usually larger than 
in the real system because of the small number of particles (see 
Lin and Bertin 1985); in addition, the role of the gaseous com- 
ponent is not included, and thus the important mechanism of 
self-regulation is ignored. 

In deciding on the general structure of the Q-profile, one 
should keep in mind that in the central regions of a galaxy both 
the absence of cold gas and the transition in geometry from the 
disk to the nuclear bulge make it natural for the Q-parameter 
to exceed unity. Thus profiles of the kind chosen in § lib (see 
also Lau, Lin, and Mark 1976; Bertin et al. 1977) are not 
arbitrary functions. They actually represent a well-defined 
physical choice which, in our opinion, is the best representation 
of the actual astrophysical system. The only case where obser- 
vations have provided a profile for the stellar dispersion speed 
is that of the Milky Way (Lewis and Freeman 1988); these data 
indicate the presence of a relatively cool disk with properties 
that are consistent with the picture that we have adopted. 

b) Roles of the Gaseous Component: Self-Regulation 
Extensive observational data are available on the amount of 

neutral hydrogen present in external galaxies (see, for example, 
Wevers 1984; Wevers, van der Kruit, and Allen 1986). It is 
clear from the relative distributions of gaseous and stellar 
masses present that the mass of the gaseous component 
becomes gradually more important as we move to the outer 
parts of the galactic disk. In these outer parts, the process of 
gravitational self-regulation discussed by Bertin and Romeo 
(1988) leads to the establishment of a condition of marginal 
instability, which bears directly on the parameter QOD to be 
used in the dynamical models. 

With the perception of the choice of models discussed in 
§ lib, let us consider the more specific determination of the 
parameters in the models through the dynamical process of 
self-regulation. 

As already indicated (§ I), a major feature of the present 
investigation is to focus on moderately unstable modes and 
therefore on systems where spiral structure is self-excited but 
where violently unstable modes are not present. In particular, 
at low values of disk mass why should the outer galactic disk be 
characterized by a value of Q so so close to unity? In general, the 
question is why real systems should actually conform to the 
conditions of moderate growth, as we shall describe more pre- 
cisely in Paper II. Here we focus our attention on the specific 
issue of cases of low-disk masses. 

The physical process by which this situation is realized we 
call self-regulation. This process is expected to be more effective 
where the parameter region of moderate growth is narrower, as 
is the case of low disk mass systems. The key ingredient of this 
process is gas (and, to some extent, the presence of low disper- 
sion stars). 

i) Shocks 
One role of the gaseous component is to provide dissipation 

and therefore a saturation mechanism at low amplitudes for 
the growing spiral modes (see Kalnajs 1972; Roberts and Shu 
1972; Shu 1985; Lubow, Balbus, and Cowie 1986; Lubow 
1986). Shocks in the gas trace the smooth underlying spiral 
field by sharp optical features. Thus one role of the gas is to 
regulate the otherwise exponential growth of spiral modes. 

ii) Excitation 

A second crucial role of the gas, also well known (see Lin 
and Shu 1966; Lynden-Bell 1967; Ostriker 1985), has been 
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recently further clarified by the analysis of Bertin and Romeo 
1988 (see especially their Figs. 5 and 9). The existence of a gas 
disk in real galaxies reduces the value of the equivalent Q- 
parameter in the model. 

For convenience of reference, we give a brief description of 
the definition of the equivalent Q-parameter defined by Bertin 
and Romeo (1988). To characterize the relationship between 
the gaseous component and the stellar component, we intro- 
duce two ratios: a density ratio a and a temperature ratio ß 
(i.e., the ratio of the square of the velocity dispersion in the gas 
to that in the stars). For any combination of a and ß, it is 
possible to determine a condition of marginal instability with 
respect to axisymmetrical disturbances. For the condition of 
marginal stability, the usual Q-parameter for the stellar com- 
ponent is then called Q(a, ß). (See Fig. 5, Bertin and Romeo). 
The equivalent Q-parameter for the combined disk is then 
defined by 

Q*q = QJQ(«,ß)<Q*, (3.1) 

where Q* is the actual g-parameter defined for the stellar com- 
ponent alone. Then, as described with a simple model by 
Bertin and Romeo (1988), a process of self-regulation can be 
easily ensured (see § Hid of their paper). It can be traced to a 
proper balance of the following physical processes : (i) the 
cooling of the interstellar medium by turbulent dissipation; (ii) 
the conversion of gas into stars; (iii) the heating of the inter- 
stellar medium by the young stars; (iv) the dynamical increase 
in the dispersion speed of the stars. It is found that the system 
can indeed self-regulate because if the equivalent Q exceeds 
marginal stability, then the cooling process (i) rapidly reduces 
the value of the equivalent Q, and if too much cooling occurs, 
then dynamical instability, via (iii) and (iv), brings back the 
system to higher values of the equivalent g-parameter. Note 
that the presence of gas is crucial, since it is subject to fast 
cooling processes in contrast to the stellar component which is 
subject to perennial heating only. 

Note that this discussion is likely to hold even when the 
gaseous density is locally only one-third or even less than that 
of the stellar component. In fact, for each individual com- 
ponent, the value of the g-parameter may be quite high, since 
the reference mass density in each case is lower than the total. 
Thus, it can be as high as 1.7 for the stellar component and 2.4 
for the gaseous component, even though the effective value for 
the combined system is found to be close to unity. However, 
the calculations of Bertin and Romeo (1988; see Figs. 3, 4, 5 of 
their paper) also show that if there is too little gas (e.g. a < 0.1), 
the process of self-regulation may not always be effective. In 
that case the turbulent velocity in the gas may be so low com- 
pared to the stellar velocity dispersion that the two com- 
ponents may no longer be coupled to each other. 

As a result, it is of primary importance to estimate the values 
and distribution of a(r) in specific objects. We have checked in 
a number of cases that the role of gas is definitely significant. In 
particular, we refer to the data reported by Bertin and Romeo 
(1988, their Fig. 7) for reasonable models of NGC 4565 and 
NGC 5907. Similar values for a can be derived for the Sb spiral 
NGC 4258 (Wevers 1984) which has a « 0.17 at r = For 
the maximum disk model of NGC 3198 mentioned above 
(Begeman 1987) one finds a «0.11, 0.31 at r = 3h*, 4/1*, 
respectively. However, all these numbers heavily underestimate 
the values of a to be used, since the gas density is taken to be 
that of atomic hydrogen and the stellar disk is taken to have 
zero thickness. Most likely the above values of a should be 
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multiplied by a factor of 4 because of (i) the presence of molecu- 
lar hydrogen (see also discussion by Allen 1987), (ii) cosmo- 
logical helium, (iii) thickness corrections for the stellar disk. 
Furthermore, there is yet no compelling evidence for the 
maximum disk solution, so that the numbers for NGC 3198 
might be increased further. 

To be sure, the above galaxies are Sb’s and Sc’s. We have not 
been able to find convincing data for Sa objects except for one 
case with a small amount of atomic hydrogen by Warmels 
(1988). However, the above discussion makes it clear that one 
should not be misled by the small numbers that are often given 
for the total amount of atomic hydrogen in disk galaxies. For 
example, the ratio of the total mass of atomic hydrogen to total 
mass of the galaxy within 4/i* for NGC 3198 is just 2.8%. Still 
the local value of the density ratio a at 3/i* may well be close to 
50%. (Recall that e~3 = 0.05, and thus the stellar mass density 
is a very small fraction of that at the center.) For Sa spirals, 
there is in general a larger nuclear bulge, and hence the corota- 
tion circle of the mode is expected to lie further out in the 
galactic disk in a region where gas is relatively plentiful (see 
§ IV). 

As long as the two components are effectively coupled, the 
process of self-regulation maintains the ß-parameter very close 
to unity since the stability characteristics are extremely sensi- 
tive to a change of Q. A little calculation shows that instability 
is very high when Q is 0.95. In the survey by Thurstans (1987) 
modes with Q0d == 0.9 are included. These show very high 
growth rates. 

The discussion of this subsection has indicated the condi- 
tions under which a dynamical model with QOD = 1 is physi- 
cally justified. 

iii) The Scales of the Active Mass and of the Q-Profile 
A third role of the gaseous component is its impact on the 

large-scale structure of the modes through its influence on the 
mass distribution in the active disk (§ IIIa[iii]). In this percep- 
tion, the outer part of a galactic disk is essentially gaseous, with 
Q « 1. This gaseous disk extends inward to where the stellar 
component begins to appear, where the condition Q « 1 con- 
tinues to hold. The Q-parameter then rises gradually inward. 
The scale of the active disk is therefore longer than the scale of 
the g-distribution which is determined largely by the stellar 
disk. Clearly, this role of gas is more important if the active 
disk mass is smaller, i.e., when the pitch angles are smaller, 
since the thickness correction is more important for shorter 
wavelengths. But even for open spirals, there is a significant 
reduction. 

In our modal survey of § II, tightly wound normal spirals 
were found only for the case rQ « /i/2, not for the cases rQ&h 
(rQ = 4, 5, 6); only barred spiral modes are found in those 
cases. As mentioned above, in the case rQ = h/2, and if h is 
essentially identified with the scale length /i* of the stellar disk, 
the disk is still cool where the surface density is still consider- 
able, and is most likely to be pure stellar. Indeed, the above 
discussions suggest that it is only reasonable to choose rQ « 
/i*, (e.g., 3 < rQ < 6 for h = h* = 4), since the stellar disk 
should be an integral whole with a single scale for both mass 
and velocity dispersion. In that case, the type of survey scheme 
described above yields only barred spirals. (See survey A2.) The 
resolution of this difficulty is to be found in the inclusion of the 
mass of the gaseous component and the proper three- 
dimensional distribution of matter (see § IV) in modal calcu- 
lations. 
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In conclusion, let us repeat that the explicit inclusion of the 
gaseous component may be expected to produce significant 
differences only in those cases where the stellar disk has a low 
active surface density, since the density of the gaseous disk is 
limited. Thus, in models of barred galaxies with high disk mass 
and high velocity dispersion, the explicit inclusion of the 
gaseous component is not expected to play a highly significant 
active role in the excitation of the spiral mode. The passive role 
of the gas would, of course, be important for the configuration 
of dust lanes and H n regions. 

IV. NORMAL SPIRALS WITH SMALL PITCH ANGLE 

The study of § IV gives us the essential tools that are neces- 
sary in order to resolve the difficulties for tightly wound 
normal spiral modes that have emerged from the exploratory 
survey of models presented in § II. In this section, by means of 
explicit examples and quantitative data we show that, by prop- 
erly incorporating the roles of the gaseous component and of 
the three-dimensional distribution of matter, we get models 
where the corotation circle is found to occur at ~ 3 times the 
length scale of the exponential disk. At such a large distance 
from the center, gas is sufficiently plentiful to control the equiv- 
alent stability parameter Q and thus to provide for the excita- 
tion of the spiral mode. 

a) Simple Models for Early-Type Normal Spirals 
Normal spiral galaxies of the early type (Sa’s and Sb’s) 

possess a sizable bulge component. In the modeling process, 
the presence of a bulge has three major effects: (i) a modifi- 
cation of the active density profile as measured by the param- 
eter J, (ii) an impact on the profile of the stability parameter Q, 
and (iii) a possible modification of the shape of the rotation 
curve. For the present purposes, we have chosen to minimize 
the introduction of new parameters. Therefore we have tried to 
operate within the family of models presented in § II (see eq. 
[2.1]) by suitable parameter variations. In practice, item (iii) 
will only be marginally considered in the following, item (i) will 
be incorporated by a variation of rcut, and item (ii) by variation 
of rQ. 

To be more specific about the choice of the active mass 
density profile, since little is known of the disk structure inside 
the bulge region and sizable departures from the exponential 
law are often observed (see Kent 1984), we have two natural 
options : either the exponential disk is actually replaced by the 
bulge in the central region, or it coexists with the latter, 
although dominated by the bulge. In the following, we shall 
adopt the former picture that allows us to leave the shape of 
the rotation curve substantially unchanged and to act on very 
few parameters, essentially rcut. The second option should also 
be explored, but we postpone a more complete analysis of the 
role of the bulge to future studies, when we deal with specific 
objects with a well-defined set of observational constraints, 
such as M81. Thus we are going to consider sizable reduction 
and large values of rcut over the basic exponential disk studied 
in § II. Roughly speaking, for a given choice of the reduction 
factor f one should interpret / as simulating the effect of thick- 
ness as far as / > j and replacement by the bulge where / < i• 
Notice that the parameter rcut is not representative of the scale 
of the bulge. Even when rcut largely exceeds h (see Fig. 2), the 
transition region (from bulge to disk) defined as the location 
where f ~ j tends to occur at r in the range h to 2h. Within the 
picture that the bulge actually replaces the disk, the smooth 
transition implied by our choice for the /-function is natural 
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and sensible. However, the analytic form for /is just a conve- 
nient choice that may be revised if necessary and if specific 
observational constraints are considered. 

The roles of gas are incorporated by “turning on” the 
^-contribution to the active mass density of equation (2.1) in 
our equivalent one-component disk and by imposing the self- 
regulation prescription proposed by Bertin and Romeo (1988) 
that justifies the use of a cool disk with an effective Q close to 
unity (i.e. QOD = 1 ; see § III). For simplicity, we refer to models 
with constant <rg (see Fig. 6) and with uniform velocity disper- 
sion associated with the gas component. This choice for the gas 
distribution may be justified if the corotation radii of the 
modes obtained are of the order of 3/i*, since the gas typically 
extends out to 4h* and beyond (see Wevers 1984; Wevers, van 
der Kruit, and Allen 1986, esp. Fig. 7; van Albada and Sancisi 
1986) where the stellar density is negligible. As we shall see, the 
main part of the mode obtained extends approximately over 
the part of the disk where h*<r < 3/i*. 

In our models with QOD = 1 the cool outer disk may be 
identified with the region outside r = 2rQ, since ß(2rQ) « 
1 + 0.02#. Note that, if we take rQ = h*, the (total) stellar 
density in the disk at r = 2rQ is only 14% of the extrapolated 
central density of the exponential disk, i.e. 0.14<7o. Thus if we 
take (Tg = 0.02<7o, the local density ratio a = a Jo* at r = 2h* is 
already quite large («15%). This number can be increased 
further when the reduction factor / is taken into account (see 
also discussion of observational data in § III). Larger values for 
rQ also enhance the significance of the gas component, since the 
dynamically active region is moved further outward. 

A detailed description of various models and modes within 
the framework outlined above has been given by Lowe (1988). 
Here we report a few significant results. A sequence of models 
has been surveyed, characterized by rfi = 0.625/ï*, Q0d = 
q = 1.5, rQ = h*, rcut = 6h*, variable A and variable og. In 
Figure la the two lowest (i.e. fastest rotating) two-armed 
modes for the case A = 7%, og = 0.02o0 are illustrated. The 
first mode has the corotation radius at rco = 2.5/1* and is char- 
acterized by moderate growth rate yP = 0.48; the second mode 
extends further out, with rco = 2.9h* and has also a moderate 
growth rate, with yP = 0.30. The values of the J-parameter at 
corotation are Jco = 0.45 and 0.44, respectively. In the cool 
outer disk that has been assumed, the value of the gas to star 
density ratio is sufficiently high. We note that a superposition 
of these two modes gives rise to a quasi-stationary, regular, 
two-armed structure that persists for more than one rotation 
period, because there is only a slight difference in the angular 
speeds and in the pitch angles between the two modes. No 
other important modes are found in this model. The reasons 
for the absence of other competing modes will be addressed in 
§ IVc. 

Probably the most satisfactory case, although it has been 
obtained for a somewhat high overall profile of the a param- 
eter, is illustrated in Figure 8. This could serve as the prototype 
for models of grand design spirals of the Sb type. Here the 
model is characterized by rn = 0.375/î*, Q0d = <? = 2, rQ = 
4/i*, rcut = 6h*, A = 7%, og = 0.02<7o. This model is subject to 
one dominant mode (shown in Fig. 8) characterized by rco = 
2.5/1* and yP = 0.39; the value of the J parameter at corotation 
is Jco = 0.47. For this model, all other modes are irrelevant 
since they either are of much lower growth rate (the second 
two-armed mode has yP = 0.03) or they are expected to be 
suppressed by inner Lindblad resonance. We note that at r = 
2/i* this model would be consistent with the corrections for 
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R 
Fig. 6.—The effect of the addition of a flat density distribution (gas component) on the activity density profile for the case rcut = 6h*, with og ranging from 0 

(bottom) to 0.05<7o in equal steps. 

thickness, gas content, and stellar dispersion speed that are 
estimated for the Milky Way in the solar vicinity. This model 
also serves to illustrate an important point regarding the Q 
distribution: in the presence of a cool gas layer, instability is 
possible in a composite stellar/gaseous disk even when the 
stellar component is stable. In the paper by Bertin and Romeo 
(1988), the relationship between the mass densities, dispersive 
speeds, and stability parameters that connect a two- 
component disk with an equivalent one-component model 
have been worked out. By applying their prescription to our 
case, we obtained the data shown in Table 1 and Figure 9. 
Note that the g-profile employed in the mathematical model 
used in the stability analysis is the effective stability parameter 
for the equivalent one-component system, and that g* is 
derived from it through the prescription mentioned above. As 
can be seen in the table, the composite equivalent system is at 
marginal stability (g = 1), even though the stellar disk is quite 
stable. Indeed, g* is quite high (g* > 1.6) and rises in the outer 
disk. 

TABLE 1 
A Two-Component Model 

* f <* J Q Q* ß 
1.5   0.37 0.24 0.36 1.21 1.80 0.26 
2.0    0.54 0.27 0.45 1.04 1.60 0.24 
2.5   0.69 0.35 0.47 1.00 1.71 0.22 
3.0.......... 0.81 0.49 0.45 1.00 1.99 0.22 
3.5    0.90 0.73 0.41 1.00 2.47 0.24 
4.0   0.96 1.14 0.37 1.00 3.28 0.25 

b) Reinterpretation and Rescaling of the Original Survey of 
Models 

An examination of the active density profiles for the models 
constructed in § I Va shows that the mass distribution is 
actually reasonably well approximated, in the dynamically 
active region, by a declining exponential having a scale length 
r<r = Kff considerably longer than the scale h* of the assumed 
stellar distribution (see Fig. 10). This conforms to the general 
arguments outlined in § IIIa(iii), but now we can be more spe- 
cific, since for the relevant models we find /zeff » 2.5/i*, and 
rQtt h*. This suggests the possibility of recovering many of the 
results obtained in our basic exploratory survey of § II, provid- 
ed a proper reinterpretation is given. In particular, since heff is 
the scale pertinent to the computational model, the exponen- 
tial scale length h used in the exploratory survey of § II could be 
interpreted as /ieff, not h*. Therefore, those models that were 
subject to modes with corotation radius rco > h could be rein- 
terpreted to have rco > hcff ^ 2.5h*, a value more in line with 
observations. Thus, results of the exploratory survey, initially 
rejectable as lacking physical justification, can be applicable 
provided proper rescaling is made. 

In order to quantify and to confirm this important point, a 
calculation was carried out using an exponential disk to mimic 
one of the models discussed in § IVa. The model considered 
had Og = 0, ra = 0.625/i*, h = 2.5h*, rcut = 3/**, rQ = /i*, 
God = 1> 4 = 1-5, and A = —75%. The pattern speeds and 
growth rates for the two lowest modes in this exponential 
model, which are shown in Figure 7b, differ insignificantly from 
those of the corresponding modes shown in Figure la in the 
model described in § IVa. As can be seen by comparing the 
density contours, the patterns are also remarkably similar. The 
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Fig. la 

Fig. lb 

Fig. 7.—Examples of normal spiral modes with small pitch angle and with large corotation radii, (a) The two dominant modes are displayed for a model 
characterized by rn = 0.625h*, A = 7%, rcut = 6h*, <jg = 0.02<ro, rQ = h^q= 1.5, and QOD = 1. The corotation circles (dotted circles) are at rco/h* = 2.5 and 2.9, 
respectively, (b) The two dominant modes are displayed for a model characterized by rn = 0.625h*, h = 2.5h*, A = —75%, rc^t = 3h*, (Jg = 0, rQ = h*, q = 1.5, and 
Qod = 1. The eigenvalues of these two modes are essentially identical to those of (a). This shows that many of the normal spiral modes of the survey of § II can be 
recuperated for astrophysical applications, provided proper rescaling of the basic state is made. 

simultaneous existence of two (or more) similar modes would 
lead to a spiral structure whose corotation circle is hard to 
ascertain empirically (see Binney and Tremaine 1988, p. 391), 
but there is clearly no difficulty to the determination of an 
angular velocity sufficiently accurate for an approximate 
description of the spiral structure as a whole (values of v(r) not 
much changed between the two modes). 

The above discussion shows that the introduction of the 
density contribution for the gas component (eq. [4.1]) does not 
invalidate the earlier modal calculations of the survey of § II 
for a cool galactic disk, but a different interpretation has to be 
given to the models for normal spirals. The length scale of the 
mass distribution a(r) should refer to that of the total active 
mass distribution. The length scale h* of the observed stellar 
disk itself does not appear in the final model, but its value is 
approximately given by rQ, the length scale of the Q- 
distribution. The corotation circles of the spiral modes are then 
found to lie in the gas-rich region. 

c) Three-armed Modes and Higher Two-armed Modes 
In order for regular structure to be a common feature in 

observed galaxies, there must be modes in which only one or 
two modes are dominant; indeed, such modes must be fairly 
natural. We have examined the cases of (1) higher two-armed 
modes (those that are slower rotating and thus have larger 
corotation radii), and (2) three-armed modes. In both cases, the 
inner Lindblad resonance plays a crucial role in suppressing 
these competing instabilities. Specifically, by examining the 
propagation diagrams we can determine whether the short 

trailing wave propagating inward from corotation reaches 
ILR, in which case Landau damping will absorb the density 
wave, thus suppressing the mode. For several cases we have 
carried out such an examination, and we have found that all 
the three-armed modes and all but one or two of the two- 
armed modes are suppressed in this way. 

That this is a natural occurrence is best exhibited by con- 
sidering the dispersion relationship. As shown in Bertin, Lin, 
and Lowe (1984) and Paper II, the local dispersion relationship 
can be reduced via a similarity transformation to a form in 
which the dimensionless Doppler-shifted frequency v does not 
appear. Relevant to the present discussion is the relation 

Go = 6(1 - v2)1/2, 

where Q0 is the similarity variable. In the low disk mass regime, 
wave propagation is permitted if Q0 is smaller than ~ 1. Thus, 
values of I v I approaching 1 encourage wave propagation by 
decreasing Q0. Two-armed modes having larger corotation 
radii are, therefore, more vulnerable to ILR because of the 
central rise for the quantity Q occurs where v is closer to — 1 
(i.e., farther from corotation where v = 0). For three-armed 
instabilities v changes more rapidly with r than is the case for 
two-armed modes, so three-armed modes also tend to reach 
ILR easily. 

d) Concluding Remarks 
We have examined normal spiral modes from a global point 

of view, beginning with an emphasis on the role played by the 
nuclear bulge. On the other hand, the excitation of spiral struc- 
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Fig. 8.—Multiwinding spiral mode. This particular mode is outside the main surveys presented in § II. The basic parameters are QOD = 1, rQ = h*, A = 7%, and 
rcUt 

= 6h*- This model, with a major change in density distribution, represents a case where the active disk essentially coincides with a thin Population I layer. The 
interesting properties of this mode are its multiple winding and its radial extent (the dotted circle is at rco ~ 2.9h*). 

Fig. 9.—Behavior of the effective Ô-profile and of the corresponding parameter Q*, defined for the stellar component alone, for the model subject to the spiral 
mode displayed in Fig. 8. The stellar disk may appear to be very hot even when the disk is effectively cool. 
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R 
Fig. 10.—Active disk mass density profiles compared to the basic exponential disk (dashed line). The two curves correspond to rcut = 6h* for ag = 0.02<to (lower) 

and Gg = 0.04<to (upper). Straight solid lines represent exponential distributions with length scale 2.5/i* (lower) and 3.5h* (upper). This figure illustrates how the scale 
of the active disk, because of the role of gas and geometry, is expected to be significantly larger than the scale of the optical disk. 

ture clearly originates in the region where gas is relatively 
plentiful. Indeed, if one first focuses attention on this outer 
region, one can always determine a reference location in a 
galaxy where the ratio a = g Jo* is ~0.4. As we move inward 
from this location by approximately one scale length h*, we 
have a « 15%, and we would expect the g-parameter to begin 
to rise and to form a g-barrier. The wave generated in the cool 
region around the reference location will be turned back to 
complete a feedback cycle and form a mode. However, it is now 
essential to emphasize the three-dimensional distribution of 
matter, since a lowered mass in the central region is necessary 
(see survey and § IVh) for the formation of a normal spiral 
mode. A central point at issue is really this : what fraction of the 
normal spirals observed contains enough gas, in appropriate 
amounts in the various parts of the galactic disk, so that spiral 
modes may be excited through gravitational instability? The 
resolution of the winding dilemma—i.e., the usefulness of the 
pitch angle as one of the criteria for Hubble classification— 
would suggest that there is enough gas in a statistical majority 
of such galaxies. An inspection of the gas content in many 
specific galaxies has indeed shown that this is likely to be the 
case. 

The solar vicinity deserves special attention since it is the 
only location where the mass density can be independently 
determined without using the uncertain values of mass to 
luminosity ratio. Recently Kuijken and Gilmore (1988) found 
that the total surface density of the disk mass might be as low 
as 44 M0 (pc)-2. While we are not in a position to evaluate 
such analyses, we should examine its potential implications on 
our theory if there is such a large reduction in surface density. 
It turned out that our general conclusions remain unchanged. 

For the reduction in density indicated, the value of a may be 
higher than 0.5. If we refer to Figure 5b of Bertin and Romeo, 
we see that this is more than sufficient to cool a galactic disk 
with Q* = 2. Thus, even though this reduction of mass density 
would raise the value of Q* from that given by Lewis and 
Freeman (1988), we are still dealing with a cool galactic disk, in 
terms of the effective Q. The relatively high density in the 
gaseous component also implies a longer scale for the total 
mass distribution, as can be seen from Figure 10. This provides 
an even stronger basis for the excitation of unstable spiral 
modes with large corotation radii. 

V. MORPHOLOGY, REGULARITY, EVOLUTION 

The main theme of our study has been the identification of 
basic states that support spiral structure of a given shape. A 
large effort has been devoted to the issue of the astrophysical 
justification of the models used. In turn, it seems that all the 
relevant morphologies have been covered by our survey. Here 
below we illustrate how these results can be made to corre- 
spond to the Hubble diagram. Section VI will focus on some 
important issues that have to be addressed in the future. 

In making comparisons with observations, we should keep 
in mind that in this paper we have been dealing with “ typical ” 
galaxies, as representative of a statistical majority of cases. In 
another perspective, we wish to give primary attention to 
grand design spirals (see Elmegreen and Elmegreen 1982 for 
the division of galaxies into 12 categories on the basis of 
regularity); flocculent galaxies may result in the same modal 
perception if there are several unstable modes or if there is 
irregularity in the distribution of the interstellar medium. 
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a) Correspondence with the Hubble Morphologies 
A coherent picture of all the major morphological types 

encountered in our modal survey has been exhibited in Figures 
3 and 4 (§ II). We recognize prototypes of SBO spirals, SB(s) 
spirals, and S-spirals (normal spirals), with modes of transition- 
al types in between these prototypes. 

For application to observed galaxies in the Hubble morpho- 
logical classification, we have in general to impose the condi- 
tion of moderate instability (see (§ la). We envisage that if the 
basic state has only modes of moderate instability (yP ^ 1), 
these modes may be brought to general equilibrium through 
the damping effect of the gaseous component (see § III). The 
more gas there is in the galaxy, the larger the value of yP may 
be allowed. On the other hand, if a basic state has highly 
unstable modes, these modes are expected to grow rapidly and 
possibly lead to a change of the basic state itself into a more 
stable configuration. In the new basic state, the final mode 
observed will again be one of moderate growth which is 
brought to saturation through the damping mechanism associ- 
ated with the gaseous component. Once a state of moderate 
growth is reached, the long-term evolution induced by spiral 
modes should be slow (see also Bertin 1983h). 

i) Prototypes of Modes 
In Figure 11, we show representative examples of all three 

prototypes of modes with moderate instability (yP < 1), 
together with one normal spiral mode of very high growth rate. 
Clearly, the mode of high growth rate will evolve. Indeed, in 
such cases there are expected to be other modes with consider- 
able rates of growth (see Haass 1983). We may visualize the 
following scenario for the evolutionary process. 

The rotation curve and the distribution of disk mass should 
not be significantly modified during the evolutionary process, 
but the distribution of velocity dispersion is likely to be influ- 
enced, thus leading to a change of Q(r). If the gaseous com- 
ponent plays an active dynamical role so that gOD remains at 
unity (see § 1115), the high-growth Sc spiral will evolve into a 
morphology like the SB(s) spiral shown in the same figure. On 
the other hand, if the gaseous component does not play an 

Fig. 11.—Mode prototypes. Four key morphological types are compared: 
SBO, SB(s), and S, all with moderate growth; a violently unstable S mode at the 
low right corner. The dynamical properties of these modes are discussed in 
Paper II. 
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active dynamical role, Q0d may rise> and the final configu- 
ration would be more like an SBO spiral. (If rQ does not change, 
it will be precisely the SBO spiral shown in the upper left of Fig. 
11. If rQ increases, the mode will be an SBO, but somewhat 
different from the one shown.) The dynamical properties of the 
modes shown are described in Paper II. 

ii) Normal Spiral Modes 
Normal spiral modes appear to be excited only if the 

gaseous component plays an important role; their corotation 
circles are expected to occur in the gas-rich region where r « 
3/1*. All the normal spiral modes exhibited in our exploratory 
survey of § II have only one turn up to the corotation circle; 
furthermore, the size of the spiral structure, as measured by the 
radius of the corotation circle, is less than two scale lengths of 
the exponential disk in all the normal modes calculated. The 
fact that galaxies are observed with spiral arms with a 540° 
turn indicates that for these cases the dynamically active disk is 
not the exponential disk itself. However, normal spiral modes 
of the exploratory survey can be recuperated by proper re- 
scaling of the relevant basic states (see § IV). 

iii) Spiral Sequences and Transitions 
From the S-spirals and the SB(s) spirals in surveys and 

one may identify one continuous sequence of spiral modes of 
moderate instability as the disk mass is increased. Indeed, these 
may all be regarded as members of survey B^ where gOD = 1 
and the two parameters A and rQ are varied. The condition 
yP < 1 selects such a sequence from the two-parameter field of 
modes. This is illustrated in the left frame of Figure 12. The 
zone along the boundary between the unstable regime and the 
stable regime corresponds to the conditions along this 
sequence. 

The modal shapes and dynamical characteristics of this 
sequence are shown in Figure 13a. The parameter ranges are 

-0.25 < A < 0.15 , 

2 < rQ < 6 . 

There is clearly a continuous change of all the dynamical char- 
acteristics exhibited. In contrast, in the right frame of Figure 
12, we exhibit conditions for barred structures SBO and SBa; 
the latter morphology is expected when the gaseous com- 
ponent plays a passive role (see § II). At low disk masses, we 
expect no spiral structure (SO galaxies). 

Two important characteristics of transitions among normal 
spirals should be mentioned : 

1. Spiral structure in low-mass disks.—In Figure 135, we give 
further details for normal spirals for a slightly different set of 
basic states. These have a slightly modified distribution of 
surface density from the exponential disk. The three- 
dimensional distribution of mass in the disk is taken into 
account. In this set of modes, we note that there is a noticeable 
change of the propagation diagram between the cases 
A = —0.30 and A = —0.20, but there is no abrupt change of 
modal shape. 

2. The subdivisions Sa, 55, and Sc.—The primary physical 
parameters that mark out these subdivisions are the bulge size 
and the gas content. This is consistent with the dynamical 
characteristics of the spiral modes obtained. In addition, when 
more gas is present, the active disk mass is higher. At the same 
time, th& damping mechanisms are stronger, thus allowing for a 
higher value of yP of the mode. Indeed, modes with higher yP 
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Fig. 13a—The B, spiral sequence. Modes are selected from the B, survey (see § II) on the basis of the moderate growth criterion. For each mode we give model 
shape, a-spectrum, propagation diagram, eigenfunction. The a-spectra (second row) are given in arbitrary units; the horizontal axis has a/m from —15 to +15. The 
real and imaginary part of the mode eigenfunction {fourth row) are given as a function r; the vertical line indicates the location of the corotation radius. e 
propagation diagrams {third row) have v on the vertical axis from -1 {bottom) to +1 (top); on the horizontal axis fi runs from -15 to +15. A key feature of this 
interesting spiral sequence is that outside corotation the mode is within the low-J regime of normal spiral structure, while inside it is in the high-J open wave regime. 
A complete definition and discussion of the available diagnostic tools that are used is presented in Paper II. 

TABLE 2 
Data for Figure 13a 

Parameter 
rQ = 2.0 3.0 

100A = —25.0 -15.0 
4.0 

-5.0 
5.0 
5.0 

6.0 
15.0 

Qco • 
aP.. 
yP .. 
rjh 

0.553 
1.00 

24.23 
0.612 
1.35 

0.590 
1.01 

0.596 
1.04 

0.577 
1.07 

0.538 
1.10 

20.62 17.83 15.62 13.81 
0.807 1.005 0.912 0.521 
1.62 1.90 2.18 2.49 

Note.—Each column corresponds to a column of Fig. 13u. 
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Fig. 13b.—The normal spiral sequence. This is a kind of continuation (in the low-density domain) of the spiral sequence of Fig. 13a, and it is presented in the same 
format. Two cases of relatively high Jco (high surface density) and high growth are included to better describe the continuous transition in the maintenance 
mechanisms. We should note that even if the propagation diagrams display abrupt, topological transitions, the actual mechanisms are expected to follow a relatively 
smooth change of character. Note that the long wave branches are expected to participate even when they become complex (dotted lines in the propagation 
diagrams). 

TABLE 3 
Data for Figure 13b 

Parameter 
Ôod = 100 1.00 

100 A = — 50.0 -40.0 
1.00 

-30.0 
1.00 1.00 

-20.0 -10.0 

Jco- 
Qco • 

yP .. 
rjh 

0.379 
1.00 

26.05 
0.437 
1.29 

0.454 
1.00 

26.09 
0.533 
1.29 

0.530 
1.00 

0.605 
1.00 

0.680 
1.00 

26.20 26.42 26.81 
0.684 0.884 1.153 
1.28 1.27 1.25 

Note.—Each column corresponds to a column of Fig. 13b. 
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MORPHOLOGY OF 

occur with higher disk mass, and they also exhibit a more open 
morphology. They are thus open Sc spirals. 

iv) Small Bars 
Modes with a “ small ” bar, mostly of a transition S/Sb type, 

were considered by Haass, Bertin, and Lin (1982) by keeping 
ßOD = 1 and by lowering the central ß-barrier. This corre- 
sponds to lowering the ^-parameter introduced in § II. The bar 
is called “ small ” because it affects only a small fraction of the 
disk inside the corotation circle. Note that, in the absence of a 
ß-barrier, one should pay special attention to the rotation 
curve, which should rise gently in such a way that ILR does not 
occur. This situation might be realized in some gas-rich, bulge- 
free S/SBc galaxies of the (s) type. These should be cases 
(possibly like M51 or NGC 7741) where the cool gas disk 
extends into the central regions. In order to have a better 
appreciation of the issues and of the possible morphologies 
involved, further explorations of cases with changing q are 
desired. Preliminary study with a model with relatively large 
rn (= small rQ (= hJ2), and lower q (= 0.2) indeed leads 
to a spiral pattern which resembles that of M 51. 

In general, we find that the modal approach is a viable basis 
for the Hubble classification scheme. For two-armed spiral 
modes, we find a coherent total picture of the Hubble types as 
a one-dimensional sequence extending from tightly wound 
spirals to open spirals to barred spirals. This sequence is in the 
line of increasing ratio RA of active disk mass to total mass 
derived within four length scales of the exponential disk mass 
distribution. 

b) Regularity and Evolution 
We would like to stress that the viability of the modal 

approach that has been demonstrated in this article goes well 
beyond the category of grand design spirals. In fact, grand 
design spirals are only a fraction of the total. The modal 
approach best applies to the set of galaxies where spiral struc- 
ture occurs on a large scale, even if not so regular (such as 
M101). Indeed, in our linear modal analysis it is not easy to 
find basic states that support only one dominant mode. Most 
likely, because of the role of Landau damping at inner Lind- 
blad resonance, the number of important modes is reduced to a 
small value, like two or three. But indeed there are isolated 
galaxies which appear to have a single dominant two-armed 
mode as shown by the empirical analysis of the spiral structure 
and rotation curve of the galaxy NGC 2885 (Roelfsma and 
Allen 1985), and so stated by these authors. 

The importance of the modal approach is that it associates 
the morphological characteristics of the spiral structure to the 
intrinsic properties of the basic states. No need for external 
excitation is found (although processes like tidal interactions 
and gas infall could be in principle analyzed in terms of modes) 
if some modes are unstable. In addition, a superposition of 
these modes is likely to produce morphologies within the 
Hubble class identified by each of the modes present. 

Therefore modes are a useful description of the morphol- 
ogies observed at present. How should we expect spiral struc- 
ture to evolve? The modal approach advocates that the Hubble 
type is expected to change, if at all, only on a very long time 
scale, thus resolving the winding dilemma. However, the regu- 
larity of spiral structure may well change on a shorter time 
scale. Most likely grand design and regular spirals are indeed a 
long-lasting phase of the system with a very small number of 
modes involved. However, the full basis of this assertion in the 
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modal perception is to be found in the nonlinear theory (see 
detailed comments in § VI) both because of the role of gas and 
because of the nonlinear mode interaction that is anticipated. 
This does not mean that we have to wait for the full nonlinear 
theory before drawing any conclusion or making any compari- 
son with observations. The encouraging correspondence 
between basic states, modes, and Hubble morphologies is an 
indication that linear modes are likely to provide a successful 
framework for observed patterns, much like in the theory and 
experiments of rotating fluids. This latter comment brings us 
back to the early empirical statement of the QSSS hypothesis, 
with the substantial progress added now by the identification 
of the proper basic state, or class of basic states, corresponding 
to a given morphology. 

Therefore we can see the modal approach as a coherent 
framework which can be used to develop a number of quanti- 
tative models (see § VI). We note that, to our knowledge, no 
other approach has been tested for consistency at any compa- 
rable level of quantitative details, nor would it be available for 
so many quantitative predictions. 

We should add that our confidence in the detailed dynami- 
cal mechanisms that are at the basis of the excitation and 
maintenance of spiral modes, which underlie the spiral mor- 
phologies surveyed in this paper, is based on the use of simple 
and powerful “ propagation diagrams,” which incorporate the 
role of excitation, inhomogeneities, feedback, and boundary 
conditions. This theoretical tool will be developed in Paper II. 

The hypothesis of quasi-stationary structure (QSSS 
hypothesis) for regular grand designs has sometimes been mis- 
interpreted as one of essentially stationary structure, i.e., that 
the spiral structure remains stationary over many orbital 
periods (see, for example, Binney and Tremaine 1988, pp. 337, 
384). Naturally, such a restrictive interpretation can be 
expected to hold only in rare circumstances, e.g., when the 
system has only a single unstable mode, while the QSSS 
hypothesis is expected to hold over a much wider set of circum- 
stances, contrary to the description given by Binney and Tre- 
maine (p. 398). Over a time span of many orbital periods, the 
spiral pattern generally evolves in a quasi-periodic manner 
without change of morphological type. 

c) Dynamical Instability, Morphology, and Dark Matter 
After the pioneering work of Ostriker and Peebles (1973), 

attempts have been made recently to constrain the amount 
of dark matter in disk galaxies on the basis of studies of the 
stability of disks with respect to spiral modes (e.g., see Atha- 
nassoula, Bosma, and Papaioannou 1987; van Albada and 
Sancisi 1986). From the present article it is clear that we agree 
that some dynamical constraints on the amount of dark matter 
can be made, but only on the basis of the observed morphology, 
not just on general stability grounds. (In fact, the determination 
of the ratio of disk mass to total mass is part of the goals of our 
dynamical approach to the classification of spiral galaxies.) 
General stability arguments are thought to be insufficient since 
“stability” is automatically taken care of by the process of 
self-regulation at any ratio of disk mass (see Fig. 12). Still we do 
not believe that simple and strong constraints can be easily set, 
especially in the case of Sa’s and Sb’s. The main physical 
reason for this difficulty is that different physical ratios are 
involved in dynamical studies (e.g., the amount of gaseous 
mass to that of the active stellar mass) and in observational 
discussions of mass ratios. In general terms, a model that 
includes a spherical component, and a disk of zero thickness is 
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oversimplified for the purpose at hand. The reader is referred 
to our previous discussions in § III for other cautionary 
remarks on the subtle issue of the choice of the basic state in 
dynamical studies. 

In conclusion, we note that for any value of the disk mass 
(e.g., even the case of a thin light disk in the presence of a large 
amount of bulge-halo matter) there is in general room for 
spiral instabilities of a gravitational nature. However, certain 
morphologies (such as open or barlike structures) are found 
only at certain values of the disk mass (as measured by the 
parameter J; see Paper II). Thus it is on the basis of the 
observed morphologies that we can try to put dynamical con- 
straints on galactic structure. But in doing this we should be 
very careful, in view of the limitations of our one-component 
disk models. 

A more promising approach in setting dynamical con- 
straints on the amount of luminous matter seems to be a more 
direct correlation between observed photometry and kine- 
matics of spiral structure (see again van Albada and Sancisi 
1986) as an extension of the work by Visser (1977). 

VI. OPEN ISSUES FOR FUTURE RESEARCH 

The present study offers a unified approach to the morphol- 
ogy of spiral galaxies. A number of issues have been addressed 
in quantitative details. In Paper II we shall make a thorough 
examination of various dynamical questions. However, already 
from the physical discussion provided here, one clear limi- 
tation appears to occur in our study. In fact, we have often 
referred to the multiple-component nature of galaxy disks (see 
§ III), but deliberately limited our discussion to an equiva- 
lent one-component model for simplicity of dynamical percep- 
tion. This, of course, is just a first important step, but 
eventually global structures and modes should be investigated 

in a true multiple-component system (see Lubow 1986; Bertin 
and Romeo 1988). In addition, the process of self-regulation 
involves nonlinear aspects that require new analyses. 

We believe that a natural direction for progress will involve 
not only new theoretical and numerical efforts, but especially a 
renewed interaction with present and future observations. The 
key missing item, we may suggest, is a clear perception of the 
physics of the interstellar medium and its interaction with the 
stellar disk. In a sense, after the long effort in studying the 
dynamics of large-scale spiral structure of the last two decades, 
we are back to the original motivation of the theory, i.e., the 
search for a framework for the study of the activity in the 
interstellar medium, especially the process of star formation, 
that is observed in coherent spiral arms. We note indeed that a 
similar point can be made from new observations of spiral 
structure (Lindblad and Jörsäter 1987; Allen 1988) that show 
notable discrepancies between the observed shock structure 
and the simple picture originally put forward by density wave 
theorists (Roberts 1969). Only a continual interaction between 
better and more specific observations and construction of more 
realistic dynamical models can generate progress in our under- 
standing of the structure of galaxy disks. 

We shall now conclude our article by bringing up certain 
specific topics where future progress may be made. The moti- 
vation for many of these issues is best indicated by the example 
of Figure 14. By superposition of a bar mode onto its basic 
axisymmetric state, we obtain a model that closely resembles 
some SBO galaxies such as NGC 2859 (see Sandage 1961, espe- 
cially the description of SB02 galaxies on p. 22). However, in 
constructing this model a finite amplitude for the mode was 
used, and this is beyond the present linear theory of modes. In 
addition, in the presence of some amount of gas the same 
dynamical structure of Figure 14 might originate a model that 
could resemble the SBa galaxy NGC 2217 (see Sandage 1961). 

Fig. 14.—Model of a barred galaxy of SBO type. The model is obtained by superposing a mode of the type shown in the upper left diagram of Fig. 11 onto its basic 
axisymmetric mass model. 
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a) Theoretical and Observational Studies of Multicomponent 
Systems 

For the study of certain specific classes of morphologies, a 
one-component description of the galactic disk gives only an 
incomplete indication of the physical processes. On the other 
hand, in many cases the gas component may play an essentially 
passive role, even though giving rise to prominent observable 
features. Although these phenomena also involve nonlinear 
mechanisms, they are technically somewhat easier to analyze 
and to compare with observations. Some examples are 
described below. 

i) Bar Driving in Two-Component Disks 
A bar or an oval distortion of the mass distribution in the 

central regions can drive spiral structure in a disk. To this 
situation we referred to sBB spiral structure in an earlier pub- 
lication (Lin and Bertin 1981). We recall that for this case the 
optical appearance does not coincide with the distribution of 
mass. 

Dynamically we may conceive a two-component system for 
the disk, with the young stars and the cold gas forming the 
dynamical Population I and the older stars forming the 
dynamical Population II. The Population I subsystem is rela- 
tively cold, thin, and light, while the Population II is relatively 
hot, thick, and massive. Therefore the former component tends 
to support tight density waves and the latter subsystem more 
open structures (see Fig. 1 in Bertin and Romeo 1988). 

Consider now the scenario where an oval distortion is 
present in the Population II component. Rather than an arbi- 
trary distortion, as many authors have considered (see Sanders 
and Huntley 1976; Roberts, Huntley, and van Albada 1979), 
we may refer to an internal bar mode. This approach could 
possibly identify which are the relevant bar structures for a 
given basic state; for example, we should discard as unrealistic 
those broad oval distortions that extend too far out, since the 
present modal studies indicate that such structure are not 
naturally supported. Once a reasonable bar is taken to affect 
the hot massive disk, its gravitational field could excite short 
trailing waves in the Population I thin disk (see Feldman and 
Lin 1973; Lin and Lau 1975; Goldreich and Tremaine 1979; 
Yuan 1984; Cheng 1987). These trailing waves do not have to 
form a mode since, although propagating, they are continually 
replenished by an “ external ” source. When the bar is relatively 
strong, the reaction of the light Population I component could 
then follow essentially the predictions of some hydrodynamical 
codes, i.e., to give rise to offset shocks inside the bar, and 
develop tighter spiral arms mostly beyond the corotation 
circle. This picture just completes the scenario of SBO modes in 
the presence of gas and some SB(s) modes (e.g., NGC 1398 or 
NGC 1300). This seems to be a viable picture, and essentially 
repeats and develops the concept of sBB spiral structure briefly 
mentioned at the beginning of this discussion. 

However, at present it is hard to draw a clear boundary 
between the case of an almost “ passive ” Population I and that 
of a more “active” gas disk. In other words, a quantitative 
implementation of the shock structure associated with the 
various prototypes of modes illustrated in § V is not yet avail- 
able and should be the focus of future research in this field. 

ii) Formation of Rings 
Besides the preceding discussion of bar-driven spiral struc- 

tures, a two-component model is essential for the study of the 
formation of rings. The phenomenology of rings has attracted 
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great attention recently (see Buta 1986, and references quoted 
therein) and certainly goes beyond the simple application of 
one-component systems, as illustrated in § V. 

Outer rings most likely trace the location of OLR for the 
relevant mode involved. Inner rings have often been claimed to 
trace the location of ILR, but this seems to imply a relatively 
transient nature of the spiral structure that is observed. One 
possibility is to envisage a system where a light thin Popu- 
lation I disk extends into the bulge region. In this case spiral 
structure can develop on two different scales, inside and 
outside the bulge region. The situation may represent galaxies 
with “ dual ” spiral structure, such as NGC 5364 (see § Vlapii] 
and Lin and Bertin 1981). 

The ring structure that wraps around the tip of the bar in 
NGC 1398 (Sandage 1961, p. 47) is typical of SB(r) galaxies. 
Indeed, this is one important gap in our studies of morphol- 
ogy; i.e., what distinguishes SB(r) galaxies from SB(s) galaxies 
(see Sandage 1961, p. 24). The process for the formation of the 
ring may be intimately related to the nonlinear response of the 
gas to the mode calculated in our basic survey. Possibly an 
examination of the nonlinear response of gas to the strong bar 
modes found in subsurvey A, would yield a good model for 
NGC 1398. 

iii) Galaxies with Dual Characteristics 
There are galaxies like NGC 1097 and NGC 6951 (Sandage 

1961, p. 46) which have dual characteristics of Sb galaxies and 
SBb galaxies (straight dust lanes). One may speculate whether 
this might be associated with a two-component system with 
the stellar component showing both a normal Sb structure on 
the outside and a barlike structure near the central regions. 
The gaseous component would then show straight dust lanes 
like those in NGC 1300. Such a complex modal shape is more 
likely to occur in a two-disk dynamical system since it has an 
additional degree of freedom. 

b) Nonlinear Behavior in Large-Scale Structures 
Most of the issues raised in § Via clearly involve nonlinear 

mechanisms. We comment, in the following, on other nonlin- 
ear processes, of a more general nature, which need not depend 
on the multiple-component structure of galaxy disks. 

i) Multiple-armed Spiral Structure and Flocculent Galaxies 
So far we have been concerned mostly with equilibria that 

support a few discrete unstable spiral modes. When ILR is less 
efficient in damping some of the modes, we could have equi- 
libria that support higher m-modes and a number of two- 
armed spirals. (Note that high m-modes are likely to be open 
even in low-mass disks. Thus flocculent spiral structure with 
small pitch angle is likely to be related to the presence of many 
two-armed spiral modes.) If the total number of growing 
modes is still relatively low, their superposition would initiate 
multiple spiral structures and some irregular features such as 
spurs (see Haass, Bertin, and Lin 1982, Fig. 1). When the total 
number of modes is larger, flocculent spiral structure would be 
generated. Notice that for those galaxies that do not have a 
grand design, as is the case of some multiple-armed and floccu- 
lent spirals, mechanisms that produce transient spiral features 
without a grand design can well explain most of the observed 
features. Here we might refer to stochastic processes of star 
formation in the presence of differential rotation (see Gerola 
and Seiden 1978) and to clump-induced spiral wakes (Julian 
and Toomre 1966). In view of the winding dilemma, the most 
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likely scenario is the random generation and regeneration of 
waves through Joans instability from the gas-rich outer region 
of the galactic disk and the propagation of these waves into the 
interior. Since these waves have limited variation in angular 
velocities, their pitch angle at any given interior location would 
remain roughly the same, consistent with the Hubble classi- 
fication scheme (see Bertin and Lin 1987 for comments on 
nonstationary scenarios and references to earlier papers). 

In the modal context, nonlinearities offer two interesting 
alternatives that should be tested by future investigations of 
the possible relevant dynamical conditions. One possibility is 
that when many modes are present, resonance overlapping 
across the disk could rapidly lead to chaotic behavior and thus 
“ explain ” flocculent spiral structure. On the other hand, it is 
also possible that nonlinearities under certain conditions 
would lead to “locking” phenomena which would produce 
slower and more coherent “vacillations” of spiral structure 
around preferred configurations, even in those cases where 
linear superposition of modes indicates a somewhat rapid 
beating process. 

The resolution of these issues appears to be a far distant 
goal. A more limited result that could be achieved in a nearer 
future could be the shock structure and small-scale instabilities 
in the gaseous component in the presence of two linearly 
superposed spiral modes. 

ii) Smooth-armed Spirals and SO Galaxies 
For those disks that are gas deficient, such as SO galaxies, 

especially if they are characterized by thick disks, there should 
in general be no unstable spiral modes of astrophysical inter- 
est. For the few cases, possibly characterized by thin stellar 
disks, where spiral modes can be excited (possibly by mecha- 
nisms other than those described in this paper), shock satura- 
tion at low amplitude by the gas would not be available, and 
the modes would be likely to grow to larger amplitudes and to 
evolve. A smooth structure could still be guaranteed by the 
relatively large stellar epicycles. These cases could be the 
dynamical interpretation of smooth armed spiral (see Strom 
and Strom 1978; Sandage 1983). To be sure, no complete 
calculation of these nonlinear stellar modes has yet been 
attempted. 

In this respect, one natural concern is on the existence of 
mechanisms that could limit the growth of these modes and the 
related fast evolution of the disk. One possibility could be that 
the orbital response becomes incoherent at a certain amplitude 
level (see also the amplitude condition stated as rç < 1 by 
Bertin, Coppi, and Taroni 1977). Some interesting results are 
being obtained by the extensive numerical iterative techniques 
of Contopoulos and Grosbol (1986), who try to reach, by 
purely stellar dynamical methods, a nonlinear quasi-stationary 
self-consistent spiral structure. We think that their efforts could 
take advantage of our modal studies, if their procedure is ini- 
tialized with self-consistent linear global modes of the kind we 
obtain in our surveys. 

c) Application to the Construction of Models for Specific 
Galaxies 

An ultimate objective of modal studies is the construction of 
models for specific galaxies on the basis of all the available 
observational constraints. In the earlier literature (see Lin and 
Shu 1967; Lin, Yuan, and Shu 1969; Roberts, Roberts, and Shu 
1975), the first step of the modeling process was to estimate the 
value of the relevant pattern frequency Qp empirically. For 
external galaxies, this was determined on the basis of the 
observed rotation curve and the location of the corotation 
zone associated with the “ tip ” of the optical spiral arms. The 
local dispersion relationship for the short wave branch was 
then used to calculate the spiral pattern, generally with the 
additional stipulation of Q = 1. Such a procedure was quite 
adequate for a first study, but there was really no attempt at 
calculating the amplitude of the wave along the arms nor at 
showing how such a spiral structure could be self-supporting, 
even though the need for a general feedback process was recog- 
nized. 

More recently, a few attempts have been made from the 
modal point of view (Haass 1982; Visser and Haass work in 
preparation quoted by Haass 1982), but for this purpose modes 
were calculated only by means of the simplified ordinary differ- 
ential equations described in Paper II (§ IV). The adopted 
method of investigation was ad hoc in that there was no general 
perception of the parameter regime for the general category of 
galaxies under study, and the physical justification of the 
choice of the relevant basic state (see § III) was essentially 
overlooked. 

Now we have a better basis for the modeling of regular spiral 
structure in specific objects. In fact, the results of the present 
study provide a general guidance to the regime of the various 
dynamical parameters as expected from the observed morphol- 
ogy. As before, we may start out with the observed rotation 
curve and an estimated value of Qp. Then we may determine 
the general range of the length scale rQ of the Q-distribution 
from the observed length scale of the optical (exponential) disk. 
The identification of the distribution of the relevant active 
surface density is likely to be the most difficult part of the 
modeling process, since it depends on the relative contribu- 
tions of stars, gas, and dark matter and their three-dimensional 
distribution. Especially since the observational data will 
provide only incomplete information, we should be prepared 
to face an iteration process, starting out with reasonable dis- 
tributions of the relevant parameters consistent with the data. 
Plans are under way to apply this procedure to specific gal- 
axies such as M81. 

During the preparation of this paper, the authors have bene- 
fited from discussions with a large number of observers and 
theoreticians in the study of spiral structure, too many to be 
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of the USA and of the MPI and of the CNR of Italy. 
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ABSTRACT 
A unified approach to spiral modes is carried out through the use of a cubic dispersion relationship devel- 

oped earlier. This allows us to demonstrate the processes of maintenance and excitation of spiral modes of 
various morphologies separately for (a) normal spiral modes and (h) open spiral modes. 

In order to understand the relevant physical mechanisms and the general roles of the dynamical parameters 
(specified by the radial distribution of angular velocity, active surface density, and equivalent dispersive speed) 
the waves are described in terms of sustained wave trains. This allows us to examine the various dynamical 
issues discussed in Paper I. Very good accuracy is found when the present analytical results are compared 
with exact numerical data. 

The analytical approach makes it much easier to accomplish the process of identification of basic states from 
the observed spiral structure when a wide range of variation of the parameters of the basic state is involved. 
Our characterization of parameter regimes in terms of a few simple algebraic relations will be a useful guide 
for the construction of detailed quantitative models of specific galaxies and for general numerical surveys of 
classes of galaxies of given morphological types. 
Subject headings: galaxies: internal motions — galaxies: structure — stars: stellar dynamics 

I. introductory remarks 
In a previous paper (Bertin et al 1988, hereafter Paper I) we 

have provided a unified framework for the morphology classi- 
fication of spiral galaxies by means of a modal survey of a 
family of galaxy models of astrophysical interest. Numerical 
surveys of this kind require a good knowledge of dynamical 
mechanisms. In fact, on many occasions, in the choice of the 
basic state and in the discussion of the relevant spiral modes, 
we have referred to various dynamical arguments. It is the 
purpose of this article to address in detail the many dynamical 
issues that have been raised. The main result of our analysis is 
a very simple unified approach (in terms of a cubic dispersion 
relation) that covers the processes of maintenance and excita- 
tion of spiral modes of various morphologies, in particular 
normal spiral modes and open barlike modes. 

In order to understand the relevant physical mechanisms 
and the general role of the dynamical parameters (specified by 
the radial distribution of angular velocity, active surface 
density, and equivalent dispersive speed) we shall describe the 
modes in terms of sustained trains of waves which satisfy a 
certain dispersion relationship. As we shall see (§ III), such a 
description helps us to identify the parameter regimes that 
correspond to stable, moderately unstable, or violently 
unstable disks. In fact, this gave us valuable guidance in our 
numerical survey. In general, we can now choose the dynami- 
cal parameters so as to simulate galaxies of the normal type or 
of the barred type using the unifying framework of a single 
simple dispersion relation. In passing, we note that dynamical 
mechanisms and concepts described in this paper have some 
relevance to other astrophysical contexts, such as planetary 
rings and accretion disks and tori (see Papaloizou and Pringle 
1984). 

In the present paper special attention will be given to open 
or barlike modes (§ V) since the theory of normal spiral modes 
(briefly addressed in § IV) has already been described in the 
past, but even in this latter case we shall present some new 
results. In particular, we find that the growth rates calculated 
by the analytical theories, for both open spirals and tightly 
wound spirals, agree quite accurately with those obtained from 
global integration for a wide range of parameters. Before 
developing the relevant analytical theory, in the next section 
we address some important dynamical issues of general inter- 
est. This will complete some of the arguments presented in 
Paper I (e.g., see §§ I and VI of that paper) and will form the 
framework for the results of the present article. 

II. SPIRAL MODES IN THE FLUID MODEL 

The formulation of the theory of linear spiral modes is well 
known both in the stellar theory and in the fluid approach. In 
the latter, the phenomenon of spiral structure is approached by 
studying the stability against spiral perturbations of a state of 
axisymmetric equilibrium characterized by differential rotation 
£2(r), equivalent acoustic speed a(r), and active disk density <7(r), 
according to the physical picture explained in Paper I. In 
recent years, efforts have been devoted toward the understand- 
ing of the nature of these modes. Generally speaking, after the 
rotation curve is specified, the characteristics of modal insta- 
bility of a galactic disk have been found to be determined by 
the radial profiles of two parameters, J and Q (which are 
defined in terms of Q, a, and <7 in § III). Normal spiral modes 
are associated with lower values of the J parameter; moder- 
ately growing barred spiral modes, with higher values. The Q 
parameter is expected to be determined by a physical process 
of self-regulation (see Paper I). In many cases the difference in 
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the results obtained by various authors may indeed be traced 
to the differences in the distributions of these parameters in the 
basic states adopted. 

The modal theory is self-contained. The maintenance of 
spiral modes may be visualized in terms of oppositely propa- 
gating wave trains that satisfy a certain dispersion relationship. 
The excitation mechanism for such modes can be seen as a 
process of overreflection near the corotation circle, in the form 
of a WASER (Wave Amplification by Stimulated Emission of 
Radiation) (see Mark 1976 for the regime of tightly wound 
normal spiral structure). Another reflection mechanism must 
be present near the central region of the galaxy, so that the 
wave trains are linked in a closed cycle or “ feedback loop.” In 
the following we shall discuss certain general issues that serve 
as a background to the analysis of the present paper. 

a) Modes in the Fluid Model: An Integrodifferential Equation 
Modal studies may be carried out with two distinct objec- 

tives in mind : 

1) For the study of dynamical mechanisms; 
2) For the simulation of galaxies of various morphology 

types. 

The latter objective requires appropriate identification of 
models of the basic states of galaxies and was discussed in 
Paper I. Here we focus mostly on objective (1). 

We consider elementary waves so that any perturbed quan- 
tity q(r9 0, t) is of the form 

4 = 4i(r) exP (iœt — hnö) P.l) 
in cylindrical polar coordinates (r, 0, z);t is the time, m and œ 
are constants. Starting from the Euler and the continuity equa- 
tions, we derive (cf. Lin and Lau 1979) the basic equation for 
perturbations : 

LQ*! + il/i) = —Ch1 , (2.2) 
where 

d2 d 
L-lï + A7r + B’ (2'3) 

and 
\ d\n srf k2(1 — v2) 
r din r ’ ^ or 

4mQ(rv') 2Qm d In (k2/<jQ) 
Kr2(l — v2) r2KV dlnr 

(2.4) 

(2.5) 

(2.6) 

Here k is the epicyclic frequency, and v = (a> — mQ)/K is a 
dimensionless frequency. The quantity h1 represents the enth- 
alpy perturbation, which in our model is related to the density 
perturbation by 

hi 
a2o1 

o 
(2.7) 

Within the present fluid model, these equations are exact 
and have been adopted by Pannatoni (1979, 1983) in a flexible 
numerical code. Thus in the numerical studies made by using 
Pannatoni’s code (or another version of the code devised by 
Haass 1982) the long-range gravity force is taken into account 
in its exact integral form. Therefore, in the following, we shall 
refer to results obtained by using the code mentioned above as 
the “ exact results.” Different models that have been developed 
by other researchers in order to calculate global modes (e.g., 
Erickson 1974; Bardeen 1975; Zang 1976; Kalnajs 1977; Aoki, 
Noguchi, and lye 1979; Toomre 1981; Athanassoula and Sell- 
wood 1986) have been referred to in Paper I. In this article we 
shall compare our exact results to certain simpler approximate 
results derived mostly analytically. For the convenience of 
such analytical studies, it is necessary to reduce the problem to 
a simple differential form. This requires a careful treatment of 
the Poisson equation, under a certain systematic procedure of 
asymptotic approximations (see Bertin and Mark 1979 and 
Appendix B). 

In dealing with the computation of spiral modes one must 
pay attention to the appropriate boundary conditions, since 
these play a crucial role in the global stability problem. As a 
way to incorporate physical processes such as those described 
in § II/, we shall impose a radiation boundary condition just 
inside the outer Lindblad resonance (OLR) circle (see Lau, Lin, 
and Mark 1976; Pannatoni 1983). Other physical processes 
related to the turbulent cold gas component can favor the same 
choice of outer boundary condition. Thus OLR, which would 
be improperly handled by a fluid model, is actually avoided in 
our integration scheme. (If the inner Lindblad resonance 
happens to occur in the propagating region of our mode calcu- 
lation, we will reject the calculated mode as a damped mode, 
according to the well-known results of stellar dynamics ; § II/). 

b) Diagnostics of Modes: Spectral Representation 
In Paper I we have illustrated a three-parameter modal 

survey of a family of basic states. In the following, numerical 
results on “exact” modes will be compared with a theory 
based on the wave train description (§§ IV, V). For this purpose 
we notice that a useful representation of a mode which helps us 
to “ diagnose ” the underlying wave composition is the spectral 
representation. For a given value of m we can evaluate the 
a-spectrum 

(T(a) = 
_1_ 
2n 

f00 dr 
o'(r)eialTir — 

Jo r 
(2.9) 

and refer to the quantity P(a) = | <7(a) |2. This logarithmic repre- 
sentation has been found to be convenient for a number of 
reasons (see Kalnajs 1965; Bertin and Mark 1979). For linear 
modes we can use arbitrary units for P(a). 

The spectra calculated by means of equation (2.9) include all 
the information of the radial structure (of the modes) and 
therefore all the features associated with the inhomogeneous 
system. Thus they should not be confused with the spectral 
representation localized in the corotation zone that will be 
discussed in Appendix C. 

The potential ij/1 is related to the active disk density (Ti through 
the Poisson equation, which can be written in the integral form 

il/i(r) = —2nG 
"oo 

K(r, rf)Oi(r')drf . 
Jo 

(2.8) 

The kernel K(r, r') is well known; it exhibits a logarithmic 
singularity at r = r'. 

c) Diagnostics of Modes in Terms of Wave Trains: Propagation 
Diagrams 

One natural way to understand a spiral mode is to describe 
it in terms of propagating waves satisfying a local1 dispersion 

1 In this paper, we also use the term “ localized in the corotation zone ” or 
simply “ localized.” Such a term refers to a more restrictive situation where a 
narrow corotation zone alone is being studied. 
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relationship at various points in an inhomogeneous disk. In 
§ III we will discuss the dispersion relationship for spiral waves 
which is of the form 

F(K, v2; Q2, J2) = 0 . (2.10) 

The a-spectrum is only one important diagnostic tool. In 
order to analyze better the mode structure we have to resort to 
the propagation diagram. Once we fix the time frequency of a 
mode (i.e. its eigenvalue), the quantity v is a simple function of r 
which depends only on the properties of the rotation curve of 
the equilibrium model. Therefore we can read the local disper- 
sion relation (2.10) as a relation which, for any galactocentric 
radius r, fixes the possible value(s) of the local radial wavenum- 
ber. This results in a diagram in the (k, r)-plane which we call 
the propagation diagram. There we can easily include informa- 
tion on propagation regions, resonances, and reflection points. 
With an arrow we can record the direction of group propaga- 
tion on each branch. A clear example of the usefulness of the 
representation is shown in the figure of the paper by Bertin 
(1983a) where the mechanisms for the two regimes of normal 
spiral structure and of open (barred) structure are well identi- 
fied. 

d) Modes in the Fluid Model: Reduction to Ordinary 
Differential Equations 

This simple description of the mode in terms of propagating 
wave trains suggests the possibility of developing an analytic 
theory in terms of ordinary differential equations. In §§ IV, V, 
we shall give the full details of an analytic theory appropriate 
to each of the two regimes of normal spiral modes and of open 
(barred) modes. The theory is based on the dispersion relation- 
ship for short waves, i.e. large total wavenumber (§ III); it is 
simpler than the “exact” theory (§ lia), and yields similar 
numerical results (see Fig. 5) in a large number of cases tested. 
It can thus be used conveniently for the purpose of exploration 
in a survey of the type described in Paper I, and for checking 
numerical results obtained by other methods. The easy physi- 
cal interpretation of the processes of maintenance and excita- 
tion is, of course, the strongest point in an analytic theory. 

e) Excitation Processes 
Because of the differences between the nature of the waves 

composing the normal spiral modes and the open (bar) modes, 
their growth rate is expected to depend differently on the 
dynamical parameters J and Q. This will be discussed in the 
following sections. Here we stress the fact that the basic excita- 
tion mechanism can always be defined as an overreflection 
process at the corotation circle. This occurs as a result of the 
conservation of wave action, when wave action is transferred 
from the region inside the corotation circle (where the wave 
energy density is negative) to the region outside (where the 
wave energy density is positive) (see also Bertin 1983h). Over- 
reflection between short and long waves (i.e. for normal spiral 
structure, below the transition line) is found to be moderate for 
Q « 1. Overreflection between open waves (i.e. for larger values 
of J, above the transition line) is too high for Q & 1 and 
becomes moderate only for larger values of Q. Thus if one 
starts out with the condition (J, g) = (1, 1), the value of Q is 
expected to develop soon into higher values as the dispersive 
speed increases as a result of violent instability. The regime of 
moderate overreflection would be reached by a process of self- 
regulation (see Paper I). 

A comment is required for a comparison with the studies of 

Vol. 338 

“swing” amplification mechanism (Goldreich and Lynden- 
Bell 1965; Julian and Toomre 1966; Goldreich and Tremaine 
1978; Toomre 1981). It has been shown by Drury (1980) that 
this mechanism, usually discussed in a homogeneous model of 
the vicinity of the corotation zone where narrow wave packets 
swing from the leading to the trailing form, has a counterpart 
in the theory of steady wave trains. This point has been elabo- 
rated further by Lin and Thurstans (1984), who unified the 
discussion by means of a systematic spectral theory. Some of 
these arguments are summarized in Appendix C below. Here 
we would like to reiterate that in this respect there is no conflict 
between the “swing” mechanism and the present modal 
theory. Indeed, our study of overreflection of open waves 
àbove the transition line (see Bertin 1983a) describes the same 
physical process as that called “ swing ” in an alternative for- 
malism. Thus it should be kept in mind that the “swing,” as 
interaction between leading and trailing waves, is not necessar- 
ily powerful nor necessarily transient (see Lin and Thurstans 
1984, p. 128). 

/) Stellar Dynamics 
The fluid model that we have described and that we will 

adopt in the present paper is a convenient tool of investigation 
if used with care and judgement. In fact, extensive studies of 
stellar dynamic models support the view that a fluid model is 
generally (qualitatively) adequate except at the location of res- 
onances. Many important issues have been reviewed before 
(see, e.g., Bertin 1980; Lin and Bertin 1981). Here we just recall 
a few points that are most relevant to the studies in this article 
and in Paper I : 

1. Stellar dynamic resonances can be studied by analogy 
with wave-particle interaction in ordinary plasma physics (see 
Landau 1946; Lynden-Bell and Kalnajs 1972; Bertin and 
Haass 1982). Note that heating processes for linear quasi- 
stationary modes operate at the resonance locations only. In 
contrast, violent instabilities, with large amplitudes and large 
growth rates, are expected to produce a distributed heating 
and therefore increase the overall velocity dispersion in the 
disk. 

2. The absorption of waves at the inner Lindblad resonance 
can interrupt the relevant feedback wave cycle by preventing 
waves from reflecting back from the central to the outer 
regions. This is found to damp the spiral mode (see also the 
numerical results by Zang 1976). Thus the welcome role of 
inner Lindblad resonance is that of considerably reducing the 
number of unstable modes that can be supported by a galactic 
disk (see Bertin et al. 1977). The presence of a modest concen- 
tration of nuclear mass can easily lead to a model in which the 
higher m(m > 3) modes and the higher n modes (lower 
frequency) are damped. In particular, by this argument, we 
have checked that the two-armed spiral mode used in our 
modal survey can indeed be taken as a good representative 
mode for the family of basic states considered (see Lowe 1988). 

3. If the Lindblad resonances are too close (less than two 
epicyclic radii) to the corotation circle, chaotic behavior of 
stellar orbits is expected to occur (see Contopoulos 1983), and 
hence the standard analysis of physical processes is invali- 
dated. In particular, coherent phenomena such as angular 
momentum transfer across the corotation zone (and therefore 
the analogous time-dependent process of swing amplification) 
are expected to be inhibited. Most cooperative disturbances 
with m > 4 are expected to suffer from this difficulty, and thus 
to be unimportant, in contrast to the indication that might 

BERTIN, LIN, LOWE, AND THURSTANS 
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derive from naive local analyses or global calculations that do 
not include this dynamical feature. 

4. The (J, Q)-diagram (see Fig. 3) should be used by including 
the global stability properties of the disk. The parameter J is 
proportional to m, so that in principle the disk displays different 
levels of stability depending on the azimuthal structure of the 
mode. High-m modes, being characterized by higher values of 
J, would be expected to be more unstable. However, in our 
discussion we shall always focus, for astrophysical applica- 
tions, on the reference value of m = 2. In fact, our view is that 
most galaxy disks of astrophysical interest have the m = 3 
modes inhibited by ILR, consistent with the empirical fact that 
coherent three-armed structures are rarely observed. Note that 
fast rotating m = 3 modes that might be ILR-free would have 
small corotation radii (usually considerably smaller than the 
corotation radius of two-armed modes) in the region where the 
g-profile is expected to be relatively high. Actually this could 
even provide part of the physical reason why the Q-profile is 
rising toward the central regions of the disk. Therefore for the 
models that we consider of physical interest the (J, ©-diagram 
should be discussed on the basis of two-armed modes. Higher 
m-modes are likely to be unimportant. The m = 1 modes are 
expected to coexist but with less prominence, given their 
smaller J-values. 

5. Before comparing the precise numbers for © as indicated 
by the (J, ©-diagram, with observations, another feature to 
keep in mind is that a kinetic calculation is bound to identify 
an overall higher “marginal curve“ on the high-J side just 
because of the physical role of pressure anisotropy in the stellar 
dynamic system. 

g) Discrete Spectrum of Modes 
The evolution from a given equilibrium configuration of a 

dynamical system is usually not too sensitive to the initial 
conditions, provided that they are “reasonable.” However, if 
the system does contain a set of modes with a continuous 
spectrum, the situation may be different. A superposition of 
neutrally stable oscillations (part of a continuous spectrum) 
often leads to a solution that depends very much on the initial 
conditions and decays algebraically in time. Thus, even such a 
set of modes is not important when there are significantly 
unstable modes. In a previous paper (Lin and Bertin 1981), we 
have also explained why this issue is generally not important in 
the theory of spiral structure. Here we only notice that direct 
experience of spiral mode calculation in various galaxy models 
shows no evidence of realistic disks with a continuous spec- 
trum of spiral modes (see also Zang 1976). 

III. THE LOCAL DISPERSION RELATION IN AN INHOMOGENEOUS 
DISK 

A local stability analysis of axisymmetric self-gravitating 
fluid disks (see statement of the problem in § lia) leads to the 
following dispersion relation : 

0 = 

where 

g2 1 1 - v2 

4 ~ K~ K2 + J2/(l - v2) 

(co — mil) 

; 4Q 
J = m€0[ — 

d\n Q 
d In r 

1/2 

(3.1) 

(3.2) 

(3.3) 

aK 
kGg ’ 

nGo 
m 

K = 2kre0 , 

m,2 m,2 

k2 = k2 + ko = k2 + — = — (1 + jU2) . 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

Here v is the dimensionless frequency, Q (see Toomre 1964) and 
J are the relevant dimensionless stability parameters, e0 mea- 
sures the (local) self-gravity, and K is the magnitude of the 
appropriate dimensionless total wavenumber. The radial 
wavenumber kr appearing in equation (3.7) is defined by the 
usual WKB prescription, but it is allowed to vanish, if neces- 
sary. Indeed, kr and p = kr r/m can take on both positive and 
negative values. In fact, equation (3.1) is derived under the 
ordering: 

(3.8) 

and 

€g<u, 

K2 = 0(1) . (3.9) 

Comments on the derivation of equation (3.1), which essen- 
tially repeats that given by Lau and Bertin (1978), are provided 
in Appendix A. The assumed ordering of parameters is 
required for a local treatment of the potential theory. The 
dispersion relation (3.1) essentially describes the Jeans stability 
mechanism in disk geometry in the presence of differential 
rotation. 

For subsequent discussions it is convenient to introduce the 
following quantities : the pattern frequency Qp, 

Qp = Re (co)/m , (3.10) 

the shear parameter s, 

s = 

and the quantity 

l = K2 

J ln Q 
d In r ’ 

Xo(s) 
1 + ß2 

(3.11) 

(3.12) 

a) The (J, Q)-Plane 
The dispersion relation (3.1) clearly identifies J and Q as the 

stability parameters of the problem. Therefore the properties of 
the dispersion relation are naturally discussed in a (J, ©-plane. 
Actually a (In J, ln Q2) representation turns out to be most 
convenient. 

For the marginal case v2 = 0 we can plot the X-contours, i.e. 
the contour curves of constant K. These are shown in Figure 1. 
The family of X-contours can be divided into three groups : 

i) Short waves, with 2 < X; 
ii) Long waves, with j < K <2; 
iii) Open waves, with K < j. 

The long waves can be further divided into two subgroups : 
those with X > 9/8 and those with X < 9/8. 

The heavy contours in Figure la are the envelopes of the 
long wave contours. They delineate a lower left portion of the 
(J, ©-plane, where the solution surface is three-sheeted. Within 
this sector, the dispersion relation possesses three real solu- 
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-£n J 
Fig. 2.—Curves of constant pitch angle i = cot 1 /i in the {J, 0-plane. These curves are derived from the cubic dispersion relation (3.1) for the conditions s = 1, 

v = 0. Curves are labeled by the value of i in degrees. For v # 0, refer to the similarity transformations described by Berlin, Lin, and Lowe (1984). 

tions for K ; outside, it has only one. For the wave correspond- 
ing to this latter case, the direction of group propagation is the 
same as that for the short wave. It is important to note that the 
three-sheeted region extends only as far as the cuspidal point 
Pc, where J and Q have the values : 

Jc = ^27/64 =? 0.6495 ; Qc = ^32/27 ^ 1.0887 . (3.13) 

This means that moderate to large values of J and/or Q will 
place us squarely in the one-sheeted part of the plane, where the 
feedback cycle must consist of one leading and one trailing 
wave. Note that in the Lau-Bertin (1978) plot of J-contours for 
v2 = 0, this point Pc lies on the curve J = Jc and corresponds 
to the location where the point of inflection has a horizontal 
tangent. 

By examining the structure of the K-contours when v2 is 
varied, it is found that the cuspidal point Pc moves in the (J, 
Q)-diagram and divides it into two parts by the transition line 

In J + 3/2 In Q2 = In (16^/2/27). (3.14) 

Above this line there is only one solution for all values of v2 

(provided that the condition ju2 > 0 is met; see § Illh). 
For convenience of reference, we also present in Figure 2 

(prepared by Yue, private communication) the curves of con- 
stant pitch angle i = cot “1 /t in the (J, Q)-plane for the condi- 
tions s = 1 and v = 0 (from eqs. [3.1] and [3.12]). 

b) The Geometrical Constraint 
Because of a constraint which is intrinsic to the disk 

geometry, and not present in the plane geometry, the total 
wavenumber must exceed a minimum value m/r (see eq. [3.7]). 

This imposes the following physical boundaries 

and 

K > 2me0 = —f= > 
Vxöis) 

, , 4Í22 
x < xo(s) = ~~r s. 

(3.15) 

(3.16) 

Therefore the geometrical constraint brings in the shear rate, 
through as an independent parameter for the stability 
analysis. Note that, for low values of J, some of the solutions 
shown in Figure lb (as nearly vertical lines) are invalidated by 
this constraint. Those solutions are naturally omitted from 
Figure 2. 

c) Regimes of Spiral Structure 
We can classify different regimes of spiral structure on the 

basis of the value of J around the corotation region. The ter- 
minology that will be adopted refers to the morphology of 
spiral modes along the region of moderate growth (see § Hid). 

1. The regime of normal spiral structure is characterized by 
J < j. The regime of tightly wound spiral arms is obtained from 
the dispersion relation (3.1) by taking the limit J-^O. The 
regime of finite inclination of spiral arms can be investigated by 
considering the first-order corrections due to the presence of a 
small J. 

2. The regime of open spiral structure is characterized by 
J > f. In this regime moderate growth occurs only for very 
open structures (p2 < 1). 
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3. A transition regime is found when ^ < J < f. In this case 
the maintenance and the morphology of spiral structure can be 
quite complicated, as indicated by the propagation diagrams of 
the relevant modes. 

The first regime has been studied extensively in the literature 
and is well understood from the dynamical point of view. (Its 
physical basis is described in Paper I.) It will be briefly sum- 
marized in § IV. Most of the new results of the present paper 
refer to the second regime, which will be described in § V. The 
transition regime should be studied mostly numerically. 
Empirically (see survey of Paper I) the morphology of modes is 
found to change in a relatively smooth manner in the tran- 
sition regime; here extrapolation from the regime of either 
normal or open spiral structure turns out a posteriori to be still 
of interest (see discussion at the end of §§ lYb and of Vc). 

d) The Strip of Moderate Growth 
In the theory of normal spiral structure it has long been 

recognized that moderate growth occurs when the relevant 
wave cycle is all trailing (i.e. p<0) and the short and long 
wave branches merge and interact with each other at the coro- 
tation region (v2 = 0). Indeed, a “ marginal ” growth 
(corresponding to the case Q = 1 for tightly wound spirals) is 
found along the upper boundary of the envelope of Figure 1 
where the long and the short waves coincide. This is easily 
demonstrated in the WASER formalism (see § IV). 

In the regime of open spiral structure, overreflection oper- 
ates because of the interaction between leading (p > 0) and 

trailing (p < 0) waves. Therefore, a moderate growth is 
expected when p2 is very small at the corotation region. Indeed 
the “ marginal ” growth condition is found by setting p2 = 0 
and v2 = 0 in the dispersion relation (3.1). This is also easily 
shown in the WASER formalism (see § V). Thus the region of 
moderate growth in the regime of open spiral structure is iden- 
tified by drawing the /-contours in the (J, 0-plane (see Bertin, 
Lin, and Lowe 1984), and by selecting the contour where / = 
Xo(s) (see condition [3.16] imposed by the geometrical 
constraint). For a given value of s, the contour / = Xo(s) is the 
“ marginal ” growth line, while the others [/ < /0(s)] can be 
seen as contours of constant pitch angle (p2 = constant; see 
Fig. 2). 

A synthetic view of the regimes of moderate growth is given 
in Figure 3. 

e) Wave Propagation 
The general characteristics of wave propagation can be dis- 

cussed by calculating, from the dispersion relation (3.1), the 
group velocity of radial wave propagation 

along the various wave branches. This is important when con- 
structing the relevant wave cycles for the maintenance of spiral 
modes. Another point to keep in mind is that signals are 
absorbed at the Lindblad resonances (v2 = 1 ; see § II/). Then it 

-I 0 

<8n J 
Fig. 3. The (J, 0-diagram. Regions of various amounts of overreflection are identified in the relevant parameter space. In regions A and B the overreflection 

factors correspond to moderate instability (A, tight spirals; B, open spirals). In region C the strong overreflection implies rapid growth of modes. The simple 
two-wave analysis (see §§ IV, V) does not apply in the transition region, but trends are found to hold when compared to numerical surveys. Boundaries of region B 
are here calculated for /r = In 2 and /r = 2 in the case s = 1 (see § V), but their precise definition is less important for the overall perception. The key feature of the 
diagram is that it gives the essential information for interpreting stability diagrams, such as those shown in Fig. 5 of Paper I. However, judicious use is required, since 
inhomogeneties and boundary conditions enter the global problem. 
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is useful to check which pitch angle range is suggested by the 
fluid dispersion relation in the vicinity of the Lindblad reson- 
ances. There we have K ~ 4/g2; i.e., 

Thus, in general, we expect a fairly small pitch angle (jU2 > 1) at 
the outer Lindblad resonance where €0Q

2 is expected to be 
small (the situation could change for high m-modes). In con- 
trast, in the inner regions of a galactic model we may expect a 
larger value of €0 and of Q. Thus it will not be unusual to have 
waves refracted outward at an “inner turning point” before 
reaching the inner Lindblad resonance. 

Note that a Lindblad resonance is reached by only one wave 
branch. From equations (3.17) and (3.1) it is found that only 
trailing waves approach Lindblad resonances. Note also that 
in the regime of tightly wound spiral waves (J -► 0, k ~ kr) the 
long wave branch formally reaches Lindblad resonance with 
solution k2 ~ 0. In the present context, this is a spurious solu- 
tion which is removed in our analysis (eq. [3.1]) that includes 
the geometrical constraint (see § Illh). 

/) Prototypes of Modes 
Due to inhomogeneities and the complicated structure of the 

transition region, many modes defy a simple analytical treat- 
ment. However, it is possible to identify a few prototypes of 
modes that can be easily understood in terms of our dispersion 
relation. These actually provide the key morphological struc- 
tures of a survey like the one presented in Paper I. 

Two of these prototypes were essentially described earlier by 
Bertin (1983a). In one case, the waves in the mode are uni- 
formly in the regime of normal spiral structure (low Q and low 
J ; see § IV). In the other case the mode is uniformly in the 
domain of open spiral structure (high Q and high J; see § V). 
These prototypes will be shown in Figure 6. 

A third important prototype, which is naturally identified in 
surveys of the B-type of Paper I, corresponds to a situation 
where the region inside the corotation circle is essentially in the 
domain of open spiral structure and the region outside the 
corotation radii is in the regime of normal spiral structure. This 
leads to morphology of the SB(s) type, and will be further 
discussed in § VI. 

The other simple alternative, viz. a regime of open spiral 
structure outside and normal spiral structure inside corotation, 
does not appear to occur naturally in the astrophysical 
context. 

IV. THE REGIME OF NORMAL SPIRAL STRUCTURE 

Investigations of tightly wound spiral density waves (see, 
e.g., Lin and Lau 1979; Bertin 1980, and references cited 
therein) have led to the conclusion that some realistic galaxy 
models (see Paper I) can support self-excited global normal 
spiral modes, which owe their maintenance to the presence of 
trailing waves with opposite propagation properties and are 
excited mostly as a result of a WASER (overrflection) mecha- 
nism (Mark 1976) at corotation. In the regime of finite inclina- 
tion of spiral arms the presence of shear and self-gravity 
enhances the amplification of spiral waves, as described by the 
parameter J (Bertin and Mark 1978; Lau and Bertin 1978). In 
fact, tangential forces ease the transfer of energy to the outer 
regions, thus enhancing the overreflection process at corota- 
tion. As a result, sizable growth rates of normal modes can be 

found even in models characterized by values of Q slightly 
larger than unity, which is the marginal case for axisymmetric 
disturbances. Nevertheless, the same studies show that the 
growth rates of normal modes are still quite sensitive to the 
value of Q. 

a) AT urning Point Equation 
We rederive the earlier results on normal spirals in the 

present context of a cubic dispersion relationship. We consider 
the asymptotic ordering J ~ €0 < l and p2 $> 1, so that K2 ~ 
K2 = (2re0 kr)

2. Then the dispersion relation (3.1) reduces to 

K?¥-~Kr-(l-v2) + A, (4.1) 

where 

A = 
J^_ 

K2
r 

J2Q* 
4 * 

(4.2) 

In estimating the value of the correction A we have assumed 
that Kr is close to its double root K, ^ 2/Q2, where the short 
and the long wave branches merge. This algebraic dispersion 
relation is associated with the following turning point equa- 
tion: 

u" + (SKfu = 0 , (4.3) 
4r e0 

where 

m)2 = ^-2{v2-l+^-2 + Aj. (4.4) 

Note that, in the WKBJ limit far from corotation, equation 
(4.3) corresponds to a wave solution characterized by 

Kr = K, ± (ÔK) . (4.5) 

Originally the theory developed in the regime of tightly wound 
spiral arms (J = 0) had been questioned by some authors, 
based on the argument that the important long-wave branch 
could disappear for spiral waves with finite inclination. The 
analysis that led to equation (4.3) showed that when J is rela- 
tively small, the theory of spiral modes is not changed qualitat- 
ively and that the relevant correction enhances the WASER 
process by easing the transfer of angular momentum across the 
corotation circle. This can be described by introducing the 
effective stability parameter 

1 

Ge2ff 4+ïj18* 
(4.6) 

We wish to emphasize that equation (4.3), based on the fluid 
model, is supported by the results of the stellar dynamic theory 
(Bertin and Mark 1978). 

The approximation used in deriving equation (4.3) is such 
that the “marginal” growth case is characterized by geff = 1, 
i.e. ôK = 0 at v2 = 0. In other words, within this approx- 
imation we are identifying the upper boundary of the envelope 
of figure 1 by means of the equation 

^+ij2e4 = i. (4.7) 

This simple relation is accurate only for small values of J. A 
more general turning point equation can be constructed in the 
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following way. We define K, as the exact double root of the 
dispersion relation (3.1), where the short and the long wave 
branches meet (i.e., as the value of Kr along the upper part of 
the envelope of Fig. 1). Then we define ÖK as the difference 
between Kr and K, (see eq. [4.5]). In this way we have implic- 
itly formulated a turning point equation of the form (4.3) that 
can be easily handled by numerical investigation of equation 
(3.1). This equation has the advantage of possessing a 
“ marginal ” growth line in exact agreement with the upper part 
of the envelope of Figure 1. 

b) Numerical Analysis 
Numerical results on normal spiral modes, in regimes that 

are suitable for the simple treatment discussed in the previous 
subsection, have been presented in a number of papers, after 
the first announcement by Bertin et al (1977) based on stellar 
dynamic equations, and the first results obtained using Panna- 
toni’s code (Pannatoni and Lau 1979; Pannatoni 1983). 

Figure 6 will show the properties of an exact normal spiral 
mode for a model in a sequence that was studied in Paper I. A 
simple calculation based on the integration of the ordinary 
differential equation (4.3) can reproduce its main character- 
istics very well. The a-spectrum for the normal spiral mode is 
also shown in Figure 6. On the trailing side, the long and the 
short waves are not detected separately, even though they are 
known to cooperate in the mode maintenance. As shown in the 
examples given in Figure 2 of the paper by Haass, Bertin, and 

Vol. 338 

Lin (1982), the tightly wound spirals appear to be dominated 
by a peak in the energy distribution in the trailing waves. A 
small feature on the leading part of the spectrum can also be 
present. This is interpreted as a “contamination” due to the 
possibility of a leading wave cycle. This issue of 
“ contamination,” which adds more continuity to the transition 
between normal tight and open spiral modes, has been studied 
in detail by Lin and Yue (1989). 

The propagation diagram for the same normal spiral mode 
is given in another frame of Figure 6. Here it is very easy to 
identify the inner reflection point of equation (4.3), as deter- 
mined by the properties of the equilibrium model in the bulge 
region. The relevant wave cycle, which is excited by conversion 
of long trailing waves into short trailing waves at the corota- 
tion circle, can also be recognized as well as the possibility of 
contamination with the “ leading resonant cavity.” 

The role of long waves is best illustrated in Figure 4. Here we 
show the first two-armed modes for a model described in 
Paper I; the density contours of the modes has been shown in 
Figure la of that paper. The a-spectrum clearly reveals the 
presence of long waves and their relative importance in the 
mode maintenance. 

Therefore we recognize that normal spiral modes with a 
small pitch angle may have a complex wave composition; on 
the other hand, the simple approximate theory based on an 
all-trailing wave cycle gives a fairly accurate prediction and 
description of the relevant global modes, so far as the pitch 
angle does not exceed 10°. 

BERTIN, LIN, LOWE, AND THURSTANS 

& 

C 

—15 a/m 15 —15 a/m 15 

Fig. 4.—Examples of normal spiral modes with small pitch angle. The two dominant modes are displayed for a model discussed in Paper I (see Fig. la. Paper I). 
Their a-spectra (bottom) show a contamination by leading waves ; note, however, the clear appearance of long waves in the second mode on the right. 
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V. THE REGIME OF OPEN SPIRAL STRUCTURE 

In this section we restrict our attention to those conditions 
where the cubic dispersion relations (3.1) admits only one real 
root for K. This holds when the parameter J is fairly high 
(J > I, for example). 

a) A Turning Point Equation 
Since there is only one real solution for K, there is only one 

real solution for g2 (see definition [3.7]). Thus we have 

H2 = £2(v2; J, Q, s) , (5.1) 

b) The Overreflection Factor 
From the above expressions we can easily discuss the overre- 

flection process at corotation. We consider a feedback cycle of 
leading and trailing waves. The leading wave approaching the 
corotation zone is reflected as a departing trailing wave with 
higher energy density (or flux of angular momentum), accom- 
panied by another departing trailing wave traveling to large 
radii, were this is absorbed (radiation boundary condition). To 
calculate this overreflection factor we use the WASER formal- 
ism. If we neglect terms 0(v4), then Eqs. (5.2) and (5.4) lead to 
the following formulae for overreflection : 

where by /i2 we denote the analytic relationship. Then we can 
construct the following associated differential equation : 

S + {j)2^{v2;7’ Ô’ s)7 = 0, (5-2) 

where x = R\n (r/R) and R is a reference radius. This ordinary 
differential equation leads to the dispersion relation (5.1) or 
(3.1). The physical meaning of Y can be left open for the 
moment. In fact, it is not important in the determination of the 
eigenvalues of the problem. 

Equation (5.2) should be integrated with an appropriate 
boundary condition to yield eigenmodes. A radiation boundary 
condition should be applied to correspond to the propagation 
of waves from the corotation zone to infinity without reflec- 
tion. The resulting growth can be interpreted in terms of a 
WASER process between leading (g > 0) and trailing (g < 0) 
waves. 

In order for the WASER process to be characterized by 
moderate overreflection, the function g2 should be close to a 
double zero for v2 ~ 0 (see following § Vh). Therefore it is con- 
venient to expand the dispersion relation in powers of g2 and 
to examine the special case where g2 < 1. In this situation we 
may expect to obtain a good approximation by neglecting 
terms 0(g% as was effectively done earlier by Bertin (1983a). 

For g2 1, equation (3.1) can be approximated by 

Q2 _ xÆ(s) (1 - v2ko(s) 
4 J J2[l - v2 + x0(s)] 

Í (1 - v2)3Xo(7 1 2 
1 2J J2[l - v2 + *o(s)]2.r 

(5.3) 

where we have made use of definitions (3.6) and (3.12). Then in 
the vicinity of the corotation region (v2 1) we can expand 
equation (5.3) further and find 

= ^[v2 + ^ + 0(o], (5.4) 

rr = ry+ i, (5.5) 

In T/ = itfica j■ (5-6) 

The first relation is just the equation for the conservation of 
wave action across the corotation circle. The quantity Fr is the 
factor of overreflection, i.e. the ratio of the flux of angular 
momentum in the reflected (trailing) wave to that in the leading 
wave approaching the corotation circle from the central 
regions of the galaxy. 

Note that the formula (5.6) can be used to estimate the over- 
reflection of open waves even when glQ is not small. For this 
purpose, one should apply the expansion (5.4) directly to the 
general relation (5.1) without considering the intermediate 
expansion (5.3). To be sure, when glQ is not small, equation (5.6) 
shows that high growth occurs. In the context of global modes 
this would also imply high growth rates, i.e. a large imaginary 
part of v. These situations of high growth require a more 
careful treatment of the overreflection process, especially when 
applied to the estimate of the growth rates of the global modes. 
Therefore expressions such as equation (5.6) are best suited to 
describe regimes of moderate growth where the expansion (5.3) 
is a reasonable approximation. 

In Figure 3 we had indeed shown contours of constant index 
of overreflection Ir = In Fr in the (J, 0-plane, for the special 
case s = 1 bounding the region B of moderate growth. In the 
same figure, below the transition region, we also draw the 
analogous contours for the regime of normal spiral structure. 
For the regime of open spiral structure the contours generally 
resemble the X”contours shown by Bertin, Lin, and Lowe 
(1984). The contour Ir = In 2 is the “marginal” growth line 
that would correspond to Qeff = 1, in the notation used in § IV. 
This curve is easily identified because it corresponds to gco = 0 
(see eq. [5.6]). From equation (5.3) we see that it is determined 
by the equation : 

Q? = yifoöö _ Xo(s) i5 7) 

4 J J2[l + xois)! ' 

where gco and gt are functions of ß, J, and x0(s). Thus in this 
case of small g2 we have derived a simple expression for the 
function g2 (see eq. [5.1]). 

In Appendix B we study this regime of open spiral structure 
(g2 < 1) by direct inspection of the Euler-Poisson equations, 
without the intermediate step of deriving equation (3.1). The 
resulting differential equation differs from equation (5.2) with 
the specification of equation (5.4) by the addition of a term in 
the derivative of the first order. Numerically, the difference is 
found to be unimportant (Lowe 1988). In addition, the analysis 
identifies Y as the enthalpy perturbation (multiplied by a 
slowly varying factor). 

By varying s, equation (5.7) describes the “ marginal ” growth 
lines for open waves. These curves were shown earlier by Lin 
and Bertin (1985) (see also previous discussion in § Hid). Note 
that necessary conditions for local instability, i.e. for having 
HÎa > 0, are 

Q2<l + Xo, (5-8) 

which identifies the maximum of the “ marginal ” growth curve, 
and 

J > ; (5.9) 
1 + Xo 
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which essentially identifies the transition to the regime of open 
spiral structure. The latter condition corresponds to Toomre’s 
condition for the efficiency of the “ swing amplifier ” (Toomre 
1981). 

As an application of these results we may consider Toomre’s 
example (Toomre 1981; Fig. 8, p. 125) of “swing” amplifica- 
tion. The situation that he studied is characterized by flat rota- 
tion curve (5 = 1, Xq = 2), relatively high dispersion speed 
(Q = 1.5), and moderately high active disk mass (J = 21/2/2). 
Note that both conditions (5.8) and (5.9) are satisfied. In fact, 
this example lies slightly below the “marginal” growth curve 
for open waves, and it is subject to moderate amplification. 
This result can be used to interpret Toomre’s example and is 
obviously in contrast with the predictions obtained by 
extrapolating the regime of normal spiral structure. Indeed, the 
use of the dispersion relation for tightly wound spiral waves 
(eq. [4.1] with A = 0) would have indicated a wide area of 
forbidden propagation around the corotation circle (as shown 
by the dotted circle in Toomre’s Fig. 8), but such an applica- 
tion is not valid in this regime of open spiral structure. 

A more interesting application of our analysis is the use of 
our equation (5.2) to calculate global open modes, as we shall 
discuss in § Vc. This is possible because in our approach we 
can easily include the role of inhomogeneities in the galaxy 
model and therefore of feedback mechanisms that may operate 
in the inner regions. Mathematically, from the propagation 
diagram associated with equation (5.1) it is found that equation 
(5.2) can have a simple turning point at a radius not necessarily 
close to the galactic center. Thus the WASER process at coro- 
tation is supplemented by a feedback process that can main- 
tain a global mode. Discrete self-excited global open modes are 
then obtained as a result of proper amplitude and phase 
matching at the turning points, as required by the appropriate 
boundary conditions of evanescent wave at the origin and of 
outgoing wave outside the corotation region. With the overre- 
flection factor obtained, it is then easy to establish the approx- 
imate relationship 

2yr = Ir (5.10) 

where t is the time of the feedback cycle, calculated on the basis 
of equation (3.17), properly modified to take into account the 
difference between the value of Fr for y = 0 and that for y ^ 0. 
We note that equation (5.10) provides an estimator for the 
growth rate y of a mode in the following sense. For each 
assumed value of Qp we may calculate a value for y, even when 
Qp is not an eigenvalue. Therefore we obtain an estimate of 
y(Qp) for all potential values of Qp, even before calculating the 
physically admissible values of Qp. 

c) Numerical Analysis 
In order to consider a model suitable for applications of this 

regime of open spiral structure, we should take cases of rela- 
tively high J. Figure 6 shows the density contours of an exact 
mode for a model in a sequence that was studied in Paper I. 
The mode is very open. In the figure the dotted corotation 
circle gives an indication of the “ size ” of the bar, which is 
much longer than the “ short ” bar in some of the modes pre- 
sented by Haass, Bertin, and Lin (1982). It is more similar to 
the simple example presented by Bertin (1983a). Modes of this 
type can be obtained by integrating directly the simple differ- 
ential equation (5.2). The a-spectrum for the exact mode is also 
shown in Figure 6. The leading and the trailing waves are not 
detected as separate peaks, even though they are known to 

cooperate in the mode maintenance. The a-spectrum is thus 
quite different from that of a normal spiral mode (see the rele- 
vant frames in Fig. 6). The mode is maintained and amplified 
by the process of feedback and overreflection, as described in 
§ Vh. 

For the simple ordinary differential equation (5.2), a syn- 
thetic representation of its accuracy and of its domain of appli- 
cation is given in Figure 5. For a number of modes, 
comparison is made between the value of the growth rate verti- 
cal axis predicted by the ordinary differential equation and the 
actual exact value determined by the integro-differential equa- 
tion. Perfect agreement would have all points concentrated on 
the dashed line at 45°. Scatter around this line is found to be 
within acceptable limits. The detailed properties of the survey 
used to construct Figure 5 are given by Lowe (1988). Here we 
just mention that this diagram is a direct proof of the flexibility 
of the asymptotic theory of open modes, since many of the 
modes considered are not as “clean” as the prototype of 
Figure 6, especially when the transition region of Figure 3 is 
approached. Thus a certain degree of extrapolation is allowed 
from the conditions described in the present section, yet the 
numerical agreement is still very good. 

d) V arious T ypes of Bar Modes 
In the previous Paper I we have addressed the astrophysical 

interpretation of open bar modes and we have related some of 
the present work to the concept of bar-driven spiral structure. 
At this point, we would like just to comment briefly on the 
dynamics of bar modes. 

Much of the past work on “ bar instabilities ” actually refers 
to Ai-body simulations that recognized the possibilities of 
“violent instabilities” leading to more stable configurations 
characterized by a bar shape (e.g., see Miller, Prendergast, and 
Quirk 1970; Hohl 1971). In contrast, in the regime that we 
have considered, as in the example by Bertin (1983a), the bar 
mode has only a moderate growth rate. In this sense it may 
differ from some “ violent ” bar modes reported in the literature 
(which have presumably been calculated in different parameter 
regimes; note that the modes presented by Haass, Bertin, and 
Lin 1982 have a relatively small bar and high growth rates). On 
the other hand, some numerical simulations may just have 
started out in the high growth region C of the (J, Q)-diagram 
(see Fig. 3) at relatively low values of Q. Then the resulting 
violent instability (which initially is expected to have an open 
spiral appearance; see the high growth prototype of Fig. 6) may 
lead to a rapid increase of the dispersion of stellar velocities 
and eventually to a new state of equilibrium. Therefore the 
disk, in the absence of a gaslike component, could have 
evolved mostly along a vertical line in the (J, Q)-plane and 
reached the domain of moderate growth characterized by open 
bar morphology. However, we feel that interpretations of 
AT-body experiments should be examined more carefully, in 
view of the many delicate issues involved (see Lin and Bertin 
1985). It is to be regretted that Athanassoula and Sell wood 
(1986) did not present sufficient information between modal 
shape and growth rate in their identification of modes. 

VI. CONCLUSION 

In this article we have examined the physical properties of 
spiral modes calculated in a fluid model by means of a local 
dispersion relation. This equation is cubic in the magnitude of 
the total dimensionless wavenumber K and, for any value of 
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Fig. 5.—Test of the asymptotic theory. For a number of modes the predictions of the simple ordinary differential equation for open waves (see this § V) are 
compared with the exact results obtained from the integro-differential equation (see § II and Paper I). Various regimes are covered: for rQ = 2, ßOD = 1(0)> 
Qod = 1-2('ht), Qod = 14(TAr);for rQ = 3,0OD = !(□), QOD = 1.2(0); for rQ = 4, QOD = 1( + ), QOD = 1.2( x ).The general agreement is very satisfactory. 

TABLE 1 
Mode Prototypes 

SBO SB(s) S (low growth) S (high growth) 

6 oo = 1-500 
A = 15% 
rQ = 2.0 

fcut = 2.0 
rn = 2.0 

= 15.0 
yP = 0.10 

rjh = 2.27 
r0Jh = 3.96 
rjh = 0.57 
Jco = 0.604 
Qco = 1.500 
sco = 0.954 

Ôoo = i-ooo 
A = 15% 
rQ = 6.0 

'•cut = 6.0 
'*0 = 2.0 

QP = 13.8 
yP = 0.52 

rjh = 2.49 
rolr/h = 4.31 
rjh = 0.30 
Jco = 0.538 
Ôco= 1-096 
sco = 0.961 

Qco = 1-000 
A = -35% 
rQ = 2.0 

''cut = 8.0 
'0=1-5 

fíp = 26.1 
yP = 0.60 

rjh = 1.29 
rjh = 2.27 
rjh = 0.69 

Jco = 0.492 
Ôco = 1-002 
sco = 0.922 

ôoo = 1-000 
A = 15% 
rQ — 2.0 

''cut = 2.0 
ro = 2.0 

QP = 26.7 
yP = 3.00 

rjh = 1.21 
rjh = 2.20 
rjh = 0.47 
Jco = 0.858 
ôco = 1-004 
sco = 0.855 

Note.—The data in each column refer to those for one morphological 
type shown in the collection of four patterns in the upper left frame of Fig. 
6. SBO is the upper left pattern in this collection, SB(s) is the upper right 
pattern, S (low growth) is at lower left, and S (high growth) is at lower 
right. 
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116 BERTIN, LIN, LOWE, AND THURSTANS 

the dimensionless frequency v, and hence may have three real 
solutions, but it admits only one real solution above a certain 
transition line in the (J, 0-diagram (see Fig. 1). In general, on 
this basis we can identify six types of waves, or wave branches. 
They are the short, long, and open waves, and in each case we 
can distinguish trailing and leading waves. The analytical 
theory of normal spiral modes is based on short and long 
(trailing) waves. The theory of open barlike modes is based on 
open waves of leading and trailing forms. Note that open 
waves have the same propagation direction as short waves. It 
has been shown that the two different kinds of modes occur in 
separate domains in the space of dynamical parameters [see 

Vol. 338 

the (J, ß)-diagram, Fig. 3]. The two domains are connected by 
a “ transition region ” where a mixture of various wavecycles is 
expected to take place, and the corresponding modes have 
features that appear in both normal spiral structure and barred 
spiral structure. 

Modes of general surveys such as the one described in Paper 
I can be studied, interpreted, and predicted in terms of these 
dynamical mechanisms. A summary of the basic prototypes of 
modes that correspond to various regimes identified in the 
present paper is given in Figure 6 (see also Table 1). Note that 
the open spiral mode shown in the lower right corner is sup- 
ported by a leading-trailing wave cycle, but is not expected to 

Fig. 6.—Mode prototypes : four key morphological types are compared (SBO, SB(s), and S, all with moderate growth; a violently unstable S mode at the low right 
corners). The model shapes are on the top left part of this composite figure. The a-spectra (top right) are given in arbitrary units; the horizontal axis has a/m from —15 
to +15. The real and imaginary part of the mode eigenfunction (bottom left) are given as a function of r; the vertical line indicates the location of the corotation 
radius. The propagation diagrams (bottom right) have v on the vertical axis from — 1 (bottom) to +1 (top) ; on the horizontal axis p runs from —15 to +15. Numerical 
data for each of these prototypes are given in Table 1. Note that, even in the case where the mode is supported by a leading-trailing cycle, the waves are refracted 
outward by the bulge region and do not reach the center. 
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C\2 

0.0 0.1 0.2 

e 
o 

Fig. 7.—Sequence of models selected to be subject to modes with moderate growth rate (yP « 0.8). The horizontal scale, e0 — (j)2nG<r/rQ2, is a measure of the 
active surface density, the vertical scale, e = c/ric, is a measure of the equivalent dispersion speed. Each symbol represents the conditions at the corotation circle for a 
model taken from the numerical survey of Paper I. The straight line identifies the condition 0=1. This figure is the empirical counterpart of the (J, 0-diagram 
discussed in Fig. 3. 

be observed because it is violently unstable. The fact that 
extensive modal surveys such as that of Paper I can be cate- 
gorized in terms of the simple analytical theory presented here 
is further illustrated in Figure 7. In this figure the models that 
are displayed are selected on the basis of the moderate growth 
rate criterion. The data indeed group themselves roughly in 
two straight lines with a rather sharp turn at (e0, e) = (0.1, 0.1). 
The lower part corresponds to region A in Figure 3 (normal 

spirals), the upper part to region B in Figure 3 (open barred 
spirals). 

It is interesting to note that the same modes that are used as 
prototypes for illustration of the dynamical mechanisms in this 
paper are also the basic prototypes for the extensive survey of 
Paper I which has allowed us to draw a complete correspon- 
dence between modal shapes and Hubble morphological types 
of spiral galaxies. 

APPENDIX A 

ON THE DERIVATION OF THE LOCAL DISPERSION RELATION IN AN INHOMOGENEOUS DISK 

The dispersion relation has been derived by following the procedure and the arguments given by Lau and Bertin (1978) under the 
ordering defined by equations (3.8) and (3.9). The present equation (3.1) generalizes their dispersion relation (see their equation [12]) 
in that here we have retained the (1 — v2)-dependence of the B term (see their eq. [B9] and our eq. [2.5]). In turn, we find a (1 — v2)- 
dependence in the denominator of the second term of the right-hand side of equation (3.1). Note that the original Lau-Bertin 
dispersion relation is obtained from the present equation (3.1) by replacing J2/(l — v2) with J2. 
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118 BERTIN, LIN, LOWE, AND THURSTANS Vol. 338 

The (1 — v2) factor had been omitted for simplicity, since Lau and Bertin (1978) focused on the cases where J2 is small and on the 
marginal case (v2 = 0). Obviously their dispersion relation coincides with equation (3.1) when v2 = 0. In addition, results based on 
the study of the dispersion relation are not affected qualitatively by the (1 — v2)-term. In fact, in recent announcements of results on 
open spiral structure (Bertin 1983a; Lin and Bertin 1985) we made use of the original Lau-Bertin relation. However, for quantitative 
applications, equation (3.1) should give more accurate results. This explains why, in a more complete investigation (starting with the 
paper by Bertin, Lin, and Lowe 1984), we have decided to make use of equation (3.1). 

Here we list a few points where some quantitative differences between the present more general dispersion relation and the 
Lau-Bertin equation are found, (i) The expression for geff (4.6) is slightly changed (compare the present eq. [4.4] with eq. [3] in Lau 
and Bertin 1978 or eq. [71] in Lin and Lau 1979). (ii) The slope of the transition line changes (compare eq. [3.14] with the condition 
stated in Lin and Bertin 1985, p. 520). However, the location of the cuspidal point Pc (see eq. [3.13] is unchanged, (iii) The 
overreflection factor (5.6) is slightly modified, but the marginal growth line for open waves (5.7) is unchanged. In particular, 
conditions (5.8) and (5.9) can be derived also from the original Lau-Bertin dispersion relation. 

As noted by Hunter (1983) the Lau-Bertin relation is open to criticism because some “ out-of-phase ” terms were omitted. Here we 
do not add anything new to this point. We just recall that the terms mentioned above were calculated and listed by Lau and Bertin 
(1978) and refer the reader to the arguments given in that paper for their omission. The merits of equation (3.1) stand on its wide 
range of applicability in studying and in interpreting “ exact ” results and on its simplicity. These features would be lost in more 
complete formulations (for the regime of open spiral structure; see Appendix B). 

A comment should also be made on the resonant term at corotation. Here we follow the arguments and the quantitative analysis 
by Bertin and Haass (1982), who showed that the stellar corotation resonance is weak and thus the fluid resonant term should be 
omitted. Their analysis strictly applies to the regime of normal spiral structure alone, but we expect their conclusion to hold 
qualitatively unchanged, even in the regime of open spiral structure. Note that in certain galaxy models the fluid resonant term is 
unimportant because the relevant gradient is small. 

For those applications where the corotation zone is gas-dominated, and thus subject to a more “fluid” behavior, the role of the 
corotation resonance term should be reconsidered. 

APPENDIX B 

THE DIFFERENTIAL EQUATION FOR OPEN WAVES 

A differential equation for open waves can be derived directly from the Euler-Poisson equations without the intermediate step of 
constructing the local dispersion relation (3.1). We start with equation (2.2) that we rewrite as 

with 

(1 — v2) 

d2 d 
*^ + h7x + m- 

(Bl) 

(B2) 

Here A = x/R is a dimensionless logarithmic radial coordinate (see eq. [5.2]), and H, M correspond to the functions A, B (see eqs. 
[2.4], [2.5]) of the operator L (eq. [2.3]). The epicyclic parameter e is defined as e = €0 Q. Then the Poisson equation reads 

(£-2 + RV* - m2 . 

The regime df open waves (which corresponds to /x2 <0 of § V) is defined by the ordering: 

m > 1 , 

Id ' 
m dA 

and 

e 1 . 

On the basis of equations (B4) and (B5), the Poisson equation (B3) admits the local solution 

d2 d\ ( 2 
+ - 

^ = “f1+¿ +¿)](¿h) • 

(B3) 

(B4) 

(B5) 

(B6) 

(B7) 
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This can be used to eliminate i/^ from equation (Bl) and obtain the following equation for h1 : 

Contributions due to higher order derivatives are found to be small. If (i) we drop the corotation resonance term in M (see eq. [2.5]), 
(ii) we drop the gradients of the quantity (€, Q), and (iii) we omit the first-order derivative term in equation (B8), then the derived 
differential equation coincides with equation (5.2) for /¿2 1, provided we identify Y with /ii. The resonant contribution (i) is 
understood in a satisfactory way (see also comment in Appendix A). The role of the effects due to terms related to (ii) and (iii) should 
be discussed by means of quantitative numerical analysis. This latter test has been performed by Lowe (1988), who found the 
differences with respect to equation (5.2) to be unimportant. 

APPENDIX C 

COMMENTS ON THE PROCESS OF OVERREFLECTION 

In the present paper we have described the process of overreflection by means of the WASER formalism based on the use of a 
simple dispersion relation (see §§ IV, V). A different formulation which holds in a “ corotation zone ” has often been applied to study 
the relevant excitation mechanisms in a large class of problems ranging from plasma physics to meterology. This considers a 
homogeneous sheet with uniform shear and refers to “swinging ” wave packets (for the problem of spiral structure, see Goldreich and 
Lynden-Bell 1965; Julian and Toomre 1966; Goldreich and Tremaine 1978; Toomre 1981; for the general hydrodynamic problem, 
see Marcus and Press 1977; Tung 1983, and references therein). Hunter (1983) remarked that “the question of how to fully reconcile 
this transient kind of instability with normal mode analysis remains.” Drury (1980) had taken an important step in showing that the 
amplification resulting from the conversion of leading into trailing waves can indeed be described in the context of steady wave 
trains. A more complete discussion of these issues was provided by Lin and Thurstans (1984), who contrasted the behavior between 
wave trains and swinging wave packets and showed how such a diverse behavior can be unified in a spectral approach. Thus it is 
found that “ swing amplification ” has a counterpart in the context of steady wave trains. In particular, it is not necessarily transient, 
nor necessarily powerful. An important issue that is more easily resolved in the modal approach of the present paper, where 
inhomogeneity and the boundaries are recognized from the beginning, is the “joining” of solutions near the corotation zone with 
those outside such a zone in the general field. In terms of swinging wave packets in the homogeneous uniform shear sheet this issue 
remains as yet unresolved. 

The spectral approach considered by Lin and Thurstans (1984) refers to the Fourier representation: 

'¥(x,y,t)= £ P 'VJl , (Cl) 
m= — oo J— oo 

where x = JR In (r/R) and y = R9 are Cartesian coordinates localized at the corotation circle and rj = m/R is the azimuthal 
wavenumber. The general solution for disturbances in the homogeneous uniform shear model can be written as 

vjt t)=i fm + ctfV'rM;), (C2) 
i=l 

where c = sQrç,/- are two arbitrary functions, and 'í>¿m)(^) are two linearly independent solutions of the time-independent “oscillator 
equation” (see Lin and Thurstans 1984, eq. [7]). By a proper choice of the arbitrary functions one can describe quasi-steady wave 
trains or swinging wave packets. The two different limits and the properties of the oscillator equation are discussed at length by Lin 
and Thurstans (1984). 

Pegoraro and Schep (1986) point out that in the spectral representation of an inhomogeneous problem one should allow for a 
discontinuity at /c = 0, to be discussed in terms of the appropriate physical boundary conditions. 

Note that even though the different approaches are equivalent, the use of swinging wave packets tends to emphasize fast evolution 
of spiral features, and therefore it is best suited to describe the early stages of an evolution process. On the other hand, the modal 
approach brings out the slow evolution of the spiral grand design in the later stages of an evolution process. The contrast between 
early and late stages involves a discussion of the propagation time, the shear-rate time, and the time required for the relevant 
astrophysical processes (such as star formation) to take place. Indeed, the “ modal behavior ” of a disturbance is expected to take 
over very quickly, especially when the role of the boundaries is properly taken into account. To appreciate the generality of these 
arguments, one may consider an example in the classical theory of heat conduction, as discussed by Jeffreys and Jeffreys (1956, 
pp. 563-565), or the so-called “ Telegraph equation,” as discussed by Doetsch (1943, pp. 366-369). 
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