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ABSTRACT 
We apply a radiation-driven wind model that incorporates the effects of rotation and an open magnetic 

field to Wolf-Rayet stars in order to address the wind momentum problem. For the flow in the equatorial 
region we study the dependence of the mass-loss rate and terminal velocity on the rotation rate and surface 
magnetic field. The transition from a purely radiatively driven wind to a rotationally and magnetically driven 
wind is investigated for the case in which the stellar luminosity is consistent with Maeder’s mass-luminosity 
relation. If the equatorial wind is to explain both the observed high mass-loss rate and fast terminal speed of 
Wolf-Rayet stars, the star must have a field strength of 104 G and be rotating at a rate more than 85% 
maximum velocity. Such a model gives rise to a “spin-down” problem because the magnetic braking will 
decrease the rotation rate on a time scale of only 104 yr. We therefore develop an alternative picture for 
Wolf-Rayet winds in which there is a slower but denser equatorial flow and a fast radiation-driven wind at 
higher latitudes. This axisymmetric model requires reinterpretation of the observed radio flux and the P Cygni 
profiles. We present wind models for V444 Cyg, CV Ser, and y2 Vel using luminosities that are consistent with 
interior theory. If the stars have field of ~1500 G and rotate at rates greater than ~85% maximum, they can 
satisfy the radio and UV observations, hence explain the momentum problem, and also overcome the spin- 
down problem. 
Subject headings : magnetic fields — stars: rotation — stars: winds — stars: Wolf-Rayet 

I. INTRODUCTION 

The winds from Wolf-Rayet stars are characterized by large 
mass-loss rates (M = 0.1-1 x 10-4 M0 yr- x) and high termin- 
al velocities (t^oo = 1000-3000 km s -1 ; Abbott et al. 1986). This 
combination makes the wind momentum flux Mv^ extremely 
large and leads to now well-recognized “wind momentum 
problem” (Barlow, Smith, and Willis 1981; Cassinelli 1982). 
The problem can be demonstrated by setting the total photon 
momentum flux (L/c) to the final observed momentum flux 

we find the “single scattering” maximum mass-loss 
rate Mmax = (L/tf/v^ (Cassinelli and Castor 1973). Typically, 

is about 5-50L/c for the Wolf-Rayet stars (Abbott et al 
1986; Barlow et al. 1981), yet the best that radiation-driven 
wind theory for Wolf-Rayet stars can do, even with multiple 
scattering of the photons, is about Mvœ = 5L/c (Friend and 
Castor 1983; Abott 1987, private communication). 

How well determined are the quantities M, i^, and L, which 
define the momentum fluxes? The terminal velocities and 
mass-loss rates are two quantities about which we have good 
information. The terminal velocities are obtained from the 
sharp blueward edge of the ultraviolet P Cygni resonance lines 
that sample the wind along the line of sight toward the star. 
The mass-loss rates are found from the radio free-free emission 
of the wind (Abbott et al. 1986). The radius where the optical 
depth equals unity is typically 1000 stellar radii from the star, 
and the wind may be considered to be at its terminal velocity 
with the density falling off as r~2. It is possible that there is a 
contribution to the radio flux from nonthermal emission. 
However, in this paper, we choose to make the usual assump- 
tion that the radio flux is from free-free emission. 

The total luminosity of Wolf-Rayet stars is the most prob- 
lematical quantity. To determine the luminosity observa- 
tionally, we need a measurement of the observable flux, the 
stellar distance, and an estimate of the fraction of the stellar 
luminosity that occurs in the unobservable extreme ultraviolet. 

The most uncertain of these quantities is the latter which can 
be estimated for ordinary hot stars if we have some knowledge 
of the star’s effective temperature. However, for Wolf-Rayet 
stars, it has been known for a long time that the concept of 
effective temperature is an ambiguous one, because the winds 
are so optically thick that the atmosphere is extended and the 
“photosphere” is not clearly defined (Chandrasekhar 1934; 
Cassinelli 1971; Castor 1974). The energy distribution of Wolf- 
Rayet stars tends to be flat, as is expected for a star with an 
extended atmosphere (van Blerkom 1971 ; van der Hucht et al. 
1979). The “characteristic temperature” for these stars has 
been estimated to be in the range from 20,000 (Willis 1980) to 
greater than 80,000 K (Cherepashchuk, Eaton, and Khaliullin 
1984; hereafter CEK). Evidence for the very high temperatures 
has been derived from the observational study of the eclipsing 
binary V444 Cyg. 

Schmultz, Hamann, and Wessolowski (1988h) have recently 
used expanding model atmosphere methods to derive the 
luminosities, core temperatures, and mass-loss rates for 30 
Wolf-Rayet stars. Assuming a standard velocity law for the 
winds, they derived equivalent widths for He i and He n lines. 
From a comparison with observed line strengths, and by fitting 
the continuum to the observational absolute visual magnitude, 
they have determined that Wolf-Rayet luminosities are in the 
range 1 x 105-7 x 105 L0. For V444 Cygni, in particular, they 
derive a luminosity significantly lower than the one implied by 
the high-temperature estimate of CEK. 

The luminosity of Wolf-Rayet stars can also be estimated 
from stellar interior considerations, using the evolutionary 
models calculated by Maeder (1980, 1983) and Prantzos et al. 
(1986). These models account for the effects of mass loss on the 
evolution of very massive stars. The models explain reasonably 
well the ratio of red supergiants to Wolf-Rayet stars, and also 
explain the peculiar abundances associated with the WC, WN 
and WO classes of Wolf-Rayet stars. The underlying cores of 
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the Wolf-Rayet stars are thought to be near the helium- 
burning main-sequence, and the overall lifetime of a Wolf- 
Rayet star is thought to be on the order of 105 yr. For our 
consideration of the momentum problem, the crucial result is 
the mass-luminosity relation. From Maeder (1983), we have 

log (L/Lq) = 1.5 log (M/Mq) + 3.8 . (1) 

The luminosities predicted by equation (1) generally are higher 
than the luminosities obtained by Schmutz, Hamann, and 
Wessolowski (1988h). 

Even within the large uncertainty in the stellar parameters, it 
is very difficult to understand the large momentum fluxes in the 
winds of Wolf-Rayet stars. The line-driven wind theory of 
Castor, Abbott, and Klein (1975; hereafter CAK) as modified 
by Friend and Abbott (1986) has been successful in describing 
the wind from an O star where the stellar parameters are fairly 
well known. Application of this model to standard Wolf-Rayet 
star parameters produces a mass-loss rate (and momentum 
flux) that is too small by about an order of magnitude. None- 
theless, given the uncertainty in the luminosity of the Wolf- 
Rayet stars and the adjustable parameters in line-driven wind 
theory, the radiation-driven wind models cannot be ruled out. 
For example, it is commonly assumed that radiation-driven 
models can never yield momentum fluxes in excess of the single 
scattering limit. However, CAK-type models, which ignore the 
effects of overlapping lines, can yield arbitrarily high momen- 
tum fluxes if the luminosity is large enough or if the radiation 
force parameters are modified (Friend, Poe, and Cassinelli 
1988). Recently, Pauldrach et al. (1985) have found that a suffi- 
ciently high luminosity would allow radiation to drive the 
wind of V444 Cyg. However, the luminosity that they required 
is a factor of ~2.5 times higher than the luminosity given by 
Maeder’s mass-luminosity relation for Wolf-Rayet stars and is 
a factor of 4 times higher than observed by Schmutz et al. 
(1988h). It is therefore reasonable to question whether radi- 
ation alone can drive the winds. The momentum problem is a 
serious one, and additional wind-driving mechanisms should 
be considered. 

Maeder (1985) has suggested that the high mass-loss rates 
from Wolf-Rayet stars could be produced by pulsational insta- 
bilities of the helium core due to the e-mechanism. In this 
model, Wolf-Rayet stars are marginally unstable, losing just 
enough mass to remain quasi-homogeneous and stable, while 
the change in the chemical composition of the core tends to 
push the stars toward instability. Maeder showed that the 
mass-loss rate required to maintain the balance is similar to 
that which is observed. However, his suggestion addresses only 
the mass-loss part of the momentum problem. It is also neces- 
sary to drive this large mass flux to high terminal velocity. 

An alternative explanation of Wolf-Rayet star winds is the 
magnetic loop model of Underhill and Fahey (1987, and refer- 
ences therein) which does not presume high mass-loss rates; 
therefore, in their view, a momentum problem does not exist. 
In their picture, the radio emission is nonthermal and is pro- 
duced by gyrorésonance of electrons in a strong closed mag- 
netic field. The outflowing wind is presumed to be much less 
dense than the confined material. It is not clear whether their 
scenario, which involves extensions of closed loops out to 
several stellar radii, is dynamically possible. 

There are two other stellar properties that are known to be 
possible causes of fast massive winds: stellar rotation and coro- 
tating magnetic fields. Together these properties can increase 
the mass-loss rates by transferring the star’s rotational angular 

momentum to the wind. Wolf-Rayet stars could be rapid rota- 
tors. At the onset of the Wolf-Rayet phase, the helium core of a 
formerly massive star contracts to initiate the triple-a process 
(Maeder 1983). If the core conserves angular momentum, it 
must spin-up, possibly to a rotation rate near the “critical” 
value, where the centrifugal force equals gravity at the surface. 
Wolf-Rayet stars could also have large magnetic fields on their 
surfaces, since these stars are the exposed convective cores of 
former O stars, which may have contained strong magnetic 
fields. Both a high rotation rate and a large magnetic field 
could be hidden from direct observation because the winds are 
optically thick and the deeper, nearly hydrostatic part of the 
atmosphere of Wolf-Rayet stars apparently cannot be seen. 

A rotating magnetic model to explain the momentum 
problem of Wolf-Rayet winds was first presented by Hartmann 
and Cassinelli (1981), as described by Cassinelli (1982). They 
applied the fast magnetic rotator (FMR) model of Hartmann 
and MacGregor (1982; see also Belcher and MacGregor 1976) 
to Wolf-Rayet stars. Hartmann and Cassinelli found that rota- 
tion rates near the critical value and surface magnetic field 
strengths of ~ 10 kG are required to fit the observed M and 
in the equatorial plane. This FMR model ignored the radiation 
force in spectral lines, however, and even if radiation alone 
cannot drive the wind, a complete wind model for Wolf-Rayet 
stars should include the line radiation force. 

A more complete rotating magnetic wind model was con- 
structed by Friend and MacGregor (1984), who combined the 
Weber and Davis (1967) description of a rotating, magnetic 
solar wind with the CAK theory for a line-driven wind. They 
showed that for O star parameters, rotation increases the 
mass-loss rate for all field strengths and decreases the terminal 
velocity for small field strengths. For a given rotation rate, 
increasing the magnetic field strength (B0) increases v^. Both 
the FMR model and the Friend and MacGregor model indi- 
cate that the addition of rotation and a magnetic field can 
produce a wind that is denser and faster than the CAK theory 
would predict. 

Very recently, Nerney and Suess (1987) have considered a 
modification to the FMR model, which accounts for the line 
radiation force in the limit that all lines are optically thick. In 
this limit, the line force is proportional to the velocity gradient, 
so this model is essentially the same as the FMR model of 
Hartmann and Cassinelli (1981), except for an extra factor 
which reduces the inertial term in the equation of motion. This 
factor is a measure of the strength of the line radiation force, 
which, for reasonable values, slightly changes the wind model 
predictions. Nerney and Suess reach basically the same conclu- 
sions as Hartmann and Cassinelli, namely that a very large 
magnetic field and rotation rate are needed to explain the 
winds from Wolf-Rayet stars. Their treatment of the radiation 
force is unnecessarily restrictive, however, since all of the lines 
cannot be optically thick, and a general distribution of line 
strengths can be treated by using the CAK approach. Since 
their line force is proportional to the velocity gradient, the 
topology of their solutions is completely different from the 
general case that was treated by Friend and MacGregor (1984). 
Nerney and Suess claim that it is impossible to find consistent 
radiation-driven wind models, for a distribution of optical 
depths in the lines, for large magnetic fields and rotation rates. 
This claim is incorrect, since the Friend and MacGregor model 
produces complete and unique solutions for a given set of 
stellar parameters, even those with very large magnetic fields 
and rotation rates. 
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None of these rotating wind models for Wolf-Rayet stars 
have considered the effects of the large asymmetry of the wind 
that should be produced by rapid rotation. Asymmetries can 
have a major effect on predicted radio fluxes and P Cygni 
profiles. As a result, basic properties such as mass-loss rates 
that have been derived using spherically symmetric models 
must be reconsidered. 

In this paper, we will improve the Friend and MacGregor 
model by adding the correction for treating the star as a 
uniform disk instead of a point source of radiation (Friend and 
Abbott 1986). The model is essentially the same one that was 
recently applied to Be stars (Poe and Friend 1986). The basic 
stellar parameters we have to specify are the mass (M), the 
radius of the star (R), the luminosity (L), the equatorial rota- 
tional velocity (vTOt), and the radial surface magnetic field 
strength (B0). For a given set of these parameters, a unique 
wind solution must be found that passes through two CAK- 
type critical points. Once this solution is found (by the shoot- 
ing method; see Poe and Friend), we then have the mass-loss 
rate, terminal velocity, and radial and azimuthal velocity pro- 
files. The approach taken in this paper is to study the depen- 
dence on magnetic forces. We then ask what combination of 
parameters can give a plausible fit to general Wolf-Rayet wind 
properties. We shall use three specific stars as a guide in this 
study, but our goal here is not to develop the best possible fit to 
those stars; that will be done in subsequent papers. Here we 
shall find that our asymmetric model provides a possible 
explanation for several perplexing problems, including the 
wind momentum problem, associated with Wolf Ray et stars in 
general. 

A survey of magnetic and rotational effects is carried out 
using our “ Wolf-Rayet test model ” in § II. In § III, we discuss 
the various possibilities for driving Wolf-Rayet winds in the 
light of our new axisymmetric model. We present results for 
two models, the combined force model and a high-luminosity 
purely radiative model, that fit major observational constraints 
on Wolf-Rayet winds in § IV. We summarize our conclusions 
in the final section. 

II. THE TRANSITION FROM A PURELY RADIATIVELY DRIVEN 
WIND TO A MAGNETICALLY DRIVEN WIND 

a) The Test Model 
In this section we consider the effects on winds of adding 

centrifugal and magnetic forces. In the weak field slow rotation 
case, a star will have a mass-loss rate and wind velocity that is 
well described by the recent Friend and Abbott (1986) update 
of the CAK theory. Using the stellar luminosity for a star that 
satisfies the interior theory mass-luminosity relation (eq. [1]), 
we find the classic problem that the predicted wind momen- 
tum, Mv^, is far below the observational estimates. In the limit 
of very fast rotation and very large surface fields, we will 
recover the Hartmann and Cassinelli (1981) FMR results. In 
this section we explore the transition between these two limit- 
ing cases. 

As a test model let us consider rather typical parameters for 
Wolf-Rayet stars (that are taken to correspond roughly to esti- 
mated values for the WC 8 component of CV Ser): M = 13 
M0 (Massey 1981); M = 3 x 10"5 M0 yr_1 (Abbott et al 
1986); voo = 2900 km s-1 (Howarth, Willis, and Stickland 
1982). From Maeder’s (1983) mass-luminosity relation we get 
F = 0.36 or L = 3 x 105 L0. As a first estimate of the stellar 
radius we choose, R = 8 R0- 

In this section we treat these values as plausible and typical 
for Wolf-Rayet stars. Observations can show rather wide 
variations for the Wolf-Rayet properties. For example, for the 
Wolf-Rayet star CV Ser, the mass-loss rate is estimated from 
IUE observations to be 7.2 x 10-5 M0 yr-1 by Howarth 
Willis, and Stickland (1982), while different interpretations of 
radio observation upper limits yield less than 3 x 10-5 M© 
yr-1 (Abbott et al. 1986) or less than 7 x 10“5 M0 yr-1 (van 
der Hucht Cassinelli, and Williams 1986). The terminal veloc- 
ity estimates for the star range from 2300 km s-1 (Torres 
Conti, and Massey 1986) to 2900 ± 300 km s-1 (Abbott et al. 
1986). We shall see that any of these values can be explained 
with appropriate changes of the theoretical model parameters. 

Let us first consider the radiation-driven wind limit, as 
described in Friend and Abbott (1986) and CAK. The density 
at 8R0 is adusted until the electron scattering optical depth, 
Tes, is equal to f, resulting in p0 = 1.0 x 10-9 g cm-3. The two 
radiation force constants k and a of CAK theory are taken 
from the tables of Abbott (1982), using the highest temperature 
and middle density values (see Pauldrach et al. 1985), yielding 
/c = 0.18 and a = 0.61. The quantity k is related to the number 
of optically thick lines and a is a measure of the relative 
number of optically thin and thick lines. For this test model, 
the density near the critical point was found to be between the 
middle and high density values in Abbott’s table. If the upper 
density values in Abbott’s table were used, k will increase by a 
factor ~ 2. Since in the CAK theory, the mass-loss rate is pro- 
portional to /c1/a, the mass-loss rate would increase by a factor 
of 3. 

Using the Friend and Abbott (FA) theory for our test star, 
we get M = 1.8 x 10"6 M0 yr-1 and = 1900 km s-1. 
These values are to be compared with typical M and esti- 
mates for Wolf-Rayet stars of 3 x 10"5 M0 yr-1 and 2000- 
3000 km s-1. It would be possible to increase the predicted 
terminal velocity by simply reducing our estimate for R, 
because the terminal velocity is proportional to the surface 
escape speed. However, we choose not to do that here and will 
consider the effects of such adjustments in our discussion of 
three specific stars in § IV. 

Now let us consider the effect of adding rotational and mag- 
netic forces to our test model. Figure 1 shows the effect of t;rot 
on the mass-loss rates for various surface magnetic field 
strengths. Note the sharp rise in M around vrot = 350 km s-1. 
Even a weak (500 G) field can make a big difference near this 
rise by increasing the azimuthal velocity of the wind near the 
star, which increases the centrifugal acceleration there, thus 
mimicking a higher rotation rate (Poe 1989). Also shown in 
Figure 1 is the “observed M.” A rotational velocity near 85% 
of the critical velocity is required to match the observed M 
with this set of stellar parameters. 

The mass-loss rate shown in Figure 1 is an estimate of the 
total mass-loss rate from the star. The quantity that is calcu- 
lated is the mass-loss rate per solid angle at the equator 
(dM/dQ)ctl ( = peq ueq re

2
q). We find that 4n (dM/dQ)eq = Meq is a 

good estimate of the total mass-loss rate for our models. To 
show this, let us assume that the zero rotation rate model 
represents the flow from the polar region and the rotational 
model gives the rate of flow from the equator. If we assume 
that dM/dQ varies with polar angle as dM/dQ = (dM/dQ)poU 

+ [(dM/dQ)eq - (dM/dQ)polc ] x sin" 0, we find that the total 
mass-loss rate 

M = 
f 

dM 
dd 

dQ (2) 
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Fig. 1.—Dependence of the equatorial mass-loss rates (4tc dM/dil) on the rotation rate of the star. Each curve is labeled with the value of ß0, the radial magnetic 
field at the base of the wind. The mass-loss rate of 3.0 x 10~5 M0 yv~i, typical of the values inferred from radio observations, is shown by the horizontal dashed line. 
Such high mass-loss rates are obtainable only for rotational velocities larger than 80% of the the critical velocity. The value of this critical velocity is indicated on the 
horizontal axis. 

is easily integrated. For example, for n = 1 we get 

where MpoU = 4wppoleupoler^ole. In the limit Meq > Mpole the 
equatorial mass-loss rates given in this paper exceed the total 
derived from equation (3) by ~20%. If the density in the wind 
is strongly concentrated toward the equator, then n will be 
much larger than 1. For a case in which n = 9 and Meq = 5 
x Mpole, the total mass-loss rate would be about half the equa- 
torial value. Our conclusion that Meq is a reasonably good 
estimate of the total mass-loss rate differs from the conclusion 
of Hartmann and MacGregor (1982). They assumed that the 
mass flow was confined to an opening angle of 10° from the 
equator, while in our Wolf-Rayet models there is substantial 
mass flow even from the polar zones. 

The effect of t;rot on the terminal velocity for various values 
of B0 is shown in Figure 2. For small field strengths, increasing 
the rotation rate will decrease vœ. This occurs because the 
effective escape speed on the equator is reduced, and in 
radiation-driven wind theory is proportional to the escape 
speed. However, for large B0, the terminal velocity can increase 
with rotation rate because of the increased magnetic force at 
large radii where the field lines become curved. When the rota- 

tion rate becomes quite large (>300 km s_1), the mass flux 
increases significantly and decreases as a function of vrot for 
all field strengths. Figures 1 and 2 also show the typical obser- 
vational estimates of the mass-loss rates and terminal velocities 
for Wolf-Rayet stars. Note that to fit these values with the 
equatorial flow from our test model would require a field 
strength of 104 G and a rotation rate of ~90% the critical 
value. 

b) Comparison to Fast Magnetic Rotator Theory 
If the luminosity of Wolf-Rayet stars is given by Maeder’s 

mass-luminosity relation (eq. [1]), then a very rapid rotation 
rate and large surface magnetic field are required to fit the 
observed M and along the equator. A similar result was 
described by Cassinelli (1982) concerning the fast magnetic 
rotator (FMR) model as applied to Wolf-Rayet stars. To study 
the transition from the line-driven model to the FMR model, 
we solved the equations for a rotationally and magnetically 
driven wind similar to the Weber and Davis (1967) solar model 
as given by Belcher and MacGregor (1976) and approximated 
the FMR solution as in Hartmann and MacGregor (1982). For 
the FMR model, the two critical points in the wind solution 
are particularly simple to find. The slow (inner) critical point 
becomes the sonic point, and the fast (outer) critical point 
becomes the point where the flow velocity is equal to the 
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Fig. 2—Dependence of the equatorial wind terminal velocity, , on the rotational speed of the star. Each curve is labeled with the value of B0 in gauss. 
Horizontal dashed line is a typical observed terminal velocity of a Wolf-Rayet star wind that is derived from ultraviolet P Cygni profiles. The break in the zero 
magnetic field curve at vI0t = 350 km s_ 1 is due to the sudden drop in the terminal velocity at the maximum mass-loss limit (see text). 

Michel velocity, %, given by 

where ß is the ratio of rotational velocity to the critical velocity 
(approximately unity), B0 is the surface magnetic field strength, 
and F is the ratio of the continuum radiation pressure to 
gravity. This fast point occurs far out in the wind so that the 
Michel velocity is nearly equal to i;^. For a given set of stellar 
parameters, equation (4) then gives a relation between vœ and 
M. To find M for the FMR model, we first have to locate the 
inner critical point. Assuming that the magnetic field enforces 
solid-body rotation, the inner critical point, rcl (or sonic point), 
is given by (see eq. [10] of Hartmann and MacGregor) 

rf = ß~213. (5) 

Conservation of energy in the subsonic regions can be used to 
calculate the radial velocity at R (see eq. [13] of Hartmann and 
MacGregor). The density at R has to be assumed. The mass- 
loss rate in the FMR model depends only on the rotation rate 
and is independent of the assumed magnetic field strength for 
the fields that are strong enough to enforce solid-body rotation 
inside the sonic point. The upper limit to M in the FMR 
model, for a given set of stellar parameters, occurs at ß = 1 
when, according to equation (5), the sonic point moves into the 

star. For our test model, in which p0 = I x 10_9gcm_3, this 
maximum mass-loss rate is 1.2 x 10_4Moyr_1. 

Figure 3 shows how M various with for our solutions 
with the test model parameters. The solid curves show the 
behavior of our solutions as the rotation rate increases, while 
holding B0 constant (as in Figs. 1 and 2). The dotted curves are 
the lines of constant rotation rate. The straight dashed lines 
show the behavior of the Michel velocity as determined from 
equation (4) using ß = 1. Note that for low rotation rates, the 
M for our models increases slowly with the rotation rate, while 
at high rotation rates our results for M versus eventually 
merges with the Michel velocity lines. We should point out, 
however, that even in the high rotational velocity regime, the 
mass-loss rates that our combined force model produces can 
be significantly larger than predicted by pure FMR theory. For 
example, a rotation rate of /? = 0.8 in the FMR model would 
give a mass-loss rate of only 5 x 10-9 M0 yr-1, while, as is 
seen in Figure 3, it would lead to a mass-loss rate of 6 x 10 ~6 

Mq yr-1 in our model. This is because the radiation forces in 
our model provide a minimal mass-loss rate (~2 x 10~6 M0 
yr-1 for the test model); rotation and magnetic fields only 
increase it from there, as is shown in Figure 3. Only when ß is 
greater than ~0.96 does the FMR mass-loss rate become 
nearly equal to that of our model. Clearly the line radiation 
force should not be ignored in considering the winds of rapidly 
rotating stars with strong magnetic fields. Perhaps the most 
important conclusion from Figure 3 is that the combined force 
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Fig. 3.—Dependence of the equatorial mass-loss rate (4n dM/dQ) and terminal velocity on the rotation rate and magnetic field. Solid lines are the model results. 
Star symbol gives the mass-loss rate and terminal velocity adopted for CV Ser. The point marked “ FA ” gives the values of M and expected from the Friend and 
Abbott (1986) line-driven wind model. Long dashed lines running diagonally across the diagram give the results expected from the fast magnetic rotator model 
(FMR) of Hartmann and Cassinelli (1981); each line is labeled with the assumed surface magnetic field. Short dashed lines running roughly horizontally across the 
figure connect points with equal rotation rates; the percentage of maximal rotation speed (ß x 100) is indicated on each of these lines. 

model can give rise to mass-loss rates on the order of 10“5 M0 
yr-1 even for fields significantly less than 104 G, but the flow 
would have a greatly reduced equatorial terminal velocity. 

Figures 1, 2 and 3 also show the zero magnetic field strength 
model. Increasing the rotation rate leads to a larger mass-loss 
rate and lower terminal velocity of the wind. The direction of 
the zero field line in Figure 3 corresponds to Mv^ = constant, 
where the constant is set by the Friend and Abbott (FA) model. 
So the initial increase in M can be explained as follows. The 
rotation reduces the effective surface gravity and escape speed. 
This reduces the wind speed. The radiation field can transfer 
the momentum flux (Mvœ)FA to the wind. Therefore the mass 
flux from the equator can increase inversely proportional to 
the escape speed. There is a limit, however, which is explained 
in detail by Poe (1987,1989). As the rotation rate increases, the 
mass-loss rate increases only as high as the value derived by 
Castor (1979) for rotating radiation-driven winds. Castor used 
the CAK radiation force which assumes a central point source 
of continuum radiation. He found that increased rotation does 
not increase the mass-loss rate, but merely decreases the flow 
speed. For the point source case the critical point moves to 
larger radii as the rotation rate is increased. In our models, the 
solution curve that leads to continuous flow to infinity shifts 
from one that has a critical point near the star to a solution like 

that of Castor (1979) at very rapid rotation. The net effect is 
that for the case with no magnetic field we cannot drive a 
mass-loss rate larger than a value near Castor’s result. The flat 
portion shown in Figure 3 for the zero B field curve corre- 
sponds to this limiting M, and the last point shown is for a 
rotation rate of ~99% maximum. It is the largest value of the 
mass-loss rate that can be driven by rotation and radiation 
alone and is about a factor of 2 larger than the mass-loss rate 
from the zero rotation rate model. 

c) Spin-down Times 
We have confirmed that the fast, massive winds of the Wolf- 

Rayet stars could, in principle, be explained by fast rotator 
models. However, can such models be ruled out by other con- 
siderations? We have argued before that large rotation rates 
and magnetic fields might be hidden from direct observation 
by the dense wind. However, another important consideration 
is the time scale for the star to lose its angular momentum 
through magnetic braking. We can estimate a time scale for 
angular momentum loss using the expression from Friend and 
MacGregor (1984); 

Tspin 5 -T '•a/ 
(6) 
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where rA is the Alfvén radius. This equation assumes the star is 
rotating as a solid body, and that might be a reasonable 
assumption for Wolf-Rayet stars since they are thought to be 
the remnant convective cores of O stars. 

For the best fit models assuming Maeder’s luminosity, we 
find that Tspin = 3000 yr for our test model. This is much less 
than the nominal lifetime of a Wolf-Rayet star of 105 yr or 
more. A Wolf-Rayet star could not maintain the high rotation 
rate needed to produce its large mass-loss rate if at the same 
time it must have a very large magnetic field to achieve the 
observed terminal velocities (see Fig. 2). 

III. A TWO-COMPONENT ASYMMETRIC WIND MODEL 

a) Introduction 
The results of the previous section have shown that is pos- 

sible to use rotation and magnetic fields to overcome the Wolf- 
Rayet momentum problem. However, this has the effect of 
introducing an equally perplexing “ spin-down ” problem. Here 
we suggest that the new problem can be overcome by consider- 
ing a plausible alternative to the FMR picture. The primary 
difficulty can be traced to the fact that we have been requiring 
a large magnetic field to drive a high-speed flow in the equato- 
rial plane. The flow from the polar regions, on the other hand, 
should be largely unaffected by rotation and a large field is not 
required to drive a fast wind. Radiation pressure alone is suffi- 
cient to produce a high-speed flow from the polar regions. Let 
us consider, then, the consequences of a model in which the 
observer’s line-of-sight intersects the high-speed wind from the 
polar regions, while the slower equatorial zone provides a 
region of higher density that can affect the radio continuum 
and optical line emission. 

b) The Radio Flux 
Consider the observational determination of the mass-loss 

rates from the radio measurements of the free-free emission in 
the wind (Abbott et al. 1986). For rapidly rotating stars, the 
emission will be predominantly from the high-density regions 
in the equatorial plane. To estimate the flux at 6 cm from our 
axisymmetric model, we assume that the flow is purely radial in 
the region where the radio emission is formed and that the 
radial dependence of the density is proportional to 1/r2. The 
density distribution versus polar angle, 9, is assumed to be of 
the form 

p(r, 6) = {ppole(r0) + [peq(r0) - ppole(r0)] sin" 6}(r0/r)2 , (7) 

where ppole and peq are the radial distribution of density along 
the pole and equator, respectively, evaluated at a large 
radius r0. 

Wright and Barlow (1975) showed that the radio flux caused 
by free-free emission in a spherically symmetric wind is pro- 
portional to an integral of 1 — e~z{p) through the wind, where p 
is the impact parameter and t is the optical depth along p. The 
integral for our axisymmetric model is very similar to the 
Wright and Barlow integral except that the optical depth is 
modified by the geometry assumed in equation (7). For our 
model, seen pole-on, the radio flux (in janskys) is given by 

Sv(Jy) = 23.21 
D 

M\ 

/W*Wpole_ 

4/3 
G2/3 , (8) 

where D is the distance to the star in kiloparsecs, Z is the ionic 
charge, g is the mean atomic weight per nucleon, and the ratio 
(M/v^) has replaced the density. The geometrical correction 

factor, G, is the ratio of the optical depth along p for our model 
to the optical depth along p for a spherically symmetric model. 
It is given by 

G = 1 + 
(n + 1)! ! 
(n + 2) ! ! 

+ 2 
(2n+ 1)!! 
(2n + 2)! ! 

where 

, (9) 

  Peg Ppole   C^/^ocJcq (-^/^oo)pole (10) 
P Ppole C^7^oo)pole 

and n\\ = n(n — 2)(n — 4) • • • . If n is even, the first coefficient 
in equation (9) is 4, and, if n is odd, the coefficient is 8/tt. For 
the case where « = 1, G reduces to 

G = 
371 (11) 

Note that for Ap = 0, the model is spherically symmetric and 
we recover the Wright and Barlow formula. 

For our test model let us take from Abbott et al (1986) the 
values for Z, p, D, and the value for Sv that they tabulate for 
CV Ser. Let us assume that along the polar regions is the 
observed (2900 km s~x) and that Mpole is the value from our 
zero rotation and zero magnetic field model (1.8 x 10-6 M0 
yr -1). To match the radio observations requires that 

Sy 
Sv(obs) 

M\ /mV1 

^oo/ poleVoo/obs. 

4/3 
G2/3 - 1 (12) 

where (M/Oobs the quoted value in Abbott et al. assuming a 
spherically symmetric model. In our model, (M/r>0o)poie i

s much 
smaller than therefore, the value of G must be large 
to obtain the observed radio flux. For our test model, G = 278. 

For a given vroi and J50, our model produces an M and 
from which Ap/p and G can be calculated. Assuming « = 1, 
Figure 4 shows the normalized radio flux from equation (12) as 
the rotation rate of the star is varied, for field strengths of 500, 
1500, and 10,000 G. At low rotation rates, the density in the 
wind is too small to produce the observed radio flux. Only at 
high rotation rates will the density in the equator be large 
enough. For the B0 = 500 G model, ß ä 0.87 is required to 
obtain the observed radio flux. It is interesting to note in 
Figure 4 that a large radio flux can be obtained even with a 
relatively small magnetic field. This fact will be used to help 
explain the spin-down problem. 

Van der Hucht, Cassinelli, and Williams (1986) have argued 
that the mass-loss rates of W-R stars are even larger than have 
been derived by Abbott et al. (1986) because of ionization 
effects and the larger mean mass per electron in WC stellar 
winds. Similarly, Schmutz and Hamann (1986) found that the 
dominate stage of ionization at radio optical depth unity for 
most Wolf-Rayet stars is He n, not He m as assumed by Abbott 
et al. Although both of these studies suggest that the value of 
Z/p in equation (8) is lower than in Abbott et al, in this paper 
we have chosen to use the value of Z/p from Abbott et al. If the 
correct value of Z/p is actually smaller, then we have to 
increase the value of G in equation (8) to obtain the observed 
radio flux. As shown in Figure 4, the radio flux (and hence G) 
increases very rapidly with increasing rotation rate. 

If the density of the wind is concentrated toward the 
equator, n will be larger than 1. The coefficents in equation (9) 
become smaller with increasing n. This result is due to the 
decreasing number of electrons in the mid-latitudes of the wind 
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pIG 4—The free-free radio flux at 6 cm, expressed as a ratio to the observed value, vs. the rotation rate for the two-component Wolf-Rayet model seen pole-on 
assuming n = 1 in eq. (9). Each curve is labeled with the assumed magnetic field at the base of the wind,R0. In the low rotational velocity limit, corresponding to FA 
in Fig. 3, the predicted radio flux is only 3% of the observed value. For large rotation rates, it is seen that there is a wide range of magnetic fields such that large radio 
fluxes can be produced. 

as the concentration toward the equator is increased. So for 
larger n, the values of Ap/p have to increase. For example, in 
order to obtain G = 278 of our test model with n = 9, Ap/p has 
to increase by a factor of 1.5 compared with the n = 1 case. The 
B0 = 500 G model in Figure 4 will have to be rotating at 
ß ä 0.90 to satisfy the radio flux. 

c) Resolution of the Spin-down and Momentum Problems 
Figure 5 illustrates a possible resolution of the spin-down 

problem in stars that can also produce the large radio fluxes of 
Wolf-Rayet stars. Figure 5 contains the model data as Figure 
3, but it also contains a straight line, on which the model stars 
could produce the observed radio flux if seen pole-on. On that 
isoradio flux line are indicated the spin-down times of the 
models. For Figure 5, we have calculated the radio flux as in 
equation (12) and as shown in Figure 4. To estimate the spin- 
down times we need an estimate of the Alfvén radius. For this 
we used equation (20) of Hartmann and MacGregor (1982), 
which assumes that the winds are in the FMR regime, therefore 

= ^_{0)2 +± + i (13) 

where a is the isothermal sound speed, and ZP is the Parker 
radius, 

GM(1 - F) 
P 2Ra2 (14) 

which is ~ 100 for our model. The magnetic field enters equa- 
tion (13) through the terminal velocity, from equation (4). For 
small fields, the Alfvén radius is close to the star and the spin- 
down time increases inversely with M. For large fields the 
spin-down time is a much stronger function of M. This is 
because rA in equation (13) is proportional to vA in the strong 
field case, so the spin-down time is inversely proportional to 

Now if we use the fact that the observed radio flux is 
proportional to M/v^ in the large field limit, the spin-down 
time is inversely proportional to M3. Figure 5 shows that for 
stars that satisfy the radio flux and that have surface fields less 
than ~ 103 G, the spin-down times can be longer than ~ 105 

yr. 
Another interesting result of our moderate field two- 

component model is that the mass-loss rate is much smaller 
than the rate inferred from the spherically symmetric model. 
Consider the test model in Figure 5 that has log (Tspin) = 5.1. 
The equatorial mass-loss rate is M = 7 x 10M0 yr-1 

(which, as argued before, is close to the “true” M; see § Ha). 
This value is well below the quoted rate of 3 x 10“5 M0 yr“1 

that was derived assuming a spherically symmetric model. 
Nevertheless, the smaller mass-loss rate is sufficient because 
the ratio flux depends on the density of the wind, which is 
proportional to M/v^. Thus, since the terminal velocity on the 
equator is low, owing to the rapid rotation, the mass-loss rate 
can be relatively low to produce a given radio flux. The mass- 
loss rate that is inferred from the radio flux must be very large 
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Fig. 5.—Illustrates the spin-down problem and its possible resolution. The diagonal solid line gives values of equatorial mass-loss rate AÏ and v00 that satisfy the 

radio flux observations. As in Fig. 4 the (500 G, 87%) and (10,000 G, 92%) pair of B0 and ß both fit the radio flux, but with different spin-down times. Along the 
isoradio flux line are given several values of the logarithm of the spin-down time in years. The models assume that the wind density varies with polar angle in 
proportion to sin 0(n = 1) in eq. (7). 

only if the outflow is assumed to be occurring at a large veloc- 
ity. 

Note also what our two-component model implies about the 
momentum problem. The product of M and determines the 
wind momentum flux, and in our model these are never both 
large in the same latitude in the wind. Therefore, the momen- 
tum flux in the wind is comparable to the momentum flux in 
the radiation field (although it is actually the centrifugal force 
which produces most of the equatorial momentum flux). The 
momentum problem only exists when the radio fluxes are 
interpreted in terms of spherically symmetric models, while in 
fact the radio observations demand a large density, but not 
necessarily a large momentum flux. 

We have shown that a two-component picture for Wolf- 
Rayet winds can explain both the “ momentum problem ” and 
the spin-down problem. The model requires that the equatorial 
wind be dense, but flowing at a velocity significantly slower 
than that from the polar zone. 

d) Inclination Effects 
The radio flux, Sv, was derived for our model under the 

assumption that the star is viewed pole on. This radio flux 
should be reasonably accurate even for inclinations approach- 
ing 90° as can be inferred from the study of Schmid-Burgk 
(1981). He assumes that the meridional density distribution is a 

rotated ellipse. This distribution is simiar to ours for the case 
n > 9. He shows that the flux is insensitive to the aspect angle. 
For example, applying our test model polar and equatorial 
values to Schmid-Burgk’s density distribution, the radio flux 
from this model seen edge-on (i = 90°) is ~0.6 of the radio flux 
seen from the pole-on orientation. Schmid-Burgk further con- 
cludes that the mass-loss rates that are derived from the spher- 
ical approximation are correct in spite of the wind asymmetry. 
However, this latter conclusion requires the additional 
assumption that is the same at all polar angles. In our 
model, is a strong function of polar angle, being fast at the 
pole and slow at the equator. So we get the larger density in the 
equatorial regions but at a specific mass-loss rate that is small 
at the equator. The mass-loss rate of our model is smaller than 
would be inferred from Abbott et al. (1986) using a spherically 
symmetric assumption. 

From our model one should expect that observations would 
show a wide range of terminal velocity from one star to 
another because of the different inclination angles of their 
polar axes relative to the line of sight. Torres, Conti, and 
Massey (1986) show a plot of terminal velocities versus WC 
spectral class. There does in fact appear to be a rather wide 
range for even within one spectral class. Barlow, Roche, and 
Aitken (1988) have noted that for Wolf-Rayet stars in binary 
systems, the shortward-shifted absorption edge of a P Cygni 
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profile can be masked by the saturated profile from the higher 
terminal velocity flow from the comparison O star. For y2 Vel, 
Barlow, Smith, and Willis (1981) derived a terminal velocity of 
2000 ± 200 km s-1 from IUE observations, which could be 
contaminated by the O star. Using infrared lines that should 
form in the outer wind of the Wolf-Rayet star in y2 Vel, Barlow 
et al (1988) derive = 1500 ± 200 km s-1. Similar large dif- 
ferences in terminal velocity estimates have been derived for 
V444 Cyg by Barlow et al (1981) and Underhill and Fahey 
(1987). This terminal velocity problem for V444 Cyg is under 
investigation by van der Hucht, Cassinelli, and Meade (1988). 
Another property of the resonance P Cygni lines in W-R stars 
that may also be relevant to our model is the shape of short- 
ward edge of the absorption trough. Theoretically, the short- 
ward edges of saturated P Cygni lines are expected to be 
vertical if the lines are formed in a spherical monotonie 
outflow, but observationally the edges extend over a finite 
interval. The violet edge of C iv line in the spectrum of HD 
93131, for example, has a width of 540 ±150 km s-1 (Willis 
1982; Lucy 1983). V444 Cygni shows a range of 560 ± 200 km 
s-1 (van der Hucht, Cassinelli, and Meade 1988). Lucy (1983) 
has explained the width of the violet edges in the context of a 
chaotic wind model, one having a nonmonotonic velocity dis- 
tribution. In the context of that model the width indicates that 
wind velocities for Wolf-Rayet stars have been overestimated 
by ~600 km s-1. However, in the context of our asymmetric 
model, the width could in part be due to the fact that different 
lines of sight to the photosphere intercept different maximal 
flow speeds because of the latitude dependence of the wind. We 
intend to investigate such a possibility in the future; however, 
we feel at the present time we can argue, at the very least, that 
observations do not rule out the possibility of a latitude- 
dependent terminal velocity. 

While focusing just on the effects of a density enhancement 
in the equatorial plane, Rumpl (1980) showed that a variety of 
P Cygni profiles could be formed in an asymmetric wind. He 
found that an enhanced mass-loss rate in the equatorial 
regions produces P Cygni profiles for HD 50896 which are in 
better agreement with the observed profiles than those calcu- 
lated assuming spherical symmetry. 

It might appear that the low polar mass-loss rates of our 
model would enable us to see the hydrostatic surfaces of Wolf- 
Rayet stars if they are observed near the pole-on orientation, 
since the mass-loss rates we find are more characteristic of O 
stars. However, we may not be able to see the surface, since the 
smaller radii of Wolf-Rayet stars means that the density is 
much higher at their surfaces. The optical depth of a Wolf- 
Rayet wind is then much higher than in an O star with the 
same, M, and the surface may still be unobservable. Our 
models should probably assume a higher optical depth on the 
pole, but we found that changing the optical depth had very 
little effect on the mass-loss rate and the density at the sonic 
point. Fitzpatrick (1982) and Massey (1980) have discussed the 
narrow absorption lines that are seen in the spectra of some 
Wolf-Rayet stars, which they interpret as being “photo- 
spheric” absorption. While this interpretation is considered 
doubtful because many of these stars are known to be binaries 
with an O star companion, some evidence may exist indicating 
that some absorption lines may be intrinsic to the Wolf-Rayet 
star (Schmutz, Hamann, and Wessolowski 1988a). Also, even 
for the case of a single star, we should expect equatorial regions 
to produce broad, strong emission lines, which should make it 
difficult to see any narrow absorption features superposed 

against the emission. In addition, the rapid rotation required 
by our model would broaden and weaken any intrinsic photo- 
spheric absorption lines. 

e) Inclination Effects in Binary Systems 
Our two-component explanation of the momentum problem 

requires that the line of sight intercept some of the high-speed 
wind material emerging from the polar regions. There are esti- 
mates of the inclination angle to the three Wolf-Rayet stars 
V444 Cyg, CV Ser, and y2 Vel that are discussed in detail in the 
next section. Given the inclination angle and observed line-of- 
sight terminal velocity gives us some information on the 
dependence of the wind polar angle. For V444 Cyg, the inclina- 
tion angle is 72° (Massey 1981) and the “observed” terminal 
velocity is 2500 km s" L Although there is some possibility that 
the velocity is an overestimate because the O star wind could 
be responsible for part of the P Cygni line absorption. In any 
case, we might require that the low-velocity equatorial flow be 
confined roughly to the zone i = 75o-105°. Alternatively, the 
rotational axis of the W-R star and the orbital axis might not 
coalign because there has been insufficient time for tidal forces 
to enforce alignment of the axes during the rather short Wolf- 
Rayet phase of the star. For the other two stars, the inclination 
constraints pose even less of a problem for our model. For CV 
Ser, there are only wind eclipses (i.e., the photosphere is not 
eclipsed), as has been shown by Massey and Niemela (1981) 
and Eaton, Cherepashchuk, and Khaliullin (1985). The binary 
system y2 Vel shows only wind eclipses at UV wavelengths 
(Howarth, Willis, and Stickland 1982) 

/) The Base Magnetic Field 
We have seen that the two-component model allows for an 

explanation of the Wolf-Rayet winds using a magnetic field 
that is significantly smaller than in the FMR model. A smaller 
field can work because we now do not require the equatorial 
flow to reach speeds as high as those occurring in the polar 
zones. The lower velocity produces a larger density in the 
equatorial zone of the wind and thereby provides an explana- 
tion of the very large radio flux from Wolf-Rayet stars. The 
smaller field resolves the short spin-down problem of the FMR 
model. 

Given that a smaller field is better than a larger one for 
explaining the Wolf-Rayet stars, why should we have any mag- 
netic field in the model? Figure 5 shows the line for the zero 
magnetic field case. Unless the inferred density in the wind is 
significantly less than the Abbott et al (1986) model predicts, 
the zero magnetic field model is not quite sufficient to explain 
the large radio fluxes associated with the Wolf-Rayet stars. All 
improvements to the Abbott et al model tends to push the 
isoradio flux line in Figure 5 away from the zero magnetic line. 
Our numerical studies of the Wolf-Rayet stars suggest that 
they have fields ranging from several hundred to several thou- 
sand gauss if the observations are to be explained with our 
two-component picture. 

A recent theoretical study by Maheswaran and Cassinelli 
(1988) has led to additional support for magnetic fields of 
~1000 G in rapidly rotating Wolf-Rayet stars. They have 
found that Eddington-Vogt circulation currents in the stellar 
envelope lead to a minimal magnetic field that can penetrate 
into the outer atmosphere. Weak fields are dominated and 
suppressed by the circulation. The minimal field that they have 
derived for CV Ser is ~ 1500 G, quite close to the value we find 
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is needed to overcome the Wolf-Rayet wind and spin-down 
problems. 

g) Summary of the T wo-Component Model 
Models 1, 2, and 3 in Table 1 show the results for our test 

star. The first two columns in Table 1 are the model number 
and the star name. The next five columns are the assumed basic 
stellar parameters R/RQ, M/M©, T, B(G\ and ß = vTOt/vcrit. 
Column eight is the spin-down time scale in years (eq. [6]) for 
the rotating models. The last five columns give the terminal 
velocity (in km s~x) along the polar and equatorial regions, the 
mass-loss rate ( x 10_6 M0 yr_1) along the polar and equato- 
rial regions, and calculated radio flux relative to the observed 
radio flux. 

Model 1 is a purely radiation-driven wind model assuming 
the luminosity from Maeder’s mass-luminosity relation (eq. 
[1]). The radio flux is much smaller than the observed flux 
because the low luminosity cannot drive a dense enough wind. 
Model 2 in Table 1 shows our two-component model again 
assuming the luminosity from Meader’s relation. This model 
has a fast polar wind and a dense equatorial wind. The spin- 
down time of 3 x 105 yr is consistent with estimated Wolf- 
Rayet star lifetimes. 

Model 3 increases the luminosity until the “ observed ” mass- 
loss rate is matched. The radio flux is too large in this model 
because the terminal velocity is too small and the density is too 
high. The terminal velocity can be increased by reducing the 
stellar radius, which we will do in the next section. 

IV. APPLICATION OF THE TWO-COMPONENT WIND-MODEL TO 
SPECIFIC WOLF-RAYET STARS 

a) V444 Cyg 
This totally eclipsing binary system (WN 7 + 07) has been 

studied in great detail to derive information concerning the 
wind density structure (CEK). We can therefore compare the 
density distributions from the models with these observations. 
The basic parameters that we have adopted for the W-R star in 
V444 Cyg are MWN = 10 M0 (Massey 1981), M = 1.2 x 10"5 

Mq yr“1 (Abbott et al 1986), ^ = 2500 km s“1 (CEK) and 

i = 72° (Massey 1981). From the variation in opacity with 
wavelength, CEK have estimated the temperature in the wind. 
At the/‘photosphere” where Tes = f and R = 2.9 Re, the 
temperature is between 80,000 and 100,000 K, resulting in a 
luminosity of 2 x 105 to 5 x 105 L0. The lower luminosity is 
in agreement with Maeder’s mass-luminosity relation (eq. [1]). 
The higher luminosity was used by Pauldrach et al. (1985) to fit 
the observed velocity law successfully. We shall consider both 
models, but with special emphasis placed on fitting the obser- 
vations using a low-luminosity model. 

Since the velocity at ies = f is supersonic, we must start the 
integration inside R. We varied both the starting radius and 
density until we found a good fit to the density structure for the 
given rotation rate and field strength. Small changes in the 
starting radius and density did not affect the results. All of 
these solutions start at R = 2.3 R0 with p0 = 1 x 10“9 g cm-3 

for the high-luminosity model and p0 = 5 x 10“7 g cm“3 for 
the low-luminosity model. The CAK constants k and a are 0.25 
and 0.65, respectively, from an extrapolation of the high- 
density values in Abbott’s (1982) table to higher effective tem- 
peratures. 

For the low-luminosity case, Figure 6 shows the velocity and 
density structure from a high magnetic field model and com- 
pares them with the results of CEK. For a rotation rate of 84% 
and a surface magnetic field strength of 10 kG, a good fit to 
data is obtained. This result is similar to that discussed for the 
test model, in that when the luminosity is obtained from 
Maeder’s mass-luminosity relation, large rotation rates and 
magnetic field strengths are required to fit the observations 
However, as explained before, this type of model has too short 
a spin-down time ( ~ 4000 yr). 

We have also computed a two-component model for V444 
Cyg, as shown in Figure 7. For the low-luminosity parameters, 
the polar wind reaches a terminal velocity of -4000 km s“1 

with a mass-loss rate of 1.2 x 10“6 M0 yr“1. Figure 7 also 
shows results for the equatorial wind model which has a mag- 
netic field of 1500 G and a rotational velocity of 85% of critical 
speed. This produces an equatorial wind with M = 7 x 10“6 

Mq yr“1 and = 1070 km s“1. This combination of polar 
and equatorial wind models can satisfy the radio flux condition 

TABLE 1 
Model Results 

Number Star 
R 

(*g) 
M 

(Mg) 
B 

(G) 
log T 
(yr) 

^oo, pole 
(km s x) (km s x) M, pole AC, 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 

10. 
11. 
12. 

WR (test) 
WR (test) 
WR (test) 
V444 Cyg 
V444 Cyg 
V444 Cyg 

CV Ser 
CV Ser 
CV Ser 
y2 Vel 
y2 Vel 
y2 Vel 

8.0 
8.0 
8.0 
2.3 
2.3 
2.3 
3.9 
3.0 
0.5 

13.0 
5.0 
1.0 

13 
13 
13 
10 
10 
10 
13 
13 
13 
20 
20 
20 

0.36 
0.36 
0.90 
0.32 
0.32 
0.80 
0.36 
0.26 
0.92 
0.45 
0.45 
0.963 

0 
500 

0 
0 

1500 
0 
0 

1500 
0 
0 

3000 
0 

0 
0.87 
0 
0 
0.85 
0 
0 
0.92 
0 
0 
0.92 
0 

5.3 

5.5 

5.3 

4.7 

1900 
1900 
540 

4000 
4000 
2500 
2900 
3400 
2900 
1550 
2900 
1500 

1900 
700 
540 

4000 
1100 
2500 
2900 
990 

2900 
1550 
950 

1500 

1.8 
1.8 

35. 
1.2 
1.2 

15 
1.6 
1.5 

27. 
4.4 
3.8 

89 

1.8 
10. 
35. 

1.2 
7.0 

15 
1.6 

11. 
27. 
4.4 

61 
89 

0.041 
1.1 

12. 
0.025 
1.2 
1.3 
0.020 
0.92 
0.87 
0.018 
0.88 
1.0 

Note.—Observational estimates for stellar parameters : 
V444 Cyg: = 2500, Sv = 0.30 mJy, M = 1.2 x 10“5, T = 0.32. 
CV Ser: = 2900, Sv < 0.40 mJy, M < 3.0 x 10“5, F = 0.36. 
y2 Vel: = 1500, Sv = 29.0 mJy, M = 8.8 x 10“5, F = 0.45. 

The Alfvén radius, rJR, for No. 2 is 2.00; No. 5 is 1.65; No. 8 is 1.85; No. 11 is 1.98. 
a M = 4ndM/dQ in 10“6 M0 yr“1. 
b Calculated radio flux in units of the observed flux computed from eq. (9) assuming n = 1. 
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of equation (9), with G = 358, and a spin-down time of 
~ 300,000 yr. The comparison with the CEK observational 
data is also shown in Figure 7. The interpretation is not so 
straightforward because CEK assumed that the wind is spher- 
ically symmetric, and they derived a velocity distribution by 
combining the mass-loss rate with the inferred density distribu- 
tion. We have assumed in Figure 7 that the observationally 
inferred p(r) is basically that of the equatorial zone. The 
“ observed ” terminal velocity of 2500 km s ~1 indicates that the 
inclination of the Wolf-Rayet must be less than 90°, but we 
have not yet carried out a detailed comparison with CEK 
using the observed value for the inclination angle. 

Table 1 shows results for three models for V444 Cyg: model 
4 is the low-luminosity zero rotation rate model shown as the 
polar model in Figure 7; model 5 is our two-component 
model; and model 6 is a high-luminosity model like that of 
Pauldrach et al (1985). 

As we noted earlier, there are observational uncertainties in 
the estimates of M, L and for V444 Cyg. We have here 
illustrated a model that has a wide range in velocity as a func- 
tion of inclination angle. If the terminal velocity is in the range 
of 1500-1800 km s-1 instead of our adopted 2500 km s_1, then 
it will be possible to fit the star with a smaller rotation rate and 
with a less extreme pole to equator contrast. 

b) CVSer 
CV Ser is a partially eclipsing binary system of a WC 8 and a 

late O star. Using the mass of 13 M0 and Maeder’s mass 
luminosity relation we get L = 3 x 105 L0 or F = 0.36; many 
of the other stellar parameters are the same as for the test 
model. The test model of § II presented results for CV Ser, 
assuming it to have a radius of 8 R0. However, that choice led 
to a polar wind velocity of 1900 km s“1. We have computed 
other models for CV Ser, adjusting the radius of the star so that 
the terminal velocity along the pole is larger than 2900 km s_ ^ 
As seen from the observer’s aspect angle, the observed terminal 
velocity of 2900 km s 1 should be intermediate between the 
polar and equatorial value. We reduce the radius to 3 R0 
which gives a polar wind (i.e., a zero rotation rate and zero 
magnetic field strength model) that has M = 1.5 x 10“6 M0 
yr-1 and vœ = 3400 km s_1. For the equatorial region we 
assume, for simplicity, the same radius as the polar model and 
a magnetic field strength of 1500 G. A rotation rate of 92% of 
critical velocity will produce a flow with M = 1.1 x 10-5 M0 
yr 1 and = 990 km s-1. The geometric correction factor 
(G) in equation (8) is 480 for this model, which will satisfy to 
within 10% the radio flux condition in equation (9). The spin- 
down time scale for this model is - 300,000 yr, sufficiently long 
for a Wolf-Rayet star. The velocity and density distributions of 
the polar and equatorial zones are shown in Figure 8. This 
low-luminosity model, when viewed at some inclination less 
than 90°, satisfies the major observational constraints on Wolf- 
Rayet winds. 

Table 1 summarizes the models for CV Ser. In model 7, the 
observed terminal velocity requires a radius of 3.9 R0, but 
using Maeder’s luminosity we get a radio flux that is deficient 
by a factor of 50. Model 8 is the two-component model, dis- 
cussed above. Model 9 is a high-luminosity Friend and Abbott 
model that can also explain the radio flux, but it requires 
F = 0.90 and a photospheric radius of only 0.5 Rö. It has been 
pointed out to us by M. Barlow (private communication) that 
the actual terminal velocity of the line-of-sight flow from CV 
Ser could be significantly less than the 2900 km s_1 adopted 

here. Torres, Conti, and Massey (1986) estimate a terminal 
velocity of 2300 km s “1 from a correlation between the optical 
line width and excitation potential. Even 2300 km s “1 might be 
too high since the extrapolation has no solid theoretical under- 
pinning. The velocity could be as low as 2000 km s~ ^ If such is 
the case the requirements on both the two-component model 
and the high-luminosity line-driven wind model can be 
reduced. The velocity is proportional to the escape speed, so, 
for example, a larger radius could be used. It is useful to note 
that our model could explain even the more difficult case of a 
large line-of-sight terminal velocity. The smaller the observed 
line-of-sight velocity, the less extreme must be our pole equator 
contrast. 

c) y2 Vel 
The WC 8 star y2 Vel has an extremely large inferred mass- 

loss rate of ~8.8 x 10“5 M0 yr-1 derived from its large radio 
flux, and its wind speed inferred from infrared lines (Barlow, 
Roche, and Aitken 1988). The mass of y2 Vel is known from the 
orbital solution (M = 20 M0) and Maeder’s relation (eq. [1]) 
gives F = 0.45. The values of k and a are the same as for the 
test model, and the density at the surface is 1 x 10"8 g cm-3. 
As with CV Ser, the radius, R, is not known. We adjusted the 
radius so as to match the terminal velocity of 1500 km s" ^ For 
the zero rotation rate model in Table 1 (model 10), this leads to 
Æ = 13 Rq. The radio flux for this model is too low by about a 
factor of 50. For our two-component model (model 11), we 
decreased the stellar radius to 5 R0 so that the polar terminal 
velocity is significantly larger than the observed terminal 
velocity as is appropriate for this case in which we are seeing 
the star at a large inclination angle. This two-component 
model is shown in Figure 9. Using a rotation rate of 92% of the 
critical rate, we obtain a radio flux of 88% of the observed flux, 
presumably well within observational uncertainty. The geo- 
metrical correction factor for this model is G = 1560. The high- 
luminosity Friend and Abbott model (model 12) that matches 
both the radio flux and the terminal velocity has an extremely 
high value for F of 0.963 ! 

V. CONCLUSIONS 
We have shown that a rotating, magnetic, radiation-driven 

wind model can reproduce the observed radio fluxes of Wolf- 
Rayet stars and can explain the observed high terminal speeds 
provided that we are not observing the equatorial region. 
Rotation, with a weak magnetic field, can increase the density 
along the equator enough to produce the observed radio flux. 
Such a two-component model does not encounter the prob- 
lems with spin-down times due to magnetic braking. This 
model solves the “momentum problem,” since mass flux and 
velocity are never large in the same part of the wind. The 
model also uses a luminosity that is consistent with what is 
expected from interior theory (with F æ 0.32 to 0.45). Our 
rotating magnetic model requires that the surface of Wolf- 
Rayet stars rotate at rates near the critical rate. Although these 
rotation speeds are large, they cannot be ruled out observa- 
tionally because the broad line profiles and apparent absence 
of photospheric lines prevent us from deriving rotational velo- 
cities from observations. 

We have heard arguments that Wolf-Rayet stars in binary 
systems, such as the three we investigated here, cannot be rapid 
rotators because their rotation should be tidally locked into 
the much slower revolution rate. There are several good 
reasons to doubt that this is the case. First the Wolf-Rayet 
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stars are in their final stages of evolution. The overall collapse 
that would be associated with the initiation of helium burning 
would, because of conservation of angular momentum, have 
unlocked any preexisting synchronous rotation. Second, the 
W-R stars were the cores of massive stars, and it is not clear 
that this core would have decelerated synchronously with the 
envelope because of tidal effects. Finally, the lifetimes of the 
W-R phase is very short, on the order of 105 yr, and tidal 
locking at these final stages would probably not occur. 

The alternative to having large rotation rates is to have very 
high luminosities implying F > 0.9, as has been proposed by 
Pauldrach et al. (1985). However, there is very little evidence, 
both observationally or theoretically, to support this high 
luminosity. For the case of V444 Cyg, CEK derived an approx- 
imate color temperature from their analysis of the eclipses. 
Interpretation of this temperature in terms of the luminosity is 
questionable. In addition, the new results by Schmutz et al. 
(1988b) indicate that the luminosities of Wolf-Rayet stars are 
much lower than required by the radiation-driven wind 
models. Without F > 0.9 or major modifications to the theory, 
radiation-driven wind models alone cannot drive the Wolf- 
Rayet star winds. Friend, Poe, and Cassinelli (1988) present 
alternative ways to increase the radiation force within the 
framework of the Friend and Abbott model. 

All of these approaches can solve the “wind momentum 
problem,” but at a price. They involve assuming a value for a 

stellar parameter that appears to be extreme and is unsubstan- 
tiated by observational evidence. The lack of firmer observa- 
tional constraints for the Wolf-Rayet winds means that all of 
these models must be seriously considered until further evi- 
dence is found that confirms or refutes them. 

It is also necessary, from the theoretical point of view, to see 
if the parameters used in these models can be justified in terms 
of stellar interior theory. Constraints from interior theory con- 
cerning magnetic fields in Wolf-Rayet winds have been dis- 
cussed by Maheswaran and Cassinelli (1988). They find that 
the circulation currents generated by rapid stellar rotation will 
tend to submerge the field in a Wolf-Rayet star if it is less than 
~ 103 G. Thus the minimal field that can withstand the effects 
of circulation are consistent with those needed in our models. 
Other important interior considerations concern the maximal 
allowed values for F for Wolf-Rayet stars and the maximal 
rotation speeds of exposed stellar cores. 
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ties of Wolf-Rayet stars. This work was supported by NSF 
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