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ABSTRACT 
We suggest that “weak” magnetic fields of strengths less than 106 G may be detectable in some variable 

white dwarfs. Weak fields can cause subtle changes in the Fourier power spectra of these stars in the form of 
“ splitting ” in frequency of otherwise degenerate signals. Present-day observational and analysis techniques are 
capable of detecting these changes. We suggest further, by listing some well-studied candidate stars, that 
perhaps the magnetic signature of splitting has already been observed in at least one object and that the 
difficult task of intensive measurements of weak fields should now be undertaken of those candidates. 
Subject headings: stars: magnetic — stars: pulsation — stars: white dwarfs 

I. INTRODUCTION 

In present usage, the term magnetic white dwarf seems to be 
reserved for those white dwarfs exhibiting surface magnetic 
field strengths in excess of 106 G. This numerical limit appears, 
however, to be forced upon us by present-day observational 
constraints on Zeeman and continuum circular polarization 
measurements, and spectropolarimetry. Measured field 
strengths of below 106 G usually have quoted errors compara- 
ble to the field strengths themselves (as, for example, in the 
tabulations of Angel, Borra, and Landstreet 1981). Thus both 
“ firm ” and null determinations are uncertain. 

On the other hand, there is no reason to suspect that weak 
magnetic fields with B < 106 G should not be present in white 
dwarfs; the origins and evolution of magnetic fields in stars are 
still sufficiently uncertain that weak fields cannot be ruled out 
and, indeed, their discovery and measurement would help elu- 
cidate questions of origin and evolution. (For a brief review of 
such questions associated with white dwarfs see Wendell, Van 
Horn, and Sargent 1987.) The techniques used in this study are 
not applicable to strong fields and we shall discuss them no 
further; see the review of Schmidt (1988, and references therein) 
for a full discussion of the two dozen known strong magnetic 
field white dwarfs. 

The purpose of this communication is to suggest that weak 
magnetic fields may, in principle, be detectable in variable 
white dwarfs through observation and frequency analysis of 
their light variations. If successful, such a program might be 
called “ white dwarf magnetoseismology. ” The next section 
discusses what are the possible signatures of weak magnetic 
fields in the variables, and we include some illustrative numeri- 
cal calculations. We conclude with a discussion of the observa- 
tional problems of detection, what steps are necessary to 
resolve them, and we list some candidate stars. 

II. EFFECTS OF WEAK MAGNETIC FIELDS ON PULSATION 

The frequency spectrum of low-amplitude pulsations in a 
variable white dwarf may be characterized, in the simplest 
instance, by sets of three indices—/, m, and k—and a mode 
type. The first two indices specify the order of spherical harmo- 
nic, Yl m(0, </>), which describe the angular form of fluid displace- 
ments. The k index is roughly a count of the number of nodes 
in the displacement in the radial direction. It is thought that 
most, if not all, variable white dwarfs are gravity (0)-mode 
pulsators with / > 0 in which buoyancy is the restoring force 
for fluid motions. (For a review of this and other matters, see 
Winget 1987, 1988. General references to nonradial pulsation 
theory are Unno et al 1979 or Cox 1980.) 

If the star is spherically symmetric, not rotating, and con- 
tains no magnetic fields, then the frequency (or frequencies) of 
pulsation, a, depends only on k and / but not on m; the 2/ + 1 
possible values of m = 0, ±1, + 2, ..., ±1 give rise to the same 
degenerate frequency crw. However, either rotation or embed- 
ded magnetic fields can destroy underlying spherical sym- 
metries and, at the same time, remove the degeneracy in m so 
that frequency depends on m also; that is, a = akim. A particu- 
lar mode is then said to be “ split ” with respect to m. We shall 
see that magnetic and rotational splitting may compete in an 
observed white dwarf variable and, for that reason, we now 
discuss rotational splitting. Needless to say, the frequency 
spectra of some variable white dwarfs show strong evidence for 
splitting and the issue will be the precise cause. 

a) Splitting by Rotation 
The most extensively analyzed example of potential splitting 

of modes in variable white dwarfs has been for the case of slow, 
solid body rotation. By “ slow ” we mean that the angular fre- 
quency of rotation, Q0, is small compared to the pulsation 
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frequency. In the limit of adiabatic pulsations, the degree of 
splitting (as observed in an inertial frame) due to Coriolis 
forces in this situation is given by 

°kim = Via - mQ0[l - C(k, 0] , (1) 

where C(k, /) is a simple ratio of integrals of the eigenfunctions 
(linearized displacements) of the corresponding nonrotating 
star which has a mode frequency of <7W. This is the result 
quoted by Ledoux and Walraven (1958, § 82), and used by 
Brickhill (1975), Hansen, Cox, and Van Horn (1977), and 
Pesnell (1985) (among others). In the limit of large k (high 
overtone) for 0-modes, C approaches [/(/ + l)]"1. The impor- 
tant feature of equation (1) is that a given frequency in the 
absence of rotation is split into (2/ + 1) equally spaced signals 
by rotation and the splitting between these signals is of the 
order of the rotation frequency. (Which, if any, of these sub- 
levels may be excited in a real star to observable amplitude is a 
largely unexplored question.) However, as is the case for mag- 
netic fields, the rotation properties of the interiors of stars is 
unknown—with the possible exception of the Sun. Hansen, 
Cox, and Van Horn (1977) investigated the splitting of modes 
in cooling white dwarfs for a particular “law” of axially sym- 
metric differential rotation and found that equation (1) was 
modified to read 

Vkim = <rki - mQoll - C(k, l) - C^k, /, | m | )] , (2) 

where Q0 is the rotation frequency along the rotation axis and 
Ci(k, /, I m I ) again involves integrals of eigenfunctions but 
depends only on the magnitude of m. There are still (21 + 1) 
components of (rklm but, although the splitting is symmetric 
about m = 0, it need not be equally spaced throughout. Similar 
deviations from equation (1) may occur even with solid body 
rotation if higher order corrections in Q0 are included (as in 
Chlebowski 1978). 

b) Splitting due to Magnetic Fields 
We assume that conductivities in the white dwarf stellar 

plasma are sufficiently large that the “ MHD ” approximation 
is valid; that is, the temporal evolution of the magnetic field, B, 
is governed by 

dB 
— = \x(vxB), (3) 

where v is the instantaneous fluid velocity (Jackson 1975, 
§ 10.3). Also implicit in this equation is the assumption that 
displacement currents may be ignored. This is justified in the 
present context because pulsation amplitudes are assumed to 
be small and observed pulsation periods in variable white 
dwarfs are long (around 10 minutes). To completely describe 
the system, again in the adiabatic approximation where we 
examine only mechanical effects, we must include Lorentz 
forces in the equation of motion and then see how the system 
responds to periodic low amplitude fluid displacements. The 
details of this procedure are given in Unno et al. (1979, § 18) 
and we will only summarize the results here. 

If Ç(r) is the amplitude of the local displacement field describ- 
ing how a parcel of fluid is shifted about during a pulsation of 
the variable star, and B0(r) is the magnetic field resident in the 
unperturbed (not pulsating) star, then the perturbed magnetic 
field is given by 

&(?) = ? x(ÇxB0), (4) 

where a temporal dependence of the form ei<Tt has already been 
assumed. At this juncture Unno et al. (1979) make the impor- 
tant assumption that the unperturbed field is force free and 
satisfies 

(V x B0) x B0 = 0 . (5) 

We shall also make this assumption because without it any 
equilibrium models to be considered would have to include the 
effects of the field on the structure of those models. This is a 
task we are not going to undertake in this preliminary study 
where we are concerned only with order of magnitude effects. 
We also make the additional assumption (as do Unno et al. in 
their final analysis) that B0 is a potential field satisfying 
V xBo = 0. 

The effect of magnetic fields in pulsation is to modify dis- 
placements and pulsation frequencies by means of tensions in 
the field lines resisting fluid motions. However, if the fields are 
weak such that they change frequencies by only a small 
amount, then a (Rayleigh) variational principle may be 
invoked to find those small frequency changes. This principle 
uses only the eigenfunctions, £, for a mode in which no mag- 
netic effects are present. This is directly analogous to how the 
results of splitting due to rotation were obtained. (If fields are 
strong, then both frequencies and eigenfunctions may be 
strongly modified and the problem is nearly intractable—see, 
for example, the simplified calculations of Carroll et al. 1986 in 
a neutron star context.) 

If we let aki(B0 = 0) be the pulsation frequency of the non- 
magnetic star and denote aklJ as the correction due to small 
magnetic effects, then the final frequency of the magnetic star is 
given by 

°kim(B0) = (rkl(B0 = 0) + aklm', (6) 

where the variational analysis yields 

, 1 
<7fcZm = 0) 

fy p~i\B'\2dmr - f5 [(£* x B0) x ZT) - hds ^ 

Jm I £ 12 dnfir * (7) 

Here ^ is the eigenfunction of a given mode for the field-free 
star, and the integrals are either over the entire stellar mass or, 
as in the rightmost integral, over the stellar surface. An asterisk 
means complex conjugate and ñ is an outwardly directed unit 
normal to the surface S. Note that okln¡ is proportional to 
l^o I2, and we include the surface integral in our calculations 
although it was assumed to be negligible by Unno et al. The 
latter term usually only affects our result at 10% level. 

While the simplicity of equation (7) is appealing, it can be 
misleading. We have assumed total reflection of pulsation 
kinetic energy by the stellar surface when finding £. If the initial 
magnetic field is such that B0- at the surface, then this 
kinetic energy is not totally reflected but rather propagates 
outward into the external field. This situation requires a brutal 
piece of analysis (as in Biront, Goosens, and Mestel 1982) and 
is, hopefully, not necessary for obtaining the sort of estimates 
we seek. A more relevant difficulty is the mixing of spherical 
harmonics by this process. Each normal mode would have 
several Ylm components in its angular dependence which could 
confuse the observed power spectrum and severely test both 
theory and observation. 

The next phase of the analysis is indeed tedious and only a 
sketch will be given here. The eigenfunctions f may be decom- 
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posed into two independent radial functions multiplied by 
spherical harmonics and their angular derivatives in 6 and 0. 
Once a sample magnetic field is chosen, then the angular inte- 
grations implicit in equation (7) can be performed usually with 
difficulty. What remains is a radial (or mass) integration over 
the star. 

We have chosen two sample fields for our calculations: a 
constant field with B0 = £0(cos 9er' — sin 0ed') with B0 a con- 
stant, and a dipole field 

B0=^j(2 cos 6er' + sin Qee'). (8) 

The first field is certainly unrealistic whereas the second may 
be a reasonable representation for the global field of a white 
dwarf. However, our final results are relatively insensitive to 
which of these two fields we choose. 

Once the symmetry axis of the magnetic field is chosen, then 
the angular eigenfunctions may be found using degenerate per- 
turbation theory. With our choices of B0, the correction term 
<*kim wiN depend only on m2 and the angular dependence will 
consist of standing wave spherical harmonics. The remaining 
degeneracy may be removed by adding some rotation (if we so 
desired). Combinations of rotation and magnetic fields in the 
case of unaligned symmetry axes are discussed in Pesnell (1988) 
for Ap stars. 

The splitting for the constant magnetic field example has 
been solved by Unno et al (without the surface integral term) 
and our final expressions agree with those they obtain (with the 
correction of a minor typographical error—the left-hand side 
of their eq. [18.56] should contain a factor of r2). Our expres- 
sion for the integrands in equation (7) typically contain some 
20 terms and will not be given here but are available upon 
request. 

The result that aklJ depends only on m2 and not on m 
directly implies that the frequency of a given g-mode in a white 
dwarf will be split by our magnetic fields into l + 1 levels and 
not 2/ + 1 as is the case for rotation (as discussed, for example, 
by Goosens 1976). This is then one signature of the weak mag- 
netic field. Note too that, unlike the case for rotation, the mode 
with m = 0 is also shifted in frequency. It remains to be shown 
whether such signatures can be seen in variable white dwarfs 
for interesting field strengths. 

c) Models and Numerical Examples 
We have explored the splitting due to weak constant and 

dipole magnetic fields in three white dwarf models chosen from 
a pure carbon evolutionary sequence of mass 0.6 M0. Some 
characteristics of these models are listed in Table 1 and more 
information about the evolutionary sequence may be found in 
Kawaler, Hansen, and Winget (1985) and Kawaler et al (1986). 

The models were chosen to represent the effective tem- 
peratures and luminosities of the three known kinds of white 
dwarf (or pre-white dwarf) variables. These are, in order of 
increasing model number and age, the PG1159 (GW Vir) vari- 

TABLE 1 
Evolutionary Model Characteristics 

Model log L/Lq log R (cm) log Teff 

1  2.00 9.203 5.084 
2......... -0.815 8.958 4.501 
3  -2.13 8.936 4.184 

ables at around 105 K, the DB (helium atmosphere) variables 
with effective temperatures a bit below 30,000 K, and the cool 
DA (hydrogen) ZZ Ceti variables which are near 13,000 K. The 
pure carbon models cannot reproduce the latter variables very 
well in the surface layers because of the composition dissimi- 
larities, but the overall structures as well as pulsation periods 
and eigenfunctions are similar. 

We have applied the magnetic field splitting formalism of 
§ lib to all three models using both constant and dipole field 
structures. All modes with frequencies corresponding to pulsa- 
tion periods in the range 100 s to 1000 s and for / = 1, 2, 3 were 
computed for the nonmagnetic case, and then the corrections 

were found. The numerical technique used is similar to 
that reported in Kawaler, Hansen, and Winget (1985); the full 
adiabatic nonradial pulsation equations (as an eigenvalue 
problem) were integrated along with equation (7) using a high- 
order integrator with spline interpolation. 

Some results are shown in Figures 1 and 2. What is given for 
the abscissae of these figures is the difference in frequency, 
/ = oßn in Hz, between a signal of a given m and that of m = 0 
after a magnetic dipole field of B0 = 105 G has been applied to 
modes of / = 1, and 2 in model 2. The ordinate shows the 
period of the unperturbed mode with no field. For example, in 
Figure 2 an unperturbed mode with a period of 214 s would be 
split into three modes (/ + 1) with spacings of 1.2 x 10“5 Hz 
(between m of 0 and 1) and 4.8 x 10“5 Hz (between m of 0 and 
2). By our assumption of small changes in frequency due to 
magnetic effects, the period of all three signals should be close 
to the orignal 214 s. 

The ordering of frequency in the split mode does not seem to 
depend on the orginal model structure or value of / in any 
obvious way. For / = 2 in model 2, the frequencies decrease 
with m whereas for / = 1 the order is reversed except for the 
lowest order (shortest period) modes. The overall effect of the 
field is to increase frequency because magnetic fields “ stiffen ” 
the stellar fluid against motions; that is, <jklm' is always positive. 
Furthermore, it should be evident that because the splitting 
varies as m2 then, for example, (fm=o — Mfm=o —/m=i)- 
This too should be a signature of splitting due to simple weak 
fields for / > 1—namely, a splitting in frequency which is quad- 
ratic in the integers 1,2,...,/. 

The results shown in the figures for the longer period (higher 
order k) modes are a bit deceptive because the amount of 
splitting tends to be comparable to the periods of the unper- 
turbed modes. This violates one of our original assumptions. A 
smaller field would, of course, reduce that splitting (and this 
may easily be effected in figures by scaling with 12?012/1010). 
The explanation for why the splitting increases with mode 
order follows from the properties of g-mode fluid displace- 
ments in variable white dwarfs and the nature of the integrands 
in equation (7). As order increases, the amplitudes of horizontal 
and radial displacements near the stellar surface increase rela- 
tive to displacements in the deeper interior. This means that, 
for a fixed normalization of one of the eigenfunctions at the 
model surface, the overall amplitude of fluid displacement in 
the core decreases with increasing k. Thus, with other consider- 
ations set aside, the contribution to splitting from the first most 
important integral in the numerator is concentrated toward 
the surface and becomes more concentrated as mode order 
increases. Note also the factor of p“1 in the numerator; it 
effectively changes the implied integral of the magnetic field 
perturbations over mass to one over volume. This is not true of 
the integral in the denominator (which describes the kinetic 
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Afm (Hz) 

Fig. 1.—The relative frequency splitting Afi =f0 — A (in Hz) between m = 0 and m = 1 modes for / = 1 in model 2. The assumed field is dipole with j50 = 105 G. 
The period on the ordinate is that for the unmagnetized star. Each point represents a particular (fixed k) mode in the unperturbed model. 

Fig. 2.—The relative frequency splitting f0 — A and A/2 =/0 —/2 for / = 2 in model 2. The field is again a dipole with B0 = 105 G as in Fig. 1. 

energy distribution) where the low-density material toward the 
surface has little weight. The net effect is that the numerator 
decreases less rapidly with period than does the denominator. 
A similar situation does not apply to splitting due to rotation 
because the integrals in equation (1) which are analogous to 
those in equation (7) are all over mass. 

The frequency splitting results for the constant magnetic 
field are similar to those obtained for the dipole field. In addi- 
tion, the splittings as a function of unperturbed periods for all 
models with both fields and l ranging from 1 through 3 are 

similar, give or take a factor of 3. In summary, a field of B0 ~ 
105 G yields values of (fm=0 - fm) greater than (or much 
greater than) 10“5 Hz for periods greater than about 200 s. Is 
this observable or has it already been observed? 

III. FREQUENCY SPLITTING IN VARIABLE WHITE DWARFS 

Of the almost 30 known variable white dwarfs, all show 
some degree of complexity in both their light curves and ampli- 
tude versus frequency spectra from, say, Fourier transforms; it 
appears that not one of these objects shows only one pure 
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frequency signal. However, there is a trend for the ZZ Ceti 
variables in that those with longer periods (of, say, a few 
hundred to a thousand seconds) show greater complexity 
whereas those with shorter periods (100-300 s) are relatively 
simple and have just a few modes present in their power 
spectra (Winget and Fontaine 1982). With a few important 
exceptions (such as PG 1159 — 035) only the “simple 
pulsators ” have been observed over long enough times and in 
sufficient detail that their power spectra have been resolved to 
high precision. It is from among these latter that we will seek 
candidates for magnetic field splitting. 

We first consider an object which probably does not contain 
a magnetic field of any appreciable strength. The DA (ZZ Ceti) 
variable white dwarf G226-29 (WD 1647 + 591) shows evidence 
of only three signals, down to the noise level, at frequencies 
(semiamplitudes) 9.134721 mHz (3.1 mmag), 9.150865 mHz (1.2 
mmag), and 9.167009 mHz (3.2 mmag) with a mean period of 
109.3 s. A complete description of these results is reported in 
Kepler, Robinson, and Nather (1983). Because the triplet is 
evenly spaced in frequency by A/= 1.614 x 10“5 Hz within 
observational error (and the amplitudes show a pleasing 
symmetry), it is very probable that slow rotation has split an 
l = 1 mode and that the rotation period is Prot ~ (A/)-1 ~ 1 
day. However, Angel, Borra and Landstreet (1981) report a 
magnetic field of B = (1.7 + 0.8) x 105 G. Our calculations 
indicate that if this were a dipole field, we would then expect 
uneven splitting of only around 10“ 7 Hz for an / = 2 mode of 
period near 109 s in model 3 (which has an effective tem- 
perature near that of G226-29). A magnetic field does not seem 
to be the cause of the splitting. To reinforce this conclusion, J. 
R. P. Angel (in a private communication) informs us that the 
field result quoted could just as well be a null determination if 
the errors were reinterpreted slightly. It is a tough business. 

Our most promising candidate star for a weak magnetic field 
is R548 (WD 0133-116) which is ZZ Ceti itself. Stover et al 
(1980) have reported on the results of 8 yrs of observations of 
this star and they find two doublets with periods 212.768427 s, 
213.132605 s for one doublet and 274.250814 s, 274.774562 s 
for the other. The corresponding frequency separations are, 
respectively, Af = 8.03 x 10“6 Hz and 6.95 x 10“6 Hz. Angel, 
Borra, and Landstreet (1981) report a null detection of 
B = (-1.3 ± 2.3) x 105 G. If each doublet is a magnetically 
split l = 1 mode, then our results for model 3 indicate that a 
dipole field of slightly less than 105 G should reproduce the 
observed splitting for modes with periods close to the above. A 
closely spaced doublet is very hard to understand in the 
context of rotational splitting (for any /) unless some members 
of a multiplet are not excited to observable amplitude for some 
reason or inclination effects produce the same result (Pesnell 
1985). We thus urge that observations be made of this star to 
determine whether magnetic fields are indeed present. 
However, we also caution the observers to be prepared for the 
nasty situation of dealing with a star that is varying in light 
output in four ways at once. 

Another simple pulsator is GD 385 (WD 1950 + 250) which 
has been described in detail by Kepler (1984). The power spec- 
trum contains only a singlet with a period of 128.15 s and one 
doublet with a mean period of 256.23 s where the splitting in 
frequency of the latter is 3.1 x 10“ 6 Hz. We have no good idea 
why only one doublet is seen whereas the singlet appears to be 
untouched. We hesitate to promote GD 385 as a candidate 
magnetic star but it should be kept in mind. 

Just as no two planets in the solar system are alike, so all the 

well-studied white dwarf variables differ in important respects. 
The ZZ Ceti variable G117-B15A (WD 0921 + 354) contains 
two widely spaced triplets with some curious, and as yet unex- 
plained, numerical relationships between frequencies 
(enumerated by Kepler et al 1982). We note here that the 
frequencies in each triplet are spaced in the ratio 1:4 to almost 
within the quoted observational errors. This is consistent with 
the spacing ratio expected from a triplet with l = 2. However, 
the spacing itself is on the order of 10“3 Hz and, if due to 
magnetic effects, would imply a rather strong field. We suspect 
that magnetic fields are not at work here but this star may bear 
further scrutiny in the future. 

We cannot say very much about the more complex pulsators 
except to suggest that in some cases the complexity may in part 
be due to magnetic fields. Kawaler (1988) has proposed that at 
least part of the power spectrum of PG 1159 — 035, a hot vari- 
able white dwarf, is due to sequence of modes spaced equally in 
period—a property of modes of a given / but with large k. 
Further observations may confirm this suggestion but would 
not guarantee that other complex objects conform as nicely. 
Knowledge of what kinds of modes exist in the hot variables is 
important because these stars are the fastest evolving of the 
white dwarfs and secular time changes in the frequency of a 
given mode reflect these evolutionary time scales (Winget et al 
1985; Kawaler, Hansen, and Winget 1985). In order to make a 
firm connection between the observations, pulsation analyses, 
and evolutionary studies, the role of magnetic fields (and 
rotation) must be clarified. 

If, indeed, magnetic fields are measured in some of the vari- 
able white dwarfs, then the theoretical problem of modeling the 
observations must be done with much more care than we have 
taken. Primary among the problems is the consideration of 
more realistic magnetic fields and, furthermore, the competing 
mechanism of rotation must also be faced. An additional 
problem is that of the strengths of even the “weak” fields 
considered here. A major assumption of our calculations has 
been that field strengths are small enough that the pertur- 
bation techniques of § II are valid. This is certainly true in the 
deep interior of the star, but in the low density and pressure 
regions near the surface, such assumptions may fail. If (B2/Sn) 
is the magnetic pressure at some level in the star, then it should 
be less than the local gas pressure in order that structural 
effects and perturbations of the pulsation eigenfunctions due to 
fields may be considered small. For our model 3, the level of 
equality of these two pressures is only 0.01% in radius below 
the surface for a field of 105 G. Thus, in the higher surface 
layers, magnetic pressures exceed gas pressures and we expect 
fluid displacements to be effected in perhaps a gross way. To 
incorporate these effects is no easy matter because the pulsa- 
tion problem must then be solved in an entirely consistent 
fashion (as in Carroll et al 1986 for a simplified geometry). 
Additional analysis must also be done if the fields turn out not 
to be force-free and derivable from a potential—as we have 
assumed—or if the fields are asymmetric in some way. Rota- 
tion naturally complicates matters both from the pulsation 
standpoint and because the possibility of differential rotation 
implies complex fields. 

Despite these concerns, a program designed to treat realistic 
fields is worthwhile if weak fields are discovered. Besides the 
benefit of telling us more about the evolution of magnetic fields 
in very old stars where stellar cores have been exposed to view, 
such a program should yield vital information on what really 
goes on in a variable white dwarf. For example, if it does turn 
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out the R548 has a measurable field of roughly the strength our 
calculations would suggest, then our assignment of / = 1 to 
both of the doublets observed in that star would appear to be 
firm. This, in conjunction with the observed periods, would 
then fix not only / but also the mode order k of both modes. 
The importance of this lies in the observation that not one 
mode in any variable white dwarf has been unambiguously 
assigned any of the indices k, /, or m. Determining any of these 
quantities would be a benchmark for future pulsation analyses. 

We wish to thank J. R. P. Angel, J. Liebert, G. D. Schmidt, 
H. M. Van Horn, C. E. Wendell, D. E. Winget, and E. G. 
Zweibel for enlightening discussions, computer output, and 
preprints. This research was supported by National Science 
Foundation grant AST85-15489 through the University of 
Colorado and by the NASA grant NAG-W778 through Yale 
University. 
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