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ABSTRACT 
This is the second paper reporting our analysis and intepretation of observations of the pulsed X-ray emis- 

sion from the accretion-powered pulsar Vela X-l. We present the pulse frequency behavior during 1978 May, 
based on data from OSO S, and during 1978 December-1979 January, based on data from HEAO 1 and SAS 3. 
The orbital parameters derived in the first paper are used to remove the effect of the neutron star’s orbital 
motion. The frequency record for the time span 1975-1982 is then examined, using previously published fre- 
quencies as well as the new ones reported here. From this record it is apparent that there are variations in 
pulse frequency on all accessible time scales, from 2 days to 2600 days. In particular, the HEAO 1 observa- 
tions reveal short-term variations in frequency as rapid as | 0/Q| = (5.8 ± 1.4) x 10"3 yr-1, with the sign of 
the derivative reversing on time scales as short as the temporal resolution of the data, which is roughly 2 days. 
We also construct a power density spectrum of the fluctuations in íV which covers 13 octaves in analysis 
frequency. The lower nine octaves of this spectrum are well fitted by a power law with exponent + 0.06 ± 0.23, 
demonstrating that white noise in Ù (a random walk in pulse frequency) is an appropriate description of the 
pulse frequency fluctuations and the only acceptable simple noise model. The observed strength of the noise is 
(8 ± 2) x 10 19 rad2 s-3. The character of this power density spectrum strongly suggests that the observed 
variations in pulse frequency on time scales longer than a few days are indeed variations in the rotation rate 
of the neutron star. The change in the apparent secular trend of the pulse frequency from spin-up to spin- 
down in 1979 and the frequency variations observed on much shorter time scales are both consistent with 
white noise in Ù of this strength. 
Subject headings: pulsars — stars: neutron — stars: rotation — X-rays: binaries 

I. INTRODUCTION 
This is the second paper presenting the results of a detailed 

study of pulse frequency variations in the accretion-powered 
pulsar Vela X-l. In the first paper (Boynton et al. 1986, here- 
after Paper I) we described the motivation for this study, the 
observations, the method used to estimate pulse phases, and 
the orbital solution we derived from them. There we also 
reported the presence of stochastic variations in the pulse 
phase caused by three distinct phenomena : fluctuations in the 
observed shape of pulses due to the finite number of photons 
detected, “ excess ” fluctuations in the pulse shape due to other 
aspects of the pulse emission process, and additional variations 
that dominate the frequency record on long time scales. The 
last phenomenon we associate with irregularities in the rota- 
tion rate of the neutron star for reasons discussed below. 

In Paper I we showed that the variance in the pulse phase 
due to excess pulse shape fluctuations could be significantly 
reduced by applying a filter to the pulse templates prior to the 
timing analysis. We also showed that for our highest quality 
data, the uncertainties in the local orbital epoch and the semi- 
major axis induced by noise in the pulsar rotation rate are 
larger by factors of 5 and 10 than those attributable to the 
observed pulse shape fluctuations. Consideration of the rela- 
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tive importance of these two uncertainties enabled us to weight 
appropriately five selected orbital solutions in order to con- 
struct a mean orbit for which the uncertainty in the elements is 
approximately a minimum. 

In the present paper we study in detail the fluctuations in the 
rotation rate of Vela X-l. The appropriate method for analyz- 
ing and interpreting observations of such fluctuations depends 
on the character of the fluctuations and the structure of the 
observations. If the fluctuations do not overlap in time and 
they are resolved with adequate signal-to-noise ratio, the 
observed pulse frequency time series can be compared directly 
with deterministic models of the rotation rate as a function of 
time. If, on the other hand, the fluctuations overlap and/or the 
observations do not resolve the individual events with ade- 
quate signal-to-noise ratio, only the statistical properties of the 
time series can be determined (for more complete discussions 
of this problem see Lamb 1977 and Scargle 1982). As discussed 
below, we appear to be confronted by the latter situation in 
analyzing currently available X-ray pulse timing observations 
of Vela X-l. Under these circumstances, the power density 
spectrum of the fluctuations provides a convenient character- 
ization that can be interpreted relatively easily. Thus, an 
important goal of the present study is to construct and analyze 
the power density spectrum of the pulse frequency variations in 
Vela X-l. 

We also explore the possibility of modeling the observed 
fluctuations in the rotation rate of this star by simple random 
noise processes (by simple, we mean processes with an even 
integer power-law power density spectrum). The utility of this 
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approach was recognized following the discovery that the 
small fluctuations observed in the frequency of the rotation- 
powered pulsar in the Crab nebula can be adequately 
described by such a process (Boynton et al 1972; Groth 1975). 
Soon afterwards, Lamb, Pines, and Shaham (1974, 1976) 
argued on theoretical grounds that the pulse frequency varia- 
tions seen in many accretion-powered pulsars should also be 
amenable to a description in terms of simple noise processes 
and showed that the limited data then available for Her X-l 
and Cen X-3 were consistent with this conjecture. Lamb (1977) 
pointed out that, regardless of its cause, noise in the pulse 
frequency can be used to probe the internal properties of the 
pulsing star. These ideas were subsequently worked out in 
detail by Lamb, Pines, and Shaham (1978a, b). Motivated by 
this work, Boynton and Deeter (1979), Boynton (1981), and 
Deeter (1981) were able, through studies of the observed noise, 
to place stringent constraints on models of the internal struc- 
ture of the Crab pulsar and Her X-l. In the case of the Crab 
pulsar, they specifically ruled out the two-component model 
proposed by Baym et al. (1969) as an adequate description of 
its full dynamical behavior. 

The results presented here depend heavily on a planned 
sequence of 13 observations made using the HE AO 1 and SAS 
3 X-ray satellites during 1978 November-1979 January. These 
observations were spaced to provide approximately one octave 
resolution over the largest possible range of analysis fre- 
quencies, thereby making possible an investigation of at least 
the coarse features of the power spectrum. These observations, 
together with previously unpublished OSO 8 observations 
from 1978 May, constitute the new data used in both Paper I 
and the present work. Previously published data have also 
been used wherever appropriate. 

In § II we determine the behavior of the pulse frequency as a 
function of time. We then construct a representation of these 
same data in the frequency domain by computing a low- 
resolution power density spectrum in § III. This spectrum is 
shown in § IV to be consistent with a simple noise model corre- 
sponding to a random walk in the rotation rate of the neutron 
star. 

In § V we argue that the fluctuations in pulse phase that 
exceed those ascribable to the observed fluctuations in pulse 
shape are most likely caused by changes in the rotation rate of 
the stellar crust. Such changes can be produced by the torques 
acting on the inside and the outside of the crust. The internal 
torque depends on the state of the interior and its coupling to 
the crust, whereas the external torque depends on the flow 
pattern of the accreting plasma. The study of the fluctuations 
in rotation rate caused by these torques is a particularly prom- 
ising way to determine the properties of Vela X-l, because 
stellar rotation is relatively simple in comparison to much 
other X-ray source physics and has been investigated in detail. 
Moreover, rotation rates can be determined very precisely with 
the combined capabilities of modern X-ray detectors and data 
analysis techniques. Thus, a direct, quantitative confrontation 
between theory and observation is possible. 

Our results have important implications for the structure of 
the neutron star and the properties of the accretion flow in 
Vela X-l. A full discussion of these implications will be 
published elsewhere (Lamb et al 1988). A brief summary of our 
results has been presented in Boynton ei a/. (1984). 

II. PULSE FREQUENCY RECORD 

The mean orbit of Vela X-l derived in Paper I may be used 
to transform the observed pulse frequency time series to the 

approximate rest frame of the neutron star. By removing the 
effects of orbital motion with relatively high precision, the 
behavior of the pulse emission process and stellar rotation rate 
is revealed. In this section we describe this behavior as a time 
history of the pulse frequency. 

Even though pulse phase is the fundamental observable in 
our analysis, a continuous record of phase can be constructed 
only for those blocks of available data that can be connected 
by an unambiguous pulse count. In contrast, a compilation of 
locally determined pulse frequencies can be formed from pre- 
viously published observations, as well as from our own work. 
Thus, in order to construct the longest possible record of rota- 
tional behavior, we have used locally determined pulse fre- 
quencies over time intervals longer than can be connected by 
an unambiguous pulse count. 

We have chosen to report the history of the neutron star’s 
rotation as pulse frequency rather than pulse period largely 
because of the physical and mathematical simplicity of consis- 
tently taking time as the independent variable. Pulse phase is 
then the dependent variable, and pulse frequency—the time 
derivative of pulse phase—is the natural measure of pulse rate. 
For similar reasons, the physics of rotating bodies is couched 
in terms of rotation frequency, not period. This custom is built 
into the descriptive language as well : pulsar spin-up and spin- 
down are awkwardly presented in terms of pulse period 
because the period goes down during episodes of spin-up and 
vice versa. 

In analyzing our own pulse timing data, we begin with the 
time series of locally estimated pulse phases derived in Paper I. 
After transforming approximately to the neutron star rest 
frame using our mean orbit, the pulse phases derived from the 
1978 May (OSO 8) and 1978 November-1979 January (HEAO 
7, SAS 3) data sets were converted to a series of pulse fre- 
quencies. 

Seven frequency estimates were derived from the 1978 May 
data by dividing the set into seven approximately equal 
subsets, each of three to five days’ duration, and by determin- 
ing the frequencies as slopes from least-squares straight-line fits 
to each subset of phases. The duration of the subsets was 
chosen as small as possible, consistent with the requirement 
that the uncertainty in each frequency estimate be smaller than 
the typical change between estimates. 

Thirteen frequency estimates were derived from the 1978 
November-1979 January data set. Each of these (except the 
final one based solely on SAS 3 data) is calculated as a mean 
frequency for the interval between two consecutive 12 hour 
observations by first dividing the data from each separate 
observation into two equal parts, and then fitting a straight 
line to the pulse phase data from the second half of one obser- 
vation and the first half of the next. Data from the last half of 
the final HEAO 1 pointing was grouped with data from the 
first day of the 4.5 day SAS 3 observation, and an additional 
frequency estimate was computed by fitting a straight line to 
the final 3.5 days of the SAS 3 data. Because of the relative 
sparseness of the HEAO 1 and SAS 3 data, the resulting fre- 
quency record is not nearly as uniform as the record from the 
OSO 8 data. We also computed frequencies based solely on the 
data within each HEAO 1 pointing. These “ within ” frequencies 
were consistent with the “between” frequencies, but otherwise 
add nothing to the representation because of their relatively 
large uncertainties. They are not considered further in the 
present analysis. 

The uncertainties in the frequency estimates are affected by 
all three noise sources mentioned in § I. The combined effect of 
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the two types of fluctuation in pulse shape is found to domi- 
nate the uncertainty in pulse phase for time intervals over 
which phase estimates are computed (0.04^0.5 days). Both 
types of fluctuation produce statistically independent fluctua- 
tions in phase and consequently yield white noise in that vari- 
able. For this reason, in the remainder of this discussion we 
refer to them jointly, as “ pulse shape noise.” The estimated rms 
uncertainties, nominally 0.51, 0.7, and 1.32 s, respectively, for 
the individual HE AO 7, SAS 3, and OSO 8 phases (see Paper I), 
may be propagated into the frequency estimates to yield 
appropriate frequency uncertainties. The frequency estimates 
and their uncertainties due to pulse shape noise alone are listed 
in Table 1 and plotted in Figure 1. Uncertainties calculated in 
this way fully characterize the pulse frequency estimates made 
in the satellite observing frame or any other frame with a rela- 
tive motion that is precisely specified, such as the Solar System 
barycenter. 

The motion of the frame of interest, namely that of the 
neutron star, is not known precisely, and this introduces an 
additional uncertainty in the pulse frequency, when calculated 
in the frame of the neutron star. The reason is that the inaccu- 
racy of the orbital elements and consequent error in the calcu- 
lated motion of the source frame produces a corresponding 
variation in the pulse frequency time series when transformed 
to that nominal frame. The resulting contribution to the uncer- 
tainty in pulse frequency would exist even if pulse shape noise 

was the only noise present. But in practice, the red noise com- 
ponents in the pulse phase fluctuation spectrum of Vela X-l 
completely dominates the white noise component at the orbital 
frequency (~[9 days]-1), and makes determinations of the 
orbit of Vela X-l by pulse timing much more uncertain. This 
uncertainty is unavoidable as long as pulse timing remains the 
most precise method of determining the neutron star orbit. 

To see the effect of the orbital uncertainty on the frequency 
record, consider the simplified situation of a circular orbit. For 
a frequency estimate calculated from a phase difference mea- 
sured over a time interval, At, the uncertainty contributed by 
the orbit is shown in the Appendix to be 

= Oorb ax I sine iQorb Ai | , (1) 

where <tx is the uncertainty in x = (Qa/c) sin i, the projected 
semimajor axis, measured in units of pulse phase. If the orbit is 
not circular, it is necessary to add a second error term similar 
to that of equation (1), but with Qorb replaced by 2Qorb. 

The uncertainty computed in this way is adequate for dis- 
cussing a single frequency estimate, but a complication arises if 
two or more frequency (or phase) estimates are to be com- 
pared. In general the errors of all such estimates will be corre- 
lated except those computed using time intervals ^equal to 
integer multiples of the orbital period, for which the variance 
and any covariance contribution vanishes. For a circular orbit, 

TABLE 1 
New Pulse Periods and Frequencies for Vela X-l, Showing Effect of Uncertainty in Orbital Parameters 

^mid 
(JD -2,440,000) 

Span 
(days) 

Pulse 
Period51 

(s) 

Pulse 
FREQUENCYb 

(mrad s-1) 

AQC (nrads s x) 

£ Twr Weight*1 

1978 May 
3640.01. 
3645.62. 
3651.04. 
3656.02. 
3660.75. 
3665.47. 
3669.99. 

3.18 
3.65 
5.15 
3.79 
4.66 
3.70 
4.30 

282.80452 (169) 
282.80016 (127) 
282.79188 (88) 
282.78806 (127) 
282.78884 (99) 
282.78899 (127) 
282.79104 (110) 

22.217415 (133) 
22.217757 (100) 
22.218408 (69) 
22.218708 (100) 
22.218647 (78) 
22.218635 (100) 
22.218474 (86) 

76 
75 
50 
66 
55 
65 
61 

-15 
-40 

49 
-60 

54 
-56 

57 

65 
-57 

13 
2 

-6 
24 

-19 

-37 
6 
0 

23 
5 
8 
7 

-2 
-25 

3 
12 
4 

23 
9 

0.14 
0.14 
0.14 
0.14 
0.14 
0.14 
0.14 

1978 November-1979 January 
3825.78. 
3840.43. 
3846.77. 
3853.10. 
3857.59. 
3859.94. 
3861.38. 
3862.75. 
3864.21. 
3866.59. 
3871.00. 
3881.64. 
3891.30. 

23.50 
5.66 
6.88 
5.66 
3.18 
1.40 
1.34 
1.28 
1.52 
3.12 
5.60 

15.56 
2.50 

282.74884 (5) 
282.74606 (27) 
282.75233 (20) 
282.75604 (19) 
282.75640 (37) 
282.75881 (87) 
282.75240 (108) 
282.74948 (94) 
282.75004 (68) 
282.74616 (29) 
282.75346 (21) 
282.74632 (14) 
282.75020 (88) 

22.221790 (4) 
22.222008 (21) 
22.221516 (16) 
22.221224 (15) 
22.221196 (29) 
22.221006 (68) 
22.221510 (85) 
22.221740 (74) 
22.221696 (53) 
22.222000 (23) 
22.221427 (17) 
22.221988 (11) 
22.221683 (69) 

10 
38 
30 
42 
72 

109 
105 
87 
97 
76 
42 
14 
88 

-9 
31 

6 
-40 

66 
-5 

-71 
-61 
-13 

68 
-40 

7 
-6 

-4 
-18 

26 
-6 

9 
-88 
-39 

33 
75 

8 
-6 

-10 
72 

-2 
-1 

9 
-12 

28 
-57 

59 
7 

-60 
31 

-11 
5 

-48 

1 
-13 

11 
-4 

6 
-31 
-31 

53 
-6 

9 
-4 
-4 

-16 

0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 
0.13 

a Pulse period with respect to the mean orbit of Boynton et al 1986. The 1 a uncertainty in the final decimal place, due to noise in 
pulse shape, is given in parentheses to the right of each estimate. 

Pulse frequency (Í2) with respect to the mean orbit of Boynton et al 1986. The 1 c uncertainty in the final decimal place, due to 
noise in pulse shape, is given in parenthesis to the right of each estimate. The unit for this uncertainty is effectively nrads s _ 1, the same 
as that for the next five columns, so all six columns can be directly intercompared. 

c Estimated contribution to uncertainty in pulse frequency (AÍÍ) due to the uncertainty in the orbital parameters. The column 
labeled I gives the combined uncertainty obtained as the square root of the sum of squares of the entries in the next four columns. The 
remaining columns give in order the changes in frequency induced by +1 changes in the mean orbital epoch Tn/2i the projected 
semimajor axis x = (a/c) sin /, the eccentricity e, and the longitude of periapse co, respectively. 

d Weight used in computing the portion of power spectrum based on pulse frequencies. 
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No. 1, 1989 

JD-2440000 
Fig. 1.—Short-term history of the angular frequency of Vela X-l, based on the new data presented in Table 1. Vertical bars represent 

(a) 1978 May, based on OSO 8 observations, (b) 1978 November-1979 January, based on HEAO 1 and SAS 3 observations. 
a confidence intervals. 

the correlation between any two frequency estimates with mid- 
times t1 and t2 depends on the separation t2 — t1 as 

<712 = <71(T2 COS [Qorb(i2 - it)] > (2) 

where or and <j2 are the uncertainties in each of the two pulse 
frequencies given by equation (1). 

For the haphazard orbital sampling in the data at hand, the 
variances and covariances are comparable, tedious to calculate 
in detail, and defy any simple representation in displays of the 
pulse frequency record. We have therefore chosen to represent 
this correlated error component in the following way. The 
effect of the orbital uncertainty on each frequency listed in 
Table 1 is estimated by computing the change induced by a 1 cr 
change in each of four orbital parameters: the epoch 7^/2, the 
semimajor axis x, the eccentricity e, and the longitude of 
periapsis co. These four parameters are free from large correla- 
tions, so the combined contribution to the error in the fre- 
quency can be estimated by taking the square root of the sum 
of squares of the changes induced by the 1 a alterations in the 
four parameters. The combined frequency error is listed in 
Table 1, together with the individual changes obtained by 
varying the four parameters. The correlations between the fre- 
quency estimates due to orbital uncertainties are more difficult 
to present, but they can be recovered numerically by applying 
the extension of equation (2) that describes an elliptical orbit. 

Table 1 reveals that the uncertainty in the pulse frequency 
caused by the uncertainty in the orbit is comparable to (OSO 8) 
or greater than (HEAO 1) that caused by by the pulse shape 
noise. Nevertheless, the pulse frequency record displayed in 
Figure 1 shows clearly that the overall uncertainty in the fre- 
quency record is much smaller than the observed fluctuations. 
Consequently, the issue of correlated errors is important only 
in providing correct uncertainties for derived quantities such 

as the local angular acceleration. The situation confronted in 
analyzing the HEAO 1 data on Vela X-l is unfamiliar because 
the uncertainty in the pulse frequency record is determined 
more by the uncertainty in orbital elements than by the uncer- 
tainty in pulse phase. As mentioned earlier, this is because the 
power density spectrum of the red noise component dominates 
the white-noise component at the orbital frequency. 

Figure 1 shows that Vela X-l undergoes statistically signifi- 
cant short-term angular accelerations of both signs, with 
reversals occurring on the shortest time scales accessible to this 
study, roughly 2 days. The largest rate of change is found 
between the frequency estimates centered on JD 2,443,859.94 
and 861.38, and corresponds to a relative acceleration Ci/Q, = 
(5.8 ± 1.4) x 10-3 yr-1. 

The available pulse frequency estimates are shown in Figure 
2, including those based on the previously published data listed 
in Table 2. The most notable feature in this 8 yr history is an 
apparent change in spin rate in 1979. This feature and its inter- 
pretation are discussed in § IVh. 

III. CONSTRUCTION OF THE POWER SPECTRUM 

We have already suggested in § I that a straightforward 
approach to the statistical description of the fluctuations 
observed in the Vela X-l pulse frequency and/or phase time 
series is provided by comparison of the power spectrum of the 
fluctuations with power-law power spectra. Such spectra not 
only provide a range of simple mathematical models, but are 
also the type of spectra predicted by a class of simple physical 
models for the torque acting on the neutron star crust. The 
stochastic component of such torques may be treated as arising 
from processes describable as various integrals of white noise 
and consequently are characterized by power-law spectra with 
various even integer exponents (Lamb, Pines, and Shaham 
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Pío. 2 Long-term history of the angular frequency of Vela X-l, taken from Tables 1 and 2. The pulse period is also given on the scale at the right, increasing 

Ranñrnort !.?ril,n'iQr7?dotnang^eSfrre ^ tfken with Coperaicas and Ariel 5 (Charles et al. 1978); crosses, SAS 3 (Rappaport, Joss, and McClintock 1976; Rappaport and Joss 1977; Rappaport, Joss, and Stothers 1980); open squares, COS B(ôgelman et al. 1977; Molteni et al. 1982); open diamonds, other OSO 8 data 

w I L Vm en ClrC eS’,P^So"t *0rk: d/agona1 crosses. °‘her HEAO 1 data (Bautz et al. 1983); filled circle, balloon flight (Staubert et al. 1980); filled upright triangles, Hakucho (Nagase et al. 1984) Vertical bars represent 1 a confidence intervals and are shown only where they are significantly larger than the symbols. 
Hakucho results have been corrected to the centers of the observing intervals. 

1974, 1976). In the remainder of this discussion we will refer to 
spectra of the form f~2r as describing “ rth-order ” red noise. 
Thus, the zero-order refers to white noise, the first order to a 
random walk (red noise), etc.4 This correspondence between 
statistical and physical models suggests that computation of 
the power spectrum of the noise in rotation can be a significant 
aid in understanding its physical origin. 

a) Methodology 
The construction of a power density spectrum from the 

available phase and frequency data is complicated by several 
factors. Besides the limitations imposed by the data sampling 

4 This characterization of rth-order red noise as the rth integral of white 
noise leads to a simple description of the power density spectra of variables 
which are time integrals of a white-noise variable. Taking a rotating system as 
an example, the presence of white noise in the angular acceleration, Ó, implies 
a random walk (first-order red noise) in Q and a random walk of a random 
walk (second-order red noise) in pulse phase. Conversely, the variable formed 
by taking n derivatives of the pulse phase will have a spectrum which is n 
orders less red; variables formed by taking derivatives of the white noise 
variable (the angular acceleration in this example) will have spectra that are 
blue. 

structure, further restrictions are imposed by the nature of the 
fluctuations in pulse frequency. Visual examination of the pulse 
record of Figure 2 reveals larger variations on longer time 
intervals, indicating that the pulse frequency power spectrum is 
red; the pulse phase spectrum is necessarily even redder. Care 
must be taken in constructing the spectrum of such fluctua- 
tions in order to avoid leakage of power from the lowest acces- 
sible analysis frequencies to higher frequencies. Otherwise, the 
calculated spectrum may not correctly represent the true spec- 
trum (see the discussion by Deeter and Boynton 1982, hereafter 
DB). The solution to this difficulty proposed by DB works 
even in the face of moderately nonuniform sampling and 
involves the computation of carefully band-limited estimates of 
the noise strength, resulting in a coarse (low frequency- 
resolution) power spectrum, or “pilot spectrum” in the sense 
of Blackman and Tukey (1958). Although the discussion of DB 
is couched for simplicity in terms of power spectra with even- 
integer power-law exponents, their method applies to power- 
law spectra in general and even to spectra with significant 
deviations from a simple power law. 

A simplified implementation of this method suggested by 
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TABLE 2 
Previously Reported Pulse Frequencies for Vela X-l 

Data Seta 
7t b mid 

(JD -2,440,000) 
Span 
(days) 

Pulse 
Period0 

(s) 

Pulse 
Frequency0 

(mrad s_1) 
Öd 

(prad s-2) Weight0 

References 
and 

Notes 

1975 Feb   
1975 May .... 
1975 Jun-Jul . 
1975 Oct   
1975 Nov .... 

1975 Dec  
1976 May (u) . 
1976 May (b) . 
1976 Aug   

1976Nov ... 
1978 May ... 
1978 Nov (a) 
1978 Nov (b) 
1978 Dec .... 
1979 Mar ... 

1979 Oct .... 

1980 Mar (a) 

1980 Mar (b) 

1980Dec .... 

1981 Jan (a) . 

1981 Jan (b) . 

1981 Mar ... 

1981 Dec .... 

1982 Jan (a) . 

1982 Jan (b) . 
1982 Jan (c) . 
1982 Feb .... 

1982 Mar 

1982 Dec . 

2449.3 
2552.3 
2600.6 
2713.5 
2734.7 
2728.4 
2750.0 
2900.0 
2920.0 
3002.5 
2997.1 
3112.0 
3654.0 
3824.5 
3836.8 
3850.0 
3947.4 
3948.1 
4175.5 
4161.4 
4308.6 
4308.7 
4318.1 
4318.1 
4594.9 
4594.9 
4617.9 
4617.9 
4629.4 
4629.3 
4672.4 
4672.4 
4958.6 
4958.6 
4993.8 
4993.8 
5004.6 
5014.0 
5023.5 
5023.5 
5031.3 
5031.8 
5320.8 

8.8 
4.5 

36.4 
0.5 

19.7 
21.0 
10.0 
3.0 

14.0 
28.5 
28.0 

4.0 
3.0 
9.0 
1.0 

26.0 
13.7 
13.7 
35.0 
35.0 

9.8 
9.8 
8.9 
8.9 
9.7 
9.7 

11.1 
11.1 
11.7 
11.7 
12.3 
12.3 
11.0 
11.0 
11.0 
11.0 
9.0 
9.7 
7.2 
7.2 
8.5 
8.5 

14.7 

282.9083 (12) 
282.9010 (37) 
282.8916(2) 
282.9370 (220) 
282.9190 (12) 
282.9108 (12) 
282.9190 (30) 
282.8700 (40) 
282.8690 (30) 
282.8190 (20) 
282.8183 (3) 
282.8380 (120) 
282.7870 (40) 
282.7484(4) 
282.8000 (400) 
282.7513 (5) 
282.7350 (9) 
282.7337 (9) 
282.7820 (20) 
282.7809 (3) 
282.7976 (7) 
282.7977 (6) 
282.8176 (8) 
282.8174 (7) 
282.8705 (6) 
282.8693 (6) 
282.8608 (5) 
282.8608 (5) 
282.8874 (6) 
282.8872 (6) 
282.9084 (5) 
282.9085 (4) 
282.9546 (10) 
282.9545 (10) 
282.9450 (9) 
282.9451 (7) 
282.9315 (10) 
282.9350 (13) 
282.9302 (23) 
282.9287 (22) 
282.9341 (13) 
282.9337 (12) 
282.9293 (5) 

22.20926 (9) 
22.20984 (29) 
22.21058 (2) 
22.20701 (173) 
22.20842 (9) 
22.20907 (9) 
22.20842 (24) 
22.21227 (31) 
22.21235 (24) 
22.21628 (16) 
22.21633 (2) 
22.21478 (94) 
22.21879 (31) 
22.22182 (3) 
22.21777 (314) 
22.22160 (4) 
22.22288 (7) 
22.22298 (7) 
22.21918 (16) 
22.21927 (2) 
22.21796 (5) 
22.21795 (5) 
22.21639 (6) 
22.21640 (5) 
22.21223 (5) 
22.21233 (5) 
22.21299 (4) 
22.21299 (4) 
22.21091 (5) 
22.21092(5) 
22.20926 (4) 
22.20925 (3) 
22.20563 (8) 
22.20564(8) 
22.20638 (7) 
22.20638 (5) 
22.20744 (8) 
22.20717 (10) 
22.20755 (18) 
22.20766 (17) 
22.20724 (10) 
2220727 (9) 
2220762 (4) 

-0.3 (0.6) 
-1.0 (0.2) 

0.0 (0.5) 
-0.1 (0.1) 

+ 0.7 (1.4) 

+ 0.2 (0.1) 
+ 1.5 (0.5) 
+ 1.7 (0.5) 
-0.9 (0.4) 
-0.6 (0.1) 
-1.0 (0.5) 
-0.9 (0.5) 
-2.4 (0.6) 
-2.3 (0.5) 
+ 2.3 (0.5) 
+ 2.0 (0.5) 
-3.0 (0.3) 
- 2.8 (0.3) 
-0.2 (0.3) 
-0.3 (0.3) 
-0.9 (0.2) 
-0.8 (0.2) 
-1.9 (0.7) 
-1.5 (0.6) 
+ 0.1 (0.5) 
+ 0.8 (0.4) 
+ 0.1 (0.7) 
-1.8 (1.0) 
+ 0.4 (2.1) 
+ 0.5 (2.1) 
-2.4 (1.1) 
-1.6 (1.1) 
-0.4 (0.3) 

0.33 
0.33 
0.33 

0.50 

0.50 
0.30 
0.30 
0.30 

0.10 

0.13 
0.01 

0.13 

1.00 

0.50 

0.50 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 

0.25 
0.25 
0.25 

0.25 

1.00 

1 
1 
2 
3 
4 
5 
6 
7 
6 
8 
5 
6 
9 

10 
11 
12 
13 
14 

8 
5 

13 
14 
13 
14 
13 
14 
13 
14 
13 
14 
13 
14 
13 
14 
13 
14 
14 
14 
13 
14 
13 
14 
14 

a Data sets are indicated by the month of observation; two or more sets obtained in the same month are distinguished by a letter in 
parentheses. 

b Tmid is the center of the data span, usually obtained by averaging the given end-points, and is the nominal epoch for a reported 
period or frequency based on a linear fit. When P or is included in the fit, the epoch for the period should also be specified, and it does 
not have to correspond to Tmid. In some cases, this epoch is substituted for Tmid, with Tmid given in the notes. Hakucho periods (Nagase 
et al. 1982,1984) were reported for an epoch at the beginning of the data span. We have converted these periods to the center of the data 
span. The uncertainty in the frequency (or period) computed at the midpoint is approximately one-quarter the corresponding 
uncertainty in the frequency computed at either endpoint. 

0 Uncertainties of 1 a in the final decimal place for the pulse period and frequency are given in parentheses following the reported 
and computed values, respectively. In several cases, the listed 1 a uncertainty has been silently converted from the reported 90% or 
95% confidence limit. 

d Ó has been inferred from P, whenever the latter is given. Uncertainty of 1 (7 follows in parentheses. 
0 Weight used in computing the portion of the power spectrum based on pulse frequencies. Ellipsis indicates that the reported 

frequency was not used in the calculation of the power spectrum. 
References and Notes.—(1) Copernicus (Charles et al. 1978). (2) SAS 3 (Rappaport, Joss, and McClintock 1976). (3) Ariel 5 (Charles 

et al. 1978). (4) COS B (Ögelman et al. 1977). The given epoch for the pulse period is listed; Tmid is about 5 days later (JD 2,442,740.0). (5) 
COS B (van der Klis and Bonnet-Bidaud 1984). (6) OSO 8 (Becker et al. 1978). The pulse periods have been taken from the caption of 
their Fig. 3. The plotted value (Pä 282.915 s) for the 1975 Dec set disagrees with the value reported in the figure caption. (7) SAS 3 
(Rappaport and Joss 1977). Data span not given, but has been inferred from a comparison with the uncertainties on the other SAS 3 
data sets. The epoch for this set is not precisely stated, only that it is about 10 months following the 1975 Jun—Jul SAS 3 observation. (8) 
COS B (Molteni et al. 1982). The epoch for the pulse period is not given for either of these data sets, and Tmid was taken as an 
approximate epoch. (9) HE AO 7, A-4 (Bautz et al. 1983). The given epoch for the pulse period is listed; Tmid is perhaps a day later (JD 
2,443,655.0). (10) SAS 3 (Rappaport, Joss, and Stothers 1980). Period is for a linear fit, without P, so Tmid is the appropriate epoch. P 
comes from a separate, quadratic fit for which the period is not reported. (11) Balloon flight (Staubert et al. 1980). (12) HEAO 1, A-4 
(Bautz et al. 1983). The given epoch for the pulse period is listed; Tmid is about 5 days later (JD 2,443,855.5). (13) Hakucho (Nagase et al. 
1982). See note (b). Based on a simultaneous fit (including orbital parameters) to 11 sets of data. (14) Hakucho (Nagase et al. 1984). See 
note (b). Based on a simultaneous fit (including orbital parameters) to 14 sets of data. We took only the three completely new pulse 
periods from this set in computing the power spectrum, retaining the 11 periods reported in the earlier solution of Nagase et al. 1982. 
The two sets give sufficiently similar values that the choice between them is of no practical consequence. 
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Dee ter (1984) employs the discrete analog of Legendre poly* 
nomials. As in the earlier work by DB, we estimate the power 
density at a set of analysis frequencies with octave spacing. 
Each estimate is an average of the squared amplitudes of selec- 
ted polynomials applied to subintervals of the data with a 
duration specified by the analysis frequency. Systematic use of 
the same degree polynomial from an orthogonal set on every 
analysis time scale yields a set of local power density estimators 
that would have identical relative bandpasses if applied to 
equispaced data. This property of similarity (see DB) is crucial 
for the correct recovery of power-law power spectra with large, 
negative exponents. The minimum polynomial degree is set by 
the power-law exponent one reasonably expects in the spec- 
trum and by the level of “ protection ” desired against contami- 
nation of the estimator by low-frequency leakage if the 
spectrum is redder than expected. For example, if confronted 
with second-order red noise in pulse phase—as in the Crab 
pulsar (Boynton and Deeter 1979; Boynton 1981)—one would 
need to use at least the second-degree polynomial from the 
orthogonal sequence in order to recover properly the power 
spectrum of this noise process. However, the cubic polynomial 
would have to be used in order to provide protection against 
the possibility that the noise might be slightly redder than 
second order. In fact, the protection afforded by the cubic 
polynomial extends to third-order red noise and is used for the 
analysis presented here. 

Although only low-degree polynomials are required for 
correct recovery of typical red noise, why not choose higher 
degree functions and thereby achieve improved frequency 
resolution and increased protection against leakage of low- 
frequency power ? There are several reasons for employing the 
lowest possible degree consistent with adequate protection 
against this leakage. First, higher degree polynomials cannot 
be applied to the small number of data points provided by our 
observations. Second, higher resolution, even if feasible, would 
result in less stable estimates. This follows because the largest 
number of power density estimates at a given analysis fre- 
quency is obtained by adopting the lowest usable resolution, 
thereby achieving the highest stability for each averaged power 
density estimate. Third, use of the polynomial of the lowest 
possible degree provides estimates of the power density of the 
red noise component over the widest possible range of analysis 
frequencies. The reason is that the highest frequency at which 
the red noise component stands out above noise is determined 
by factors unrelated to sampling (see below). Since the poly- 
nomial of the lowest possible degree gives a power density 
estimate with the lowest possible center frequency for a given 
sampling interval, it provides the broadest frequency coverage. 
A nominal one octave passband results from choosing the 
lowest polynomial degree providing one order of protection 
(e.g., a cubic polynomial on second-order red noise). A poly- 
nomial one degree lower (no protection) has a wider passband 
extending to still power frequencies on the same data set and 
will result in substantially overlapping power density estimates 
when applied octave by octave. For a more detailed presen- 
tation of these ideas, see DB and Deeter (1984). 

As explained below, we use both pulse phase and pulse fre- 
quency data in the computation of a power spectrum for Vela 
X-l. To achieve the same level of protection for the power 
estimates derived from phases as for those derived from fre- 
quencies, it is only necessary to use an orthogonal polynomial 
of one degree lower for the frequency record than for the phase 
record. In this way we are able to calculate a single, reasonably 

homogeneous power spectrum over the full range of time scales 
covered by both sets of data. 

Once the estimators have been constructed, some auxiliary 
calculations are required. First, we need to calibrate, or 
“ normalize,” the power density estimates, and it is convenient 
to do so in terms of unit-strength red noise of a chosen order. 
In this paper we employ unit-strength second-order red noise, 
using the normalization formula (A4) of Deeter (1984). 

Second, we need to assign a characteristic center frequency 
to each estimate. We adopt the median frequency of the esti- 
mator passband for this center frequency. Rather than comput- 
ing the median frequency directly from the specific shape of the 
passband, we use an approximate method given by Deeter 
(1984), based on the second central moment of the estimator. 
For nearly uniform sampling of second-order red noise on a 
time interval of length L, this frequency is given by/= 0.92/L 
for one level of protection, and by/ = 0.37/L for no protection. 
This procedure is simple, yet provides a fairer assessment of the 
median frequency than the inverse of the sampling interval, 
particularly if the sampling is nonuniform. 

Third, it is necessary to characterize both the uncertainty in 
individual power density estimates and any correlations 
between estimates that might be present. Each application of a 
single polynomial estimator to independent data is character- 
ized by a single degree of freedom, so the combination of such 
estimates to obtain an average power density estimate pro- 
duces a variable that is distributed as x2 with degrees of 
freedom equal to the total number of estimates combined. 

Finally, the contribution of pulse shape noise to each power 
density estimate is evaluated by propagating the variances in 
the pulse phase or frequency data into each power density 
estimate. These variances are based on mean square residuals 
from local fits to the pulse phases on intervals sufficiently short 
(0.5 day for the HEAO 1 data) that pulse shape noise domi- 
nates the red noise in pulse frequency. Moreover, a relatively 
large number of residual degrees of freedom (50 or more) may 
be obtained for the mean square residual by averaging over 
many short data segments, yielding power density estimates 
that have negligible uncertainty when compared to the rela- 
tively small number of degrees of freedom provided by the 
independent low-order polynomial fits to the data. The com- 
puted contribution of pulse shape noise to the power density 
estimates will therefore also have good stability. This pro- 
cedure does not account for systematic errors in the estimate of 
the power density in the pulse shape noise, as might be intro- 
duced by secular variations in pulse shape, for example. 
However, any gross deviation from the simple model of white 
noise in pulse shape variations would be reflected in the struc- 
ture of the power density spectrum of angular acceleration 
fluctuations at high analysis frequencies. No evidence for such 
a deviation is seen in the data analyzed here. 

To obtain the coarse power spectrum described above, we 
first group the data into subsets on a chosen series of time 
scales, spanning roughly octave intervals, to match the inher- 
ent resolution of the estimators. We then compute a power 
density estimate for each subset on each time scale, utilizing as 
fully as possible all the available data. The individual power 
density estimates are then averaged to obtain a single estimate 
for each time scale having several degrees of freedom. Ideally, 
we would like to obtain independent power density estimates, 
which can be guaranteed by choosing the estimators to be 
nonoverlapping. However, there inevitably will be overlap 
between estimators on different time scales, and, to ensure effi- 
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cient use of the data, we allowed some overlap between estima- 
tors on the same time scale. As shown by Deeter (1984), the 
correlation between power density estimates is always positive, 
so the lack of independence can be accounted for approx- 
imately by calculating an effective number of degrees of 
freedom and using this number to characterize the pooled esti- 
mate. 

The difficulty in obtaining a set of independent power 
density estimates covering as fully as possible the accessible 
time scales provided by a discrete, finite time series is common 
to any attempt to compute a power spectrum from actual 
observations. In the study of Vela X-l we also lose some infor- 
mation contained in the pulse phase records by using these 
data to determine the orbital elements. This effect may be 
treated as an additional loss of degrees of freedom and is dis- 
cussed in § IIIc. 

b) Experimental Design 
Our decision to pursue a statistical representation of the 

pulse frequency fluctuations in Vela X-l and of the underlying 
physical process was made prior to the design of the HE AO 1 
satellite observing program which provided the primary data 
for this study. Consequently, we were able to design and 
employ a sampling strategy that would allow a process of 
statistical inference to be carried out with reasonably efficient 
use of a limited number of satellite pointings. The inference 
process we have chosen involves the computation of a power 
density spectrum of these fluctuations and a subsequent com- 
parison with physically motivated models for such spectra. 

From the previous discussion of methodology, it follows 
that the elements of the design of this experiment are largely 
forced by the combination of limited sample size and our desire 
to calculate power densities over as wide a range of analysis 
frequencies as possible. In order to apply a cubic power density 
estimator to pulse phase estimates on a given time scale, a 
minimum of four approximately equispaced satellite observa- 
tions are necessary. For reasons of symmetry and a desire for 
some redundancy to protect against possible missed pointings, 
we chose a five-point sample as a basic unit. Given that suc- 
cessive 12 hr duration pointings had to be separated by at least 
1-2 days in order to manage adequately the satellite angular 
momentum, a spacing of 1.5 days between the midpoints of five 
successive pointings became the kernel of a sampling pattern. 

This pattern was extended to longer time scales by a repeat- 
ed process of doubling. At each step, a pair of additional point- 
ings is added, one at each end at twice the spacing of the 
previous five pointings, thereby creating a new quintuplet with 
twice the span. In this way one increases the sampling interval 
by one octave for every pair of pointings included. Thus, a total 
of N pointings {N odd, and greater than or equal to five) can 
provide symmetric, five-point samples for each of j(N — 5) + 1 
analysis frequencies with octave spacing. Various constraints 
limited our design to a maximum of 13 pointings, thereby 
yielding five analysis frequencies with sampling time spans 
extending from roughly 6 days to 100 days. Shorter time scales 
can be examined by taking the five pointings at the closest 
spacing in pairs, giving information on a sampling interval of 
roughly 2 days, and by utilizing the data structure internal to 
the 12 hr pointings. On time scales longer than 100 days, infor- 
mation is available as pulse frequencies from other pulse 
timing studies of Vela X-l conducted before and after this 
planned sequence of observations. 

Before we undertook these observations, we investigated the 

question of statistical inference within the constraints of this 
sampling pattern by performing Monte Carlo simulations. 
These numerical simulations verified that the above sampling 
structure would be adequate to reveal at least the coarse fea- 
tures of the spectrum, despite the low (octave) resolution and 
relatively low stability of the power density estimates that it 
provides (1 to 2 degrees of freedom on each time scale). 

In such a strongly hierarchical sampling scheme, every 
pointing, except the first and last, provides essential informa- 
tion on at least two time scales and is therefore crucial to the 
computation of a useful spectrum. The details of the actual 
sampling structure achieved are discussed in the following sub- 
sections, but the successful completion of the scheme is appar- 
ent from the well-spaced power density estimates that were 
derived. 

c) Application to Vela X-l 
As stated earlier, we can use the pulse phase estimates pre- 

sented in Paper I in the computation of the power spectrum 
only up to the longest available sampling interval provided by 
the HEAO 1 and SAS 3 data. Minor difficulties in implement- 
ing the sampling scheme reduced the longest sampling interval 
to 80 days from the design value of 100 days. For longer inter- 
vals, we have used the frequency record drawn from the liter- 
ature, together with that constructed from our data in 1978 
May and 1978 November-1979 January. 

As discussed in § Ilia, we need to know the approximate 
power-law index for the noise in Vela X-l in order to choose 
the appropriate degree for the polynomial power density esti- 
mator. In particular, white noise in angular acceleration has 
been established for Her X-l and the Crab pulsar (Boynton 
1981), and we show in this paper that the same description 
applies to Vela X-l. This behavior is equivalent to second- 
order red noise in the observed pulse phase and hence requires 
the use of cubic estimators on the pulse phase record to 
provide octave bandwidths and one level of protection against 
the possibility that the noise is even slightly redder. Quadratic 
estimators should be used on the frequency record to provide 
the same bandwidths and level of protection. Both of these 
estimators coincidently give an analysis period, T, defined as 
the inverse of the analysis frequency,/(the center frequency of 
the estimator passband defined in § Ilia), that is roughly equal 
to the time span of the sampling interval to which the estima- 
tor is applied. Unless stated otherwise, in the remainder of this 
paper we will uniformly apply cubic and quadratic estimators 
to pulse phase and frequency data, respectively. This choice of 
estimators presumes the result found below for Vela X-l that 
the power density at low frequencies is sufficiently close to 
second-order red noise that the correct power-law exponent 
will be recovered in the computed spectrum. In fact, this will be 
correctly recover any power-law spectrum ranging from 
second-order to third-order noise. 

i) Power Density Estimates from the Phase Records 
The phases from the 35 days of OSO 8 data were partitioned 

into subdivisions on four separate sampling intervals, nomin- 
ally 35, 17.5, 9, and 4.5 days in length. Each subdivision over- 
lapped up to one-half of the adjacent two on the same time 
scale; for example, the three subdivisions on the 17.5 day scale 
start approximately on the 1st, 10th and 19th days of OSO 8 
observations. In this way we obtain one, three, seven, and 15 
subdivisions at the four sampling intervals given above. Some 
of the subdivisions at the two shortest time scales had to be 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

9A
pJ

. 
. .

33
6.

 .
37

6D
 

DEETER ET AL. Vol. 336 384 

discarded because irregular sampling made their effective 
length significantly shorter than the others on the same time 
scale, leaving one, three, three, and seven usable subdivisions. 
For each of these remaining subdivisions, we constructed a 
sequence of orthogonal polynomials of ascending degree, using 
the third-degree (cubic) polynomial for the power estimator. In 
constructing the orthogonal sequence, we weighted each point 
equally, using the observed point variance derived in Paper I. 
Taking into account the overlap between adjacent estimators, 
we assigned 1.0, 2.5, 2.8, and 6.3 effective degrees of freedom to 
the pooled power density estimate derived from each of the 
four sampling intervals. The data structure is summarized in 
Table 3. 

In contrast to the OSO 8 data, the HEAO 1 and SAS 3 
sampling of Vela X-l was not continuous, but consisted of a 
specially devised sequence of 0.5 day HEAO 1 observations 
separated by intervals from 1.0 to 23 days, followed 17 days 
later by a 4.5 day continuous observation using SAS 3. We 
were fortunate to acquire a serendipitous HEAO 1 pointing on 
1978 November 30, which has been included also. The design 
of this hierarchical sampling structure was discussed in § Illb. 
Because the planned observing schedule was followed with 
only minor changes, the pulse phase data can be divided into 
sampling intervals of nominal length 80, 38, 19.2, 9.6, 5.0, and 

TABLE 3 
Sampling Intervals Used in Vela X-l Power Spectrum 

Nominal 
Sampling 
Interval 
(days) 

Intervals 
Used 

(JD -2,440,000) 
Number of 
Estimators 

Effective 
d.o.f. 

Pulse Frequencies 

2600 
1230 
725 .. 
465 .. 
320 .. 

2442-5042 \ i.o 
2442-3672, 3812-5042 2 2.0 
2412-3137, 3612-4337,4307-5032 3 3.0 
3855-4320,4165-4630,4572-5037 3 3.0 
2442-2762,2600-2920,3632-3952 3 3.0 

1978 May Pulse Phases 

35.0 
17.5 
9.0 . 
4.5 . 

3637.5-3672.5 
3637.5-3672.5 
3637.5-3672.5 
3637.5-3672.5 

1.0 
2.5 
2.8 
6.3 

1978 November-1979 January Pulse Phases 

80.0 
38.0 
19.2 

9.6 . 
5.0 . 

2.0 . 

0.5 . 

0.25 

3813-3893 
3836-3874 
3837.1- 3856.3, 
3849.6- 3868.8, 
3855.7- 3865.3, 
3858.8- 3863.8, 
3888.0- 3893.0 
3858.9- 3860.9, 
3861.8- 3863.8, 
3850.0- 3850.5, 
3858.9- 3859.4, 
3861.8- 3862.3, 
3864.7- 3865.2, 
3850.0- 3850.5 
3855.7- 3856.2 
3858.9- 3859.4 
3860.4-3860.9 
3861.8- 3862.3 
3863.2- 3863.7 
3864.7-3865.2 
3867.9- 3868.4 

3843.2- 3862.4, 
3855.3- 3874.5 
3858.9- 3868.5 
3860.3- 3865.3, 

3860.4- 3862.4, 
3863.2- 3865.3 
3855.7-3856.2, 
3860.4- 3860.9, 
3863.2- 3863.7, 
3867.9- 3868.4 

1.0 
1.0 
2.5 

1.5 
2.5 

3.6 

8.0 

2.5 
2.0 
2.0 
2.0 
2.5 
2.0 
2.5 
2.5 

2.0 days, thereby yielding from one to four estimators for each 
of these time scales (see Table 3). The intervals longer than 2.0 
days always span at least four separate pointings, and the 
shape of the (orthonormal) cubic polynomial is therefore 
largely determined by the spacing of the pointings and not the 
data structure within each pointing. On the other hand, the 2.0 
day intervals span two 0.5 day pointings separated by a 1 day 
gap, and the data structure internal to the two pointings 
becomes important in specifying the polynomial. In addition, 
eight of the individual 0.5 day observations were sufficiently 
well covered to provide subintervals with lengths of 0.5 and 
0.25 days. For the power density estimator on each sampling 
interval we again used the cubic polynomial from a sequence of 
orthogonal polynomials, assigning uncertainties of 0.51 and 
0.7 s to the individual determinations of the HEAO 1 and SAS 
3 phases, respectively. The resulting power density estimates 
are listed in Table 4. 

ii) Power Density Estimates from the Frequency Record 
Power density estimates requiring sampling intervals longer 

than 80 days were based on the pulse frequencies determined 
from the new data assembled for the present study as well as 
other, previously published pulse frequencies (see Tables 1 and 
2). These frequency estimates were subdivided on a range of 
intervals from 320 to 2600 days (see Table 3), each subdivision 
providing the data for one power density estimate. The power 
density estimates were then obtained from the frequency 
record in a fashion similar to those obtained from the phase 
record. 

The spacing, density, and weights (inverse variances) of the 
frequency estimates are quite nonuniform compared to the 
same properties of the available phase estimates. If we had 
used the natural weights in constructing these power density 
estimators, the concentration of a few high-weight frequency 
estimates (such as provided by the OSO 8 and HEAO 1 data) 
would have rendered the effective data span much shorter than 
that represented by the selected sampling interval. To alleviate 
this difficulty, we assigned weights to the frequency estimates, 
chosen to weight equal time intervals equally. The power 
density contributed by pulse shape fluctuations was calculated 
for each estimator by using an appropriate error propagation 
formula (eq. [39] Deeter and Boynton 1982), and these contri- 
butions are listed in Table 4. 

iii) Results 
Individual power density estimates were constructed by 

applying the cubic or quadratic polynomial (as appropriate) to 
the pulse phases or frequencies in each chosen sampling inter- 
val to obtain a polynomial coefficient, then squaring this coeffi- 
cient and dividing by the correct normalization factor for the 
recovery of second-order red noise. Specification of the dis- 
tributional properties of the estimates is important in estab- 
lishing the uncertainties of the individual and pooled estimates. 
As noted above, each power density estimate formed in this 
way is distributed as a scaled %2 variable with one degree of 
freedom. 

For purposes of plotting and analysis, estimates on the same 
time scale were averaged to obtain a single, pooled power 
density estimate. The estimated power density contribution 
from pulse shape fluctuations was likewise averaged, and the 
median frequency of each pooled estimate was taken as the 
average of the median frequencies of the individual estimates. 

For some of the power density estimates derived from 
phases, we used estimators that substantially overlapped. This 
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TABLE 4 
Power Spectrum of Noise in the Derivative of the Pulse Frequency of Vela X-l 

Nominal 
Sampling 
Interval 
(days) 

Analysis 
Period 
(1//) 

(days) 
log/ 
(Hz) 

log fV 
(rad2 s'4 Hz"1) 

log P,b 

(rad2 s“4 Hz"1) 
Bias 

in log Pt
c log Pt

d 

(rad2 s 4 Hz x) 
Error in 
log Pt 

Effective 
d.o.f. Notes 

2600 
1230 
725 . 
465 . 
320 . 
80 .. 
36.5 . 

18 

9.6 .. 

9.0 . 
5.0 . 

4.5 . 
2.0 . 
0.5 . 
0.25 

3200 
1600 
900 
620 
400 

82 
37 
39 
38 
18 
20 
19 
10.1 
10.1 

8.8 
4.8 
4.8 
4.3 
2.2 
0.47 
0.20 

-8.44 
-8.13 
-7.88 
-7.73 
-7.54 
-6.85 
-6.50 
-6.53 
-6.52 
-6.20 
-6.24 
-6.22 
-5.94 
-5.94 
-5.88 
-5.62 
-5.62 
-5.57 
-5.27 
-4.61 
-4.24 

-22.11 
-21.44 
-20.60 
-20.67 
-20.52 
-22.93 
-20.55 
-21.87 
-20.83 
-19.33 
-20.81 
-19.68 
-19.98 
-19.63 
-18.07 
-18.54 
-18.39 
-17.00 
-17.18 
-15.10 
-13.97 

-17.44 
-19.50 
-18.06 
-18.15 
-18.22 
-18.60 
-18.02 
-18.30 
-18.14 
-18.59 
-18.27 
-18.38 
-18.89 
-18.54 
-18.19 
-18.02 
-17.87 
-17.30 
-17.10 
-15.19 
-13.74 

0.58 
0.25 
0.16 
0.16 
0.16 
0.58 
0.58 
0.58 
0.25 
0.20 
0.20 
0.09 
0.35 
0.97 
0.17 
0.20 
0.29 
0.07 
0.13 
0.06 
0.02 

-16.86 
-19.25 
-17.90 
-17.99 
-18.06 
-18.02 
-17.44 
-17.72 
-17.88 
-18.39 
-18.08 
-18.29 
-18.54 
-17.57 
-18.02 
-17.82 
-17.58 
-17.23 
-16.97 
-15.13 
-13.72 

1.00 
0.56 
0.42 
0.42 
0.42 
1.00 
1.00 
1.00 
0.56 
0.48 
0.48 
0.30 
0.70 
1.50 
0.44 
0.48 
0.62 
0.27 
0.37 
0.23 
0.15 

1.0 
2.0 
3.0 
3.0 
3.0 
1.0 
1.0 
1.0 
2.0 
2.5 
2.5 
5.0 
1.5 
0.67 
2.8 
2.5 
1.76 
6.3 
3.6 
8.0 

18.0 

1,2 
1,2 
1,2 
1,2 
1,2 
2, 3 

3 
3 

2, 5 
4 
3 

2.5 
3 

2.6 
2,7 

3 
2, 6 
2,7 
2, 3 
2, 3 
2, 3 

a Contribution to the power density estimate from noise induced by fluctuations in the pulse shape. 
b Total power density, as determined by applying the estimators to the data. 
c The bias in log Pt is the difference log <Pf> - <log Pf>, and depends on the effective degrees of freedom in the estimate ofPf (see text). 
d Total power density corrected for bias given in the previous column. 
Notes.—(1) From quadratic estimators applied to the frequency record. (2) Estimate plotted in Fig. 3. (3) From cubic estimators applied to the phase record, 

1978 November—1979 January data set. (4) From cubic estimators applied to the phase record, 1978 May data set. (5) Combination of estimates referred to in 
notes (3) and (4). (6) Previous power density estimate, corrected for loss of information in estimating orbital elements (see text). (7) From cubic estimators applied 
to the phase record, 1978 May. These power density estimates are dominated by pulse shape noise, and so were ignored in displaying and analyzing the power 
spectrum. In particular, they were not combined with the corresponding estimates from the 1978 November-1979 January data set. 

overlap reduces the effective number of degrees of freedom 
below the actual number of estimators averaged. For the OSO 
8 data, there was often 50% overlap between adjacent estima- 
tors; in such cases we estimate that the total number of degrees 
of freedom should be reduced by 0.25 per overlap. Likewise, in 
the HEAO 1 data there were several cases of about 70% 
overlap (for 9.6 and 5.0 day sampling intervals), for which the 
number of degrees of freedom should be reduced by 0.5 per 
overlap. For the 2 day samples, there is roughly 25% overlap, 
reducing the effective degrees of freedom by 0.1 per overlap. 
The corrected number of degrees of freedom expresses in a 
simple way the amount of information available in the pooled 
estimates, after accounting for the correlations introduced by 
sampling. 

In addition, there is the extra complication of a reduction in 
degrees of freedom at analysis frequencies near the orbital fre- 
quency and its second harmonic (corresponding to periods of 
9.0 and 4.5 days) because information about noise in the data 
at these frequencies has been “absorbed” in solving for the 
orbital parameters. In particular, 3 d.o.f. are lost from the 
entire data set at the orbital frequency in determining the semi- 
major axis, the orbital epoch, and the orbital period, while 2 
d.o.f. are lost at the second harmonic in solving for the eccen- 
tricity and the longitude of periapse. The orbital frequencies 
are closely matched in the power spectrum by power density 
estimates having analysis periods of 9.6 and 5.0 days, and it is 
to these estimates that we applied a correction for this loss in 
degrees of freedom. However, this reduction in degrees of 

freedom is necessary only for the power density estimates 
obtained from the HEAO 1 data, because the OSO 8 estimates 
at these analysis frequencies are dominated by pulse shape 
noise and are therefore not used in further analysis. 

The HEAO 1 data contributed 37% of the total weight to the 
orbital solution (Table 5 of Paper I); the simple pro-rated loss 
in degrees of freedom is therefore 1.11 = 3 x 0.37 and 
0.74 = 2 x 0.37 to the estimates at 9.6 and 5.0 days, respec- 
tively. However, the HEAO 1 data lie close to the weighted 
center of all the data used to determine the orbital parameters, 
and only contribute 9% of the weight in determining the 
orbital period. Taking this factor into account, we reduced the 
degrees of freedom at 9.6 days by only 0.83 = (2 x 0.37) 
4- (1 x 0.09), rather than the 1.11 given by simply pro-rating. 
Thus, rather than assigning 1.5 d.o.f. to the 9.6 day estimate 
(two estimators minus 0.5 for one overlap) and 2.5 d.o.f. to the 
5.0 day estimate (three estimators minus one overlap), we 
assigned the values of 0.67 d.o.f. (1.5 — 0.83) and 1.76 d.o.f. 
(2.5 — 0.74), respectively. 

This reduction in degress of freedom due to extraction of 
orbital parameter estimates also necessitates a correction to 
the estimated power density at these two analysis frequencies 
because noise power on the corresponding sampling intervals 
is necessarily absorbed by the least-squares fitting process. 
Compensation for this absorption is familiar in the related 
calculation of point variance, wherein the sum of squared 
residuals is divided by the number of independent summands. 
To compensate for the power absorbed by the orbital solution, 
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the estimates at 9.6 days and 5.0 days derived from the HEAO 
1 data have been multiplied by 1.5/0.67 and 2.5/1.76, respec- 
tively. 

The results of these computations are listed in Table 4 and 
shown in Figure 3. Both present the power density in the 
second derivative of pulse phase (the derivative of pulse 
frequency) as a function of the analysis frequency,/ Although 
the power density estimators have been applied to data 
expressed as time integrals of the acceleration (pulse frequency 
and phase), the resulting estimates can be normalized to yield a 
power spectrum for the noise in pulse angular acceleration 
(DB). We have chosen angular acceleration as the variable of 
interest partly because we then see immediately in Figure 3 
that it is the variable in which the fluctuations in the pulse 
frequency of Vela X-l appear as white noise, at least up to the 
analysis frequency/« [4 days]-1. At this crossover frequency 
(cf. Paper I), the pulse shape noise begins to dominate. Angular 
acceleration is also the natural choice since, as explained in § V, 
the power density in the white-noise variable is not only con- 

stant, but numerically equal to the “strength” of the corre- 
sponding random walk in pulse frequency. For the purpose of 
plotting, the OSO 8 estimates at 35 and 17.5 days have been 
combined with the HEAO 1/SAS 3 estimates at 38 and 19.2 
days, respectively. 

We use a logarithmic rather than a linear plot of the power 
density estimates, since this shows better that the estimates 
may be interpreted to exclude power densities that are too 
small, as well as those that are too large. In addition, we use the 
logarithm of the analysis frequency for the abscissa, a choice 
consistent with our use of approximately one octave spacing of 
the estimates. Additional benefits of this doubly logarithmic 
representation are that a power-law relationship between P 
and / appears as a straight line, and estimates with the same 
number of degrees of freedom have equal weight and equal 
error bars. Both features are advantageous in fitting for the 
power-law index. 

In Figure 3, the intersection of the vertical and horizontal 
bars represents the computed power density (ordinate) and the 

log r (doys) 

3 2 1 O -I 
1 ' I ^ I ' 1 1 1 r 

log T (days) 

4 3 2 1 0 

FlG.i r'~"u OWie/ denïty
L?

ffluCtUatl°ns m pulse an8ularacceleration as a function of circular analysis frequency /(bottom axis), using power density estimates (not corrected for bias) from Table 4. A sinusoidal variation in Ù with frequency/would produce a feature at period T = l/f (lower top axis), whereas fluctuations in Ù 
with e-folding time t (upper top axis) would produce a feature at period T = 2m. The vertical bar on each power density estimate represents the 1 <r confidence 
interval, based on the effective number of independent estimates contained therein, while the horizontal bar represents the points equivalent to ± 1 <r in the frequency 
response of each estunator. The diagonal crosses indicate the noise contributed by measurement errors, which are due to variations in the pulse shape. 
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median frequency (abscissa) of the pooled estimates. The ends 
of the vertical bars represent the 16% and 84% points5 on the 
X2 distribution appropriate for the effective degrees of freedom 
of the power estimate. Similarly, the ends of the horizontal bars 
represent the 16th and 84th percentiles on the frequency 
bandpass of the equivalent pooled power density estimator as 
applied to second-order red noise. The relative width of this 
function is rather insensitive to the data sampling, so we have 
uniformly used the equivalent ± 1 <7 points relative to the 
median frequency, as determined from a computation based on 
uniform sampling. This is in the spirit of the calibration of 
median frequency in terms of the half-width of the estimator in 
the time domain (Deeter 1984). 

From the power spectrum presented in Figure 3, it is clear 
that second-order red noise in pulse phase is a reasonable 
description of the noise process seen in the Vela X-l for 
analysis periods greater than 4 days. It is therefore permissible 
to drop the one level of protection we used in constructing this 
initial power spectrum and to repeat the calculation, this time 
applying quadratic estimators to the pulse phases and linear 
estimators to the pulse frequencies. The results of this recom- 
putation are shown in Figure 4. Although the frequency 

5 These points are equivalent to the ± 1 c points on the Gaussian distribu- 
tion. 

responses of these estimators as applied to second-order red 
noise are much broader than those of the cubic/quadratic esti- 
mators, the resulting power spectrum differs little in overall 
appearance. This outcome is consistent with the noise interpre- 
tation of the fluctuations in pulse frequency. In addition to 
providing a check on the stability of the power density esti- 
mates, this recomputation also makes available a linear esti- 
mator applied to pulse frequency, which provides a power 
density estimate at a median period of 8600 days, substantially 
longer than the 3200 day median period of the lowest fre- 
quency quadratic estimator. 

IV. EVALUATION OF THE POWER SPECTRUM 

The power density spectra displayed in Figures 3 and 4 
provide fairly uniform coverage of the behavior of fluctuations 
in the derivative of the pulse frequency (the pulse angular accel- 
eration Ù) of Vela X-l over about 13 octaves in analysis fre- 
quency. Before proceeding to a quantitative study of the 
statistical information contained in this representation of the 
pulse timing data, we use the qualitative features of these 
spectra to illustrate several general properties of data from this 
type of source and the limitations imposed by both sampling 
structure and the nature of the power density estimation 
process. An understanding of these various features and limi- 

log T (days) 

3 2 10 -I 
1 ^ \ ^ i ^ i ' r 

log T (days) 

4 3 2 10 

Fig. 4.—Power density of fluctuations in pulse angular acceleration as a function of circular analysis frequency /, based on linear estimators applied to pulse 
frequencies and quadratic estimators applied to phases. The conventions used in this figure are identical to those used in Fig. 3. 
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tâtions serves to guide subsequent analysis and indicates how 
the experimental design affects the information content of the 
computed spectrum. 

a) Qualitative Assessment 
The overall form of the spectra in Figures 3 and 4 is most 

easily understood as the superposition of two power-law noise 
processes. The relatively constant power density over the 
lowest nine octaves indicates a nominally white (/°) spectrum 
of fluctuations in the pulse angular acceleration (alternatively 
describable as second-order red noise in pulse phase). The 
steep upward slope (approximately /3; see below) over the 
remaining four octaves is completely consistent with white 
noise in pulse phase caused by the fluctuations in pulse shape. 
The contribution to each power density estimate made by the 
pulse shape noise (also shown in Figs. 3 and 4) not only fully 
accounts for the steep rise in the total power density at high 
frequencies, but also strongly limits our view of the red noise 
process for analysis periods shorter than about 4 days. 

According to the simple argument given in § III and in 
Paper I (eq. [12]), two factors of f2 should transform power 
density spectrum in pulse phase to the spectrum in the pulse 
angular acceleration shown in Figures 3 and 4. Thus, for 
uniform sampling of data of fixed quality, one would expect 
white noise in pulse phase to have an/4 signature in the power 
spectrum of the pulse angular acceleration, Pñ(/)- Over the five 
highest frequency octaves, the spectrum is derived almost 
entirely from HE AO 1 data; while of uniform quality, the hier- 
archical sampling employed is far from uniform. The sampling 
density increases as/= 1/T as one proceeds to shorter analysis 
periods because the sample duration (-0.5 day) remains 
nominally fixed. When viewed in terms of the phase variable, 
the spectral density, P^/), for a white process sampled in this 
way must decrease at high analysis frequencies (thus high sam- 
pling density) just as/"1. Consequently, except for unavoid- 
able small irregularities in sampling, upon transforming to 
Pçif\ one expects to recover the /3 law observed approx- 
imately in Figures 3 and 4. The estimates of the power density 
of the pulse shape noise over the lowest eight octaves are based 
on various superpositions of data of markedly inhomogeneous 
signal-to-noise ratio and sampling density, and thus no 
obvious pattern is apparent. 

We emphasize that the power density estimates for the pulse 
shape noise (displayed as diagonal crosses in Figs. 3 and 4) are 
based on the observed rms fluctuation in pulse phase on a short 
time scale (a few hours), which is then presumed to be represen- 
tative of this noise and is numerically propagated through the 
chosen polynomial estimators, as if it were white noise, to 
provide the expected power densities on longer time scales. 
Thus, the fact that the measured power density spectrum at 
high frequencies coincides with a white-noise model for the 
expected contribution from pulse shape fluctuations verifies 
both the white-noise character of these fluctuations and that 
no other significant noise component is present in these data 
for analysis period shorter than a few days. 

For purposes of both statistical and physical inference, we 
wish to determine the power density spectrum over the widest 
possible range of analysis frequencies dominated by the 
process of interest. The preceding qualitative description of the 
various aspects of the spectrum of fluctuations in angular 
acceleration of Vela X-l illustrates the limitations on this range 
imposed by practical considerations. The “ crossover 
frequency” discussed in Paper I is seen here to be defined by 

the intersection of the f° and /3 power laws evident in Figures 
3 and 4. For any rotating system exhibiting fluctuations in 
rotation characterized locally by a power law significantly 
redder than that describing the contribution induced by pulse 
shape noise, there must be such a crossover frequency (Lamb 
1979). This frequency represents a “soft” upper limit on the 
analysis frequency for which the redder process (fluctuations in 
rotation) can be discerned (Boynton and Deeter 1979). The 
duration of the longest sampling interval places a fundamental 
limit on the lowest analysis frequency at which power density 
can be estimated. 

The ideas presented here and in Paper I provide some 
detailed insight to the nature of these limitations. First, the 
low-frequency limit depends on more than just the duration of 
the longest sampling interval that can be constructed from the 
observations of pulse phase or frequency; it also depends on 
the spectrum of the noise and the nature of the power density 
estimator chosen. The spectrum shown in Figure 3 extends 
down to an analysis frequency which is about 20% lower than 
the value given simply by the inverse of the sampling interval 
(2600 days). Figure 4 shows a spectrum composed from the 
same data but with no protection against the low-frequency 
leakage that would occur if the power law were slightly redder 
than second-order red noise in pulse phase. We find that the 
median analysis period of the lowest frequency estimator is 
about 8600 days, more than 3 times the length of the sampling 
interval. The nature of this interplay between the character of 
the noise process and the choice of estimator (which taken 
together specify the effective passband of the estimator) is dis- 
cussed in detail by DB and Deeter (1984) and is presented in 
tabular form in the latter reference. 

There are two possibilities for extending the high frequency 
limit set by the crossover frequency. The substantial reduction 
(by a factor of ¿) in the pulse shape noise achieved by using the 
pulse filtering method described in Paper I has increased the 
crossover frequency by about 40%. This increase follows 
directly from the cube-root scaling of the pulse shape noise 
power density that applies when the difference in the two 
power-law exponents is 3. Further reductions in pulse shape 
noise and still higher crossover frequencies may be possible 
with more refined techniques (cf. Boynton and Deeter 1986a, b). 

The obvious observing-time economy achieved by hierarchi- 
cal sampling does have some costs. One of these is a loss of 
information (reduction in degrees of freedom) caused by 
increased correlation between power density estimators. 
Another is a displacement of the crossover frequency to a value 
lower than appropriate to the dense-sampling case. If the 
central 10 day portion of the high-analysis frequency segment 
of the hierarchy could have been replaced by continuous moni- 
toring of the source (as was possible within the individual 0.5 
day HE AO 1 pointings), the crossover frequency would have 
been located at an analysis period of roughly 2.5 days. This 
apparently rather modest factor-of-two improvement would 
nonetheless be of considerable help in studying correlations 
between angular acceleration and X-ray flux using these data 
(Deeter et al. 1988; Lamb et al. 1988). 

b) Quantitative Assessment 
Having discussed the qualitative interpretation of the spec- 

trum shown in Figure 3, we proceed to quantitative evalu- 
ations using a series of statistical tests. In applying these tests, 
we must recognize two more details. 

First, broad-band estimators at different frequencies may 
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have significant correlations if derived from the same set of 
data. This overresolution causes spectra to appear “too 
smooth.” We estimate that power density estimators spaced at 
octave intervals and based on uniformly sampled data provide 
about one-third less information than if the estimators were 
based on independent data sets. This reduction in effective 
degrees of freedom is in addition to that caused by applying the 
estimators to overlapping intervals on the same time scale, a 
reduction that has already been taken into account above. We 
have therefore corrected for this effect wherever appropriate in 
the statistical tests that follow by multiplying all effective 
degrees of freedom by two-thirds. 

Second, in fitting for the power-law index we shall work with 
log P, whose distribution is different from that of the variable 
P. Specifically, <log P) is numerically different from log <P>. 
Deeter (1984) has shown that this bias is given by 

<log P> - log <P> » + ¿] log e > (3) 

where v represents the effective number of degrees of freedom, 
and the final factor converts the right-hand side from natural 
to common logarithms. Along with that demonstration, it was 
shown that the variance in log P may also be expressed 
approximately in powers of 1/v: 

var (log P) ~ ^ ^ + 3^3 e)2 • (4) 

This formal variance gives a measure of the width of the sta- 
tistical distribution of log P and is the appropriate quantity to 
use in setting weights in the statistical tests considered below. 
In the following, the bias <log P) — log <P> and the variance 
of log P were computed using these formulae. 

i) Power-Law Characterization 
The average spectral index is the simplest characterization of 

the power spectrum. To determine the power-law exponent for 
the spectrum shown in Figure 3, we used ten power density 
estimates listed in Table 4: five derived from the pulse fre- 
quencies, three from the HE AO l/SAS 3 pulse phases, and two 
from the pooled estimates based on OSO 8, HEAO 7, and SAS 
3 phases. The estimates at 9.0 and 4.5 days that were derived 
from OSO 8 phases were not included in the fit because they do 
not stand out above the pulse shape noise. The estimates at 2.0, 
0.5, and 0.25 days that were derived from HEAO 1 phases were 
not included for the same reason. The estimates at 17.5 days 
derived from OSO 8 phases and those at 9.6 and 5.0 days based 
on HEAO 1 phases were corrected for the power density con- 
tributed by pulse shape fluctuations and the removal of infor- 
mation that occurred in estimating the orbital parameters 
before the fit was performed, as discussed earlier. 

In performing the fit, each power density estimate was 
weighted by its inverse variance, uniformly multiplied by two- 
thirds to take into account the loss of information due to cor- 
relations between estimators on different time scales. We found 
that the spectrum was well fitted by a straight line with a slope 
of +0.06 ± 0.23, indicating that white noise in pulse angular 
acceleration (a random walk in pulse frequency or, equiva- 
lently, second-order red noise in pulse phase) is an adequate 
description of the pulse frequency fluctuations and the only 
acceptable simple noise model. The value for the power-law 
exponent reported here is slightly different from the value of 
—0.04 ± 0.22 given in Boynton et al (1984) because of a recon- 

sideration of the correction for the information lost in deter- 
mining the orbit. The change in this value does not affect the 
conclusions presented by Boynton et al (1984). 

Based on this indication that the noise spectrum in pulse 
angular acceleration is indeed white, we computed the mean 
power density by averaging the estimates included in the fit, 
again weighting them with their inverse variances. The mean 
power density, (8 ± 2) x 10'19 rad2 s'4 Hz“1, is numerically 
equivalent to a noise strength S = jR<<5Q2> of 8 x 10 19 rad2 

s'3 (see § V). This value, like that for the power law exponent, 
differs slightly from the noise strength given by Boynton et al 
(1984) for the reason given above. 

ii) Statistical Tests 
As a check on the stationarity of the noise process evident in 

Figure 3, we have compared the average power density calcu- 
lated for various segments of the data. All of these comparisons 
rely on the statistical F-test for equality of variance. The com- 
parisons discussed in this subsection are (1) 1978 May versus 
1978 December, testing the constancy of the power density in 
Ù (random walk strength) in time using two disjoint sets of 
data at analysis periods of 20 and 40 days; (2) power density 
estimates based on pulse frequencies (at analysis periods 
between 400 and 3200 days) versus those based on pulse phases 
(analysis periods of 20 and 40 days), testing the constancy of 
the power density with analysis period; (3) power density 
before 1979 January versus after 1979 January, testing the con- 
stancy of the power density in time using two disjoint data sets 
for analysis periods between 400 and 1600 days; and (4) power 
density at the largest analysis period (3200 days) versus 
remaining power density estimates, comparing the power spec- 
tral density at the largest accessible analysis period with that at 
shorter periods. 

7.1978 May versus 1978 December.—k test for constancy in 
time of the power density for analysis periods less than 40 days 
may be made by comparing the power estimates from the 1978 
May and 1978 December data sets. The average density for the 
38 and 19.2 day estimates in 1978 December is 5.2 x 10“19 

rad2 s'4 Hz'1 (all power density estimates will hereafter be 
given in units of 10"19 rad2 s"4 Hz"1), while the average 
density for the 35 and 19.5 day estimates in 1978 May is 4.6 
(corrected for the contribution from pulse shape noise) with 
about 3 effective degrees of freedom in each power estimate. 
The ratio, PDec/PMay = U3, is essentially a ratio of variances. 
Employing an F-test for the equality of numerator and 
denominator, we find that the average power densities from the 
two sets are consistent with the same random walk strength, 
because F(3, 3) is equal to 9.3 at the 95% confidence level. 

2. Pulse frequency data versus pulse phase data.—A similar 
comparison of the power density at analysis periods of 20 and 
40 days with the average power density derived from the pulse 
frequency data (corresponding to analysis periods between 400 
and 3200 days) gives a ratio Plong/Pshort = 8.6/4.9 = 1.8. There 
are approximately 9 and 6 degrees of freedom in the numerator 
and denominator, respectively. These two power density esti- 
mates are consistent with one another, since F(9, 6) would have 
to exceed 4.1 to indicate inconsistency at the 95% level. 

In § II we noted that the apparent secular trend of the pulse 
frequency changed from spin-up to spin-down in 1979. An 
obvious question is whether there is any evidence for a change 
in the noise in pulse angular acceleration at this time. We 
therefore tested (3) whether the strength of the noise in Ù 
derived from the data before 1979 January was significantly 
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different than the noise derived from the data afterward, and 
(4) whether the power density at the lowest analysis frequency, 
which is most sensitive to the change in pulse frequency over 
the full 2600 day span of the data (corresponding to an analysis 
period of 3200 days), is significantly different from that at 
higher analysis frequencies. 

3. Power density before and after 1979 January—Table 3 
shows that power density estimates from before and after 1979 
January are available at three periods: 1600, 900, and 620/400 
days. However, we discard the estimates at 900 days, since they 
are highly correlated with those at adjacent analysis periods. 
This leaves one estimate at 1600 days and three at 400 days for 
the portion of the data prior to 1979 January, and one estimate 
at 1600 days and three estimates at 620 days for the portion 
subsequent to 1979 January. Pooling the estimates in each of 
the two groups, we find that the mean power density was 4.5 
before 1979 January, and 5.5 afterwards. The F-ratio 
-^after/^before is 1.22 on (4, 4) degrees of freedom. Since the 95% 
point of F(4, 4) is 6.4, Pafter does not differ significantly from 
^before* 

4. Power density at the largest analysis period.—In order to 
test whether the magnitude of the spin-up/spin-down behavior 
(which dominates the power density on the longest time scale) 
is compatible with the overall noise strength derived above, we 
compared the estimated power density at the 3200 day analysis 
period with the mean of all the estimates at analysis periods 
shorter than 1600 days (the estimate at 1600 days was excluded 
because of its large correlation both with the estimate at 3200 
days and with the estimate at 900 days). The estimated power 
density at the largest analysis period is 36.6 (1 d.o.f.), where the 
mean power density at shorter periods is 7.3 (about 13 d.o.f.). 
Here, the effective degrees of freedom take into account the 
correlations between all the estimates, whether at the same 
period or not. The ratio of the two power densities is 4.9 on (1, 
13) degrees of freedom. Since the 95% point of F(l, 13) is 4.7, 
the power density at the 3200 day analysis period differs from 
that at the shorter periods at about the 95% confidence level. 

In assessing the reliability of any one of the above tests, it 
should be recognized that the significance of a statistical test 
depends on the number of tests being performed, including 
those choices implicit in selecting the kind of tests actually 
performed. In the present study, the significance assigned to 
the above tests depends on whether the power densities to be 
compared were selected before the overall appearance of the 
power spectrum was known or only after the apparent discrep- 
ancy in the estimate at the longest time scale was noticed. In 
the latter case, the significance of the excess power is much less, 
since with 12 power density estimates there is a high probabil- 
ity that at least one will differ by 2 a or more. We also note that 
in the spectrum derived from quadratic-linear estimators (Fig. 
4), the power density from the linear estimate on 2600 day 
sampling interval (corresponding to an analysis period of 
about 8600 days) is, in fact, one of the smallest. When all the 
presently available evidence is considered, the power density at 
the largest analysis period (3200 days and greater) does not 
appear to differ significantly from that at shorter periods. 

v. DISCUSSION 
The principal goal of this paper is to provide a phenomeno- 

logical description of fluctuations in the rest-frame pulse fre- 
quency of Vela X-l for later comparison with physical theories. 
Inspection of Figures 1 and 2 reveals that frequency fluctua- 

tions occur on all time scales accessible with these data. The 
low-resolution power density spectrum of the observed fluc- 
tuations in the time derivative of the pulse frequency shown in 
Figure 3 suggests two distinct power-law spectral components. 

Oyer the lower nine octaves of the spectrum the power 
density is roughly constant, indicating a noise process that can 
be modeled as stationary white noise in the derivative of the 
pulse frequency. Such a process may also be described as a 
random walk (first-order red noise) in pulse frequency or a 
“ double random walk ” (second-order red noise) in pulse phase 
(cf. DB). Over the upper four octaves of the spectrum the 
power density in Ù rises steeply with frequency, with a slope 
that corresponds to white noise in pulse phase and a strength 
comparable to that expected from the size and character of the 
fluctuations in pulse shape that are observed (see Paper I). 
Although this steeply rising component of the spectrum can 
provide information on the nature of pulse shape fluctuations, 
in the present paper our interest centers on the process 
responsible for the white noise in ß. We therefore focus on the 
roughly constant component of the power density spectrum of 
Ù in the discussion that follows. 

On theoretical grounds, the spectrum of fluctuations in the 
derivative of the pulse frequency is expected to be a power law 
P(f) oc/", with n = 0 or -2 (Lamb 1979; Lamb, Pines, and 
Shaham 1978a, b). In § IV we reported that fitting a general 
power-law model to the observed power density spectrum 
yields a best-fit index n = + 0.06 + 0.23. This result is consis- 
tent with white noise in the derivative of the pulse frequency 
(n = 0). In § IV we also summarized the results of a series of 
statistical tests, each of which is consistent with the hypothesis 
that the measured spectrum represents white noise. Two of 
these tests were specifically designed to test whether there was 
any change in the behavior of the source in 1979 January, when 
the pulse frequency record seems to suggest a transition from 
secular spin-up to spin-down, and whether this apparent 
change in the long-term average of the derivative of the pulse 
frequency represents behavior distinct from the many changes 
in the short-term average of this derivative that are present in 
the record. None of the tests provided evidence for a change in 
the source properties; all were consistent with the hypothesis 
that the entire pulse frequency record can be modeled by a 
single, stationary white noise process. Therefore, in the dis- 
cussion that follows we adopt white noise in the derivative of 
the pulse frequency as a simple, plausible, and adequate 
description of this component of the spectrum. 

For a given noise process describing fluctuations in the 
neutron star rotation rate, the magnitude of the fluctuations in 
pulse phase, frequency, and higher derivatives of the phase 
measured on a given time interval are related, and these rela- 
tions involve the duration t of the interval. The case in which 
one of the derivatives of pulse phase exhibits white noise is 
particularly simple, and yields a set of scaling laws for the 
dependence on t of the fluctuation in amplitude of variables 
that are time integrals of the white-noise variable. In the case of 
Vela X-l, our results indicate that variations in the pulse fre- 
quency time series Q(t) [the time integral of 0(i)] can be 
modeled as a sequence of random steps given by integrating 
the time series of ¿-functions describing white noise in Q. This 
random walk in Q(t) can be characterized by an rms step size 
¿Q and a step rate R. The resulting mean square frequency 
excursion in time t is given by <AfiT

2> = N3Q2, where N = Rt 
is the number of steps in the interval and the angle brackets 
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indicate an ensemble average. This leads to the scaling law, 

<AQt
2> = RxôQ2 = St , (5) 

where S = RÔQ.2 is the strength of the random walk. Equation 
(5) shows the dependence of the mean square frequency excur- 
sion on the length of the interval t. Any other measure of the 
size of variations in Q(i), such as the expectation of the square 
of the mean excursion over the interval, necessarily scales with 
i in the same way (cf. Cordes 1980; Deeter 1984). 

The random walk strength is sufficient to characterize the 
higher order random walks derived from white noise by inte- 
gration.6 Thus, for example, the deviation in pulse phase A</>t 

that accumulates from the random walk over an interval of 
length t is related to the mean excursion in pulse frequency AQt 
over the same interval by A(j)x = AQT t. The ensemble average 
<(AQt)

2> obeys the same scaling law as <AQt
2) (but with a 

different multiplicative constant), yielding a scaling law for 
<A^t

2), _ 
<A0t

2> = <(AQt)V> = ¿St3. (6) 

The constant factor of ¿ is determined by more detailed con- 
siderations (Cordes 1980; Deeter 1984). 

In a similar fashion, the cumulative deviation in Q can be 
related to the mean excursion in the white noise variable Ù by 
AQ = Aí^t. This leads to the scaling law,7 

<(ÄÖt)
2) = St-1 . (7) 

Here the multiplicative constant js_unity. This scaling law, 
which can be rewritten as S = <(Aí\)2>/t-1, states that the 
random walk strength is numerically equal to the white noise 
power per unit bandwidth since <(A0T)

2> is the frequency- 
integrated power density and t-1 is the characteristic fre- 
quency bandwidth. 

According to equation (7), the observed mean square fluc- 
tuation in the time derivative of the pulse frequency is expected 
to be inversely proportional to the averaging time. Inspection 
of Figures 1 and 2 reveals that typical changes in angular 
acceleration are indeed much larger on shorter time scales than 
on longer ones. For example, the rms change in Û over the 3 
day intervals spanning three consecutive HE AO 1 pointings is 
~3 x 10"12 rad s-2 compared to ~1.5 x 10"13 rad s-2 over 
intervals ~1000 days. The observed ratio of ~20 in the rms 
fluctuation at these two time scales is close to the ratio of 
10001/2 expected for a system exhibiting white noise in & 

The scaling law indicated by equation (6) may be used to 
constrain the physical origin of the fluctuations in the pulse 

6 By considering an rth order random walk as the rth time integral of white 
noise, the question of the role of initial values of the random walk variable and 
its derivatives in specifying a particular walk is sidestepped. Clearly, if Ù is 
white, a particular realization of Q(f) requires the specification of an initial 
value Q0. Similarly, a particular realization of the integral of the frequency, i.e., 
the phase <f>{t\ requires specification of two initial values, Q0 and (f)0. These 
initial conditions specify a polynomial in time that is to be superposed on the 
random walk. However, this polynomial is not germane to the statistical char- 
acterization of the walk, but only to a particular realization. In fact it is easy to 
show that the residue from an mth-order polynomial fit to any realization of an 
rth-order random walk time series scales exactly the same way with time t as 
would be calculated for an rth-order random walk with initial values of that 
variable and its derivatives (through r — 1) set to zero (as long as m > r — 1). 
This result was used by Groth (1975) in his early work characterizing the noise 
in the pulse frequency of the Crab pulsar, was employed by Cordes and 
Helfand (1980) in their work on many pulsars, and emerges in the formulation 
of DB as the “ moment condition ” on power estimators. 

7 This law cannot be generalized to the cumulative excursion in Ù, since this 
quantity has no meaning for a white noise variable. 

frequency of Vela X-l. This law specifies that excursions m 
phase grow arbitrarily large on sufficiently long time scales. 
Conversely, any process for which excursions in phase are 
bounded cannot produce a flat noise spectrum for Ù; in- 
stead the power density eventually decreases as /4 toward 
small analysis frequencies. An example of the latter process is a 
model in which pulse frequency fluctuations are caused by 
changes in the direction of the X-ray beam formed at the 
surface of a neutron star rotating at a constant rate (van der 
Klis and Bonnet-Bidaud 1984). For this model, the phase 
excursions are bounded and the rms value cannot exceed ~ 1 
rad. On the other hand, for the process described by equation 
(6), rms excursions larger than 1 rad will typically occur on 
intervals of duration longer than t = (2/S)113 « 16 days, using 
the noise strength S we have derived for Vela X-l. Thus the 
wandering beam model might explain the spectrum of Ù at 
frequencies above (27t x 16 days)-1 ä (100 days)-1, but it 
cannot account for the large phase excursions at time scales 
longer than 16 days and the attendant flat spectrum at analysis 
frequencies below (100 days)-1. Consequently, we are led to 
attribute the fluctuations in the angular acceleration of the 
neutron star crust. Just such fluctuations in the angular accel- 
eration of the crust are expected as a result of variations in the 
accretion torque acting on the crust (Lamb 1977; Lamb, Pines, 
and Shaham 1978a, b). 

The possibility that changes in the direction of the X-ray 
beam make a significant contribution to the power density at 
analysis frequencies well above (100d)-1 cannot be excluded on 
the basis of the evidence reported here. However, in order for 
this possibility to be consistent with our results, the power 
density of fluctuations in the angular acceleration alone would 
have to decrease with analysis frequency above (100d)-1 in just 
such a way that the sum of the power densities contributed by 
fluctuations in the angular acceleration and by fluctuations in 
the beam direction is equal at these higher frequencies to the 
power density produced by fluctuations in the angular acceler- 
ation of the neutron star crust at lower frequencies. It seems to 
us difficult to justify the introduction of such complexity when 
the simple assumption of white noise in the angular acceler- 
ation of the crust is adequate to account for all available obser- 
vations at analysis frequencies for which the power density is 
not dominated by pulse shape noise.8 For this reason, in 
general discussions we have used the phrases “fluctuations in 
pulse frequency” and “fluctuations in neutron star rotation 
rate ” interchangeably here and in Paper I, understanding that 
this identification is accurate only for fluctuations at analysis 
frequencies below the crossover frequency. With the same 
understanding, we may also identify the rest-frame pulse fre- 
quency Q as the rotation frequency of the neutron star crust, 
thus providing a physical basis for discussing origins of the 
observed fluctuations. 

The interpretation of the spectrum of Ù in terms of two 
distinct noise components was used in Paper I as a basis for 
calculating uncertainties in the orbital parameters. The power 
density spectrum (Fig. 3) justifies the inclusion of white noise in 
Ù in that error analysis, in addition to the contribution from 
pulse shape noise. In fact, the average strength of the white 
noise in Ô (~ 1018 rad2 s-3) is more than an order of magni- 
tude larger than the strength of pulse shape noise near the 

8 Evidence provided by analysis of Hakucho observations also supports the 
interpretation presented here. This evidence will be reported elsewhere (Deeter 
et aims). 
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orbital frequency ([9d] 1), for the HE AO 7 data. For other 
data sets the crossover frequency may be lower than the orbital 
frequency, so that the contribution from pulse shape noise 
would then be relatively more important. 

VI. CONCLUSIONS 
In this paper we have presented estimates of the pulse fre- 

quency of the accretion-powered pulsar Vela X-l over an inter- 
val of approximately 3000 days, from early 1975 to late 1982, 
using both new and previously published observations trans- 
formed to the frame of the neutron star using the mean orbit of 
Boynton et al. (1986). We have also estimated the uncertainty 
in this pulse frequency record caused both by the uncertainty 
in the pulse phases used to make the frequency estimates and 
by the uncertainty in the mean orbit used to transform the 
frequencies to the frame of the neutron star. 

Using available pulse phase and frequency records and the 
methods developed by DB and Deeter (1984), we have calcu- 
lated a power density spectrum of the fluctuations in the first 
derivative of the pulse frequency. This spectrum reveals two 
well-defined components: one consistent with second-order 
red noise in pulse phase (white noise in Ó), which dominates 
over the lower nine octaves of analysis frequency, and a second 
component consistent with white noise in pulse phase, which 
dominates at higher frequencies. 

The spectrum of the red noise component implies that the 
rms fluctuation in the time-average of the first derivative of the 
pulse frequency increases as t_1/2 with decreasing averaging 
interval t. Just such an increase is found when the rms fluctua- 
tion averaged over 3 days is compared with the rms fluctuation 
averaged over 1000 days. Moreover, the strength of this red 
noise component implies phase excursions larger than 1 radian 
for time scales greater than 16 days, ruling out changes in the 
direction of the X-ray beam relative to the surface of the 
neutron as the sole cause of the observed pulse fluctuations. 
On the basis of theoretical expectations of a second-order red 
noise component in pulse phase and the simplicity of this inter- 
pretation relative to alternative hypotheses, we argue that the 
observed pulse phase fluctuations at frequencies lower than the 
crossover frequency are caused by fluctuations in the spin rate 
of the neutron star crust. The observed spectrum then implies 
that the crust is undergoing a random walk in rotation rate. 

The spectrum and strength of the white noise component in 

pulse phase is consistent with the observed fluctuations in the 
pulse shape. At frequencies above the crossover frequency, this 
component obscures the red noise component produced by 
fluctuations in the spin rate of the neutron star. For studies in 
which interest centers on the behavior of the neutron star spin 
rate, this obscuration imposes important limitations on the 
precision with which the spectrum of spin-rate fluctuations can 
be estimated above the crossover frequency. The extent of this 
obscuration can be reduced by appropriate choice of sampling 
intervals and application of special analysis methods (Boynton 
and Deeter 1986a, b; Deeter and Boynton 1986). 

As yet, there is no evidence of any systematic change in the 
pulse frequency of Vela X-l with time, in the sense that the 
variations in frequency on all presently accessible time scales 
(the nine octaves below the crossover frequency) are consistent 
with a model in which they are the result of a single, stationary 
random process. In particular, the apparently opposing secular 
trends before and after 1979 and the pulse frequency variations 
observed on much shorter time scales are consistent with the 
hypothesis that all are the result of stationary white noise in 
the angular acceleration of the neutron star crust. 

Our results place significant constraints on the properties of 
the neutron star and accretion flow in this system. These con- 
straints will be discussed elsewhere (Lamb et al. 1988). 
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APPENDIX 

EFFECT ON FREQUENCY ESTIMATES OF UNCERTAINTIES IN ORBITAL PARAMETERS 

To gain insight into how uncertainties in orbital parameters affect the precision of local pulse frequency estimates, we consider the 
simple situation presented by a circular orbit. We assume that the orbital period is precisely known, so the only uncertainties in the 
orbit are those in the orbital epoch and semimajor axis. For further simplicity, we treat here only the case where the frequency 
estimate is computed as the slope between two estimates of pulse phase separated in time; the more general case of fitting a straight 
line to many phase estimates is mathematically more complex. 

First we need an expression for the error in the pulse phase A</> caused by uncertainty in the orbit. This error can be written as the 
sum of two conjugate sinusoids at the orbital frequency, namely 

A0 = Ax cos Qorb(i - Tnl2) + Ay sin Qorb(í - 7^/2), (Al) 

where Qorb is the orbital frequency and Tn/2 the orbital epoch (the time when the mean longitude equals n/2). The coefficient Ax is the 
uncertainty in the projected semimajor axis x = (Qa/c) sin i, while the coefficient Ay is a scaled version of the uncertainty in Tni2, 
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namely — xiîorbA7^2 (cf. a similar expression in Deeter, Boynton, and Pravdo 1981). In general, the errors Ax and Ay will be the 
same order of magnitude; for simplicity we assume they are uncorrelated and have equal variances, that is, 

var Ax = var Ay = <rx
2 . (A2) 

The uncertainty in an estimate of the pulse frequency induced by this uncertainty in the orbital parameters is easily computed 
when the frequency is determined by the slope calculated from two separate estimates of pulse phase. The result is 

<Tn = [var (A02 - A^)]1/2/! h~h \ ■ (A3) 

Here A^ and A4>2 are the errors in the pulse phase due to the orbital uncertainty specified by equation (Al), at the times and t2, 
respectively. Under the assumptions that Ax and Ay are uncorrelated and have a common uncertainty ax, the variance of 
A</>2 — A^>1 is given by 

var (A(j)2 -Acj)1) = 2ax
2(l - cos Uorb At) = 4ax

2 sin2 ¿Í20rb At, (A4) 

where At = t2- tj. Thus we obtain for the uncertainty in the frequency estimate, 

ff« = 
sin (QorbAt/2) 

At 
Q. orb u x sine 

üftrhAí (A5) 

This result is intuitively plausible; the error in Q falls off asymptotically as At -1, multiplied by a factor depending on the separation 
of the points in orbital phase. If the two estimates of pulse phase are separated by an integer number of orbital cycles, the 
contribution to the uncertainty in the frequency estimate vanishes. 
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