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ABSTRACT 
Structures of nonrotating magnetized clouds are investigated from a standpoint of the equilibrium solution 

of the cloud confined by an external pressure which is threaded by uniform magnetic field at infinity. Equi- 
libria for wide ranges of parameters are studied: the ratio of the external thermal pressure to the magnetic 
pressure ranges from 10“2 to 5 and the center-to-surface density ratio ranges from 2 to 104. We obtain two 
different equilibrium states with the same mass but with different central density. It is shown from the mass- 
central density relation that the solution with lower central density is stable and that with higher central 
density is unstable. The maximum mass of clouds (Mcr) supported by a fixed magnetic flux is well approx- 
imated by the mass-to-flux ratio at the cloud center (dm/dQ>B\r=0): 

0.17 l2]-3/2 c4 

dm/d(<frB/Gl,2)\r=0] J píif(4nGf12 ’ 

where pext and cs represent the external pressure and the isothermal sound speed in the cloud. Effects of the 
distribution of magnetic flux on the equilibrium structure are also studied. We show that the thin-disk 
approximation is successfully applied to the magnetized cloud, if magnetic fields are strong enough. It is sug- 
gested that there are two possibilities for the initiation of star formation, i.e., that the mass of cloud exceeds 
Mcr and that the cloud is compressed beyond the unstable equilibrium solution with higher central density. 
Subject headings: hydromagnetics — interstellar: magnetic fields — nebulae: general — 

nebulae: internal motions 

I. INTRODUCTION 

Several examples have been found of an infrared (IR) source 
and associated bipolar outflow occurring at the center of the 
disk cloud. The circumstellar or circum-outflow disks are 
observed in, e.g., L1551-IRS 5, OMC-l-KL, NGC 2071-IRS, 
R Mon, NGC 6334 V, and S106 (Harvey 1985), whose typical 
sizes are 0.1-1 pc. Further, clumps in molecular clouds often 
show an elongated shape (Heyer et al 1987). Such disk configu- 
rations seem to be due to the presence of magnetic field and/or 
rotation. That is, clouds are supported laterally by the mag- 
netic pressure and tension and/or the centrifugal force. 

In the Taurus molecular cloud, the direction of the magnetic 
field which is measured by the polarization of background 
stars (near-IR: Tamura et al 1987; optical wavelengths: 
Heyers et al 1987) is parallel to the minor axes of the clumps. 
The observational results suggest that the cloud collapse is 
controlled by the magnetic field, although the field strength is 
not accurately measured. Zeeman splitting of thermal OH 
allows the measurement of the field strength By in the region 
with density above 103 cm“3 as 10-100 gG (Heiles 1987). 

The disk clouds and clumps can be considered as in 
(magneto-)hydrostatic equilibrium, at least in quasi- 
equilibrium. The exact equilibrium configuration of the iso- 
thermal cloud supported by a magnetic field has been obtained 
numerically by Mouschovias (1976a, b). In his model a spher- 
ical “parent cloud” with uniform density ph radius Rcl, and 

mass Mcl = (47r/3)pI R
3

1 is threaded by a uniform magnetic field 
B0, and this “parent cloud” collapses, keeping flux freezing, to 
be the final equilibrium solution. The maximum mass of the 
cloud laterally supported by the magnetic field, Mcr, is 
obtained as the mass above which solutions are not found. 
This mass is expressed approximately using the magnetic flux 
anchored to the cloud, (Oä)c1 = nR^ B0 (Mouschovias and 
Spitzer 1976), as 

Mc, oí1-0-0162®2] 
-3/2 

(1.1) 

where cs, pcxt, and G represent the isothermal sound speed, the 
external pressure, and the gravitational constant, respectively. 
Another method of obtaining the equilibrium configuration 
was introduced by Mestel and Ray (1985), in which, for a given 
gravitational potential, the initial mass and magnetic field dis- 
tributions are determined to counterbalance the gravity. 

Pioneering work by Mouschovias (1976a, b) has some 
restrictions because relatively large numerical calculations 
were needed : a shape of the “ parent cloud ” (spherical) and the 
distribution of magnetic field (uniform) are fixed, and the 
examined ranges of parameters (e.g., center-to-surface density 
ratio, 2 ;$ pc/ps < 30) are relatively limited. We presented the 
method of obtaining the equilibrium solution of a magnetized, 
rotating, isothermal cloud in the case of poloidal magnetic 
fields parallel to the rotation axis (Tomisaka, Ikeuchi, and 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

33
5.

 .
23

9T
 

TOMISAKA, IKEUCHI, AND NAKAMURA 240 

Nakamura 1988, hereafter Paper I). In a present paper, we pay 
attention to the effect of magnetic field and confine ourselves to 
the equilibrium configurations of nonrotating clouds as a first 
step to more general cases including rotation. 

We present the results for various shapes and magnetic field 
distributions of the “parent cloud.” Comparing the results 
with different mass distributions m(0B), we can see the stability 
of the cloud when m(0B) is changed, as a result, for example, of 
the plasma drift (ambipolar diffusion) or cloud-cloud collision. 

In order to see the stability of the cloud in equilibrium 
briefly, it is convenient to find an Mcl-pc relation (Tassoul 
1978), i.e., the solution with dMJdpc > 0 is stable and that 
with dMJdpc < 0 is unstable. We present in § III the Mcl-pc 
relation for equilibrium structures of magnetically supported 
clouds and check the stability condition for various equilibrium 
solutions. From the Mcl-pc relation, we can also determine 
exactly the maximum mass above which no equilibrium solu- 
tions exist. 

Further, to see the solutions with wide ranges of parameters, 
we take the ratio of the external pressure to the magnetic pres- 
sure of the initial uniform field, ß0 = from 10“2 

to 5. 
The plan of this paper is as follows: in § II we briefly 

describe the method of obtaining the solution. Numerical 
results are shown in § III. It is shown in § IV that the results 
are qualitatively explained by the analysis of the Gibbs free 
energy of a homogeneous spherical cloud. The relation 
between the stability of magnetized clouds and star formation 
is also discussed in § IV. Section V is devoted to the summary 
of the paper. 

II. METHOD 
The method for calculating equilibrium solutions of a self- 

gravitating, isothermal, axisymmetric cloud without rotation is 
essentially the same as that presented by Mouschovias (1976a). 
The formulation which includes the effect of rotation (Paper I) 
is also valid for the nonrotating case when we put an angular 
rotation speed of zero, Qcl = 0. Here we briefly summarize the 
method. 

1. Along the direction of the magnetic field, the magneto- 
hydrostatic equilibrium is expressed by setting Q = 0 in equa- 
tion (1.2.19) (eq. [1.2.19] is eq. [2.19] of Paper I), as 

P = (2.1) 

where p, ij/, and O represent, respectively, the density, the gravi- 
tational potential, and the magnetic potential, which is related 
to the magnetic flux <DÄ as O = Ob/(27t), and q(Q>) is an integra- 
tion constant depending only on O. 

2. On the other hand, in the direction perpendicular to the 
magnetic field, from equation (1.2.1) the magnetohydrostatic 
equation has the form 

- ^2 A1 ^ X J?) - pVi/i - c^\p = 0 , (2.2) 

where Ax = d1/dz2 + r(<Vdr)[(l/r)(d/dr)]. 
3. We can rewrite equation (2.2) using equations (2.1), (1.2.5), 

and (1.2.6), as 

This is an equation to determine the magnetic field. The 

Poisson equation to determine the gravitational potential is 
expressed as 

VV = 47tG exp (^-^j ■ (2.4) 

By solving equations (2.3) and (2.4) simultaneously, equi- 
librium solutions of a self-gravitating, isothermal, magnetized 
cloud is obtained. 

The function q(<&) is given by setting the mass in a flux tube 
equal to that in a “parent cloud” (eq. [I.2.30a]). Several cases 
of the distribution of mass with magnetic flux are examined. 
We consider that uniform magnetic fields parallel to the z- 
direction thread the uniform-density “parent cloud” with 
various shapes. To express the shape simply, we extend equa- 
tion (1.2.3 la) as 

d® \2+ J î»cl l,1 d>J 

with 

(2.5) 

• (2.6) 

We study the three cases N = 0, 1, and 2. In the case of 
AT = 0, the “ parent cloud ” is cylindrical. The cases with N = 1 
and N = 2 correspond respectively to the spherical “ parent 
cloud ” and that whose surface is a paraboloid. With increasing 
N, the central concentration of the column density along the 
z-direction, <j, increases. That is, for N = 0, o/B0 is constant 
irrespective of r, and for N > 1, (j/B0 increases with decreasing 
r. Therefore, the last case (N = 2) will be called that of the 
“ centrally condensed parent cloud.” 

Parameters which characterize the solution are Rcl, the 
radius of the “parent cloud”; ß0, the ratio of the external 
thermal pressure pext to the magnetic pressure Bq/Siz; and 
pc/ps, the center-to-surface density ratio of the solution. Using 
the normalization in equation (1.2.34),1 we use the central 
density pc as the third parameter. 

We solve numerically equations (2.3) and (2.4) simulta- 
neously under an appropriate boundary condition (1.2.42) by 
the self-consistent field method. The numerical scheme is the 
same as described in § III of Paper I, but we employ the 
checkerboard successive overrelaxation (SOR) method instead 
of ordinary SOR to solve equations (2.3) and (2.4) to improve 
the vectorization of the numerical scheme. The number of 
numerical meshes is taken as 80 in the z-direction and as 40 in 
the r-direction. The outer boundary where the boundary con- 
ditions (1.2.42) are set is placed at r = (2-2.3) x Rcl and z = 
(2.1-2.5) x Rcl. 

III. NUMERICAL RESULTS 

a) Sequence of Solutions for Changing pc 

In § IV of Paper I, we have shown a sequence of solutions 
with the same pc but different ß0. In this subsection, the solu- 
tions with the same ß0 but different pc are presented. From 
this, we can find the Mcrpc relation and obtain information on 
the stability of the equilibrium. 

First, we confine ourselves to the spherical “ parent cloud ” 
(N = 1), and in § Hid we compare with the cylindrical (N = 0) 
and centrally condensed (N = 2) clouds. Figure 1 shows the 

1 There are typographical errors in equation (1.2.34). As easily noticed, Q 
should be normalized as Q/(4nGpc)

il2. 
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Fig. 1.—Equilibrium configurations of magnetized clouds with 
RcX = 2.4 and ß0 = 1. The magnetic field line, which runs almost 
vertically, and the density contour are plotted. Each magnetic field 
line is labeled by the radius where the magnetic field runs far from 
the cloud (z = oo). The contour level of the density, which is taken 
as log p = [(log pc)/5]n, for n = 0-4, is also shown near the contour 
line. The horizontal and vertical axis mean, respectively, the nor- 
malized distance as r/Rcl and z/Rc]. Parameters used here are shown 
in Table 1. 
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solutions with fixed Rcl = 2.4 and = 1, but the central 
density pc changes from 2 to 104. When the central density is as 
low as pc ^ 30, the cloud keeps its shape spheroidal, that is, the 
cloud seems to collapse along the z-direction from the parent 
cloud. The spheroidal shape clearly shows the lateral support 
by the magnetic field. When pc exceeds ~ 50, the cloud changes 
to the concave shape. The height of the cloud on the z-axis, 
^fin> decreases for higher central concentration. The ratio of 
the height Zfin to the radius Rfin on the r-axis increases 
from 0.53 (pc = 2) to 0.62 (pc = 5), and then decreases to 0.056 
(Pc = 104). 

The appearance of the concave shape for high pc is explained 
as follows: the density distribution in the z-direction can be 
approximated by the uniform thin disk extending infinitely in 
the r-direction (thin-disk approximation). Then the half- 
thickness is given (Kiguchi et al 1987) by 

In [pc
1/2 + (Pc — 1)1/2] Zb- Z 1/2 (3.1) 

which decreases for pc > 3.28 with an increase in pc from 

zb(pc = 10) = 0.471 to zb(pc = 104) = 0.075. On the other 
hand, the height of the cloud at r ^ 0 is also expressed approx- 
mately by replacing pc by p(z = 0, r) in equation (3.1). Then if 
pc > p(z = 0, r) > 5, equation (3.1) indicates that zb(r > 0) > 
zb{r = 0). 

In Figure 2 we plot the density distribution at the equatorial 
plane (z = 0) against the radial distance from the z-axis. As 
long as the central density is low (pc ^ 10), the density dis- 
tribution reflects the initial mass distribution varying as 
[1 — (r/Rcl)

2]1/2 (eq. [2.5]). As the central density increases, the 
density distribution approaches gradually that proportional to 
r-2. Such circumstances resemble the cases of an isothermal 
nonmagnetized self-gravitating sphere (Shu 1977). This shows 
that the pressure gradient is more important than the magnetic 
force. Kiguchi et al (1987) have also pointed out that the rotat- 
ing isothermal self-gravitating cloud shows a density distribu- 
tion proportional to r~2 in the case with large central 
concentration (pc/ps > 1). As for the former case, in the limit of 
infinite central concentration, the equilibrium density distribu- 
tion, which is unstable, approaches a “singular” distribution 
(Chandrasekhar 1957) as p(r) = c2/(2nG)r~2. In this case, the 

r/Rd 

Fig. 2.—Density distributions along the r-axis (z = 0) and z-axis (r = 0) for clouds with Rcl — 2.4 and ß0 = 1. The cases with pc = 10, 30, 102, 103, and 104 are 
plotted. The density at the equatorial plane p(r) is shown by a solid line, and that on the z-axis p{z) is shown by a dashed line. The “ singular ” distribution of the 
isothermal sphere is also shown in a dash-dot line. 
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system has no characteristic length scale. However, since the 
magnetized cloud has one characteristic length, i.e., Rcl, the 
absolute value of the density seems to be not exactly expressed 
by the “ singular ” distribution. 

In Figure 3 the configurations of clouds with Rcl = 2.4 and 
ßo = 0.02 are plotted. Comparing these with Figure 1, we can 
see the effect of the magnetic field on the shape of equilibria. 
Because of the strong field in the present case, the field line 
stays almost straight as long as pc < 30. With increasing Mcl as 
well as increasing pc, the magnetic field is squeezed near the 
equatorial plane. Because the cloud is supported laterally by 
the magnetic field, it is so hard for the cloud with stronger 
fields to collapse that the radius of the cloud, Rfin, for ß0 = 0.02 
(Fig. 3) is larger than that for /?0 = 1 (Fig. 1). On the other 
hand, the height of the cloud, Zfin> for ß0 = 0.02 is smaller than 
that for ß0 = 1, especially in the case of high density concentra- 
tion, pc > 1. This is due to the fact that the mass of the cloud 
with a strong magnetic field (small ß0) is larger than that with a 
weak field (large ß0) for given values of pc (Tables 1 and 2). 

The mass of the cloud, Mcl, for various values of pc is shown 
in Table 1. The mass has a peak at pc ^ 30, increases mono- 
tonically for pc <: 30, and decreases monotonically for pc > 30 
in the range we calculated. We show in Figure 4 the Mcl-pc 
relation including other cases with different ß0. For compari- 
son, the solution with ß0 = oo (B0 = 0) is also shown, corre- 
sponding to the nonmagnetic spherical cloud. From this figure 
we can see the stability of magnetized clouds for global com- 
pression. When the cloud is compressed from the equilibrium 
state to a new state with p'c = pc + ôpc, in the case of 
dMJdpc > 0 this new p' state can support more mass than 
Mcl, so that this state is stable for compression. In contrast, in 
the case of dMJdpc < 0 the new p' state cannot support Mcl, 
and this equilibrium state is unstable for compression. Because 
the cloud mass is normalized by pl£{4nG)3l2/c*, the cloud mass 
Mcl in the table is proportional to the square root of the exter- 
nal pressure. Table 1 shows that there is a maximum pressure 
beyond which clouds cannot exist stably, for a given value of 
mass. 

TABLE 1 
Adopted Model Parameters (Fig. 1) 

Case ß0 Rcl pc Mcl 

a   1 2.4 2 42.6 
b   1 2.4 3 58.2 
c   1 2.4 5 73.1 
d   1 2.4 10 84.9 
e   1 2.4 30 89.9 
/  1 2.4 102 86.7 
g   1 2.4 103 76.2 
h   1 2.4 104 75.8 

TABLE 2 
Adopted Model Parameters (Fig. 3) 

Case ß0 Rcl pc Mcl 

a   0.02 2.4 2 47.3 
b   0.02 2.4 3 68.2 
c   0.02 2.4 5 93.1 
d   0.02 2.4 10 127 
<?   0.02 2.4 30 183 
/    0.02 2.4 102 239 
g   0.02 2.4 103 283 
h    0.02 2.4 104 279 

The critical mass Mcr(Rcl, ß0) which is defined as 
dMJdpc = 0 has an important meaning, that is, it is the 
maximum mass supported by thermal pressure and magnetic 
field. For mass larger than the critical mass, no equilibrium 
solution exists. The solution with dMJdpc = 0 corresponds to 
that called the “critical state” by Mouschovias (1976h). He 
could not find the solution on the branch dMJdpc<0, 
because the solution is multivalued (at least two-valued) for a 
fixed Mcl. The cloud with Mcl > Mcr(Rcl, /?0), which corre- 
sponds to that called the “ supercritical cloud ” by Shu, Adams, 
and Lizano (1987), is gravitationally unstable and collapses in 
a dynamical time scale. 

b) The Cloud Mass 
In Figure 4 the Mcl-pc relations for ß0 - 0-5 are plotted. 

When the magnetic field becomes stronger, i.e., ß0 decreases, 
the critical mass Mcr increases, that is, the mass which can be 
supported by the magnetic field increases. Further, the density 
pcr at which dMJdpc = 0 also increases for stronger magnetic 
field. Noticing that the solution with pc < pcr is stable, we see 
that the stable region is extended much further for stronger 
magnetic field cases. 

As seen in § Ilia, for the self-gravitating thin disk which is 
uniform in the r-direction the central density is expressed in 
terms of the column density along the z-direction as 

pc = W + I , (3.2) 
where a is normalized by Go = cs\_psl(4%G)']112. Using a ^ 
Pi2Rci = 3Mcl/(2nR2

l), we can estimate the mass of the cloud in 
terms of pc as 

Mcl ^ (pc - 1)1/2RC
2,. (3.3) 

This approximate formula reproduces the results well for 
ßo = 0 with pc < 103 and for ß0 < 0.02 with pc < 102 within 
10%-20% errors. Because in the case with weak magnetic field 
the cloud collapses also in the r-direction and forms core, the 
thin-disk approximation becomes worse for weaker magnetic 
field. Comparing Figure If (ß0 = 1, pc = 102) with Figure 3/ 
(ß0 = 0.02, pc = 102), we can see that the central part of the 
cloud becomes disklike with an increase in the strength of the 
magnetic field. 

c) Effect of Rcl 

In Figure 5 we plot the solution with Rcl = 4.8 and /?0 = 1. 
The size of the “parent cloud” is twice as large as that in 
Figure 1. The solution with pc < 50 is stable for compres- 
sion (dMJpc > 0), while that with pc > 50 is unstable (dMJ 
dpc < 0). Compared with Figure 1, we clearly see that the cloud 
becomes globally geometrically thin. However, the half- 
thickness of the cloud decreases only by 20% from the solution 
with Rcl = 2.4 (note that Figs. 1 and 5 are plotted against r/Rcl 
and z/Rcl). This corresponds to the fact that zb does not depend 
explicitly on Rcl as in equation (3.1). On the other hand, the 
cloud collapses slightly from the parent cloud in the r- 
direction. Therefore, the cloud becomes thin. 

In Figure 6 the Mcl-pc relation for RcX = 4.8 is plotted. Com- 
paring with Figure 4, we can see that Mcl(ß0) is 2.3 times 
(ßo = 2) to 3.3 times (ß0 = 0.1) as large as the values for Rcl = 
2.4. The fact that, even when ß0 is fixed, Mcr increases for larger 
Rcl is explained by noting that the flux anchored to the cloud 
[(Ob) cI OC Rct/ßo21 increases with Rc¡. Further, in accordance 
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Fig. 4.—Mass of the cloud, Mcl, vs. central density, pc, for various values of 
ß0. Except for ß0 = 0, Mcl takes a maximum value, which increases with 
increasing strength of the magnetic field B0. The critical density, at which the 
mass reaches the maximum, also increases with increasing strength of the 
magnetic field. 

with the increase in Mcl, the critical density pcr becomes higher 
than that in Figure 4. 

d) Effect of the Initial Mass Distribution 
The distribution of mass with the magnetic flux seems to 

affect the equilibrium solution. To see this clearly, we compare 
the cases with N = 0 (Fig. la: cylindrical parent clouds), N = 1 
(Fig. lb: spherical parent clouds), and N — 2 (Fig. 1c: centrally 
condensed parent clouds), where we take other parameters 
fixed as Rcl = 2.4, ß0 = 1, and pc = 30. 

The equilibrium solution from the initial cylindrical cloud 
shows an almost cylindrical shape. Especially, the high-density 
disklike region conserves the initial shape. In contrast, in the 
case of the centrally condensed cloud, the global structure as 
well as the central high-density region shows a spherical shape. 
This is understood in such a way that the cloud mainly col- 
lapses parallel to the z-direction to form the equilibrium con- 
figuration, while in the r-direction the cloud is laterally 
supported by magnetic field. 

In Figures la-lc we illustrate the results, respectively, of 
Mcl = 99 (N = 0), Mcl = 90 (N= 1), and Mcl = 81 (N = 2). 

The initial mass distribution with N = 0 can support a larger 
amount of mass than is the case for AT = 2. In other words, 
with increasing central concentration, the mass supported by 
the magnetic field decreases. This seems to come from equation 
(2.5), i.e., Mc1/(Ob)ci is proportional to the central mass-to-flux 
ratio dm/d$>B |<I)B=o> 

Mcl = dm/d®B 1^=0 n 

(0>B)cl N/2 + 1 ’ 

but is inversely proportional to N/2 + 1. At the center (r <| 
Rcl\ where the gravity is strong, even if dm/d®B 1^=0 is the 
same irrespective of N, which will be shown later, the total 
mass depends upon N. 

e) Magnetic Field at the Center 
Mouschovias (19766) pointed out that the magnetic field at 

the center of the cloud, Bc, and the central density pc are well 
correlated. In Figure 8 we plot the relation between Bc and pc 
for the cases shown in Figures 1, 3, and 5. This figure indicates 
a general trend, 

Bc oc pi'2 , (3.5) 

for higher central density. It is shown that this relation is rea- 
lized over a wide range of parameters of pc (10-104 for /?0 = 1 ; 
100-104 for ß0 = 0.02). For lower density, however, Bc is inde- 
pendent of pc. These results are simply explained by the thin- 
disk approximation. For a self-gravitating thin disk which is 
uniform in the r-direction, the central density is expressed as in 
equation (3.2) by 

Pc ^ W ■ (3.6) 

Now consider a flux tube threading the central region whose 
area is 5. Sa becomes proportional to Mcl from the conserva- 
tion of mass in 5. (1) Since Mcl ~ Mcr for pc > pJ5, from 
equation (3.6) this implies Sxpc 

1/2. Since the magnetic field 
Bc is inversely proportional to S (BCS ~ const), we obtain the 
above relation (Bc OC pc

1/2 for pc ^ pCT/5). (2) For lower central 
density, the effect of magnetic fields is not so important, which 
implies Bc ~ B0 = constant. The fact that the thin-disk 
approximation works well means that the gas density is almost 
constant along the r-axis near the central region of the magne- 
tized cloud. 

Here, we propose a fitting formula for the magnetic field 
strength at the center of the clouds: 

[1 + c/?o(Pc - 1)]1/2 , (3.7) 
Do 

where c is a parameter chosen to reproduce the results. We 
have confirmed that this equation with c ^ 0.5 fits the numeri- 
cal results within 20% relative error. Equation (3.7) is rewritten 
in a dimensional form as 

Bc 

(4rcpc)
1/2 

' B2
0 ps 

Atips pc 
(3.8) 

In the case of low central density pc/ps ^ 1, the Alfvén speed at 
the center is equal to that at the outer part of the cloud. 
However, in the cloud with high central density, pc/ps > 1, the 
Alfvén speed at the center becomes nearly equal to the isother- 
mal sound speed. In other words, the equipartition between 
magnetic energy and thermal energy proceeds. 
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TABLE 3 
Adopted Model Parameters (Fig. 5) 

Case ß0 Rcl pc Mcl 

a    1 4.8 2 127 
b   1 4.8 3 161 
c   1 4.8 5 191 
d   1 4.8 10 214 
<?   1 4.8 30 229 
/  1 4.8 102 226 
9   1 4.8 103 213 
h   1 4.8 104 214 

IV. DISCUSSION 
a) What Determines Mcr ? 

In § IIIc it has been shown that the critical mass Mcr is an 
increasing function of the magnetic flux 0>B. [Hereafter, we will 
represent the total magnetic flux (Ofi)cl by 0>B for simplicity ] In 
this subsection we will see how Mcr is determined. 

The ratio of mass to magnetic flux Mc1/(Ob/G1/2) stays con- 
stant as long as the frozen-in condition is applicable. Figure 9 
shows the relation between the critical mass Mcr and the mass- 
to-flux ratio at the critical state, Mc1/(Ob/G1/2) |cr = 
Mcr /?0/2/[(4\/2)7u.R 2|]. Dash-dot, solid, and dashed lines show, 
respectively, the solutions for cases with iV = 0, AT = 1, and 
N = 2. Each line corresponds to the change in Mcr for various 
ß0, i.e., with decreasing ß0 (increasing B0) Mcr increases and the 
point in Figure 9 moves to the lower right. 

When Ob is small enough (upper left-hand part of Fig. 9), 
Mcr is almost constant (60-100) irrespective of Ob. In the case 
of nonmagnetized spherical cloud, Mcr = 52 (note that the 
mass is normalized by M* = cf/\j>l¡Lf(4nG)3,2Í). When Ob is 
taken large enough, the value of Mc1/(Ob/G1/2) |cr seems to 
reach an asymptotic value irrespective of Rcl. The asymptotic 
values of Mc1/(Ob/G1/2) |cr are different for different N, as ^0.17 
(N = 0), ~0.12 (AT = 1), and ~0.09 (N = 2). That is, the mag- 
netic field becomes less efficient in supporting the cloud as the 
concentration of the density to the center increases. In the use 
of equation (3.4), the asymptotic mass-to-flux ratio at the center 

Fig. 6.—Same as Fig. 4, but for Rcl = 4.8 
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n<0 tS> sfo çs> rfa c$> sfr çS> rfa 
n? <or <0* ^ 9> cr \l n? 

R 
Fig. 7c 

of the cloud becomes 

dm 
d<t>B/G1/2 

r = 0 

Í0.17 for AT = 0 , 
i 0.18 for N = 1 , 

10.18 for iV = 2 . 

(4.1) 

This shows that, irrespective of the initial mass distribution, 
the clouds whose mass-to-flux ratio at the center is greater 
than ^0.17 are unstable for the strong magnetic field limit, 
while those whose mass-to-flux ratio at the center is less than 
^0.17 are stable. 

b) Analysis Based on the Gibbs Free Energy 
Here we try to understand the characteristics of the equi- 

librium solution by an analysis using the Gibbs free energy. In 
the case of a nonmagnetized spherical cloud (Lynden-Bell and 
Wood 1968), the gravo-thermal instability, which is character- 
ized by the onset of negative specific heat at constant pressure 
cp<0 (Ebert 1957) (equivalently, the Gibbs free energy of the 
system takes a local maximum), occurs when dMJdpc < 0. We 
suppose that the cloud with uniform density p, radius R, and 
mass M is threaded by the magnetic field B and confined by the 
external pressure p. The Gibbs free energy of this cloud is 

TABLE 4 
Adopted Model Parameters (Fig. 7) 

Case N ß0 Rcl pc Mcl 

a   0 1 2.4 30 99.0 
b   1 1 2.4 30 89.9 
c   2 1 2.4 30 80.6 

expressed as 

^(R, M) = Me2 In p - - 
3 GM2 4n 
5 R 

+ — pR3 + 
B2R3 

(4.2) 

where the fourth term on the right-hand side, the magnetic 
energy, is taken from the model by Strittmatter (1966). This 
equation is rewritten using the magnetic flux d>B = nR2B as 

m, M) = Mcj ln P - ff (m2 - + y pK3. (4.3) 

We plot this free energy ^ as a function of R and M in Figure 
10. The equilibrium point is found as a point where d^/dR = 0. 
The stability of the equilibrium can easily be shown by taking 
the second derivative of ^ : 

and 

for stable equilibrium (4.4a) 

for unstable equilibrium . (4.4b) 

From equation (4.3), we have the following three cases: (1) for 
M < [5/(127r2G)]1/20Ä, there is one stable equilibrium; (2) for 
[5/(12tü2G)]1/2Ob < M < M, the system has two equilibria: the 
one with larger R is stable and the other with smaller R is 
unstablej (3) for M > M, there is no equilibrium solution, 
where A? is determined from the condition d^/dR = d2*#/ 
ôR2 = 0, 

M2 _ 34537t2 / 50>b \~3 

cs/[(4t03pG3] 42 \ M212tc2g) 
(4.5) 
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Mcl 
Fig. 9.—Relation between the critical mass of the cloud, Mcr, and the mass-to-flux ratio, Mcr/(Oß/G1/2). Dash-dot, solid, and dashed lines represent, respectively, 

the clouds with iV = 0, iV = 1, and N = 2. Along with the cases ofRcl = 2.4, results for the clouds withRcl = 3.6 are also plotted. The result forRcl = 4.8 is plotted 
only for iV = 1. 
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Fig. 10—Three-dimensional view of the Gibbs free energy of the spherical uniform cloud with respect to radius R and mass M. Here we take [5/(12G)] 1/2<D In = 
2.5M*. In this case, the critical mass is M ~ 3.908M*. 

This is rewritten in nondimensional form as 

<4-6> 

From this equation, it is easily shown that in the limit $}B -► 0, 
M reduces to 79, and in the limit M/(d>B/G1/2)0.205, M 
increases infinitely. M is the mass above which no equilibrium 
solution exists. In this sense, M is equivalent to the critical 
mass which is determined as the mass where dMJdpc = 0. 
Thus, we regard M as identical with Mcr. If we replace the 
numerical factors in equation (4.6), e.g., 79 by 62, and 0.205 by 
0.17, for AT = 0, 0.12 for AT = 1, and 0.09 for AT = 2, then the 
numerical results in Figure 9 are reproduced within 10% error. 
Finally, using the mass-to-flux ratio at the center, the 
maximum mass is expressed irrespective of N as 

M =620- 
0.17 

|_dm/G1 /2) |r=o. 

2') -3/2 
(4.7) 

We can rewrite equation (4.7) in a useful form using the rela- 
tion dmld0>B = o/B\ 

M ct ^ 62{1 - [|ff/(ß/Gl/2)u0_ 

This means that when | <7/(B/G1/2)|r=0 >0.17, there exists a 
finite maximum stable mass of cloud, Mcr, but when 

I (j/(B/G112) |r=0 < 0.17, there is no critical mass in equilibrium. 
From the linear stability analysis of the self-gravitating iso- 

thermal slab extending infinitely in the x- and y-directions, 
Nakano and Nakamura (1978) and Tomisaka and Ikeuchi 
(1983) obtained the maximum stable column density of the slab 
as 

<7n = B° ~ 0.16 B° 
InG'!2 G1/2 ’ 

(4.9) 

where B0 represents the magnetic field strength threading the 
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slab perpendicularly. Further, when (j0/(B0/G1/2) > l/(27r) the 
perturbation whose wavelength is longer than a critical wave- 
length, which corresponds to the Jeans wavelength, grows and 
makes the system unstable, but when (j0/(B0/G1/2) < 1/(2tc) 
there is no unstable mode. Thus, correspondence between the 
equilibrium solution and the linear perturbation analysis is 
remarkable. This fact strengthens justification of the fitted form 
of the critical mass as equation (4.8). 

There are two equilibria for [5/(127ü2G)]1/2Ob < M < M. 
This corresponds to the fact that in Figures 4 and 6 there are 
two different solutions with the same mass but different pc. The 
stable equilibrium with large R in the free-energy analysis cor- 
responds to the stable state with lower central density in the 
numerical solution, and the unstable equilibrium with small R 
corresponds to the unstable state with higher pc. 

From the above discussion, with increasing pc keeping Mcl 
constant, the Gibbs free energy becomes a minimum at the 
stable equilibrium point and becomes a maximum at the 
unstable equilibrium point. Therefore, if a cloud is compressed 
by, e.g., cloud-cloud collision beyond the unstable equilibrium 
point, it becomes unstable and begins to collapse. 

c) Star Formation in Magnetized Clouds 
Here the condition for star formation is considered on the 

basis of the above analysis. 
1. Mcl > Mcr.—The cloud whose mass exceeds Mcr is 

unstable from the initial stage. It collapses in a dynamical time 
scale if no support mechanism works other than thermal pres- 
sure and magnetic field. This cloud is situated in the upper 
right-hand region beyond the Mcl = Mcr line in Figure 9; 
approximately, Mcl > 100 and Aicl/(OB/G1/2)|r=0 = 
<7/(R/G1/2)|r=0 >0.17. These conditions are rewritten in 
dimensional form as 

M„ £ 23 M°(iF^r(l00 • (410) 

(41.) 

Even when the cloud mass does not exceed Mcr, accumulation 
of mass by collision seems to permit the cloud “ supercritical ” 
advocated by Shu (1987). 

a) When the collision occurs in the direction of B, the 
mass increases, keeping the magnetic flux constant. In 
Figure 9 the cloud moves to the upper right. 

b) In the case in which collision occurs perpendicularly to 
B, the mass increases, keeping the ratio M/Ob constant. The 
cloud moves to the right in Figure 9. In both cases, after the 
cloud crosses the critical line, it becomes unstable and star 
formation will proceed in a dynamical time scale. 
2. Mcl < Mcr.—These clouds are stable. In addition to the 

mode described under condition 1, two other modes of trigger- 
ing star formation will be contrived. 

a) If the magnetic field escapes radially outward from the 
cloud because of the ambipolar diffusion (plasma drift), the 
total mass-to-flux ratio stays constant but that at the center 
rises. In Figure 9 the progress of the plasma drift drives the 
critical line to the lower left or, equivalently, increases N. If 
Mcr becomes less than the cloud mass, the cloud becomes 
unstable and collapses (Nakano 1979,1982). 

b) The cloud-cloud collision compresses the cloud effi- 
ciently. Even if the mass after merging of clouds does not 
exceed Mcr, the cloud begins to collapse when it is com- 
pressed beyond the unstable equilibrium point by the colli- 
sion. This is one of the modes of collision-induced star 
formation, which is studied numerically by Nagasawa and 
Miyama (1987) for nonmagnetized cloud collisions. 

V. SUMMARY 

We have succeeded in obtaining the equilibrium solutions of 
magnetized nonrotating clouds in a static external medium. 
From the solutions we have shown the following things : 

1. There is a maximum mass Mcr which can be supported by 
a given magnetic flux. The maximum mass of the cloud is 
related to the mass-to-magnetic flux ratio at the center of the 
cloud (eq. [4.7]). 

2. For Mcl < Mcr, we have found that there are two solu- 
tions with the same mass but different central density. One is 
the case with lower central density pc, stable because of 
dMJdpc > 0, and the other is the case with higher pc, unstable 
with respect to the global compression because dMJdpc < 0. 

3. The stability of the cloud is well understood by a simple 
argument of the Gibbs free energy. The solution with 
dMJdpc > 0 corresponds to the state with d2<&/dR2 > 0 and 
that with dMJdpc < 0 corresponds to the state with d2^¡ 
dR2 < 0. 

4. The magnetic field strength and the central density of the 
cloud are well correlated according to Bc oc pc

1/2 for high 
central density. This means that in the central region the cloud 
has a disk shape—in other words, the density is almost con- 
stant along the r-direction. 

5. The effect of the initial mass distribution on the 
maximum supported mass is studied. The maximum mass 
decreases with an increase in the central mass concentration N. 
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