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ABSTRACT 
We explore the gasdynamics of compact relativistic jets by analyzing a specific idealized flow problem using 

the method of characteristics. The basic flow pattern of the gas and pressure waves within a jet experiencing a 
drop in external pressure is calculated, with analytic expressions given for many of the important parameters. 
Scaling laws which relate the intrinsic properties of the jet to the pressure of the surrounding medium are 
obtained and discussed. The physical properties of the jet depend critically on the value and abruptness of the 
decrease in external pressure, as well as on the initial Lorentz factor of the flow. A variety of flow patterns can 
result, including jets of oscillating cross section, jets with standing shocks, and broad, nearly hollow beams 
which can break up into multiple jets. These results are discussed in relation to the observed characteristics of 
superluminal radio sources in general and the superluminal quasar 4C 39.25 in particular. 
Subject headings: galaxies: jets — hydrodynamics — quasars — relativity 

I. INTRODUCTION 

Observations of apparent superluminal motion, rapid brightness changes, high brightness temperatures, and one-sided, bent jets 
in compact radio sources have been modeled successfully in terms of relativistic plasma jets emanating from the central regions of 
quasars and active galactic nuclei (Blandford and Rees 1978; Blandford and Königl 1979; Königl 1981 ; Reynolds and McKee 1980; 
Marscher 1980). Most specific models of jet emission (e.g., Königl 1981; Marscher and Gear 1985) have thus far adopted a simple 
conical geometry for the jet and assumed a constant flow velocity. Such simple assumptions serve to reduce the number of free 
parameters, thereby making the problem tractable. Nevertheless, as has been shown dramatically for nonrelativistic jets by Norman, 
Winkler, and Smarr (1983), the dynamics of jets can lead to a wide variety of flow patterns. In this study we analyze the dynamics of 
jets with internal energy densities which are ultrarelativistic in the proper frame of each fluid element. We use the method of 
characteristics to calculate the flow pattern as well as variations in the physical properties of the fluid as functions of position in the 
jet. Since the method of characteristics does not allow one to calculate the flow pattern across shocks, this work is but a first step in a 
broader study of relativistic jet dynamics. Nevertheless, we discuss qualitatively how the presence of shocks affects the observed 
properties of compact jets. 

In § II we show how the characteristic equations describing two- and three-dimensional, axisymmetric, relativistic flows of gas 
described by a relativistic equation of state are obtained. These characteristic equations may be solved numerically to obtain the 
shape of the jet boundary and state of the gas at points within the jet once the boundary conditions have been specified. By studying 
the numerical solutions to the characteristic equations for a full range of boundary conditions, we obtain the dependence of the 
solutions on the boundary conditions. This allows us to determine analytic approximations (or “ scaling laws ”) which describe the 
gross physical characteristics parameterizing an arbitrary jet as a function of the boundary conditions; these scaling laws are 
presented in § III. Using these analytic approximations, many properties of a jet may be deduced once the boundary conditions are 
specified. Conversely, if some of the jet properties may be deduced or inferred from observations, the scaling laws presented in § III 
may be used to determine the boundary conditions (i.e. to determine the pressure of the medium confining the jet and/or the initial 
Lorentz factor of the flow). A discussion of how these results may be applied to jets is given in § IV. In this section we also discuss 
qualitatively how the theoretical dynamics of relativistic jets might apply to models of compact radio jets as observed with very long 
baseline interferometry (VLBI). The conclusions follow in § V. 

II. PROCEDURE 

We illustrate the flow properties of a relativistic jet by considering a classical idealized flow problem: a cylindrically symmetric jet 
of relativistic particles and dynamically weak, frozen-in magnetic field is confined by and in pressure equilibrium with its surround- 
ings (the external pressure). At some point the external pressure drops to a lower value. The desired results of the calculation are the 
shape of the boundary of the jet and the bulk flow velocity, pressure, and internal energy of the gas within the jet as a function of 
position. 

We begin with the general equations of motion for a fluid. The fluid is moving with three-velocity v and bulk Lorentz factor F 
relative to a stationary (lab) frame. In the rest frame of the fluid the gas is relativistic and is therefore described by the equation of 
state e = 3P, where e is the internal energy density and P is the pressure of the fluid (we use units in which the velocity of light is 
unity). In this case, the sound speed of the gas is constant, with a value vs = 1/(3)1/2, and the proper sound speed is cs = ysvs = 
1/(2)1/2, where ys = (1 — y2)~1/2 is the Lorentz factor of the relativistic gas. In addition, the flow is assumed to be adiabatic, steady, 
cylindrically symmetric, and irrotational. Under these conditions, we obtain two quasilinear, partial differential equations which 
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describe the flow velocity as a function of position in the jet. These equations may be reduced to four first-order ordinary differential 
equations using the method of characteristics (see Courant and Friedrichs 1948 for an excellent summary of this technique), which 
may be solved numerically to obtain the velocity of the gas as a function of position in the jet. Once the velocity is known at a 
particular point within the jet, the pressure (and hence internal energy) may be obtained using the relativistic analog of Bernoulli’s 
equation. 

We begin with the relativistic equations of motion for a fluid (see, for example, Landau and Lifshitz 1959). The equation of energy 
and momentum conservation reads 

dT* d , . . dUi ÔP „ 

«:-“'Sï,",“)w5? + â? = 0 (1) 

where Tik = wUiUk + Pgik is the energy-momentum tensor, u1 is the four-velocity of the fluid, w = e + P is the heat function per unit 
volume (measured in the rest frame of the fluid), e is the internal energy density, P is the pressure of the fluid (both measured in the 
rest frame of the fluid), and gik is a tensor with off-diagonal components equal to zero: = gyy = g zz= 1 and gtt = — 1. Multiplica- 
tion of equation (1) by ul yields 

(2) 

The continuity equation is 

dx] 7 (nu) = 0 , (3) 

where the number density n is measured in the rest frame of the fluid and we assume that there is no destruction or production of 
particle pairs. Using the relation u¡ = 1), where y¡, i = 1, 2, 3 are the three space components of the velocity, and 
F = (1 — v2y1/2 is the Lorentz factor of the bulk flow velocity, the above relations reduce to 

dP dP -F _ 8v,' 

'■«7 + äi + ',rL<'’'v,"'+äF. 
= o. 

w (V • r) + T2v • (v • V)t> + F rl dtj 
de 

+ (» • V)e + — = 0 , 

and 

n^C 3^ + (t> • V)n + n| (V • t>) + T2v • (v • V)t? + F2v • ^ | = 0 2 . 
V' dt\ 

(la) 

(2a) 

(3a) 

Three reasonable assumptions greatly simplify these equations. The assumption that the flow is adiabatic implies that Pn~* = 
constant, where y is the adiabatic index. In addition, the assumption that the gas is relativistic yields e = 3P and y = 4/3. For a 
steady flow, d/dt -► 0 and equation (1) reduces to Bernoulli’s equation : 

(i> • V)FP1/4 = 0 . 

We also find that 

Equations (5) and (6) imply that 

(r • V)P + 2P(V • t>) = 0 . 

F(V • v) - 2(v • V)F = 0 . 

(5) 

(6) 

(7) 

The three-dimensional flow is assumed to be cylindrically symmetric. In cylindrical coordinates, with the z-direction along the 
axis of symmetry of the jet and the r-axis perpendicular to the z-axis (see Fig. 1), equation (7) becomes 

dvt dv, 
dr 
f(l-Mr

2) + -f(l-Mz
2)-MrMl-f + -f +3 = 0, 

dz 
dv7 dv. 
dr dz (8) 

where Vx is the component of the velocity parallel to the axis of symmetry of the cylinder, vr is that perpendicular to the z-axis and, 
following Königl (1980), Ma = Tvjcs. For an irrotational flow 

V x r 
dvr dvz 

dz dr 
(9) 

Equations (8) and (9) are of the form which may be solved using the method of characteristics (Courant and Friedrichs 1948; 
Owczarek 1964). These two equations are used to obtain four first-order ordinary differential equations, known as characteristic 
equations, which describe the flow velocity of the gas in the jet. 
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Fig. 1.—Geometry of a relativistic jet emerging from an opening into a region of lower ambient pressure. Curves fanning out from the corners are characteristics. 
The jet shown corresponds to the parameters Pext = 0.5Po and F0 = 1.5. The length of the jet increases linearly with F0 since the scaling law for zmax/r0 (eq. [25b]) 
shows that zmax oc r0/{pejp0). 

Following Courant and Friedrichs (1948, p. 41), we employ the method of characteristics and obtain the four characteristic 
equations 

dr MrMz ± (M2 — 1)1/2 

dz~ Ml — 1 

and 

dvr —MrMz + (M2 — 1)1/2 vr dr 
dvz Ml — 1 r(Ml — 1) dvz ’ 

where M2 = M? + M2 and the 4-(—) sign corresponds to the C+ (C_) characteristic. These equations are the same as those of 
Königl (1980). The four equations contained in equations (10a) and (11a), subject to boundary conditions, may be solved numeri- 
cally to determine pr(r, z) and vz(r, z). We may then determine the pressure P(r, z), and hence the internal energy density e(r, z), using 
equation (5), which indicates that the quantity FP1/4 remains constant along a streamline, with the initial value of this quantity set 
by the boundary conditions. In order to solve equations (10a) and (1 la) along with equation (5), we impose the following boundary 
conditions (see last paragraph, this section): upstream of the position z = 0 (at which the gas flowing along the jet boundary first 
encounters a drop in the external pressure), the flow has a velocity and pressure independent of r; the velocity of this initial flow is in 
the z-direction, and pressure equilibrium is maintained between the jet boundary and the external medium. 

Equations (10a) and (11a) may be further simplified. Let 0 be the angle which the flow velocity makes with the symmetry axis of 
the jet (the z-axis); then vz = v cos 9 and vr = v sin 6, where p2 = p2 + p2. Following Königl (1980), we define the relativistic Mach 
angle p such that sin p = 1/M = cs/(Fp), where the proper sound speed of the gas is cs = 1/(2)1/2. Equations (10a) and (11a) then 
become 

dr 
— - tan (d±n), 
dz 

(10b) 

and 

dv 
d6 = ± — cot (p) + 

1 dr 
cot (p) ± cot (0) r 

(lib) 

These are identical to the equations which describe a three-dimensional, nonrelativistic, cylindrically symmetric flow (Owcarek 
1964; Königl 1980). Equation (1 lb) may also be written as 

d9 = + dv -f —, 
- 

I dr 

1) ± cot (0) r 
(11c) 
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where the ± signs correspond to the C+ and C characteristics and 

(12) 

Equation (12) may be solved analytically, yielding 

v = y/3 arctan J—- — arctan yjM2 — 1 . 

The equations describing a two-dimensional flow are equation (10b), along with 

dO = ±dv . (iid) 

(13) 

In general, the second term on the right-hand side of equation (lie) is small relative to the first term. Hence, the three-dimensional 
equation (11c) describing dO (the change in the direction of the flow velocity) is quite close to the two-dimensional equation (lid); 
the three-dimensional equation only differs from the two-dimensional equation by a small correction term—the second term on the 
right-hand side of equation (11c). 

To summarize, equations (10b) and (11c) are the characteristic equations which describe the flow velocity in a three-dimensional, 
irrotational, cylindrically symmetric, steady jet. The internal energy of the gas in the jet is assumed to be ultrarelativistic (mean total 
energy per particle much greater than the rest mass energy), and the flow is assumed to be adiabatic and supersonic (and therefore 
relativistic) at all points in the jet. Once these equations have been solved to obtain the flow velocity of the gas as a function of 
position in the jet, the pressure of the gas as a function of position in the jet may be obtained from equation (5). 

If the flow is two-dimensional, equation (11c) is greatly simplified and reduces to equation (lid). Both the two- and three- 
dimensional equations describing an axisymmetric, relativistic flow of a gas described by a relativistic equation of state (eq. [10b] 
along with eqs. [11c] and [lid]) are identical in form to the two- and three-dimensional equations (respectively) describing a 
nonrelativistic, axisymmetric flow of a gas described by a nonrelativistic equation of state (Königl 1980). It is known that, in the 
nonrelativistic case, the solutions to the two- and three-dimensional equations of motion are nearly identical (Courant and 
Friedrichs 1948). Hence, we expect the solutions to the two-dimensional relativistic equations of motion to be good first-order 
approximations to the solutions of the three-dimensional equations of motion. In fact, this can be seen by comparing equations (11c) 
and (lid). The second term on the right-hand side of equation (11c) is small relative to the first term, and may be considered to be a 
correction to the first-order approximation (given by the first term on the right-hand side of eq. [lie] and equal to the right-hand 
sideofeq. [lid]). 

A finite difference scheme similar to that used by Owczarek (1964) is employed to solve equations (10b) and (lid) for the 
two-dimensional flow. It is very straightforward to solve the two-dimensional equations numerically. This is because, in the 
two-dimensional case, the equations (10b) and (11c) decouple; we may solve equations (lid) for 6 and then use this value of 0 in 
equations (10b) to solve for r and z. However, in the three-dimensional case equations (10b) and (11c) do not decouple, and we must 
simultaneously solve these equations for 0, r, and z. The numerical solutions require several iterations for each characteristic. The 
iterations often become unstable, especially in the interesting case of small pressure ratios PCJP0 < 0.7. For these reasons the 
analysis here is carried out for the two-dimensional (2D) case despite the fact that real jets are three-dimensional (3D). Since, as is 
noted above, 2D and 3D numerical simulations of jets are found to produce very similar results, we do not consider this to limit the 
application of our calculations to real jets. 

The boundary conditions on the jet are as follows (see Fig. 1). A cylindrical flow with zero opening angle is in pressure equilibrium 
with its surroundings, at pressure P0. The bulk flow velocity of the gas in the jet is constant across a cross-sectional area (plane of 
constant z) of the jet for values of z < 0, that is, there are no velocity or pressure gradients along the radial direction of the jet at 
positions with z < 0. The bulk flow Lorentz factor is F0 = (1 — t'o) 12, at positions corresponding to z < 0. At positions z > 0 the 
pressure confining the jet is Pext < P0, and Pext = constant. The flow velocity vector at all points downstream from the z = 0 plane 
depends only upon the ratio PexJP0 and F0. Equation (5) indicates that FP1/4 is constant along a streamline; hence, FP1/4 = 
r0 P¿/4. Once the bulk flow velocity is known at a given point in the jet, the pressure and, through the equation of state, the density, 
are also known. The pressure of the fluid elements along the boundary of the jet is constant at a value equal to Pext. Hence, the bulk 
flow Lorentz factor for fluid elements which define the boundary of the jet is constant and is given by Fe = F0(P0/Pext)

1/4. Fluid 
elements in the interior of the jet are accelerated and decelerated as they cross characteristics. The fluid elements are'accelerated 
when they enter a region of lower pressure, viz., as they cross the “opening fan” of characteristics and are decelerated as they enter 
regions of higher pressure, viz., as they cross the “ closing fan ” of characteristics. The pressure is minimized, and hence the velocity is 
maximized, in the central region at a value Pmin (see Fig. 1). 

The shape of the boundary of the jet and the bulk flow velocity, pressure, and internal energy density of the gas in the jet depend 
upon only two parameters : the initial bulk Lorentz factor F0 and the ratio of the external pressure to the initial pressure of the gas in 
the jet, PeJP0. Once these boundary conditions (F0 and Peil/P0) have been specified, the characteristic equations (10b) and (lid) 
may be solved numerically. The results can be scaled to a jet of arbitrary size by adopting appropriate units for the initial 
cross-sectional radius r0. To illustrate the dependence of the jet characteristics on the parameters F0 and PeJP0, which we 
parameterize by £ = [(Pex,/P0)]1/2, we give the scaling laws for the following jet properties as functions of £ and F0: (a) the opening 
half-angle of the jet a, and the angles at and <x2 which characterize the paths of Mach waves traveling inward toward the symmetry 
axis of the jet from the point on the jet boundary where the pressure is discontinuous (see Fig. 1); (b) the pressure in the most 

in. RESULTS 
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Fig. 2.—Illustration of the typical flow pattern of a relativistic jet for cases in which the external pressure is less than half the initial pressure of the jet. Formation 
of a standing shock is indicated by the crossing of characteristics in the downstream region. Thick curves drawn across the jet correspond to the shape of a feature 
initially transverse to the jet axis and moving with the background jet flow. Transverse sections across which the flow parameters are calculated in Fig. 3 are 
indicated by the letters and arrows. The parameters of the jet shown are Pext = 0.4Po and F0 = 2.0. 

rarefied region of the jet Pmin (see Fig. 1); (c) the maximum width of the jet rmax (see Fig. 1); (d) the length scale of the jet as measured 
by the distance zmax between the point of the pressure drop (located at z = 0) and the next minimum in the cross-sectional area of the 
jet (see Fig. 1); and (e) the highest value of Ç at which shocks occur in the jet (see Fig. 2). 

The following relations are useful. The Mach number of the flow M is given by 

The Mach angle of the flow ¡n is given by 

M2 = 2i?2F2 = 2(F2 - 1). 

sin (n) = 
M 

Bernoulli’s equation implies that, along a streamline, FP1/4 is constant, or 

Hence, the Mach number is related to the pressure by 

We note that 

M2 = 2(Fo <Z 1 — 1) = constant 

(14) 

(15) 

(16) 

(17a) 

(17b) 

is the Mach number of the flow along the boundary of the jet at positions z > 0. For regions in which the pressure P is small relative 
to the initial pressure in the jet P0 and/or if F0 is large, the Mach number is related to the pressure by 

M2 Mn) 4r 
1/2 

(17c) 

The characteristic curves represent Mach waves which transmit pressure changes into the gas. The physical parameters (“ state ”) 
of the gas remain constant up to the point where the flow is crossed by a characteristic. An abrupt change in the boundary 
conditions of the flow results in a “fan” of characteristics which emanate from the position of the abrupt change. In Figure 1 we 
represent this fan by five upper (C~) and five lower (C+) characteristics, the interior three of which in each case are arbitrarily 
selected from a continuum of characteristics. The innermost characteristic is initially inclined at an angle ax to the initial flow 
direction (normal to the z = 0 plane), while the outermost characteristic is initially inclined at an angle a2 to this direction (see 
Fig. 1). The streamline along the boundary of the jet subtends an initial angle a to the initial direction of the flow. The angle ax is the 
initial Mach angle; the angle <x2 is the Mach angle at the boundary minus a (see § Ilia below). 

The jet expands upon entering the region of lower pressure, then overexpands (because of the inertia of the inner, higher velocity 
regions), and finally contracts since the expansion Mach waves reflect off the boundary as compression waves. The latter is a result 
of the higher pressure at the boundary Pext relative to the central pressure Pmin. The jet therefore reconverges to its initial state. 
Beyond this point the jet reexpands in a similar fashion such that the jet has a repeating pattern of oscillating cross section. 

This qualitative picture breaks down for very low values of PCXJP0 (^0.5). In these low-pressure cases, the reflected compression 
waves converge to form standing oblique shocks and possibly Mach disks (strong, transverse, standing shocks near the axis of the 
jet; see Courant and Friedrichs 1948). For even lower external pressures, the expansion waves are intercepted by oblique shocks so 
as not to overrarefy the flow near the jet axis. This is discussed in § Hie below. 
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a) Opening Angle of the Jet 
The opening angle a of the jet boundary at the plane z = 0 is given by 

a = ve — v0 , (18) 

where the subscript e refers to the streamline along the boundary of the jet (at positions in the jet with z > 0), where the gas is in 
pressure equilibrium with the external medium. Equation (13) implies that 

and 

v0 = y/î arctan — arctan — 1 , (19a) 

ve = yfi arctan — arctan y/Ml — 1 . (19b) 

Given F0 and = Pcxt/P0, M0 and Me may be obtained from equations (14) and (17b); hence, a may be determined. The angle a! 
(see Fig. 1) is given by 

and the angle a2 is given by 
«i = /¿o > (20) 

*2= (Ve - V0) - (21) 

b) Region of Lowest Pressure in the Jet 
The pressure Pmin in the central, most rarefied region of the jet (see Fig. 1), may be obtained through a series of substitutions. Once 

the value of v is known in this region, the Mach number M may be obtained by solving the transcendental equation (13). Once M is 
known, the pressure may be found from equation (17a). The value of v is this region, v(Pmin),is 

v(Pmin) = 2vc-v0. (22) 

The angles v0 and ve may be obtained from equations (19a) and (19b). It is not possible to solve equation (13) analytically to obtain 
the pressure Pmin in this rarefied region. However, an excellent analytic approximation to the pressure in this region may be 
obtained by expanding the arctangents in the expressions for, vc, and v0. We find that the pressure in the rarefied region is given by 

» (2^ - 1)1/4 ; (23) 
* 0 

this approximation is accurate to better than one part in 500. Note that the pressure in this region of the jet is independent of the 
initial bulk flow Lorentz factor F0. As is implied by this expression, the method of characteristics breaks down for values of 
Pcxt < 0.0631*0 owing to the formation of shocks which “intercept” the Mach waves (see Courant and Friedrichs 1948). The 
formation of shocks is signaled in the numerical calculations when two C+ or two C~ characteristics cross each other; at this point 
the method of characteristics breaks down. 

c) Maximum Width of the Jet 
The maximum width of the jet (rmax in Fig. 1) is very insensitive to the initial bulk flow Lorentz factor F0. An analytic 

approximation can be obtained if the Mach waves are drawn as straight lines and the arctangents are again represented by a 
truncated series expansion : 

^ ~ 1 + if(1 ~ ^ 1. (24) 
ro 1(2^ - 1)J 

The second term in this expression is accurate to within ~ 10%, with accuracy increasing for higher values of F0 and lower values of 
£ = (PJPo)m- 

d) Characteristic Length Scale of the Jet 
We define the distance zmax to be the distance along the z-axis of the jet between positions on the jet where the width of the jet is a 

minimum (see Fig. 1). For constant external pressure, this translates into the distance from the throat of the jet (defined by the z = 0 
plane) to the next “ node ” on the jet—that is, to the first constriction of the jet, or, from one constriction to the next. At this latter 
point the jet returns to the state which exists at the throat, i.e., P = P0 and F = F0 (assuming that Pext is constant). Using 
approximations similar to those described in § IIIc, we find that, to a good approximation 

¿„ax /3.9^r0\ 
ro ~ \2^ - 1/ 

(25a) 
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This yields values for zmax which are accurate to within ~20% of those obtained numerically, again with accuracy increasing for 
higher values of F0 and lower values of Pext/P0. In addition, we find that 

for Pext/P0 ^ 0.15. (The two expressions are nearly equal for 0.15 < PCJP0 < 0.3; below this range expression [25a] is highly 
accurate, while at higher pressures both expressions are accurate to within ~ 20% and an average of the two gives the most accurate 
fit.) 

e) Shock Formation in the Jet 
Shocks form in the jet when the ratio PexJP0 falls below a critical value. The formation of shocks within the jet is signaled when 

two adjacent characteristics intersect each other, as described at the end of § IIIc. As the value of Ç drops shocks begin to form in the 
closing fan angle of the jet at z coordinates approaching zmax (see Fig. 2). (In three dimensions these standing oblique shocks are 
connected by a Mach disk; see Courant and Friedrichs 1948.) As PCXJP0 decreases further, the z coordinate at which the shocks 
begin to form decreases; the shock formation occurs “earlier,” at points farther upstream fromzmax. The maximum value ofPext/P0 
at which shock formation occurs is ~0.5; in this case the shocks form in the closing fan of the jet. Shock formation does not result 
for situations in which PexJP0 is >0.5 and always occurs for Pexi/P0 < 0.5. The smaller the value of Pexi/P0, the farther upstream 
from the closing fan angle the shocks form. Note that shock formation is independent of F0. Figure 2 shows the paths of Mach 
waves in a jet with Pext/P0 = 0.4 and F0 = 2.0. Note the crossing of the Mach lines in the downstream region of the jet. This 
indicates the formation of a standing oblique shock at this location in the jet. 

IV. DISCUSSION 

a) External Pressure Gradients 
Although the results of the previous section apply to a particular idealized flow problem, we can extend the physical insight 

gained to the general problem of compact relativistic jets thought to exist in quasars and active galactic nuclei. For example, the 
pressure drop might be more gradual than the abrupt change adopted above (although the pressure drop could be rather sharp in 
the case of magnetically confined jets). As discussed by Begelman, Blandford, and Rees (1984), a pressure gradient steeper than 
Pext oc z-2 is an abrupt drop in that the jet parameters cannot vary smoothly along the boundary. If the gas does not go into free 
expansion then a series of rarefactions and compressions occurs, similar to the case of a sudden pressure drop. In this case, 
expansion and compression waves are emitted at every point along the boundary. The resulting characteristic pattern is therefore 
quite complex. If the pressure gradient is not too steep, the jet still reconverges, although to a local minimum cross section which is 
greater than the cross section at the throat (z = 0). The jet pattern is then oscillatory with zmax and rmax increasing in successive 
sections. If the external pressure were to drop off more slowly than Pext oc z “ 2, rmax would increase more slowly than zmax, leading to 
collimation of the jet (see Begelman, Blandford, and Rees 1984); the opposite would be the case if Pext were to drop off more rapidly 
than this. In the limit in which the characteristic length scale of the pressure gradient greatly exceeds zmax, however, Pext is nearly 
constant across each section of the jet, and the jet pattern is nearly identical to that described in §§ II and III above. The values of 
zmax and rmax slowly increase outward in this case. 

In the event that VLBI observations become capable of determining jet characteristics such as the opening half-angle of the jet, 
the width of the jet, or the scale length of the jet, the boundary conditions of the jet (F0 andPext/P0) could be estimated. In this way, 
oscillating compact jets would serve as probes of the media surrounding them, as described in detail in §§ IVc(i) and IVc(iv). 

b) Velocity Gradients: Evolution of a Feature in the Jet 
Most of the results of the previous section are quite similar to those obtained for nonrelativistic jets. As pointed out by Königl 

(1980) and Wilson (1987), the nonrelativistic and relativistic equations governing the pattern of characteristics are identical when 
cast in the form presented in § II. One important practical difference is that, by definition, the velocities are close to the speed of light 
in a supersonic, relativistic jet. This leads to beaming of the emission and effects due to light travel time delays. Velocity gradients 
across the jet therefore affect the geometry of emission features observed in the jet. 

Since the Lorentz factor (and hence velocity) depends on the local pressure in the jet (see eq. [16]), the existence of pressure 
gradients causes velocity gradients to occur as well. In Figure 3 we illustrate the pressure and Lorentz factor variations across the jet 
for several values of z, for the jet shown in Figure 2 (as described in the next paragraph). Since the interior of the jet is unaffected by 
the drop in external pressure up to a point downstream of the drop, the boundary of the jet is accelerated first. Once the rarefaction 
reaches the interior region, however, the flow along the axis becomes more rarefied, and hence attains a higher velocity than the 
outer region. At the central, most rarefied region, the velocity along the axis is substantially higher than that along the boundary. 

A simple example illustrates this effect nicely. Consider the jet shown in Figure 2, which has F0 = 2.0 and Pcxt/P0 = 0-4. We 
follow the geometrical evolution of an infinitesimally thin feature which is, at the plane z = 0, transverse to the direction of flow. 
This feature is then imagined to move at the same velocity as the background jet flow (which allows one to see the effects of velocity 
gradients within the jet). For low values of z, the center of the feature lags somewhat behind the outer edge. By the time the feature 
reaches the central, most rarefied region, however, the center is ahead of the outer edges. This becomes more pronounced until the 
compression waves are reached, beyond which point the center decelerates to the initial velocity. Nevertheless, because of its higher 
speed over most of the jet, the center reaches the plane z = zmax well ahead of the outer regions. (This cannot be illustrated in Fig. 2 
owing to the onset of shocks at z < zmax.) An initially transverse feature is therefore distorted by the velocity gradients across the jet. 

The above discussion ignores the effects of light-travel time delays in the observer’s frame; these are important because of the 
relativistic speed of the jet flow. The magnitude of these effects depends on the velocity gradients as well as on the viewing angle of 
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Fig. 3.—Pressure and Lorentz factor gradients in the direction transverse to the jet axis for the jet of Fig. 2. Letters correspond to sections of the jet marked in 
Fig. 2. The value of r0 has been set equal to unity (i.e. r/r0 -> r) in this figure. 

the observer. If the jet is viewed at an angle less than ~20° from the axis, as required in relativistic jet models for superluminal 
motion, a simple calculation shows that the outer edge of the feature over the entire circumference lines up (i.e., appears edge-on) 
while the central region lags behind or moves ahead of the outer edge, as described above. 

c) Comparison with Real Jets: Superluminal Radio Sources 
i) Application of Our Calculations to Observed Jets 

Past interpretations of the compact jets observed in extragalactic radio sources have been based primarily on simplified geome- 
tries which ignore the complications introduced by various possible flow patterns. The most common assumption, chosen because it 
greatly reduces the number of free parameters, is that the jet is conical, with gradients in the physical parameters allowed only in the 
z-direction. While it is possible for such a geometry to exist (see § IW below and Fig. 5, part I), the flow pattern is more complicated 
if the gas in the jet has a relativistic internal energy in the region of interest. 

To calculate the observed emission pattern of a relativistic compact jet would require inclusion of beaming effects and particle 
acceleration as well as the gas dynamics discussed here. This should be done once our calculations are extended using a complete 
numerical fluid dynamics code, but is beyond the scope of the present paper. Nevertheless, we can discuss qualitatively how the 
gasdynamical results might apply to real jets. 

It is straightforward to use the scaling laws of § III to obtain the opening half-angle of a relativistic jet which encounters a region 
of lower external pressure (see eq. [18]). Furthermore, it is a simple matter to use Figures 1,2, and 3 to interpret jet flows with higher 
or lower upstream Lorentz factors F0: the dominant effect of higher values ofF0 is to “stretch out” the jet (see expressions [25a] 
and [25b]). This is caused by relativistic aberration. The effects of varying external pressure are also given in § III. 

There are two limitations to the application of our results to observed jets. The first is the unknown orientation of an observed jet 
to the observer. A jet of opening half-angle a and inclination of axis to the line of sight </> has an apparent opening half-angle equal to 
arctan (tan a cot </>). Hence, unless 0 is known, the opening half-angle a cannot be determined. The apparent speed (relative to the 
speed of light, c) of an observed feature in the jet moving at the jet flow Lorentz factor F is given by vapp « v sin 0/(1 — v cos 0) (we 
use units in which c = 1). Hence, there are three parameters to be determined, F0, and 0, and two observable quantities, a and 
vapp; more observables may become available, as described below. In addition, one must assume that the speed of a feature is equal 
to the flow speed of the jet and that the features used to obtain a extend across the entire width of the jet. Nevertheless, if one is 
willing to work under these assumptions and limit the range of 0 to that value which minimizes F, the values of F0, £, and 0 can, in 
principle, be estimated. If the value of (zmax sin 0)/(ro cos 0) can be obtained from VLBI observations, then expressions (25a) and 
(25b) can be used to provide an additional constraint, thereby allowing one to avoid the need to assume an optimum value of 0. 
Since the compact “cores” are typically unresolved by Earth-based VLBI, the value of r0 cannot be determined in most sources at 
present. Space-based VLBI antennas should overcome this problem in the future. An example of how the scaling laws may be used 
to determine the characteristics of the surrounding medium is given in § IVc(iv). 

The other limitation is that the method of characteristics breaks down at the point where shocks form. Hence, application of our 
numerical results is limited to modest pressure ratios PCJP0. Rather than allow this difficulty to restrict our discussion severely, in 
what follows we combine our calculations with a more speculative description of how we expect the flow to develop in a relativistic 
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Fig. 4.—Two possible geometries of a compact three-dimensional core-jet radio source in which the external pressure falls off gradually beyond the opening. 
(a) The core is located at the throat of the jet where the density and magnetic field strength are relatively high. A stationary hotspot can appear at the constriction. If 
the external pressure gradient is not strong, the shock/Mach disk shown in the figure might be absent, (b) The external pressure gradient is steeper. The core is 
identified with the first standing shock/Mach disk system, while the stationary hotspot occurs at the second such system. 

jet. These speculations are based on experience with nonrelativistic flows, as discussed by Courant and Friedrichs (1948), and the 
known properties of relativistic gases. 

ii) Identification of the Compact Radio Core 
One particular problem in the interpretation of observed compact jets lies in the identification of the jet feature which corre- 

sponds to the VLBI radio core. The core is the most compact feature in VLBI maps, is stationary (Bartel et al 1986) and is situated 
at one end of the jet. In the standard jet model of Blandford and Königl (1979), the core is identified with the throat of a diverging, 
conical jet, where the density and magnetic field are the highest. The geometry would be similar to Figure 4a, except that the 
stationary hotspot caused by recollimation shocks would be absent. This would arise if the mean energy per gas particle were to 
drop below the rest mass energy, which would cause the flow to become approximately ballistic beyond a short distance from the 
throat (see § IW below). The jet would then be approximately described as a cone with constant opening angle (but see § lYd 
below). 

An attractive alternative to this picture is to identify the core with the first recollimation Mach disk shock system. The Mach disk 
and reflected shock, and perhaps the incident (or “intercepting”) shock, would be relativistically strong shocks and therefore likely 
sites of efficient particle acceleration and magnetic field amplification. The result would be a compact, stationary, relativistically 
beamed, and therefore very bright, emission feature. The jet upstream of this feature might then be unobservable owing to the 
absence of shocks. This would explain why the source spectrum typically peaks at the frequency where the core becomes transpar- 
ent: the core is the most compact observable feature in the jet. 

iii) Superluminal Knots 
The superluminal knots of observed sources move at roughly constant speed once they become well separated from the core. In 

general, the flow of a relativistic jet proceeds at constant speed only over regions of constant pressure. The region near the outer 
edge (where the density is high and the volume large, and hence where most of emission will be located) of a jet expelled into an 
ambient medium of constant pressure therefore moves at constant speed, with Lorentz factor Te which may be obtained from 
equation (16). The central region lags or leads the outer edge; hence, the brightness centroid has a slightly variable velocity. Even in 
the presence of external pressure gradients, the Lorentz factor varies slowly: F oc P“1/4; for example, a pressure drop of a factor of 2 
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corresponds to a velocity increase of only 20%. In fact, Biretta, Moore, and Cohen (1986) have observed acceleration of a 
superluminal component in 3C 345 when it was close to the core. The speed of the jet fluid is also roughly constant beyond the point 
where it becomes ballistic (see §§ IVh, d). 

Superluminal knots have been identified as clouds caught up in the jet flow (Blandford and Königl 1979), instabilities in the flow 
(Marscher 19806), and shock waves propagating down the jet (Blandford and Königl 1979; Marscher and Gear 1985; Hughes, Aller, 
and Aller 1985). In the first two cases, the velocity of the knot is roughly that of the local jet flow. Forward shocks, on the other 
hand, usually decelerate slowly relative to the background flow. Since the background flow is relativistic and is expected to 
accelerate, a nearly constant velocity can occur in the observer’s frame if the two effects are roughly equal. Otherwise, the 
superluminal features would be observed to have constant velocity only in the ballistic portion of the jet or along the boundary in a 
region of constant external pressure. 

A major disturbance in the flow causes a strong, forward propagating shock to form. Our steady state calculations are not 
designed to handle such features. Nevertheless, the velocity of the shock front ín the observer’s frame is a superposition of the 
velocity of the shock front in the frame of the moving background flow and the velocity of the background flow itself. Since the 
undisturbed background flow was in a steady state prior to the passage of the shock, its contribution to the velocity of the shock in 
the observer’s frame is given by the calculations described in §§ II and III. 

An increase in the initial flow velocity v0 and/or pressure P0 over an extended time may cause not only shock formation, but also 
a transition to a new steady state. An increase in v0 causes each section of the new jet to become longer, while an increase in P0 leads 
to a greater opening angle and a longer, wider section. While the change in v0 causes a new steady state to be set up almost 
immediately, an increase in P0 in general takes longer to establish equilibrium. This is a result of the inertia of the external medium, 
which is colder and denser than the jet plasma. As the jet attempts to widen in response to the increase in P0, the ram pressure of the 
external gas resists the expansion. A quasi-steady state is therefore set up in which the jet only slowly changes its initial geometry, 
with the external medium acting as a slowly expanding pipe which channels the jet flow. Rayleigh-Taylor instabilities at the jet 
boundary should then cause clouds to form in the external medium. The resulting jet flow cannot be described in the same manner 
as that of §§ II and III, although the method of characteristics can still be employed up to the point at which standing shocks are 
formed. Qualitatively, rarefaction fans would still emanate from the boundary at the pressure drop, but these would be intercepted 
by Mach waves or shocks (depending on the new value of Pe/P0) which recollimate the flow to follow the boundaries. 

iv) The Quasar 4C 39.25 
Shaffer et al. (1987) and Marscher et al. (1987) have reported that the quasar 4C 39.25 contains a pair of brightness peaks of 

constant separation, with a superluminal knot in between. Furthermore, the component from which the superluminal knot is 
moving is not as compact as cores in other superluminal sources, and its spectrum peaks at a frequency more than 10 times lower 
than the typical turnover frequency of other VLBI cores. A ready explanation for this behavior is possible within the context of a 
relativistic jet emerging into a region of lower pressure. 

The simplest scenario adopts the relativistic jet model depicted in Figure 4a. If the jet in 4C 39.25 were to encounter the pressure 
drop at a greater distance from the “central engine” than is typical, the jet would be wider and less dense at the throat. This would 
cause the core to be less compact than in other sources. The stationary hotspot, well separated from the core, would be caused by 
standing shocks where the flow recollimates (or, without shocks, simply a return to higher density and pressure at the first 
constriction). The absence of the feature in most other superluminal sources (3C 395 also has a stationary hotspot; see Waak et al. 
1985) indicates that most jets may become ballistic within the rarefaction region beyond the core or are not dense enough at the first 
constriction for strong emission to appear there. 

This model for 4C 39.25 provides a nice illustration of how to apply the results of § III to VLBI observations. Analysis of the data 
of Marscher et al. (1987) gives a value of 0.25 nas as the width of the jet, which corresponds to r0 cos 0 in this model, at the western 
end, which we identify with the “ core ” in Figure 4a. The distance from the “ core ” to the eastern stationary component, which 
corresponds to zmax sin cj) in this model, is 2.0 mas. The observations are, unfortunately, not detailed enough to allow us to 
determine the opening angle a. If we instead adopt an angle of inclination to the line-of-sight </> which maximizes the superluminal 
motion (sin (p « Tq1), expression (25b) yields PCXJP0 = Ç2 ~ 0.4. More refined VLBI observations made possible by the upcoming 
Very Long Baseline Array (VLBA) should allow a more precise calculation of the pressure drop for compact jets described by this 
model. 

A similar model can be generated using the description of a jet adopted in Figure 4b. In this case, the core corresponds to the first 
recollimation shock system. The stationary feature would then be located at the second such system. For this to happen, the jet in 
most sources would then have to either become ballistic at a short distance beyond the first recollimation or expand owing to a 
gradient in external pressure, to prevent the appearance of a compact stationary hotspot which is not observed. 

This schematic model for 4C 39.25 predicts that the superluminal feature, if a moving shock or cloud, should become more 
compact (unfortunately, it is currently unresolved on all VLBI maps) and brighten as it approaches the stationary hotspot. It should 
then pass through and emerge on the other side of the stationary hotspot, thereafter expanding and fading. If the shock is caused by 
a permanent change in the initial flow parameters, the position of the stationary hotspot could change somewhat after passage of the 
shock. 

d) Broad Ballistic Jets 
An intriguing possibility occurs if the external pressure drop is very large and abrupt. This could occur if the jet is confined by a 

circumferential magnetic field which, once it becomes too weak to confine the jet, only becomes weaker as the jet expands. It could 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

33
4.

 .
53

9D
 

I. 

GASDYNAMICS OF COMPACT RELATIVISTIC JETS 

kT « me2 Before Confinement Ends 

549 No. 2, 1988 

Well-collimated flow 

II. kT» me2 Where Confinement Ends 
kT ^ me2 Before Recollimation Can Occur 

III. kT » me2 Along Entire Jet 

Fig. 5.—Three further possible geometries of a relativistic jet. In part I the internal energy becomes nonrelativistic before the jet can expand considerably in the 
lateral direction. In part II the internal energy remains relativistic when confinement ceases; this results in a broad, nearly hollow beam. In part III the external 
pressure is constant beyond the point where it abruptly takes on a lower value; this results in a periodic, oscillating jet. HerePjet refers to the pressures at the axis of 
thejet(r = 0). 

also occur if the external pressure gradient were to become extremely steep (as in an exponential “atmosphere” surrounding the 
nucleus of the host galaxy; see Sanders 1983). In this case, the opening half-angle a of the boundary (eq.[18]) can be approximated as 

a (1 - rad (ê <U), (26) 

which is accurate to within 9% for F0 > 1.4, with accuracy improving at higher values of F0. 
The value of a can be as high as 66° for low F0 and very low £. The extreme case of low values ofF0 and very steep pressure drops 

therefore leads to a very broad jet. Furthermore, in the rarefaction fan the flow accelerates rapidly until it becomes ballistic at a 
value of F equal to the initial mean internal Lorentz factor of the gas particles. (This occurs because the acceleration of the flow is at 
the expense of the internal energy of the gas.) The result is a very broad jet which is nearly hollow owing to the rarefaction of the jet 
interior as the flow accelerates (see Fig. 5, part II). 

The concept of broad beams has been discussed previously by Rees (1981) as a possible scenario by which superluminal sources 
could be viewed at large angles to the jet axis. Scheuer (1984) has criticized this on the grounds that broad beams would appear as 
fat jets to the observer. While this would indeed be true if the jet were circularly symmetric about its axis, it need not be the case if 
the external pressure were to be inhomogeneous. If the point of the pressure drop were to vary with azimuthal angle, the beam 
would break up into a number of disconnected narrow jets whose axes subtend large angles to each other. The observer would 
detect the jet which beams its emission most closely toward the line of sight, with the other jets beaming in other directions. The 
observer might in some cases see more than one jet, which would result in a complex emission pattern (see the complex VLBI maps 
of some sources, e.g., 3C 147; Simon, Readhead, and Wilkinson 1984; Preuss et al. 1984). 

The chances of detecting superluminal motion in a broad, hollow jet of opening half-angle a is enhanced by a factor ~ Fa over 
that for a narrow jet. If radio source statistics prove to eliminate narrow beaming, such a model could be an attractive alternative to 
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the standard picture. If the initial (z < 0) internal energy of the jet were to vary with time, the opening angle would also change, 
becoming smaller as the internal energy decreased. Periods of nonrelativistic initial internal energy (and higher density such that P0 
remains roughly constant) would yield a single, narrow, ballistic, nonrelativistic jet (see Fig. 5, part I). This narrow jet would be 
capable of feeding the extended radio lobes often seen in such sources. Since the piece of the broad relativistic jet detected by the 
observer can be misaligned with the true jet axis (a small misalignment amplified by projection effects as viewed by the observer), the 
compact jet would appear to bend toward the narrow, nonrelativistic jet and outer lobes if a long period of nonrelativistic ejection 
were followed by an interval of relativistic flow. 

Since the opening angle of the jet is decreased as F0 increases, it is also possible for the extended lobes to be fed instead during 
periods of high initial velocity, such that F0 > 1. Such a beam could be nearly invisible if a wider channel were carved earlier by a 
broader jet. 

V. CONCLUSIONS 
The main results of our study are the scaling laws obtained for jets encountering mild drops in external pressure, and the wide 

variety of geometries and flow patterns possible for jets containing relativistic gas. We can divide these theoretical jets into four 
classes separated by the nature of the external pressure drop. 

1. 0.5 ^ Pext/Po ^ Pext constant. In this case the jet encounters a mild pressure drop. The resulting pattern is a jet of oscillating 
cross section with no shocks. The length of each section is directly proportional to the initial Lorentz factor F0, and the opening 
angle and length of each section depend inversely on the pressure ratio PCJP0- Other scaling laws are detailed in § III above. A 
sketch of the basic geometry of the jet is given in Figure 5, part III. 

2. (kT/mc2y~4 < Pext/P0 < 0.5. Here {kT/mc2} is the initial internal energy per gas particle in units of the rest-mass energy. Jets 
of this type experience a severe pressure drop which results in expansion and recollimation with standing oblique shocks and Mach 
disks. See Figure 2 and Wilson (1987) for illustrations of this flow pattern. 

3. PCxt/po ^ (kT/mc2}~4 < 1. These jets experience a severe rarefaction which causes the jet to become ballistic once the internal 
energy per particle drops below the rest-mass energy at the boundary. A hollow, broad beam results, as in Figure 5, Part II. 

4. Gradients in Pext. If Pext falls off gradually with distance along the jet (as opposed to a sudden drop), the basic jet structure 
remains approximately the same, except that each successive section becomes wider and longer. Standing shocks occur unless the 
pressure gradient is very shallow. Figure 4 illustrates the basic geometry and shock pattern expected. 

We call attention to the importance of the analytic expressions or scaling laws presented in § III. These were obtained by 
numerically solving the characteristic equations for a full range of choices for the boundary condition parameters, F0 and PCJP0- 
We chose aspects of the numerical solutions which best characterize the physical state of the jet (e.g. the opening half-angle, 
maximum width, length scale of the jet, etc.). And, we obtain the dependence of these parameters describing the physical state of the 
jet on the boundary conditions. This means that, given the boundary conditions (r0 and PeJP0\ the gross aspects of any arbitrary 
jet may be determined, allowing for the assumptions introduced in deriving the characteristic equations (see § II). Conversely, if one 
or more gross aspect(s) of a jet may be determined observationally, the scaling laws given in § III may be used to determine or 
constrain the boundary conditions on the jet (see discussion in §§ IVc[i] and IVc(iv]). For example, if the pressure Pmin in the most 
rarefied region of the jet, or if the maximum width of the jet is observed, the pressure ratio PCJP0 may be obtained; if the scale 
length of the jet can be inferred from observations (as might be possible in the case of 4C 39.25), the initial Lorentz factor may be 
deduced. Similarly, observations of other aspects of a jet, such as its opening half-angle, will place constraints on the boundary 
conditions through the relations presented in § III. 

We have used the insight obtained from our numerical results as well as known patterns of nonrelativistic jets to describe the wide 
range of phenomena which might be displayed by relativistic jets. Because we have often extrapolated from known solutions, the jet 
patterns discussed above need to be verified by 2D or 3D numerical gasdynamics codes capable of treating shocks in a proper 
fashion. Such calculations should allow for external pressure gradients, changes in internal energy of the gas from relativistic to 
nonrelativistic, and time variable flow parameters if they are to explore the full range of relativistic jet patterns which might exist in 
nature. 

This work was supported in part by the National Science Foundation through grant AST85-16548, by NASA’s Graduate Student 
Researchers Program, and by a NATO-NSF Postdoctoral Fellowship, Award Number RCD-8751127. 
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