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ABSTRACT 
Guided by a new, higher resolution numerical simulation, we i -we taken a fresh look at the evolution of a 

supernova remnant (SNR) evolving in a homogeneous, uniform medium. We have concentrated on the tran- 
sition from the adiabatic stage to the radiative pressure-driven snowplow stage, and the possible further estab- 
hshment of a momentum-conserving snowplow stage. In the numerically simulated example (ejecta mass of 
3 M0, ambient hydrogen density of 0.1 cm 3), the radiative stage begins after less than one sound crossing 
time irom the end of the free-expansion stage, and as a result the interior of the blast wave never completely 
settles to the Sedov-Taylor similarity solution. After the adiabatic stage the expansion does not follow a power 
law in time. 

Using an equation of motion for the blast wave taken from Ostriker and McKee, we derive a set of simple 
ordinary differential equations which correctly reproduce the kinematics of the blast wave seen in the numeri- 
cal simulation. The simple pressure-driven snowplow solution (Rs = constant t2n) is found not to provide a 
correct description of the expansion during the radiative epoch due to the “memory” of the extra pressure in 
that stage. A simple offset” power law, Rcc(t — ioffSet)

3/1°, describes the numerical results for the radiative 
stage. We demonstrate that in most cases the momentum-conserving snowplow (R oc i1/4) is delayed beyond 
the merger of the remnant with the interstellar medium. 
Subject headings: hydrodynamics — nebulae: supernova remnants — shock waves 

I. INTRODUCTION 

After the highly energetic (^1051 ergs of kinetic energy) 
explosion which accompanies a supernova, the ejected material 
drives a blast wave into the ambient interstellar medium (ISM) 
to produce a supernova remnant (SNR). The physical configu- 
ration of the remnant changes several times throughout the 
evolution, and so the expansion is generally characterized in 
terms of several stages (e.g., Woltjer 1972). If we insist that the 
expansion obey a power law in time i, where the shock radius 
Rs oc t", and t is measured from the time of the explosion, we 
can loosely identify these stages by the value of the exponent q. 

The mass and momentum of the ejected material initially 
dominate the evolution, and in this free-expansion rjei = 1. In 
addition to the shock pushing ahead of the ejecta into the ISM, 
a reverse-shock also propagates back into the ejecta (e.g., 
McKee 1974). In this paper we shall consider the continuous 
evolution of the remnant only after it enters the next stage, 
where the swept-up material dominates the remnant mass. 
Then we expect the familiar Sedov-Taylor stage (ST) (Sedov 
1959; Taylor 1950), with an adiabatic shock, a self-similar, 
adiabatic interior, and r¡ = rjST = f. 

The first parcel of shocked material to cool completely does 
so at tsf, when a thin shell forms which “ snowplows ” through 
the ISM, driven by the pressure of the hot, roughly isobaric 
interior in addition to its own momentum (Cox 1972; Cheva- 
lier 1974). Somewhat before ts{, at iPDS, as the effective ratio of 
specific heats begins to approach 1 and the postshock fluid 
velocity approaches the shock velocity, we say that the radi- 

ative or pressure-driven snowplow (PDS) stage of evolution has 
begun. In the absence of interior cooling, the standard analytic 
solutions find Rs oc t2n (McKee and Ostriker 1977). 

Although the interior gas loses energy by pushing the shell 
through the ISM, previous analytic treatments of the PDS 
stage have not allowed for interior energy loss from radiation. 
If we account for this interior radiation (Kahn 1976), we even- 
tually recover Oort’s solution (Oort 1951), the momentum- 
conserving snowplow (MCS), with Rs oc i1/4. The final evolution 
occurs when the shock velocity drops to about the sound speed 
of the surrounding gas, with the presumed breakup of the shell, 
and the remnant merges with the ISM. 

In this paper we examine SNR evolution with two goals in 
mind: (1) to understand the discrepancies between numerical 
simulations and the standard analytic treatment, in particular 
with regard to the dynamics of the pressure-driven snowplow 
stage and a possible transition to the momentum-conserving 
snowplow stage; and (2) to show a simple analytic structure 
which will reproduce the kinematical evolution of a supernova 
remnant through all stages. In particular, this allows an accu- 
rate calculation of the luminosity from the fully radiative 
shock, L oc i;^. 

We shall describe the evolution of an idealized SNR within 
the following framework: (a) negligible pressure, either gas or 
magnetic, in the surrounding material, until the transition to 
the last, merger stage; (b) a spherical expansion (i.e., a one- 
dimensional evolution); (c) a homogeneous ISM (no clouds); 
(d) a uniform ISM (no density gradients); (e) negligible cooling 
by dust (Ostriker and Silk 1973; Dwek 1981; Graham et al 
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1987). (/) no thermal conduction (see, e.g., Solinger, 
Rappaport, and Buff 1975 ; Cox and Edgar 1983). 

In the next section we present the results from a numerical 
simulation of an explosion in a medium with a hydrogen 
density of 0.1 cm-3'. In § III we provide a simple physical 
model for the overall dynamics and present our analytic 
approximations, good to a few percent in radius and velocity 
when compared with the numerical simulations. In a compan- 
ion paper (Cioffi and McKee 1988), we derive general solutions 
for the kinematics and luminosity from SNRs in all stages of 
evolution. 

II. NUMERICAL SIMULATION OF SUPERNOVA REMNANT 
EVOLUTION 

Using a spherically symmetric explicit Lagrangian hydrody- 
namics code, we have studied the evolution of a supernova 
remnant from the ejecta stage, into the adiabatic stage, and 
through the radiative snowplow stages. The simulations and 
results are similar to those of Chevalier (1974), Straka (1974), 
Mansfield and Salpeter (1974), Falle (1981), and others, but 
have much higher resolution, allowing a more precise compari- 
son of the results to simple models of remnant evolution. In 
this section we discuss the numerical methods and present the 
results. 

The numerical code integrates the equations of gas dynamics 
with spherical symmetry. These equations yield the evolution 
of the mass density p, radial velocity v9 and pressure P : 

dp 
It 

(2.1) 

dt p dr 9 

*1= -yPL <L(riv)-(y- l)n2A(T), (2.3) 
dt rz dr 

where (d/di) = (d/dt) + v(d/dr) is the usual Lagrangian time 
derivative, n is the hydrogen density, and the cooling function 
A(T) is defined such that n2A gives the luminosity per unit 
volume. Grid points are moved using the auxiliary equation 
dr/dt = v. We treat the gas as ideal, with a ratio of specific heats 
y = 5/3 and a temperature T determined from P = pkBT/p, 
where kB is Boltzman’s constant and p is the mean molecular 
weight. Only a single gas component is evolved and we treat 
p = (14/23)mH as constant, corresponding to complete ioniza- 
tion of a gas with composition nHJn = 0.10. 

Our treatment of the thermodynamics is simplified in several 
respects, but we argue that this has no effect on the global 
evolution of the remnant. The function A(T) which was used in 
the numerical simulation is a piecewise power-law fit to the 
results of Raymond, Cox, and Smith (1976) for optically thin 
cooling from a gas of solar abundance in collisional ionization 
equilibrium. This cooling law is not correct inside the thin 
radiative shell that forms after the ST stage ends because the 
gas is not in ionization equilibrium; the gas also absorbs the 
UV radiation produced in the shell (Chevalier 1974). Thus our 
results do not correctly give the detailed structure within the 
radiative shell. However, these details are irrelevant to the 
global evolution of the blast wave as long as the shell remains 
thin (Bertschinger 1986). In our simulations the shell becomes 
so thin that it proved necessary to truncate radiative cooling 
below a temperature Tc, initially 1.2 x 104 K, to prevent the 

dynamical and cooling time scales from becoming too short in 
the shell. Chevalier (1974) achieved the same end by adding a 
term to the fluid equations representing approximately the 
effects of magnetic fields. We neglect magnetic fields but note 
that they are important for the global evolution only if they 
inhibit formation of a thin shell. We note that heat conduction, 
if not inhibited by magnetic fields, could change some of our 
quantitative results because it would lead to enhanced cooling 
of the hot interior gas owing to losses from evaporation of cold 
gas in the radiative shell. 

To integrate numerically the fluid equations (2.1)-(2.3), the 
fluid variables were first evaluated on a discrete Lagrangian 
grid rf(i) (i = 1, 2,..., AT). Radial derivatives were evaluated by 
fitting and differentiating a cubic spline through the grid 
points. This procedure reduces the partial differential fluid 
equations to a series of coupled ordinary differential equations 
for the time-dependence of the fluid variables evaluated at the 
grid points. These equations were advanced in time using an 
explicit three-stage integrator illustrated here for the equation 
dri/dt = vh where r" = r^i"), At = tn+l — tn: 

4 = r? + y u? , r'¡ = 1* + Atv'i, 

r? + 1 = + y W - 2v'i + v") ■ (2-4) 

The fluid equations were advanced in the form of equations 
(2.1)-(2.3) rather than in the Eulerian conservation-law form 
because a Lagrangian treatment (or a complicated regridding 
algorithm) is necessary to resolve adequately the high-density 
radiative shell. The time step At is constrained by the shorter of 
the Courant time step, which is determined by the sound- 
crossing time from one grid point to the next (Richtmeyer and 
Morton 1967), and the cooling time scale. Without the third 
stage the scheme of equations (2.4) would be a second-order 
Runge-Kutta algorithm, which is unstable for hyperbolic 
systems such as the fluid equations ; this last stage stabilizes the 
method. The integrator is second-order accurate in time; no 
significant differences were found (other than a decrease in 
speed) when a four-stage, fourth-order Runge-Kutta integrator 
was used. It is common wisdom that high-order methods such 
as cubic splines and Runge-Kutta integrators are a poor choice 
for computational hydrodynamics with shocks, but in our 
experience these methods are more robust and flexible than 
lower-order methods. With considerable effort one can design 
a method superior to the one adopted here (e.g., Collela and 
Woodward 1984), but our algorithm proved satisfactory in the 
present application. 

The treatment of shocks requires the addition of numerical 
artificial viscosity to the method described above. Artificial 
viscosity terms based on the ordinary linear shear viscosity of a 
compressible gas, rjyis, (Landau and Lifshitz 1959) were added 
to the momentum and energy equations (2.2) and (2.4), as 
follows: 

(2.5) 

Rather than using the molecular viscosity of a gas, we choose 
rjyis using characteristic grid length and time scales so that the 
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highest frequency numerical oscillations would be damped in a 
few time steps. Equations (2.5) were implemented as a fraction- 
al time step using finite differences (Lapidus 1967); this treat- 
ment assures that the artificial viscosity does not change the 
Courant stability condition and does not affect the numerical 
conservation of mass and energy. Much experimentation 
yielded a form of the viscosity coefficient proportional to the 
first central velocity difference divided by the local sound 
speed; this choice results in viscous dissipation being applied 
near shocks (where velocity changes are rapid) but not in the 
smooth parts of a flow. The method was applied to standard 
shock tube problems (Sod 1978) and to an adiabatic point 
explosion (the ST solution), with excellent agreement: with a 
grid of N = 100 divisions, mass and energy are conserved to 
better than 1%, the fluid variables are accurate to ~ 1% in the 
smooth flow regions, and the shock width is ~ 3 grid spacings 
(the last is independent of AT). 

The initial conditions used for the simulations of supernova 
remnant evolution were as follows. A supernova explosion 
energy of 0.931 x 1051 ergs was deposited in the kinetic energy 
of 3 M0 of stellar ejecta. The ejecta were taken to be of solar 
abundance and have uniform density; while this is unrealistic it 

Vol. 334 

has no significant effect on the blast wave evolution after the 
remnant enters the adiabatic stage. The interstellar density, 
also of solar abundance, was n = 0.1 cm"3. The interstellar 
temperature was set to 10 K so that the blast wave remained 
strong throughout the simulation. The numerical simulations 
began at i = 170 yr after the explosion, when the ejecta over- 
density was a factor of 100. A contact discontinuity separates 
the ejecta from the interstellar gas. The initial grid spacing was 
0.1 pc in the interstellar gas and 10 times finer in the ejecta. 
The total number of grid points was N = 1327. Throughout 
the simulation, of total duration 1.75 x 106 yr, mass and 
energy were conserved to relative errors of 0.047% and 1.8%, 
respectively. 

Figures 1-4 show the fluid variables plotted versus radius at 
several times of interest. The dynamics of the remnant evolu- 
tion is sufficiently interesting that we provide a detailed dis- 
cussion here before addressing the overall rate of expansion of 
the remnant, which was the primary motivation for the simula- 
tion. 

Figure 1 shows the fluid variables at i = 1.2 x 105 yr, 
roughly 2.5 x iPDS (eq. [3.11]), the beginning of the radiative 
stage. By this time 20% of the initial energy has been lost to 

Fig. 1. The structure of a spherical supernova remnant calculated using a high-resolution numerical hydrodynamics code. The remnant age is i = 1.2 x 10s yr 
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R (pc) 

R (pc) 

Fig. 2.—Same as Fig. 1, for t = 

R (pc) 

radiation. Several interesting features may be noticed. First, 
the ejecta lie interior to 13 pc and are separated from the inter- 
stellar medium by a contact discontinuity with roughly the 
same density jump as in the initial conditions. In a real super- 
nova remnant this sharp boundary would be destroyed 
because it is subject to a Rayleigh-Taylor instability during the 
initial ejecta stage, with the ejecta then being mixed through- 
out the supernova interior (Gull 1973). A spherically symmetric 
simulation prevents this instability from occurring. Second, 
Figure 1 shows many wiggles present in the fluid distributions, 
particularly in the velocity and pressure profiles. These wiggles 
are all real and are due to sound waves and weak shock waves. 
Simulations with half and twice the density of grid points show 
precisely the same features. A careful examination of these 
waves shows that they originate from the reflection of the 
initial reverse shock at the origin. The reflected shock travels 
back through the ejecta and is partially reflected and partially 
transmitted at the contact discontinuity. Reflected weak shock 
waves travel repeatedly back and forth through the ejecta 
before the acoustic energy is dissipated into heat or transmit- 
ted into the interstellar gas. In a realistic three-dimensional 
model these echoes of “thunder” would reverberate from 
dense ejecta fragments and interstellar inhomogeneities. The 

amplitude of the acoustic waves would be diminished in three 
dimensions because of the addition of nonspherical modes and 
because of the absence of a well-defined contact discontinuity, 
but the total acoustic energy should remain about the same as 
in our simulation. The generation of sound waves from scat- 
tering of a shock by density inhomogeneities was predicted by 
Spitzer (1982) and studied numerically by Ikeuchi and Spitzer 
(1984). 

Because the postshock flow is subsonic, acoustic waves gen- 
erated in the interior of the remnant must eventually catch up 
with the blast wave. In the present simulation the first weak 
shock wave transmitted at the contact discontinuity catches up 
with the outer shock at i = 1.1 x 105 yr. The close agreement 
of this time with the beginning of the radiative stage is a coin- 
cidence since a higher interstellar density would lead to cooling 
before sound waves reach the blast wave. The fact that the 
radiative stage begins after less than one sound-crossing time 
for typical ejecta masses and interstellar densities implies that 
the supernova remnant never completely relaxes to the ST 
adiabatic similarity solution. This is clearly shown by the 
velocity and pressure profiles of Figure 1 and will be confirmed 
by the shock propagation law presented later. Chevalier (1974) 
did not discover this effect because his initial explosion energy 
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Fig. 3.—Same as Fig. 1, for i = 2.5 x 105 yr 

was deposited as heat in a small volume so that the ST solution 
was quickly, albeit unphysically, established. Mansfield and 
Salpeter (1974) began with rapidly expanding cold ejecta and 
their simulations show the non—self-similar behavior, although 
with less resolution than the present work. 

After postshock cooling becomes important the postshock 
pressure and temperature quickly plummet to low values 
(Straka 1974)—in the present case the temperature falls to 
7^ = 1.2 x 104 K before radiative cooling is cut off. The pres- 
sure drop causes matter to be driven into the dense cooling 
region from the interior. A complicated series of shocks, 
rarefaction waves, and contact discontinuities is formed on 
subparsec scales inside the shell. The details of this structure 
are interesting, but the present hydrodynamical simulation 
does not give correctly the detailed structure in the shell 
because of the simplified cooling law used. The present results 
do strongly suggest, however, that time-dependent effects are 
important in the formation of the radiative shell. Using realis- 
tic ionization, radiative transfer, and cooling, Innés et al (1987) 
also conclude that the evolution of a radiative shock is far from 
being steady. 

Figure 2 shows the remnant structure at i = 1.7 x 105 yr, 
when the density in the shell reaches a maximum (for the 

cooling law used here). The peak density, n & 10 cm-3, agrees 
approximately with the density increase nv*/kTc expected for a 
steady radiative shock (Spitzer 1978); the agreement is not 
perfect because the flow inside the shell is unsteady. Interior 
gas continues to cool and accrete onto the back of the shell so 
that the interior mass and density drop. The interior pressure is 
nearly uniform because most of the acoustic energy has been 
damped or transmitted to the radiative shell. The shell does 
not reflect sound waves back into the interior because the 
interior gas is flowing toward the shell supersonically. Thus, 
gas accretes onto the back of the shell through a shock wave, 
where the rapidly moving interior gas is decelerated to the 
common velocity of the shell and outer blast wave (Gaffet 
1983). Initially this inner shock is radiative. 

Figure 3 shows the remnant structure at t = 2.5 x 105 yr. 
Beginning at this time the cooling cutoff temperature is grad- 
ually decreased (Tc cct 14) so that the relative shell thickness 
remains roughly constant hereafter ; this prevents the computa- 
tional difficulties which arise from too-thin shells (time step too 
small) or too-thick shells (loss of interior resolution). The tem- 
perature of the gas in the shell actually drops below Tc because 
of adiabatic expansion cooling. The accretion shock on the 
interior of the shell is now clearly visible, 2 pc behind the outer 
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Fig. 4.—Same as Fig. 1, for t 

blast wave, as a discontinuity in the fluid variables. As interior 
gas of progressively lower density passes through this inner 
shock, cooling becomes less important and the shock becomes 
adiabatic. Consequently, the shocked interior gas is not strong- 
ly compressed and the accretion shock begins to separate from 
the shell. After this time the inner shock has little effect on the 
shell dynamics except to maintain a pressure force on the shell 
by transforming the ram pressure of interior gas into thermal 
pressure. At first the inner shock moves outward in Eulerian 
radius but eventually it reverses to travel back through the 
cavity in a pattern familiar from the early ejecta stage. Cheva- 
lier (1974) found the same effect, although his simulations had 
much less resolution. We see that the hydrodynamics of super- 
nova remnant evolution is rich with complications, which can 
be understood when revealed by numerical simulations. 

At the last time shown, í = 5.0 x 105 yr in Figure 4, the 
inner shock has nearly reached the ejecta. Although the veloc- 
ity jump across this shock is fairly large (150 km s 1), the 
interior is still hot so that the shock is weak (Mach number 
1.5). After the shock strikes the ejecta, a series of reflected and 
transmitted weak shocks is again formed as waves travel 
repeatedly through the ejecta and through the SNR cavity. 
These waves are now reflected at the shell because the interior 

is fully subsonic; the echoes persist through the end of the 
simulation at 1.75 x 106 yr. 

III. ANALYTIC MODELS 

In this section we develop analytic models for the dynamics 
of SNR expansion. Understanding the dynamics leads to 
precise kinematics, a prerequisite for accurate luminosity. We 
explain how radiative cooling and a nonlinear distribution of 
material within the remnant obviates the standard kinematical 
power-law approximations. First we derive an ordinary differ- 
ential equation (ODE) which expresses Newton’s second law 
for the blast wave, and integrate it. We next simplify the ODE 
and solve the system analytically with moderate accuracy, as 
compared to the numerical solution, over a broad time inter- 
val. Cox’s (1972) analytic model, with improved cooling, is 
found to give a good approximation for v(Rs) over a shorter 
time interval. Last, we present an approximate offset power- 
law analytic solution for the PDS stage. Following this section, 
we shall use these analytic solutions to examine the late-time 
behavior of an SNR. 

A striking feature of the numerically simulated SNR evolu- 
tion in § II is the continual variation of the logarithmic deriv- 
ative d In RJd In t = vst/Rs (see Fig. 5). This quantity is 
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constant for self-similar blast waves and standard power-law 
solutions of the form R = At\ with A constant. These standard 
solutions, however, apply only under narrow conditions which 
radiating SNRs cannot meet. In particular, they require two 
unphysical events: a drop in the mean interior pressure at the 
PDS onset, and subsequently negligible radiative cooling of 
the interior. In addition, if the evolution of the SNR is divided 
into several stages, with the ith stage lasting from time to 
U+h then the standard solutions will exhibit discontinuities in 
d In R/d \n t at the beginning of each stage; i.e., as we shall 
show below, one cannot ignore constants of integration. 

We demonstrate these difficulties by examining the following 
simplified system in which we approximate the evolving SNR 
as a sphere containing all the mass in a thin shell at the edge 
(Rs), moving at the postshock fluid velocity. We then set the 
total change in momentum of the SNR equal to the force 
exerted by the mean pressure on the interior wall : 

^ (Ms v1 vs) ^ 4nRs P , (3.1) 

where Ms = 4/3nR^p0 is the mass of the SNR, p0 is the 
ambient mass density, and P is the average interior pressure. 
The fluid velocity behind the shock is vl vs, where 

2 

is constant both in the limit of negligible radiation and in the 
limit that radiation is so strong that the effective y is unity. We 

also write 

P = (3.3) 

where a is the shock’s effective mean Mach number relative to 
the interior gas (McKee and Ostriker 1977). 

Equation (3.1) admits power-law solutions provided that 

oc2v1 = _Jn_ 
4*/-r (3.4) 

Under the assumption that a2 is constant (i.e., the blast wave is 
self-similar), equation (3.3) and the power-law assumption 
together imply that P oc R~kp, which yields 

2 

where the physical conditions of the interior determine the 
constant kP. 

In the Sedov-Taylor stage the interior loses no energy and 
the system does no work on the external medium; the pressure, 
being proportional to the energy density, decreases solely 
because of the increased volume, so that kP = 3 and */ = f. In 
the PDS stage (with no interior cooling), the interior loses 
energy because it pushes the shell into the ISM. This configu- 
ration is analogous to a reversible, adiabatic system, where 
PVy is constant {V is the volume). When y = 5/3, kP = 5 and 
*/pds = ?• These standard values of */ now constrain (x2v1 to 2 
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and 6 for the ST and PDS stages, respectively; since we know 
from the strong-shock approximation that v1(ST) = f and 
Vi(pds) = 1> oc|T must equal 8/3 and apDS must be 6 for these 
solutions to be viable. (When calculated from the exact interior 
ST solution, not a zero-thickness shell, a|T = 2.840 [Ostriker 
and McKee 1988], which is closer to 20/7 = 2.857 than 8/3 = 
2.667.) Of course, with no interior pressure aMCS -► oo and 
*7mcs = i fr°m equation (3.4) alone. v , 

Despite the simplifications employed, this exercise demon- 
strates that the standard power-law solutions exist only for 
specific, constant values of the mean Mach number a and the 
product a2v1. At the transition to the PDS stage the remnant is 
overpressured with respect to the standard f law, which 
requires a2 = 6. Thus the effective value of r¡PDS may exceed j. 
In a similar manner the existing interior pressure greatly delays 
the appearance of any momentum-conserving snowplow, even 
allowing for cooling of the interior. 

a) Blast Wave Equation of Motion 
The abrupt restructuring of the remnant at the formation of 

the shell necessitates a more sophisticated treatment of the 
dynamics during the transition from the ST to the PDS stage. 
Because the shock velocity vs rapidly changes during the tran- 
sition, we consider the mass-averaged quantity, R¡v, which 
varies smoothly. Replacing equation (3.1) by the physically 
exact equation of motion for a blast wave (Ostriker and 
McKee 1988), we have 

(Ms v) = 4nRs KpP , (3.6) 
at 

where 

fÄS P(r) r dr 

Jo P Rs Rs 
(3.7) 

is of order unity; for an ST blast wave with y = 5/3, KP = 
0.918, whereas for an isobaric blast wave KP = 1. The mean 
velocity is 

v = K01 Vi vs , (3.8) 

where, in general, in terms of an integration through mass m, 
one has 

The moments K0 are constant for self-similar blast-waves. As 
with KP, they are generally close to unity, and as y approaches 
unity the moments do also. For an ST blast wave with y = 5/3, 
Ostriker and McKee (1988) find K01 = 0.857. 

The transition from the ST to the PDS stage occurs near the 
shell-formation time isf, when the first element of gas cools to 
zero temperature. For our analytic work we use a cooling 
function proportional to T_1/2, appropriate for collisionally 
ionized gas at temperatures 105 K < T < 107 5 K: 
A = 1.6 x 10”19 Cm T~112 erês cm3 s-1’ where the metallicity 
factor C™ = 1 for s°lar abundances (e.g., McKee 1982). The 
shell formation time is then 

iSf — 3.61 x 104 £5/14^4/7 yr ’ (3.10) 

where n0 is the ambient hydrogen density in units of 1 cm 3, 
E51 is the initial SNR energy in units of 1051 erg (Cioffi and 

McKee 1988; similar estimates, using slightly different 
methods, have been given by Cox 1972, 1986; and Cox and 
Anderson 1982). As one might expect, however, radiative losses 
affect the evolution before £sf, so we somewhat arbitrarily 
adopt 

(3.11) 

where e is the base of the natural logarithm, as the end of the 
ST stage and the beginning of the PDS stage. Note that equa- 
tion (3.10) yields a shell-formation time in good agreement 
with the numerical simulation, 1.3 x 105 yr; see Figure 5. 

We can obtain an accurate approximation to the solution 
for the equation of motion of the blast wave by noting that v1? 
KP, and K01 are all known and close to unity in the ST stage 
(t < £pds), and they approach unity for t > ts{. We treat the 
transition from the ST to the PDS stage as being a smooth 
change in y, or equivalently, vx (eq. [3.2]), as the interior mass 
and velocity distributions slowly evolve from the ST, adiabatic 
form to the radiative form. Using Ostriker and McKee’s (1988) 
“pressure gradient approximation” (which for y = 5/3 is 
equivalent to Gaffet’s [1978] approximation in which the pres- 
sure is a linear function of mass), we find 

Koi(vi) = 

Kp(Vl) 

(7 - 4v1)(l + vx) ’ 

3(9 + V! - 4v2) 
(7 - 4v1)(l + - 2vx) 

(3.12a) 

(3.12b) 

We completely specify the moments by adopting an Ansatz for 
: we know that V! = f in the ST stage (t < iPDS), and the 

details of the cooling calculation (Cioffi and McKee 1988) 
suggest trying 

(3'13) 

for iPDS < t < £sf, where £* = t/iPDS, isf* = e, and, in general, 
the asterisk subscript denotes that a quantity x has been nor- 
malized to its (analytic) value at the end of the ST stage,xPDS : 

At late times (£* >1)^ approaches its maximum value. If 
the cooling were total, with an infinitesimally thin radiative 
shell, then this maximum value would be unity. Although in 
our numerical simulation the shell has a finite thickness 
because the cooling ceased below 7^ < 1.2 x 104 K, small 
deviations from Vi = 1 after isf do not significantly improve 
our agreement with the hydrodynamical simulation. We there- 
fore prefer the simplicity of vx = 1 for £ > £sf. 

We next need a better estimate of the mean pressure, P. 
Although the interior in our hydrodynamical simulation never 
relaxes completely to the Sedov-Taylor similarity solution, the 
standard ST radius (eq. [3.31]) and velocity values agree with 
those from the simulation to <1% and <3%, respectively. 
This agreement suggests that the overall adiabatic approx- 
imation works well, though the remnant in fact cools contin- 
uously and has radiated away some small fraction («2%) of 
the original energy by the time we choose to end this second 
stage. When we calculate the cooling in the PDS stage (Cioffi 
and McKee 1988), we find that the thermal energy Eth varies as 
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i-4/9 in addition to the usual radial dependence noted above 
(£th cc R~2). We therefore combine two terms, one embodying 
the adiabatic temporal dependence and the other the post- 
shell formation dependences, giving us a form for the energy 
which is smooth from early to late times: 

^th(ST) ■+-fen 

x H(a2 tsf - i) + 
1—0! 

(3.15) 

where a2 tsi is the time at which all the interior thermal energy 
would be radiated away if the remnant remained in the Sedov- 
Taylor stage, the step function H(t) = 1 if the argument is posi- 
tive, and zero otherwise, and we have normalized to the energy 
of the analytic Sedov-Taylor solution, Eth(ST) = 0.717 E (e.g., 
Ostriker and McKee 1988). For the shell-formation time (isf) 
and the radius at that time (Rsf), we use the analytic results, 
equations (3.10), (3.11), and (3.31). We fitted the simulation 
interior thermal energy versus time to adust the two constants, 
finding 0! = 0.398 and a2 = 1.169. Figure 6 shows the fit; at 
log i* ^ 0.5 the ST contribution has been eliminated. We use 
this energy evolution to determine the mean pressure 

P = 
Eih . 

2nR* ’ 
(3.16a) 

at late times (i* > 1), we have for the normalized pressure 

_ _ P P 1.92 

* F pos [Fth(ST)/2ftFpDS] R* i*/9 
(3.16b) 

where we have dropped the subscript s in the normalized 
radius, R* = Rs/RPds- 

We now have expressions for all relevant terms in equations 
(3.6) and (3.8). By using the variables R2v and R4, no time 
derivatives of the moments are needed, so the blast wave is 
governed by the following system of coupled ordinary differen- 
tial equations : 

. 3 KP 
f.lKi'" 

P(ST) 
(3.17a) 

A- (B*) = ? ^-01 (ST) V1(ST) 
dtA 5 K01 V! (F^*), (3.17b) 

where v* = v/vPDS. The mean fluid velocity at the onset of the 
PDS stage vPDS is taken to be that at the end of a self-similar ST 
stage, 

^PDS — ^Ol(ST) Vl(ST)i;PDS (3-18) 

from equation (3.8); for y = 5/3, we have vPDS = 0.643 vPDS. In 
deriving equation (3.17) we have also used the relation 
^p(st)/C^oi(st) vi(st) asT) = 2 (Ostriker and McKee 1988, eq. 
[D.9]). Note that equations (3.17a) and (3.17b) are exact; the 
approximations enter in determining KP, K0l, vlf and R*. 

We attempted many other forms of these basic equations, 
but only this specific set produced such good results. We 

lOg t/tpDS 

Fig. 6.—The thermal energy of the interior, vs. time, from the hydrodynamical simulation. The upper curve shows the percentage difference between our analytic 
fit (eq. [3.15]) and the simulation, against the same abscissa. 
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log Rs/RpDS 

Fig. 7.—The late-time behavior of SNR expansion as exemplified by the momentum from the hydrodynamical simulation and the numerical solution to the 
system of ordinary differential eqs. (3.17). We normalize the momentum to the value at the PDS onset. The upper curve shows the percentage difference between the 
analytic and numerical solutions to the differential equations. Transition to the MCS stage or merger with the ISM has been neglected. The solution has been 
extended to unphysically late times (even exceeding the Hubble time) in order to demonstrate graphically the slow convergence of the momentum to its final value. 

solved the equations numerically, and in Figure 7 plot the 
momentum from the ODE and from the hydrodynamical 
simulation against the radius, both normalized to their values 
at the PDS onset. The numerical ODE solution stays just 
slightly above (<5%) the simulation, but when one considers 
the approximations and that our fit to the pressure (eqs. [3.15] 
and [3.16]) is the only tie to the simulation, this remarkable 
agreement underscores the validity of our dynamical 
approach : we can reproduce a basic physical characteristic of 
an evolving SNR, its momentum. 

On the other hand, the progression of the logarithmic deriv- 
ative provides a detailed view of the kinematical behavior, as it 
easily shows small changes in the effective power-law index 
vt/Rs. Figure 5 shows this index from the hydrodynamical 
simulation and from the solution of the system (3.17). We can 
form this quantity using either the shock velocity vs or the 
mass-averaged velocity v, and we show both on Figure 5. The 
ODE matches the simulation well, especially in duplicating the 
rise near the shell-formation time as the “ overpressured ” inte- 
rior pushes on the shell. With this excellent agreement between 
our hydrodynamical simulation and the solution to our blast- 
wave equation of motion, we argue that our model accurately 
represents the dynamical evolution of an idealized supernova 
remnant. We exploit this enhanced understanding in the analy- 
tic approaches which follow. 

b) Analytic Solutions to the Blast-Wave Differential Equation 
Here we attempt to reconstruct analytically the numerically 

determined behavior of the previous section by solving a sim- 

plified equation of motion (3.6). We write the pressure as a 
power law, and, where necessary, we replace slowly varying 
coefficients by their asymptotic values. We can approximate 
the force on the shell (i.e., the right-hand side of eq. [3.6]) by a 
power law in time or radius. In either case the first integration 
of the ordinary differential equation finds the momentum of 
the remnant, proportional to R* v. Comparison of this quantity 
with the momentum from the numerical solution directly tests 
the accuracy of this analytic technique, especially at late times 
as the SNR evolves to a momentum-conserving snowplow. 

Cox (1972), who assumed no interior radiative cooling (i.e., 
he neglected the t*/9 dependence in eq. [3.15]), found a solution 
with the velocity expressed as a function of radius. He calcu- 
lated a cooling time and extended the Sedov-Taylor solution to 
find the radius and velocity at that time. Since the cold shell 
slows to the velocity of the fluid behind the shock, the ST 
shock velocity would be too high for the PDS stage. Instead of 
the analytic factor of the postshock fluid velocity equaling 0.75 
of the shock velocity in the adiabatic stage, Cox used 0.6 of the 
ST shock velocity. We revised his solution only by using a 
more modern cooling law, as written in this paper, and produc- 
ed 

As we show in Figure 8, this solution matches well the hydro- 
dynamical simulation after shell formation. With a radial 
power law for the force in our blast-wave equation (3.6), we 
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log Rs (pc) 
8't,

T,he Prod“ct. vs-.time. from the hydrodynamical simulation and the offset power-law formulae (eqs. [3.32] and [3.33]). Once the shock is fully radiative, the luminosity is proportional to Rs vs. Cox’s (1972) result for this quantity (based on eq. [3.19]) is also shown. For this case, RPDS = 36.8 pc = 10157 pc. 

obtain the velocity as a function of radius. If we make the same 
approximations as Cox, we can reproduce his v(R) solution. 
However, Cox did not intend this solution for very late times, 
where it would establish a pressure-driven snowplow expan- 
sion with Rs oc i2/7 rather than the momentum-conserving 
Æs°ci1/4; it is within 15% of the numerical simulation for 
1.6 < Ä* < 3, or 5 < i* < 35. If we retain interior cooling, our 
solution does evolve to an MCS stage. We find, however, that 
when the force is expressed as a temporal rather than a radial 
power law, we obtain a more accurate solution. In the follow- 
ing, we explicitly develop this calculation as a function of time 
only. 

At late times the evolution of the SNR depends only weakly 
on the pressure, whereas the much larger pressure at the PDS 
onset strongly influences the future evolution of the remnant. 
Therefore, we choose to require the correct value of P at i* = 1 
rather than as i* -► oo, and we approximate the force by the 
following power law in time: 

4nRs KpP = 4nRPDSKp(ST)Ppds• (3.20) 

Asymptotically, when t > iPDS we have 

+ (3.21) 

from equations (3.15) and (3.16), and, as rj-+±, 43/36. 
Because q & 1, the momentum of the shell converges slowly to 
its final value. A first integration of equation (3.6) (or, equiva- 
lently, eq. [3.17a]) to any normalized time i* from i* = 1 yields 

r;í^1+Kt^)- (3-22) 

A second integration, now assuming that the coefFicients K01 

and Vj vary sufficiently slowly so that we can remove them 
from the integral, gives an expression for the radius with two 
integration constants: 

^4 ^ J , 24 K01(ST) v1(ST) 

* 25 K01 Vl 

x (2 - qK zA 9 + g - H 
(2 - qtq - 1) J 

. (3.23) 

For i* EE í/íPDS_< 1, this yields the ST result Rs = RPDS t^5, 
since then R2

S P az R~1 oct~215 so that q = f. 
To determine the best q for times beyond (* = 1 we use 

Kp = K01 = vj = 1, and we require that the total change in 
momentum, 

P*Kdt*> (3.24) 
Ji 

as determined from our approximate force law (3.20), be identi- 
cal with that found from integrating the more precise pressure 
of equations (3.15) and (3.16). We find g ^ 1.17, only 2% 
smaller than the asymptotic q (eq. [3.21]). With this value of q 
we have 

R\ v* ^ 4.53(1 - 0.779t-°17), (3.25) 

Rt ^ 4.66i*(l - 0.939t“0-17 + 0.153^ ‘), (3.26) 

which shows that the momentum slowly converges to a con- 
stant, and that correspondingly the solution slowly approaches 
the momentum-conserving snowplow R oc t1/4. Note that at 
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late times the shock velocity vs and the mean velocity v are 
essentially the same, so that u* = !'SA'pds — v/vPDS = 0.643D,, 
from equation (3.18). 

We compare these results with the numerical solution to the 
blast-wave ODE. The analytic momentum (3.25) never differs 
by more than ~ 10%, as shown in Figure 7. The radius from 
(3.26) never differs by more than ~5%. This analytic ODE 
solution should therefore accurately represent the extreme late- 
time behavior of SNR expansion, when t > tpos- 

c) Offset Power-Law Solutions for Radiative SNRs 
We desire an analytic expression which will reproduce the 

kinematics of the hydrodynamical simulation to high accuracy 
and yet be simpler than our ODE solution (3.26). To begin to 
accomplish this task we must improve upon the unrealistic 
constant logarithmic derivative seen in the standard power-law 
solutions. If we relate the velocity and radius by a conventional 
power law, 

where v¡ = vs(R¡), unlike both our analytic ODE (3.26) and 
Cox’s (1972) solution (3.19), we shall have only one constant of 
integration in the expression for the radius. Integration of 
(3.27) gives a power law offset in time : 

(í¡<í <ti+i), (3.28) 

where R¡ s Rft¡), c¡ is the integration constant, and in general, 
the subscript i denotes the value of a parameter at the begin- 
ning of stage i. With this form of Rs(t), the logarithmic deriv- 
ative approaches íj, asymptotically : 

dlnRs ( t \ 
d In í \t — c¡ tj 

(3.29) 

so for t¡ > t > i.-i the logarithmic derivative must be 
Although the shock velocity does dip strongly at the formation 
of the shell (e.g., Fig. 5), the difficulty of calculating the magni- 
tude of the drop, and its short duration, suggests a smooth 
solution. We make the two values of r¡ continuous by setting 

Ci=l--^, (3.30) 
rji-i 

which is equivalent to requiring that both Rs and vs be contin- 
uous across stage boundaries if ti+1 Cjif. The constant cf 
thus acts as a normalized offset time which permits continuous 
solutions and delays the manifestation of the simplest power- 
law behavior of a constant logarithmic derivative. 

We note that Shull (1980) had the radius continuous across 
the transition to the PDS stage and mentioned that one could 
avoid his velocity jump by including an arbitrary constant of 
integration, which Wheeler, Mazurek and Sivaramakrishnan 
(1980) indeed had done. Ciofli (1985) first used this offset form, 
which we find both accurate and convenient. 

Just prior to the beginning of the pressure-driven snowplow 
stage we use the standard Sedov-Taylor solution 

R,=g)‘'X 

where E is the initial energy of the explosion, and the numerical 

constant Ç is found to be 2.026 for y = 5/3 (Ostriker and 
McKee 1988). We use this solution at iPDS to obtain KPDS. The 
offset causes the smooth transition from the ST logarithmic 
derivative of 0.40 to the asymptotic r¡PDS. Although rj = % pro- 
duces an acceptable solution, we have found that f/PDS = to 
gives better results when directly compared to all points (after 
tpos) from our hydrodynamical simulation. This choice reduced 
the root mean square difference by about a factor of 1.5 in the 
radius, which changes smoothly across shell formation. We 
also see a more agreeable correspondence with the logarithmic 
derivative curve, Figure 5, which easily displays small differ- 
ences in vt/R as this index falls from r¡ST = 0.4. This rjPDS = ^ 
makes cPDS = 4, and we then have for 35 íPDS ^ í > íPds 
following analytic solution : 

Ks = KPDs(ji*-{)3,10> (3.32a) 

where the radius and velocity at the beginning of the PDS 
stage are 

F2/7 

rpds = 14.0 n3/7çin Pc ’ (3.33a) 

^pds = 413no/7Cm/14^5i14 km s_1 . (3.33b) 

The maximum disagreement between this analytic Rs and 
the simulation results is <2.0%. Because a power law cannot 
duplicate the sharp drop in vs near the shell-formation time, 
and also because the shock velocity from the numerical simula- 
tion occasionally fluctuates at later times, our estimate of its 
accuracy is less precise, but we can say that, excluding times 
from i* = isf* to i* ^ 1.9 isf*, the offset power-law form for vs 

is usually accurate to < 5%. We also compare with the product 
which is proportional to the luminosity from a fully 

radiative shock : 

E = 2P0Vs(4nRs)vs ; (3-34) 

any small errors in vs or Rs would lead to large errors in L. 
Figure 8 signifies that our offset power-law solutions will 
reproduce the luminosity from the shock alone to high accu- 
racy : with the same exclusion noted above for the velocity, the 
product Rg v>s is almost always within 20% of the numerical 
simulation. (In our next paper [Cioffi and McKee 1988] we 
shall reproduce the luminosity from the entire remnant at all 
times.) For a final comparison, we note how Chevalier (1974) 
found from his numerical simulation that the initial SNR 
energy in units of 1051 ergs follows £51 = 5.3 x 10 8 

^o12vs540rs,'pc’ where vs5 = vs/(105 cm s_1), and Rs pc is the 
radius in parsecs. Equation (3.27), with v¡ and evaluated at 
the beginning of the PDS stage, and with rjPDS = 1% , implies 

v* = K113- (3-35) 

Solving equations (3.34) and (3.35) for ES1 and writing the 
fractions as decimals for easier comparison, we have 

£51 = 6.8 X lO-8^16^35^6^161 , (3-3^) 

which is quite similar to Chevalier’s numerical result. 

IV. LATE-TIME BEHAVIOR 

When radiation has removed most of the interior thermal 
energy, we expect the pressure-driven snowplow to evolve into 
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a momentum-conserving snowplow with Rs oc t1/4 (Oort 

furthermore, at some point the SNR should merge with 
the ISM, losing its identity as a dynamic interstellar structure. 
Just as the “memory” of the pressure in the ST stage delays 
and modifies the PDS stage, giving an effective t] larger than f, 
so too our ODE results show that the memory of the PDS 
pressure delays the MCS stage. Indeed, near the end of the 
numerical simulation (i « 35 tPDS), we find that vst/Rs still 
exceeds T, and the solutions of the ODE in § IHh show that 
vs t/Rs is closer to 7 than £ even when t » 200 /pDS. As we shall 
see below, the remnant usually will have merged with the ISM 
long before this, so that for practical purposes the MCS stage 
does not occur in the ISM. 

We note two important physical limitations in applying our 
late-time mathematical results: hot gas must exist in the inte- 
rior, supplying the driving pressure, and the ambient pressure 
must remain negligible. The first criterion will be satisfied if 
there is gas in the remnant with a cooling time tcool which 
exceeds the age of the remnant and thermal conduction 
remains negligible. For a 1/2 cooling law, the cooling time is 
(Kahn 1976; McKee 1982): 

icool = 6.3 X 10 5 y-yr , (4.1) 

where xt = 2.3 and s = T3l2/n; the entropy per unit mass is 
(kB/fi) In s. (Some additional cooling by dust, and, for T > 
IO7*5 K, by bremsstrahlung radiation, reduces the actual 
cooling time below this value.) The advantage of this form of 
the cooling time is its invariance throughout the expansion 
experienced by the gas inside an SNR. The blast wave imparts 
an entropy s = 1.28 x 1010 v*8/n0 K

3'2 cm3 to the shocked gas, 
where vs8 = rs/(108 cm s 1). Since the shock velocity in the 
ejecta-dominated stage is t;ej 108-5-109 cm s-1, the 
maximum cooling time can be quite large. Thermal conduction 
in the interior limits s to 1.0 x lO11^14*/“4/7^-9/14 K3/2 cm3, 
where </>c is the ratio of the actual thermal conductivity to the 
Spitzer (1962) value (McKee 1982). Rather than defining the 
onset of the MCS stage in terms of an 77 = ¿ law, we say that it 
occurs at the cooling time of the hottest gas surviving in the 
remnant : 

¿MCS* 
¿MCS 
¿PDS 

= min [_6lv¡i,s 476 ] 

urv7£ir’(im<Ac)9/i4J 
(4.2) 

where the initial shock velocity of the blast is reji 8 = 
lOÇEsiAfej, o)1/2 in terms of the ejected mass Mej 0 in'solar 
units. For t > tMCS (and t < imerge as discussed below), the 
remnant expands at the momentum given by equation (3.25): 

R* = 4M(t* - ímcs*X1 - 0.779ímC°sÍ7) + Kcs* (MCS), 

(4.3) 
where RMCs* = ^*(rMcs*) is obtained from equation (3.26). 

The second criterion which the SNR must satisfy to validate 
our analysis of the late-time behavior is that the interior pres- 
sure must exceed the pressure of the ambient medium, or 
equivalently, that the blast wave velocity vs, must exceed the 
ambient isothermal sound speed C0 by a factor ß of order 
unity. Although the dissolution of the SNR occurs over a 
period of time, one can choose a particular ß to mark the 
beginning of the SNR’s merger with the ISM. We therefore 
wish to write the time and radius as a function of ß, and 
although less accurate at very late times than equation (3.26), 

we shall find that the early death of typical SNRs permits our 
use of the offset power law (3.32) for Rs. (In more extreme cases 
one should use the analytic ODE results, equations [3.17] 
which can provide a more accurate but specifically numerical 
answer for the merge time and merge radius under particular 
conditions.) Noting that vPDS = vs(tPDS) = 2RPDS/5tPDS, we find 

t merge* 
¿merge ^ /^PDsV°/7 

¿PDS 4 \ßC0J 

and 
\ ßCoe ) 

ion 
(4.4a) 

_ K merge _ ^ ^Sl^Q1 

Rpds \ ßc06 

3/7 
(4.4b) 

For C06 = Co/(106 cm s-1)%l (which is characteristic of 
interstellar gas with n0 » 0.1 cm-3 and also applies to a 
cloudy medium with a velocity dispersion of order 10 km s-1), 
and for F51 = 1, = 1, and ß = 2, the normalized merge time 
is 

¿merge* 57n¿0/49 . (4.5) 
Unless the ambient density is unusually large or the ejection 
velocity is unusually small, this time is smaller than the MCS 
onset time in equation (4.2). The maximum time that the SNR 
can evolve and remain in the PDS stage is 

imax = min (iMCS, tmerge). (4.6) 

For the numerical simulation in § II, we adopted an unreal- 
istically low value for C06 of 0.037 in order to eliminate the 
effects of the ambient medium; this corresponds to imer e ~ 
3900, far beyond the time at which the simulation wasTermin- 
ated (and large enough that our use of eq. [4.4] for imer eHt is 
quite approximate). If conduction is ignored, we have t*m* = 
¿merge as well. At this time Rmaxj|c - 11 from equation (3.26Tthe 
index rj = 0.26, and one can see from the graph that the 
momentum continues to rise, although slowly. The momentum 
has reached ^80% of the final value determined from equa- 
tion (3.25): 

(M^)finai = 4.8 X 105 
£13/14 

M0 km s 1 . (4.7) 

We also note that if the density is very low, the SNR will 
merge before entering the PDS stage, i.e, before cooling has 
become important. If we write this criterion in terms of the 
pressure of the ambient medium, where P4 = P/(104kB K 
cm 3), then the critical (hydrogen) density is 

/ d7/9d14/9\ 

”cr = a0038V^Éferjcm'3’ (4*8) 

and the maximum radius is 

/ E \1/3 
Rs, merge = J PC (¿merge* < 1) > (4.9) 

independent of the density (Cioffi 1985). 

V. CONCLUSIONS 
We can treat the evolution of a supernova remnant in a 

simple analytic manner because the complications revealed by 
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the details of our hydrodynamical simulation do not greatly 
affect the global propagation of the blast wave, although they 
may affect its appearance. For example, weak shocks left over 
from the reverse shock scatter repeatedly off the ejecta and 
scramble the thermal structure so much that the Sedov-Taylor 
similarity solution never obtains. We also observe that the 
formation of the dense shell is a complex hydrodynamical 
event which perhaps cannot be properly modeled in a one- 
dimensional calculation. 

Thus, with particular attention to the dynamics of the SNR 
during shell formation, we have introduced an improved offset 
power-law analytic solution, equation (3.32), for the pressure- 
driven expansion of a supernova remnant into a homogeneous, 
uniform medium. This solution matches our hydrodynamical 
simulation, showing a smoothly varying logarithmic derivative 
after the end of the Sedov-Taylor stage and giving the radius to 
within a few percent for 35 iPDS ^t> tPDS. We use an effective 
power-law exponent in the PDS stage of 0.30 rather than j. 

We have developed a simple pair of ordinary differential 
equations (3.17) which describes the evolution of a blast wave 
with radiative losses. With a suitable approximation for the 
interior pressure, we numerically integrated these equations 
and duplicated the kinematical behavior seen in our hydrody- 
namical simulation. Further approximations enabled us to 
obtain an analytic solution to these equations, equation (3.26), 

which matches the numerical solution to very late times. The 
late-time solution is particularly useful for determining the 
evolution of remnants in moderately dense media. These solu- 
tions describe the PDS stage of SNR evolution, which ends 
either when the internal driving pressure vanishes due to radi- 
ative cooling or when the remnant merges with the ambient 
ISM. In the first case, the remnant would enter the 
momentum-conserving snowplow stage with Rs oc i1/4. We 
have found that SNRs generally merge with the ISM before 
they can enter this stage, however. In a subsequent paper, we 
give the details of our cooling calculations and provide an 
analytic calculation of the luminosity from all stages, which 
again agrees well with hydrodynamical simulations. 
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