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ABSTRACT 
We find a new branch of equilibrium solutions for stationary accretion disks around black holes. These 

solutions correspond to moderately super-Eddington accretion rates. The existence of the new branch is a 
consequence of an additional cooling due to general relativistic Roche lobe overflow and horizontal advection 
of heat. On an accretion rate versus surface density plane the new branch forms, together with the two 
“standard” branches (corresponding to the Shakura-Sunyaev accretion disk models) a characteristically S- 
shaped curve. This could imply a limit cycle-type behavior for black hole accretion flows with accretion rates 
close to the Eddington one. 
Subject headings: black holes — stars: accretion 

I. INTRODUCTION 

The most important scale in accretion disk theory is the 
Eddington accretion rate, ME = LE/c2 = 1.7 x 1017M/M© 
g s_1. Thin accretion disks are consistent with accretion rates 
M Me, and thick accretion disks with M ME. We study 
here slim accretion disk models, with accretion rates M « ME. 
They differ from both thin and thick disks in several astro- 
physically important respects. 

The slim accretion disk models take advantage of simplifica- 
tion due to vertical integration as used for the thin disks, but at 
the same time they use the correct thick disk approach to the 
transonic part of the flow. The momentum and energy equa- 
tions for the slim disk, which we take from Paczynski and 
Bisnovatyi-Kogan (1981), contain more terms than the stan- 
dard Shakura-Sunyaev (1973) equations. The additional iner- 
tial term, vr dvjdr, describing the dynamical importance of the 
accretion velocity vr, and the horizontal pressure gradient 
term, p~1dP/dr are included in the momentum equation, while 
the advective, horizontal heat flux, vr T dS/dr, is added to the 
energy equation. The remaining equations are the same as the 
Shakura-Sunyaev ones. The pseudo-Newtonian potential 
(Paczynski and Wiita 1980) is used to describe the gravita- 
tional field of the central black hole. The inner boundary con- 
dition uses the fact that there is no viscous torque across the 
surface of the black hole, while the outer boundary condition 
states that at large radii the model of the flow agrees closely 
with that of Shakura and Sunyaev. The equations together 
with the boundary conditions and the regularity condition at 
the sonic point define an eigenvalue problem for /0, the specific 
angular momentum of matter crossing the horizon of the black 
hole. We have solved this eigenvalue problem numerically 
using a modification of the method described by Muchotrzeb 
and Paczynski (1982). 

Our models form a three-parameter family, with dimension- 
less parameters (a, m, m). Here m = M/Mq and m = M/Mc. 
The accretion rate is scaled in terms of Mc = ME16 rather 
than Me, because, for small accretion rates, 1/16 is the effi- 
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ciency of accretion in the pseudo-Newtonian potential. There- 
fore the total (radiative) luminosity of the disk, expressed in the 
Eddington units L/LE = r¡M/ME for small accretion rates is 
equal L/LE = M/Mc. Here 7/ is efficiency of accretion. Figure 1 
shows the total luminosity for our disk models (solid line) in 
function of the accretion rate. The dashed line represents the 
rate of energy generation by viscous stresses. The gap between 
these lines is due to heat lost through the inner disk radius : for 
higher accretion rates the heat trapped in matter becomes 
important, and the flow of matter induces nonnegligible advec- 
tive, horizontal heat flux. Thus, for higher accretion rates effi- 
ciency goes down and luminosity increases not in proportion 
to the accretion rate, but slower (Jaroszyñski, Abramowicz, 
and Paczynski 1980). Smaller efficiency means that the inner 
radius of the disk goes closer to the black hole. 

Sequences of models with different accretion rates, 0.001 
< m < 50, and with the two other parameters fixed at m = 10 
and a = 10-3, are shown in Figure 2. The relation between the 
accretion rate M and the surface density £ at a fixed radius R 
has a characteristic S-shape with the three branches (lower, 
middle, and upper) defining three regimes of accretion. On the 
lower branch the gas pressure Pg is greater than the radiation 
pressure Pr and the opacity is dominated by electron scat- 
tering. The cooling is provided by the vertical radiative flux. 
Accretion is stable against local thermal and viscous 
perturbations—as indicated by the positive slope of M = 
M(L). On the middle branch, the opacity and cooling mecha- 
nism are the same as on the lower branch, but Pg <4 Pr here. 
Accretion is thermally and viscously unstable—as indicated by 
the negative slope of M = M(L). The thermal instability is due 
to an insufficient dependence of the rate of radiative cooling 
Q- on the vertical thickness of the flow H. For radiative 
cooling Q~ & H, while for viscous heating ß+ « H2. Thus, 
overheating causes expansion and expansion overheating and 
a thermal runaway instability arises (Pringle, Rees, and 
Pacholczyk, 1973). The general criterion for thermal stability 
of the Shakura-Sunyaev model is (d \n Q+/d In H)z < (d In 
Q~/d\n H)z which, for this model, is equivalent to ß = Pg/(Pg 
+ Pr) > I. On the upper branch accretion flows cannot be 

described by the Shakura-Sunyaev model. Here Pg Pr and 
the cooling is provided by both vertical radiative flux and 
horizontal advection. Because for advective cooling ß" « H3, 
thermal runaway is avoided and the accretion flow is thermally 
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log m 
Fig. 1.—The total luminosity for slim disk models (solid line) in function of the accretion rate m. The dashed line represents the rate of energy generation by 

viscous stresses, m is a accretion rate in terms of critical accretion rate, Mc = 64nGM/cKes. All the models are computed with central black hole massM = 10Mo, 
viscosity parameter a = 0.001. 

stable (Abramowicz 1981). This corresponds to the positive 
slope of the M = MÇL) curve. 

The existence of the S-shaped M = M(L) curves connected 
with the ß > f instabilities and advective cooling was first sug- 
gested in 1985 by Abramowicz and Lasota in an unpublished 
paper (see also Abramowicz, Lasota, and Xu 1986). The 
analogy with the dwarf novae case (Smak 1984) is quite appeal- 
ing. It may indicate the possibility of quasi-periodic outbursts 

or switching between high and low states for flows with accre- 
tion rates which belong to the unstable middle branch of the 
M(E) curve. 

II. BASIC ASSUMPTIONS AND EQUATIONS OF THE MODEL 

Paczynski and Bisnovatyi-Kogan (1981) assumed that the 
vertical thickness of the flow, H(r), is much smaller than the 
corresponding cylindrical radius, H/r = e 1, and in each 

log 2 

Fig. 2.—The m(E) relation for slim accretion disk models for three fixed radii, r/RG = 4 (solid line), 5 (dashed line), and 10 (dotted line). £ is a surface density in 
gem-2. 
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equation kept only terms of lowest order in e. For the dimen- 
sionless ratios of the horizontal velocity component vr, and the 
sound velocity vs = (dP/dp)s

112 with the azimuthal velocity 
component, vv, they adopted « e2 and us/^ « e. Because 
the vertical velocity component vz is of the order of evr, they 
assumed that vz = 0. They also assumed dvr/dz = 0 and 
dvjdz = 0. Strictly speaking, these assumptions about the 
velocity held can be made independently of the assumption 
H/r <? 1 and one can obtain consistent physical models with 
H/r < 1. Therefore, the physical validity of the model is not 
directly connected with the small vertical thickness of the flow. 
However, the numerical method used here works for an accre- 
tion rate which is not too high, m < 50. Numerical difficulties 
are connected with the radial integral (iteration to get the 
eigensolution which crosses the critical point); they do not 
depend on the accuracy of the vertical structure. 

If the action of viscosity is due only to shear viscosity and 
the bulk viscosity can be neglected, the above assumptions 
assure that the only relevant component of the viscous stress 
tensor entering the Navier-Stokes equations for the slim disks 
is 

f d In £2\ 

where v is the kinematic coefficient of shear viscosity and Q = 
vjr is the angular velocity of rotating matter. According to the 
Shakura and Sunyaev (1973) viscosity prescription, 

T<pr=-ocP, (2) 

where a = const is a dimensionless, phenomenological vis- 
cosity parameter and the pressure is taken at the equatorial 
plane, z = 0. According to equation (2) the viscous torque 
across a cylindrical surface r = const is g(r) = 4nr2ocPH. Using 
equation (11) this can be written as g{r) = Mr{P/p)/B2vr. 
Because vr(RG) = oo, one has g(RG) = 0, i.e., there is no viscous 
torque across the surface of the black hole. Although this gives 
no additional restriction, we shall call the fact that g(RG) = 0 
the inner boundary condition. It will be used later for the inte- 
gration of the angular momentum balance equation. General 
relativistic effects are included in our purely Newtonian treat- 
ment by using the pseudo-Newtonian potential 

'F = — 
GM 

r-rg
9 (3) 

where R = (r2 + z2)1'2 and RG = 2GM/c2 is the gravitational 
radius of the central black hole which has the mass M. The 
self-gravity of the accretion disk is totally neglected. The radial 
component of the gravitational force on the equatorial plane 
z = 0 can be written conveniently as /K

2A*3 or QK
2r, where /K 

and Qk are the specific angular momentum and angular veloc- 
ity on Keplerian, circular orbits in the pseudo-Newtonian 
potential : 

and 

fiK _ (f)'“ (4) 

lK = {GMRyi2{\-RG/R)-' . (5) 

The stable Keplerian orbits, with dlJdR > 0, have radii 
greater than the radius Rm of the marginally stable orbit 
located at RMS = 3RG, and the binding energy of the Keplerian 
orbits, EK = X¥ + (Qk/k)/2, changes sign at RMB, the radius of 

the marginally bound orbit. Orbits with radii R < RMB = 2RG 
are unbound. The standard equation of state for a mixture of 
perfect gas and radiation is assumed : 

P = (6) 

where p is the mean molecular weight (p = 0.6 in what follows). 
The first law of thermodynamics is used to calculate entropy 
gradient in terms of density and temperature gradients : 

(7) 

All of the quantities in our model are defined on the equato- 
rial plane. The equations containing only thermodynamical 
quantities or their functions (equation of state, first law of 
thermodynamics, viscosity prescription, opacity law) refer to 
the equatorial plane with no change in form. The same is true 
for the momentum equations in r and (p directions which 
contain no z derivatives : 

“ “7~ - (ß2 - ßK2)r + tV -j1 = 0 . p dr ^ ' r dr (8) 

and 

M(l - l0) - g(r) - g(Ra) = 4nr2HaP . (9) 

In the derivation of the last equation the inner boundary con- 
dition was used. The equation of hydrostatic equilibrium in the 
z-direction, the continuity equation, and the energy equation, 
which contain z derivatives, are all integrated vertically. As the 
vertical disk structure is known only approximately, the results 
of the integration contain some correcting factors Bh all of the 
order of unity. They convert the average vertical values of the 
z-integrated quantities to their equatorial plane values used in 
our model. In particular, the equation of hydrostatic equi- 
librium in the z-direction and the continuity equation read : 

Qk
2H2 = - , #! = 6 (10) 

P 

M = B2 4nrHpvr, B2 = 0.5 , (11) 

while the energy equation is 

, Y dn\ . ds 
- U — — ) + B3 MT — = 4nrF~ , B3 = 0.67 . (12) 

In the energy equation the term connected with the horizontal 
flux of radiation has been neglected, since it is always much 
smaller than the other terms and, in particular, much smaller 
than the vertical radiation flux, F~ : 

F~ b2^. 2 KP 3H 
(13) 

The last formula assumes that the effective optical depth in the 
vertical direction, 

= (KesKfi)
ll2(Z/2) (14) 

is greater than one, and therefore radiation transfer can be 
treated in diffusion approximation. Here Kes and k{{ are the 
electron scattering and free-free opacity coefficients, and Z = 
2Hp is the surface density. In the numerical calculations the 
opacity coefficient, k = 7c(p, T) was taken from Cox and 
Stewart (1970). 
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We have adopted values of Bi from Paczynski and 
Bisnovatyi-Kogan who estimated them using a polytropic 
equation of state and averaged, somewhat arbitrarily, the 
n = 3 and n = 3/2 cases. The solution depends only very 
weakly on a particular choice of B,. 

From equations (8) and (11) one gets 

d In vr as
2(l + d In H/d In r) + v0

2(l - QK
2/^2) n ^ 

din r v2-as
2 

where as is a “ sound velocity ” defined by 

Only for isentropic flows is vs = as. The numerator and 
denominator of the right-hand side of equation (15) vanishes at 
the same sonic radius rs, where 

tvVs) = asVs) > (17) 
and 

Because d In H/d In r > 0, it follows (Abramowicz and Zurek 
1981) that at the sonic radius the angular velocity is smaller 
than the Keplerian value. 

III. CONSTRUCTION OF THE MODEL 

There are four independent first-order derivatives in the 
problem: two in equation (8) and two in equation (12). 
However, the number of independent integration constants 
which uniquely determine a regular transonic solution is not 
four, but three, because of an extra algebraic condition (18) at 
the sonic radius. These three independent integration con- 
stants may be connected with the physical conditions at very 
large radii where we assume that the solution agrees very 
closely, although not identically, with that of Shakura and 
Sunyaev. In the Shakura-Sunyaev approximation to the full 
problem one neglects the horizontal pressure gradient dP/dr 
and inertial force vrdvr/dr in equation (8) and the entropy gra- 
dient in equation (12). Equation (8) reduces to / = /K or Q = 
Qk. Putting this into the already reduced equation (12) elimi- 
nates the last derivative from the problem, which becomes 
purely algebraic. The location of the inner edge in the Shakura- 
Sunyaev model is given by rin = 3RG. It is assumed that in this 
model g(rin) = 0. Therefore, the constant l0 = /k(3Rg) = 
(%)3,2Rgc. The algebraic equations which determine the 
Shakura-Sunyaev solution are nonlinear and we have solved 
them numerically. However, when the opacity is dominated by 
electron scattering, i.e., /c(p, T) = fces = 0.34 cm2 gT1 and the 
total pressure is dominated either by gas, or radiation, the 
following asymptotic form can be used: 

Pg < Pr: Z[g cm"2] = 6.232^"2^1/2^~1a-1m-1 , (19) 

Pg > Pr: Z[0 cm“2] 

= 3.617 x 105<íí“1/5^“1/5^“2/5m1/5#'3/5a“4/5m3/5 , (20) 

and 

These formulae provide the Shakura-Sunyaev solution for the 
surface density X in the pseudo-Newtonian potential (see, e.g., 
Abramowicz 1987). The Shakura-Sunyaev model is artificially 
singular at r = 3RG. This is caused by incorrect treatment of 
the flow close to rin, as first noticed by Stoeger (1976). Slim disk 
models are similar to the thick ones at small radii, and they 
have no singularities in rin. 

Our method of constructing a regular solution with 
“almost” Shakura-Sunyaev outer boundary conditions 
follows, with only minor modifications, that of Muchotrzeb 
and Paczynski (1982). We recall here only the most important 
features of it, but not the technical details of the numerical 
code. 

First, the values of the central mass M and viscosity param- 
eter a are specified. Next, a value of M is chosen, and then, with 
these values of M, a, M we construct the Shakura-Sunyaev 
solution. This solution is used to determine an initial estimate 
of the three integration constants needed to start integration 
from rout downstream. The fourth has already been fixed—it is 
M. However, for a regular solution, the three integration con- 
stants cannot all be given by their Shakura-Sunyaev values, as 
they are not independent: the regularity condition at the sonic 
radius (eq. [18]) gives an implicit relation between them which 
is not known a priori. Thus, the initial choice of the three 
constants must be adjusted, until, for a particular set, a regular 
transonic solution is found. In the actual numerical procedure 
instead of adjusting the three outer boundary conditions (i.e., 
the three integration constants), we change only the integration 
constant /0, the angular momentum of matter at the surface of 
the central black hole. It appears in equation (9) and, as we 
explained earlier, is the eigenvalue of the problem. The above 
procedure leaves two unspecified constants in the problem, 
connected with differences between the functions at the outer 
radius rout and their Shakura-Sunyaev values. However, the 
solution at small radii is almost completely insensitive to these 
remaining degrees of freedom : when the outer boundary con- 
ditions are close to the Shakura-Sunyaev ones, the regular 
transonic solution at small radii is almost uniquely determined 
by M, a, and M. The value of the outer radius rout where the 
outer boundary conditions are imposed does not influence the 
solution at the small radii (Fig. 3). 

IV. THE S-CURVES 

The most important results found in this paper is the existence, 
at any fixed radius, of an S-shaped relation M(£). We present 
this first for a fixed radius, r = 5RG, and then for all radii 
rs<r < rout. We choose the first particular value of r = 5RG 

because most of the heat is produced close to r = 5RG (see Fig. 
12) and therefore this region is most relevant for the observed 
properties of the disk. 

Figure 4 shows the relation between the accretion rate M 
and the surface density E at r = 5RG for models with a = 0.001 
and M = 10 M0. The solid curve represents our full transonic 
solution, and the dashed one shows the corresponding 
Shakura-Sunyaev approximation. The two dotted lines, 
labeled by (19) and (20), are the analytic asymptotic solutions 
for radiation-dominated pressure, given by equations (19) and 
(20). The meaning of the third dotted line, labeled by (29), will 
be explained later. The two circles show the models computed 
by Muchotrzeb and Paczynski (1982). The figure quite clearly 
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Fig. 3.—The angular momentum distribution for the model with m = 50 and boundary conditions given in rou, = 102f?e (dashed line) and 105RG (dotted line). 
Solid line represents the Keplerian angular momentum. Angular momentum is given in (GMRa)112. 

indicates that both the lower and middle branches of the 
S-curve are very well described by the Shakura-Sunyaev 
approximation. Thus the physical properties of the accretion 
flows belonging to these branches, in particular the stability 
properties, may be understood in terms of the Shakura- 
Sunyaev model. Stability properties of the lower and middle 
branch models have been already summarized in the Intro- 
duction. We have recalled there the classical result that the 

positive slope of the M(£) curve corresponds to stable models 
and the negative slope—to unstable models. We will not 
discuss further details of these models here but turn our atten- 
tion to the upper branch of the S-curve. Obviously this branch 
cannot be approximated by the Shakura-Sunyaev model. 

General relativistic effects in the gravitational field of a black 
hole, modeled here in terms of the pseudo-Newtonian potential 
(3), cause a characteristic behavior of the equipotential surfaces 

log I 
Fig. 4.—The m(L) relation for r = 5RG. Full transonic solution (solid line), Shakura-Sunyaev approximation (dashed line), analytic asymptotic solutions for 

gas-dominated (dotted [20] line) and radiation-dominated pressure (dotted [19] line), approximation for the upper branch slope (dotted [29] line). 
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r/RG 

Fig. 5.—The equipotential surfaces (solid lines) and the surface of the disk model with m = 10 (dashed lines). Cross indicates the position of the sonic point. 

close to the inner edge of the disk, defined as the smaller of the 
two roots of the equation 

Krm) = k(rj . (25) 

The larger root corresponds to the physical center of the disk. 
On the equipotential surfaces, the total potential (gravitational 
plus centrifugal), defined by 

W{r, z) = 'P(r, z) + J l2(r)r~3dr (26) 

is constant. In Figure 5, the equipotential surfaces (solid lines) 
are shown for a particular model with M = 10MC. The surface 
of the disk is marked with dashed lines. The location of the 
sonic point rs is indicated by a small cross. Note that rs < rin, 
in agreement with our comment in connection with equation 
(18). One of the equipo tendais, W = WR, crosses itself at r = 
rin. When rin < 3RG a characteristic cusp is formed at the cross- 
ing. If the surface of the disk, W = Ws, slightly overflows the 
critical equipotential W = WR, called the Roche lobe, then the 
mechanical equilibrium is slightly destroyed, causing mass loss, 
and consequently also a heat loss. The physical picture is ana- 
logous to Roche lobe overflow in close binaries. In the case 
when rin > 3RG, no cusp is formed, and the Roche lobe mecha- 
nism does not operate. The heat loss rate close to the cusp has 
the behavior 

Q- *H3 . (27) 

Exact formulae for mass loss and cooling due to the Roche 
lobe overflow mechanism have been given by Abramowicz 
(1986), but for our present discussion the approximate version 
(27) is sufficient. The criterion mentioned in the Introduction 
for thermal stability of Shakura-Sunyaev disk models states 

(d In Q~\ fd In Q+\ 
\d\nH Jz \d\nH Jx 

(28) 

Because for the standard viscosity law (2) the right-hand side of 
this inequality is equal to 2, and for Roche lobe overflow 
cooling the left hand side is equal to 3, according to equation 
(27), the inequality is fulfilled, which means that the region of 
the disk cooled by the Roche lobe overflow mechanism is ther- 
mally stable. 

For small accretion rates the stabilized region lies in the 
immediate vicinity of the inner edge, but for M > Mc the size 
of this region is substantially greater, as demonstrated by the 
following argument. Consider a fluid element located at a dis- 
tance Ar from the inner edge of the disk, in the unstable part. 
The element expands vertically in the thermal time ith = In/iloc 
because of the overheating caused by the thermal instability. 
At the same time it is traveling downward in a radial drift time, 
idr, which, in the Shakura-Sunyaev model, equals the viscous 
time, ivis = tth(H/r)~2. If the element is able to arrive at r = rin 
before it expands the distance H, the Roche lobe overflow 
mechanism will cool the element, and the instability will be 
surpressed. Therefore, in the stabilized region ivis * t.h, or 
H « r. In the above argument the expressions for ith and ivis 
have been taken from the Shakura-Sunyaev model, which 
assumes a Keplerian distribution of angular momentum. 
However, for the disks with sufficiently high accretion rates the 
angular momentum at small radii is not Keplerian, but almost 
constant (see Fig. 9). Thus, less viscous reprocessing of the 
angular momentum is needed and the element travels the dis- 
tance Ar in a time shorter than ivis. This simple argument 
correctly predicts that the Roche lobe overflow stabilization is 
important for flows with accretion rates M æ Mc or greater, 
and therefore, that the S-curve should bend at approximately 
M « Mc. The Roche lobe overflow cools down globally the 
whole innermost part of the disk. Locally, however, at some 
radius r < 5RG, the advective flux Fadv could either cool or 
heat the flow. At higher accretion rates the advective flux in the 
more distant parts of the disks is always an important cooling 
mechanism (Fig. 6). The slope of the upper branch of the 
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Fig. 6.—The ratio of the advective and radiative fluxes as a function of radius for three accretion rates m = 1 (solid line), 4 (dashed line), 10 (dotted line) 

S-curve can be estimated from an equally simple argument. 
Assuming that radiation pressure dominates and that the rota- 
tion is Keplerian, we replace the entropy gradient term in the 
energy equation (12) by 8P/rp, using equation (7) and dS/ 
dr « S/r. All of the equations are now linear algebraic. The 
solution for the surface density gives X = /(r)a_1M, where/(r) 
is a function of r, known with accuracy up to a constant factor, 
the value of which is rather poorly estimated in this approx- 
imation. However the slope of the M(Z) curve on the upper 
branch is exactly recovered : 

ln X = const + In m — In a . (29) 

This relation is shown in Figure 4 by the dotted line labeled 
(29). 

At the radius r = 5RG the accretion rates at the lower 
(labeled B) and upper (labeled A) turning points of the S-curve 
are 

Mb(5Rg) = 0.09Mc , Ma(5Rg) = 4.5MC . (30) 

Figure 7 shows the accretion rates at the turning points for 
different radii (solid lines marked A, B). In the same figure the 
dashed lines are those of ß = const. They are labelled by the 
values of ß. The dotted line represents the location of the sonic 
point in the models with different accretion rates. 

With the exception of a small region at r æ rs the MB(r) curve 
agrees with that for /? = f for all r as it should in the Shakura- 
Sunyaev model. In particular, for r = 6ARG it has a minimum 

Mmin = 0.1Mc (31) 

predicted by the Shakura-Sunyaev approximation for the 
MB(r) curve gives an analytic expression (Abramowicz 1987) 

m(r) = 8.796 x 10“1/8 . (32) 

This diverges at r = rin = 3RG, but this is an artifact of the 
Shakura-Sunyaev model, connected with the improper treat- 

ment of the flow close to the inner edge. Accretion flows with 
M < Mmin are everywhere stable against the /? < f instability. 

The location of the sonic point changes from the radius of 
the marginally stable orbit RMS = 3RG for small accretion 
rates, to the radius of marginally bound orbit RMB = 2RG for 
very high accretion rates. This is a typical behavior for thick 
accretion disks, which have very low values of a < 0.001. (See, 
e.g., Madau 1988 or Begelman, Blandford, and Rees 1984 for a 
discussion of the limits on a in thick disks.) Kozlowski, Jar- 
oszyñski, and Abramowicz (1978) proved, using an exact 
analytic method, that for a = 0 the inner edge of a thick disk is 
always located between RMS and RMB, while other authors (e.g., 
Paczynski 1980 or Rózyczka and Muchotrzeb 1982) who used 
numerical thick disk models with a 1 found a behavior 
similar to that shown in Figure 7. However, for accretion flows 
with higher values of a the situation is remarkably different. 
We discuss this point in § VI. 

V. DETAILS OF THE SLIM DISK MODELS 

Figure 2 in the Introduction shows how the surface density 
X depends on accretion rate for three fixed radii, r/RG = 4, 5, 
10. The behavior at other radii is similar. 

To discuss other properties of slim disks we have chosen five 
models with 

m = 0.01, 0.1, 1, 4, 10 , 

located at characteristic points of the S-curve. (The three 
branches and two turning points). Figure 8 shows how the 
thickness of the flow depends on radius for these five accretion 
rates. The initially thin disk (H/R 1) becomes thicker with 
increasing accretion rate but always remains slim, i.e., the 
assumption H/R < 1 is always satisfied. 

The question of how to specify the correct boundary condi- 
tions at large radii is not an easy one. Figure 9 clearly indicates 
that with increasing accretion rate the angular momentum 
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log ( r / Rg) 

Fig. 7.—The location of the turning points on the S-curves as a function of radius (solid lines labeled A and B). The dashed lines indicate the lines of the constant 
ß. The dotted one represents the location of the sonic points. 

differs more and more from the Keplerian distribution at both 
small and large radii. The tendency of the angular momentum 
distribution to become flatter with increasing accretion rate, 
evident in our numerical models, was found, on general theo- 
retical grounds, by Begelman (1978) in the thick disk case. The 
agreement suggests a continuous path from slim to thick disks 
along the sequence of models with increasing accretion rate, 
correctly placing the slim disks between the thick and thin 
ones. However, this path cannot be completed in practice with 

the actual method used in our paper, because the method fails 
for M > 50MC. 

We have already discussed the meaning and the physical 
importance of the points rc and rin at which /(r) crosses the 
Keplerian distribution, /K(r). The location of these points, and 
the value of /0, the angular momentum of matter at the black 
hole surface, are all shown in Figure 10 as functions of the 
accretion rate. For small accretion rates, l0 « /MS, and rin « 
Rms = 3Rg as in the standard Shakura-Sunyaev model. The 

Fig. 8.—The thickness of the flow for the different accretion rates: m = 0.1 (dashed line), 1 (dotted line), 4 (dash-dotted line), and 10 (solid line) 
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bû 
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r/RG 

Fig. 9.—The angular momentum distribution for m = 1 {dashed line), 4 {dotted line), 10 {dash-dotted line), and the Keplerian one {solid line) 

precise location of rc for small accretion rates cannot be cor- 
rectly estimated in the standard model, because it depends 
critically on the details of heat and angular momentum 
balance which are not treated properly in this model; the 
curves l(r) and /K(r) are almost parallel close to r = rc. For high 
accretion rates, rin » RMB = 2RG and l0 « /MB, in excellent 
agreement with the thick disk theory. Because, as we have 
already mentioned, for high accretion rates /(r) « const at 
small radii, from the above described behavior of rin and l0 it 
follows that, for high accretion rates, rc should be «5RG, 

which can clearly be seen to be the case in our numerical 
models. Figures 11 and 12 show the variation of temperature 
with radius and also the closely connected variation of the 
vertical radiation flux F~. These curves are very similar to 
those familiar from the Shakura-Sunyaev models. In particu- 
lar, the maximum value of the temperature, Tmax is reached at a 
small radius, between 4RG and 6RG, with the precise value 
depending on the accretion rate. The function Tmax(M) is 
shown in Figure 13 by the solid line. The Shakura-Sunyaev 
model predicts log Tmax « ¿ log M. Our models were con- 

r/RG 

Fig. 10.—The location of rin, rc, and /0 as a function of accretion rate 
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log (r/RG) 

Fig. 11.—The temperature distribution for models with m = 0.01,0.1,1, and 10. The boundary of a region where Teff < 1 is shown by the dashed line. 

structed for Teff >1; cf. equation (14). This condition was 
always checked a posteriori, and it was found to be true almost 
everywhere in all the models, with exception of a small region 
shown in Figure 11 (left from the dashed line). 

VI. DISCUSSION 
In this section we discuss only the assumption about the 

magnitude and form of the viscosity, because only this assump- 
tion is really restrictive. Modificiations of it introduce qualitat- 
ive changes in the physical properties of the models. The other 

assumptions and approximations are relevant for accuracy, 
but not for physics. 

a) The Magnitude of (x in Shakura-Sunyaev Viscosity 
Prescription (2) 

The fact that transonic accretion flows with small and large 
a are qualitatively different was noticed by Muchotrzeb (1983) 
and has been discussed by many authors (e.g., Matsumoto 
et al 1984). In Figure 14 we show the location of the sonic 
point as a function of the accretion rate for a = 10~4, 

0.25 0.75 1.25 1.75 

log (r/RG) 

Fig. 12.—The radiative flux from the disk surface as a function of radius for m = 0.01,0.1,1, and 10 
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Fig. 13.—The accretion rate-maximum temperature relation 

5 x 10“2, 10“^ and 0.5. Feed small a, equal to 10“4, the 
typical behavior for the thick accretion disks is evident: with 
increasing accretion rate, the sonic point moves from RMS 
toward RMB (cf. Paczynski 1980 and Rózyczka and Mucho- 
trzeb 1982). For the highest value of a, equal to 0.5. the sonic 
point moves with increasing accretion rate in the opposite 
direction, while for the intermediate value, a=10_1, the 
behavior is more complicated, but for both small and large 
accretion rates it is similar to that for a = 0.5. The physical 
reason for these two different behaviors is explained in 
Figure 15 which compares the Keplerian angular momentum 
distribution (dotted line) with the distributions in two accretion 

disk models (solid lines): one with small a = 0.001 and the 
other with high a = 1. In the low viscosity case, the l(r) curve 
crosses the Keplerian one in two points corresponding to the 
physical center rc and the inner edge rin of the disk (in addition 
rin < 3Gg). It is well known from the thick accretion disk 
theory (e.g., Abramowicz, Calvani, and Nobili 1980) that in this 
case the Roche lobe overflow mechanism operates at r = rin. 
Accretion onto the central object is due to a slight violation of 
mechanical equilibrium and needs no help from viscosity. In 
the high-viscosity case, the angular momentum is everywhere 
sub-Keplerian, the Roche lobe overflow mechanism does not 
operate, and accretion is due only to viscous processes. The 

Rs / Rg 

Fig. 14.—The location of the sonic point in function of the accretion rate for a = 10 ~4,0.05,0.1, and 0.5 
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Fig. 15.—The comparison of the Keplerian angular momentum distribution (dashed line) with the distribution in the models with a = 0.001 and 1 (solid lines), 
belonging to the two types of accretion. 

same is true if l(r) crosses the Keplerian curve, but all the 
crossing points are at r > 3RG. Muchotrzeb-Czerny (1986) 
found that when the outer boundary conditions are very close 
to Shakura-Sunyaev ones (in the sense discussed in § III), then, 
which of the two different types of accretion actually occurs 
depends on whether a is greater or smaller than a critical value, 
acrit Ä 0.01. She also found that in the high-viscosity case (the 
second type of accretion flow), the solution is not always 
unique. For this reason the lines on the right-hand side of 
Figure 14 should really be replaced by stripes. If the magnitude 
of the viscosity parameter, fixed in this paper to be a = 0.001, 
was increased to put the models into the second regime, the 
whole physical picture described here would change. 

b) Different Viscosity Prescriptions 
In this paper we have used the original Shakura-Sunyaev 

viscosity prescription (2) which assumes that the only relevant 
component of the viscous stress tensor, Tr<p, is proportional to 
the total pressure. For strictly Keplerian accretion disks this is 
equivalent, with accuracy up to an irrelevant constant factor, 
to another phenomenological viscosity prescription 

v = ocvsH . (33) 

However, when the rotation law differs from the Keplerian 
one, the two viscosity prescriptions lead to physically different 
models. The formal reason for this is that the original Shakura- 
Sunyaev viscosity prescription suppresses the derivative dQ/dr, 
in Tr(p. Thus, with the viscosity prescription given by equation 
(33) there is one more differential equation in the problem. 
Abramowicz and Kato (1987) found that in the case of isother- 
mal accretion with the viscosity prescription (2), the sonic point 
is either of the saddle or the nodal type, while for the viscosity 
law given by equation (33) only the saddle type is allowed. The 
different topological types of the sonic (critical) points are con- 
nected with stability and are thus physically relevant. Another 
widely used variation of the original Shakura-Sunyaev vis- 
cosity law assumes that = (xPg, i.e., that the viscous stress is 

proportional to the gas pressure rather than total pressure. It is 
known that in this case the ß <j instability is absent, which 
implies that the MÇL) curves may have shapes very different 
from those presented here. 

The viscosity coefficient a may strongly depend on the accre- 
tion rate due, for example, to the Papaloizou and Pringle 
(1984, 1987) instability, which for very small accretion rates 
may produce strong turbulence and thus viscosity, but for 
higher accretion rates switches off (Blaes 1987). Assume that 
the viscosity coefficient depends on the accretion rate through 
the purely phenomenological relation 

a = a0 exp ( —&M/MC) . (34) 

The Shakura-Sunyaev models (k = 0) and their modifications 
(k = 0.1,1) are shown in Figure 16. 

Although all of the above examples indicate clearly that the 
exact shapes of the S-curves depend strongly on the viscosity 
assumption, they should not be taken as a case against the 
generality of the existence of the S-shaped relation M(E). In the 
innermost part of accretion disks around black holes (which 
belong to the first type of transonic accretion) this relation is 
due, as we have explained in § IV, to the relativistic Roche lobe 
overflow mechanism and strong advective cooling connected 
with it. The mechanism operates independently of viscosity. 
Thus, the existence of the S-shaped M(E) relation does not 
depend on the viscosity assumption, even if the details of par- 
ticular models are very sensitive to it. 

c) The Mass of the Central Black Hole 
In this paper we consider only the case m = 10, which is 

relevant to the Galactic black holes. Physical processes dis- 
cussed here do not depend on a particular value of m, however. 
The slim accretion disks around supermassive black holes, rel- 
evant for active galactic nuclei, will have the same general 
properties. The scaling from small to large masses is nonlinear, 
and to get the quantitative description of slim disks in the case 
of m > 106 one must repeat the calculations presented here. 
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VIL CONCLUSIONS 

In this paper we have discussed the role of horizontal pres- 
sure and entropy gradients in accretion disks with moderate 
super-Eddington accretion rates (slim accretion disks). We 
have found that these gradients are very important in the 
innermost, transonic part of the disks orbiting black holes. The 
most astrophysically relevant effect produced is a strong hori- 
zontal heat flux, which changes the energy balance in the disk. 
Due to this advective flux, the well-known /? < f instability 
disappears when the accretion rate is high enough. For this 
reason the relation between accretion rate and surface density 
is characteristically S-shaped. The S-shaped M(L) relation in 
the case of accretion disks in dwarf novae plays an important 
role in the explanation of the outbursts (see, e.g., Smak 1984). 

Similar nonstationary, quasi-periodic behavior should be 
expected also in the innermost, transonic part of the slim accre- 
tion disks. 
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