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ABSTRACT 

We derive general formulae for the computation of the thermodynamic properties of a partially ionized 
(and/or dissociated) multicomponent gas in terms of second derivatives of the free energy with respect to tem- 
perature, volume, and occupation numbers. For the free energy used in our previous work we give explicit 
analytical expressions for all derivatives required to construct the thermodynamic quantities. 

Representative results for several different thermodynamic properties of a hydrogen-helium plasma with 
iV(He)/iV(H) = 0.10 are presented as color plots, which make the qualitative behavior of the results readily 
comprehensible over a large temperature-density domain. 
Subject headings: atomic processes — equation of state — stars: interiors 

I. INTRODUCTION 

At the temperatures and low-to-moderate densities characteristic of stellar envelopes, the free-energy minimization technique 
(Graboske, Harwood, and Rogers 1969; Fontaine, Graboske, and Van Horn 1977) provides a powerful formalism for the computa- 
tion of the equation of state, and associated thermodynamic quantities, of stellar material. Such thermodynamic quantities are often 
needed in stellar evolution calculations, particularly when convection is present. They also appear prominently m linear pulsation 
analyses. In both of these applications it is desirable to have smooth variations of any thermodynamic property as a function of p 
and T. This requirement is even stronger for certain helioseismological applications where one needs the derivatives of thermodyna- 
mic quantities. In what follows we describe a method by which the astrophysically interesting thermodynamic properties themselves 
can be evaluated from analytical formulae, resulting in data that are smooth enough to survive a numerical differentiation to give 
the data needed for helioseismology with reasonable accuracy. , f , .... 

In previous papers we have developed a completely analytical (and differentiable) expression for the free energy of a partially 
ionized gas, in which smooth and differentiable internal partition functions are obtained through use of an occupation probability 
formalism (Hummer and Mihalas 1988, hereafter Paper I; Mihalas, Däppen, and Hummer 1988, hereafter Paper II). We showed in 
Paper II that in the low-density regime the computed ionization fractions approach those obtained from a Saha equilibrium based 
on internal partition functions that use all atomic levels in the dataset. In the high-density regime the ionization fractions approach 
a Saha equilibrium obtained using only ground states in the internal partition functions, until finally pressure ionization or 
dissociation occurs at some characteristic density and the two sets of results diverge from one another. Our formalism can describe 
pressure dissociation of molecules in a neutral gas and pressure ionization of atoms and ions in an ionized plasma reasonably well, 
although it might already be beyond its domain of applicability. But to obtain pressure ionization of atoms in a neutral gas at 
relatively low temperatures and very high densities we were forced to modify the formalism by introducing an additional free energy 
term patterned after that used in calculations of interacting hard spheres. j 

The purpose of this paper is threefold: (1) we describe a method for deriving general expressions for all thermodynamic quantities 
of interest (e.g., specific heats) in terms of derivatives of the free energy; (2) for our adopted free energy we give explicit analytical 
formulae for all derivatives required in the evaluation of these quantities; (3) we show some representative results for a hydrogen- 
helium mixture. 

II. ANALYSIS 

All second-order thermodynamic properties of a gas (e.g., specific heats, adiabatic exponents, compressibility, thermal expansion 
coefficient, etc.) can be computed from given values for any three of them (Cox and Giuli 1968, pp. 211-214). A convenient choice for 
the basic three is the specific heat at constant volume 

(1) cv = 
dS\ 
dTjy 

where S is the entropy of the gas, and the first derivatives of the gas pressure with respect to temperature and density 

Xt — 
d In p 
a ln T 

(2) 
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Xp 
(s In p\ 

ln pJT ■ (3) 

Noie tbcit in these partial derivatives the “external” concentration variables (total numbers of nuclei of each chemical species) are 
kept fixed, but “internar variables (ionization degrees) are allowed to vary in the differentiation process. To illustrate the 
procedure, we derive an explicit expression for cK. 

Express the free energy F as a function of T, V, and a set of reaction parameters (Reichl 1980, p. 72) : 

A — (2.!, À2,Xn), (4) 

where n is the number of chemical reaction equations (stochlometric relations) describing the system. These parameters are defined 
such that an ionization-recombination (or dissociation-recombination) event changes one of them by one unit. Thus the stochlo- 
metric constraints are automatically incorporated by use of these parameters, which is very convenient. Then for each choice of 
(T, V) the free energy F(T, F, A) is minimized with respect to variations in A to find the equilibrium values Aeq(T, V) from 

/i[T, F, Aeq(T, F)] = = 0 . 
¿-¿“'(TW) 

To calculate cv we can use the relation S = -(ôF/ôT)v to write 

(5) 

T (d2F\ 

However, in evaluating equation (6) we must be careful to remember that the derivative is at constant F, but not at constant A 
because Aeq is a function of T and F. Thus to clarify the analysis, define the new function 

F(T, V) = F[T, F, Aeq(T, F)] , (7) 
so that 

Then 

Cy — 
T / d2F\ 

P \ST2)V ■ 

SF\ =(dF\ (dF\ fdF\ 
ÔTjy \dT/ yj {óXjT¡y\óT)v [dTjy,’ 

where the second step follows from equation (5). Further, 

/ d2F \ fdx^\ 
\dT2Jy {dT2)^,+ W^aAv er Jy ■ 

To calculate (dAeq/dT)K, we differentiate equation (5) with respect to T, obtaining 

whence 

(—) \8XdT Jy WAdTjy 
= 0, 

(^l1\ = ^2fVY 82 f ^ 
\ÔTjy [dl2) [dTdlJy- 

All quantities on the right-hand side of equation (12) are to be evaluated at A = Aeq 

Combining equations (8), ( 10), and ( 12), we obtain finally 

By a similar analysis starting from p = -(dF/dV)i T,we have 

and 

Xy 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14a) 

(14b) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

33
2.

 .
26

1D
 

No. 1, 1988 EQUATION OF STATE FOR STELLAR ENVELOPES 263 

whence 

and 

Xt = 

Xp = 

T T/ 82F \ _( 82F 
p lyerdv), \ôvdx)T\d3i2JT_v\dTdxJv 

ô2F Y d2F \ 

^FV1 / d2F \ “ 
\dVdk )T\dk2)TjV\

dv dk)T_ 

(15) 

(16) 

Explicit analytical expressions for (d2F/dT2), (d2F/dT dV), and (d2F/dV2) are given in the Appendix. Notice that equations (13), 
(15), and (16) contain derivatives with respect to reaction parameters, whereas the free-energy minimization procedure of Paper II 
provides derivatives with respect to occupation numbers. The former are easily derived from the latter via a transformation matrix 
A: 

ÔF drij dF _ a dF 
dk: ÔL dri; lj dli: ' 

(17) 

or 

dk dn ‘ 

(In eq. [17] the Einstein summation convention is used.) Similarly 

= A • Í—) \0TdXjy 

= A 
dVdX)T 

and 

S2F 
dk2 = A 

T,V 

\dT dnjy ’ 

Í—) \dVdnJT’ 

dn2)., 

(18) 

(19) 

(20) 

(21) 

Explicit analytical expressions for all of the derivatives appearing on the right-hand sides of equations (19)-(21) are given in the 
Appendix. 

It is straightforward to choose appropriate reaction parameters and to construct the transformation matrix. Thus for hydrogen 
(which can both ionize and form molecules) one takes 

Nh2 
= ^ih » 

Nh2+ 
= k2n , 

Nh~ = k3H , 

Np — ¿4H — ^2H > 

Nh — aH Nu 221H k2H — ^3H — 

(22a) 

(22b) 

(22c) 

(22d) 

(22e) 

Here Ntot is the total number of nuclei in the gas, and aH is the (number) fraction of them that are hydrogen. For chemical element k 
with Jk ionization stages (but no molecules) one takes 

Then the number of electrons is 

Nih = afcNtot — klk , 

Nik — ^lk ~ ^2k 5 

Njk — ^j-i,k • 

Ne 
= ^4H “ ^3H + S S ^jk * 

fc*H j= 1 

(23a) 

(23b) 

(23c) 

(24) 

The elements of can be written down from equations (22)-(24) by inspection. 
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Then, given cv, Xt, and Xp, all other thermodynamic quantities of interest follow from the standard relations (Cox and Giuli 
1968): 

and 

r3-i 

r2 

r2-i 

c Cy T rr 
pT Xp 

_P_ Xt 
pT Cy 9 

Xt(^3 - 1) + ? 

r3-r 

(25a) 

(25b) 

(25c) 

(25d) 

6 = Xr/Xp • (25e) 

Finally, it should be noted that because all of the derivatives entering into the computation of cF, /r, and xP (and, of course, the 
other quantities defined in eq. [25]) are analytical and smooth, higher order derivatives; e.g., (dr/dT) and (ôt/ôp) can safely be 
computed by numerical differentiation. 

III. RESULTS AND DISCUSSION 
In this section we present some representative results for a hydrogen-helium gas having iV(He)/iV(H) = 0.10. The effects of 

radiation were ignored in Paper II because there we concentrated exclusively on the ionization/recombination behavior of the 
material component of the gas. Here, in contrast, we examine the behavior of a radiating fluid (material plus radiation); hence, we 
account fully for the free energy of thermal-equilibrium radiation in the calculation of all thermodynamic quantities (see § V of the 
Appendix). Nevertheless, in some of the plots shown below our purpose is to display the behavior of the material component of the 
gas only ; hence, we remove radiation effects “ after the fact.” 

The second-order thermodynamic quantities provide a valuable means of making a stringent test of both the logical structure (i.e., 
freedom from bugs) and the numerical accuracy of the code because they can be computed two entirely independent ways: (a) by 
direct numerical differentiation of primary variables, as in equations (l)-(3), and (b) by use of higher order analytical derivatives of 
the free energy, as in equations (13), (15), and (16). We carried out several tests of this kind by computing several clusters of five 
isotherms, consisting of a central isotherm and four others offset by ± AT and ± Ap relative to it. We verified that forcK, xr, and/p 
we could obtain agreement between the two methods to about 1 part in 109, and that the error in the results obtained from 
numerical differencing grew as one expects for truncation errors. We think that these tests show that the code is essentially free of 
coding errors that can affect results of physical interest; of course, the accuracy of the results is set by limitations of the underlying 
physical models, not by numerics. 

Color plots of a dozen thermodynamic properties of the gas are shown in Figure 1 (Plates 1-3). Results were computed for log 
T = 3.5 (0.02) 7.0 and log p = —10 (0.10) 2.0, and the colors of pixels were determined by bilinear interpolation in the cells defined 
by the computational grid. The gray areas in the lower right-hand corners of the plots (the same for all of them) are used to delete 
results deemed to be physically unreliable (despite the fact that the code converged to an answer). 

Figures la-ld show the logarithms of the occupation fraction of H2, neutral H, neutral He, and He+, respectively. (For ionization 
stage; of chemical element kjjk = In the plots red corresponds to/= 1, and violet to/< 10-6. Figure la shows that at 
low temperatures and moderate densities all the hydrogen is in the form of H2. At fixed density, H2 dissociates into neutral H with 
increasing temperature. At fixed temperature,/H2 increases with density until log p ~ — 1, where pressure dissociation occurs and 
H2 is rapidly converted into neutral H. Figure \b shows the fraction of neutral H. At low enough temperatures H is depleted to form 
H2; hence, the maximum/H lies along a ridge line running from log T ~ 3.5 near log p ~ —10 to log T ~ 4.25 for log p ~ — 1. The 
stair-step effects seen near the right edge of the red region is a plotting artifact resulting from using too coarse a computational grid 
to resolve the rapid variation offH with p. Figure Ic for neutral He shows qualitatively the same phenomena as Figure la for H2. 
There are, of course, major quantitative differences in that at fixed density He persists to much higher temperatures because of its 
large ionization potential, and at fixed temperature to much higher densities because of its small atomic radius. Likewise, Figure Id 
for He+ shows qualitatively the same behavior as Figure lb for H: the recombination locus of He+ into He runs from log T ~ 4.2 
for log p    10 to log T ~ 4.75 for log p ~ 0; the ionization locus of He+ into He+ + runs from log T ~ 4.6 to log T ~ 5.5 for log 
p ~ 0; pressure ionization to He++ occurs for log p ~ 1; and maximum yiie+ runs along a ridge line from log T ~ 4.5 for log 
p ~ —10 to log T ~ 5 for log p ~ 0. 

Figure le shows a plot of H = pgasp0 mo/pkT, the ratio of the actual gas pressure (material component only) to the pressure of an 
ideal monatomic gas with the same number of nuclei per unit volume. Here m0 is one atomic mass unit, and the “ molecular weight ” 
is Po = Zfc afc where k ranges over all chemical elements of atomic weight Ak and fractional number abundance afc (normalized 
such that cck= 1). The blue region at the bottom of the plot corresponds to H = 0.5, the appropriate value for a gas composed 
dominantly of H2. At higher temperatures, where H2 is dissociated but H has not yet ionized, H goes to 1.0, the ideal value for 
monatomic gases. At yet higher temperatures, H ionizes; hence, H -► 2 (two free particles per unit mass). For log p » — 1 and log 
T < 4.75, where pressure ionization occurs H takes on very large values (dark red region), reflecting the very powerful and stiff 
interaction occurring among particles as electrons are crushed out of atoms by the hard sphere (including the additional pressure 
ionization term of Paper II) and Coulomb interaction terms in the occupation probability factors contained in F2. Finally, the 
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diagonal red contours at the right-hand edge of the plot show the well-known nonclassical increase in pressure produced by electron 

^nguieUis a plot of ê s E,asfi0m0/pkT, the internal energy per particle, in units of kT (material component of the gas only). 
Energies are measured upward from the ground state of H2 for hydrogen and from the ground state of neutral He for helium. For 
most of the diagram, the internal excitation energy plus the energies of dissociation and ionization associated with the particles lar 
outweigh their translational energies; hence, ? is much larger than the ideal monatomic gas value ë = 3/2 The maximum me occurs 
for 4.0 < log T < 4.5 and —10 < log p < —6, where both neutral H and neutral He are ionizing strongly and are also fairly highly 
excited. Only at very high temperatures (log T S: 6) does the translational energy dominate so that we get 3kT/2 per particle, but 
have essentially two particles per unit mass (i.e., a proton and an electron) so that ë approaches 3.0. At the right-hand edge ot the 
plot we see diagonal contours that result from the contribution of electron degeneracy to the total internal energy of the gas. 

Figure lois a plot of the logarithm of the number of free electrons per heavy particle (nucleus), Ne p0 m0/p. In the limit of complete 
ionization this ratio equals 1.1 for our mixture. The plot shows the expected smooth increase in ionization with increasing 
temperature at fixed density, and, at fixed temperature, the expected effects of thermal ionization at low densities, and of pressure 
ionization at high densities. A plot of the proton occupation fraction fp is very similar to this figure because hydrogen is the 
dominant electron donor. i / > \ 

Figure l/i is a plot oïcv = pc'v/(Nn + Ne)k, the specific heat at constant volume of the material component of the gas only (¿v) per 
particle (N is the number of electrons; Nn is the number of nuclei), in units of Boltzmann’s constant. The figure shows clearly that cy 
reaches huge values in the H2 dissociation domain (at the bottom edge of the plot); in the H and He ionization domains, which 
essentially run together (being only slightly separated near log T = 4.1 at log p = —10); and in the He ionization domain. In eac 
case an input of thermal energy gets locked up into potential energy (i.e., energy of excitation, dissociation, or ionization) in the gas 
instead of producing a rise in temperature; hence, the specific heat (heat input per unit temperature change) is large. The classical 
value cv = 3/2 is attained only when the gas is completely ionized (upper portion of plot) and in the blue regions between the major 
ionization domains. At the right-hand edge of the plot cv drops below the classical value when electron degeneracy becomes 
important. The red ridge line extending from the thermal ionization domain of H into the gray area near log T - 4, and log 
p= -0.5 reveals a narrow region of large cv resulting from pressure ionization of hydrogen; the stair-step shape of this feature is an 
artifact of underresolution from use of too coarse a computational grid. At the top edge of the gray area we see additional features 
resulting from pressure ionization of He (small blue area at log p « 0) and of He+ (sharp ridge line extending upward and to left at 
log p « 1). Again the disintegration of the ridge line into a series of “islands” is an artifact of underresolution by the computational 

^Figures li and 1/ show, respectively, T, and (F2 - 1)/F2 for the gas composed of material particles plus radiation. In many 
respects both of these plots are similar to Figure Hi. The H2 thermal dissociation region, and the H, He, and He thermal lomzation 
regions where F,, F2, and r3 all approach unity, appear prominently; in particular, the He<->He region appears much more 
clearly in these plots than in Figure Hi. Likewise the H, He, and He+ pressure ionization regions (where again the gammas tend 
toward unity) all stand out clearly, and the H2 pressure dissociation region extending upward from log T - 3.75 and log p - 1.5 
is seen clearly for the first time in Figure li. As before, we see some artifacts of underresolution in the plots of the pressure ionisation 
features of H2 and He+. A new feature in these plots is the appearance of a large (yellow) region dominated by radiation in the 
low-density, high-temperature region of the plot (upper left corner). Here all gammas tend toward the limit y = 4/3 appropriate tor 

P Finally, Figures He and H show the behavior of xP = (d ln P/d In p)T and Xt = (.d In p/d In T)p, where p now includes radiation 
pressure in addition to the material gas pressure. We again see the prominent H2 and H thermal dissociation and ionization regions, 
in which x decreases noticeably below the ideal gas value (because an increase in density tends to produce recombination rather 
than a riseV pressure), while Xt rises significantly above the ideal gas value (because a higher temperature tends to produce more 
particles, and therefore more pressure). In pressure ionization regions (violet) xP rises well above the classical value because both the 
hard-sphere and the Stark-ionization interaction terms in F2 depend exponentially on density, and thus lead to a very steep 
response of p to p. In these same regions xT drops nearly to zero because the degree of ionization, the number of particle^ and the 
free energy are all essentially independent of temperature in these domains. Likewise p is essentially independent ot 7 ; hence, 
y _► 0 in the domain of strong electron degeneracy (diagonal violet region at right-hand edge of plot). In the high-temperature, 
low-density regime (diagonal red region in upper left corner) the total pressure of the radiating fluid is independent of p and varies as 

*4’ • y fr Q älld fr ^ 
We remind the reader that all of the results shown in Figure 1 apply only to a hydrogen-helium mix. When other elements are 

included in the mix, a more complicated structure appears in all plots, although in most cases the amplitudes of the new features are 
small because elements other than H and He have such small abundances in normal stellar material. The situation could, of course, 
be quite different for material that has been heavily processed by thermonuclear reactions, but it would be straightforward to 
calculate the behavior of even exotic mixtures with the present code. 

IV. PROSPECTS 

For the present we regard the code described here and in Paper II as being essentially completed. The primary use we will make 
of the code is to calculate stellar envelope opacities for (3.5 < log T < 7, -12 < log p < -2) in conjunction with the Opacity 
Project (see Paper I). In our opinion the code’s internal consistency and precision have been adequately validated by the tests 
described in § HI We believe that it should perform reliably in the domain stated above (and also at higher densities at sufficiently 
high temperatures). While we will undoubtedly make changes in the atomic data as improved (and/or more complete) values 
become available, we do not, at the present time, envision making major changes in the formalism or underlying physics. 

It is not our plan to publish large tables of results because such tables are cumbersome to use and consume valuable journal 
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space. We will, however, try to provide data on magnetic tape to interested parties, on request. Users of those data will need to 
develop their own interpolation routines; we suggest they consider using two-dimensional monotonized interpolants such as 
discussed by Carlson and Fritsch (1985). We can also attempt to provide clusters of isotherms suitable for numerical differentiation 
of quantities such as cK, F, etc. 

Because our code is designed mainly to construct complete isotherms, it requires adaptation in order to follow a specific track in 
the (p, T)-plane, say the temperature-density profile of the Sun. A more important limitation is that the code cannot easily handle 
changes m chemical composition along an isotherm. To deal with such situations one would need to construct several sets of tables 
with different compositions, and then perform an appropriate interpolation (several methods are discussed by Fontaine, Graboske, 
and Van Horn 1977); alternatively one would have to devise a robust starting procedure for the iteration process at an arbitrary 
(p, T). We have developed the code for a Cray X-MP because we expect to consider of the order of 200 particle species 
simultaneously. If one is content with a much smaller set of particle species, the code could probably be adapted to run on a mini- or 
microcomputer successfully. 

We thank Carl J. Hansen for helpful comments on a draft of this paper. The computations were carried out at the National 
Center for Atmospheric Research and the National Center for Supercomputing Applications, both of which are sponsored by the 
National Science Foundation. This work was supported in part by National Aeronautics and Space Administration grant NAGW- 
766 to the University of Colorado and National Science Foundation grant AST 85-19209 to the University of Illinois. D. M. wishes 
to thank the Joint Institute for Laboratory Astrophysics for support as a Visiting Fellow during 1986-1987, when portions of this 
work were done. 

APPENDIX 

DERIVATIVES OF THE FREE ENERGY REQUIRED TO COMPUTE 
THERMODYNAMIC PROPERTIES 

Below we summarize briefly analytical expressions for the derivatives needed to compute thermodynamic properties of the gas 
once the equilibrium occupation numbers {Ns} have been found by minimizing F(T, V, {Ns}). 

I. TRANSLATIONAL FREE ENERGY 

dT\T 
) = Ut 'ZNs = E1; 
/ ^ s*e 

v m _ 
dV V Pl’ 

d*F\ 
ÔT2 

il 
j2 

d2Fi 1 8F1 

dTdV - T dV ’ 

cPFj 1 8F\ 
dV2 ~ ~ V dV ’’ 

d2Ft =i_dF\ 3 
ÔTÔNS~TÔNS 2k’ 

d2Ft _kT 
ôVdNs~ V ’ 

ô2F1 ô2F1 

ôVdNe ~ dTSNe 
= 0' 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

II. INTERNAL FREE ENERGY 

ÔT \T ) = ¡e
N[E^ + Yt I(£* - £i>is0ise-

(£*-Els,/tr] = e2 

dh-vT v 
ÔV ke Z* ÔV P2 ’ 

(A9) 

(A10) 
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Here 

and 

EQUATION OF STATE FOR STELLAR ENVELOPES 

_ /2 1 dz*\dz:l. 

s*e Z? L dT2 \T Z* ÔT J ÔT]’ 

LT ^ Nj Ô2Zf I /I 1 dzf\dz:l. 

s*e Z* \_dTdV \T Zf dTj ÔV j’ 

ut V ^P2Z? 1 (gZ*V1 - 
kl heZïlW2 Z*\^v)y 

dT2 

ÔTÔV 

82F 
dV: 

a2F2 

dT 8Nr 

1 8Z* N.J 82Z* 
- kT Z* + dJ1 + [ÔTdN' + I ~ — 

82F- 
8V 8N, 

, r i 8z* „ 
r
r “ 

k [z* 8V + s?e 

N. Í 82Z* 

i _ 2_ ^ d^l 
T Z* 8T ) 8Nr 

1 8Z* 8Z* 
Z* \8V8Nr Z* 8V 8Nj_ 

r¥=e 

^ = (¿i)' l(Eis - Eu)i(Eis - Eu) - 2knwisgise-^E^kT 

82Z* 1 
£(Eis - ElsXln wis)wisgise -(Eis-Eis)/kT 

ÔTdV kT2V i 

= ]72 E (ln w¡sX2 + In wis)wisgis e
_<£is_£ls)/'cT ■ 

82Zf 1 
01Vr0T kT2 i 

d In wh 

dNr 
W is Gist 

-(Eis-Eu)/kT 

l2 

ÔN, 
Zf 1 y-/, i Jd\nwis\ _(E. 
Tôt = _ k ^ +nw¡^ 5/vr /isfce 

is-E^/kT 

All other derivatives are given in Appendix A of Paper II. 

III. FREE ENERGY OF PARTIALLY DEGENERATE ELECTRONS 

r ¥=e ; 

267 

(All) 

(A 12) 

(A13) 

(A 14) 

(A15) 

(A 16) 

(A 17) 

(A18) 

(A 19) 

(A20) 

Here 

8F, _ NekT 2 F3/2(r,) _ 
8V V 3FUM Pi ; 

Ai-)- 8T\T ) 

d2F3 

8T2 
kNe 

T 

8T8V 

M IrT _ £ • 
e F^r,)- 3 ’ 

f l/2(>?) 5 f3/2(>?)] , 
1/2W 2 Fi/2(7)J ’ 

FjjM 5 F3/2(7)~j. 
=^r 

v L F-1/2(7) 3 F1/2(7)J 

d2F3 NekT {8tj\ 
ÔV2 ~ v Vf)’ 

-k{'l + T^r)- 8T8Ne 

d2F3 

8V8Ne 

82F3 82F 
8TdN' 8V 8N, 

= 0 , s # e . 

(A21) 

(A22) 

(A23) 

(A24) 

(A25) 

(A26) 

(A27) 

(A28) 

drj 
8T 

3 F 1/2(7) 
F F_1/2(rç) 

3 1 
2 Te, 

(A29) 
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and 

ÈL= 
2 Fl/2(>?) 1 

dV 
_1_ 

d2»; 
dT2 

ê2r] 
ÔV2 

V F _1/2(n) 

= Jl + ^(Êl\](^L\. 
It ee\^TJ]\^T), 

lv ee\dv)]\dv)’ 

Ô2t] 
dTdV = 

8TdNe 

ô2r]. 

Oe 

e„ 

ÔT dNs 

Ô2t] 
dVdN. 

% 
0. 

ÔV dN. 

All other quantities are defined in Appendix A of Paper II. 

. 
0Tj\dv) ’ 

iiVdtl 

ôt)\ôN, 

= 0 , s e , 

2iY_Éi 
dv)\dN, 

= 0 , s # e . 

Vol. 332 

(A30) 

(A31) 

(A3 2) 

(A33) 

(A34) 

(A3 5) 

(A3 6) 

(A3?) 

IV. CONFIGURATIONAL FREE ENERGY OF COULOMB INTERACTIONS 

— T2 

ÔT 

SI± 
5V 

TNe6’e   
2 2YjaNxZ

2
x0'dT 

= FJ±-_-* Ne0'e dr] 

dT2 

,2V 2YjXNxZj9xdV 

t' dx\ - T — = 
t dTj 

t' dx\ 
~^dv) = p*; 

Me 

d^F\ 
dT dV 

uMBf-fiMfcflW 
d2x 

M„ 

d2F. 
dV2 

-r.m-'iM'-míí-m 

rwsxa-'tó-ríásexí)]}] 

+ 
3AL 

dT dBß Ft\dTj\dNß 

Pf* = ± (d_I±\(?I± 
dV dNß Ft\dv)\dN 

+ F. 

+ F, 

Æ*N*z2
xe, 

j'QïïffXâ*© 

'e)‘*#-Eêiï©)'])i 

d2x 2Z2
ßNe0'e drj 

(IX 
Pf4 _ J_ fdFÄfdFA _ [IV fr'Vlf dx X dx 
!TdNe Mit (rjA 

dx 
M, +r- 

[dTFöN + A 

dTdNß 2(£xNxZ
2

xex)2 dT 

d2x 2Z2
eNe6'e dti 

TjdVdNß 2(£JXNXZ
2

X6X)2 dvj’ 

d2x 

ß*e 

ß¥=e 

+ 
21. ]xNxZ

2
xex [

Ne0: dT dNe 
+ d'e{Ne 

dT dNe 

d2fl 
+ Ê1 
dN„dT dT 

0e + Nee'e(Ör,/dNe) KT ar dt, 
l.Nxz

2ex 

Ne0'e^ dT 

(A38) 

(A39) 

(A40) 

(A41) 

(A42) 

(A43) 

(A44) 

(A45) 
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= _L (ôl±\fd-l± 
dVôNe F4\ôV J\8N¡ 

+ F. 
c'x \ / ÔX \ /T^\ (Px_ 
dïAWJ + W dVdl* 

+ i^N^zie 

5VdNe 

d2r, . dr,\ 6e + Nee’e(dri/dNe) 
+ T77 ~ dN.dV dV Z'N'Zle, Neffe 

Here 

dx_ í_ 3 , rfl 3F1/2(>?) na, l . 
aT_x{ 2T + l 2F3IM 2YjXNxZ

2
xeJdT$’ 

8x_ í_ 1 4 [n ElM , Me 1 ■ 
ÔV X\ 2V + l 2F3l2(ri) 2YjXNxZ

2
xex]dVA 

52r] 
df2 ^1-ÍÍÉlY .IJ-Afí 3hiM , Me 1 

ÓT2~x\8t) X|1_2T2 + Ie 2Fîl2(r,) ÆxNxZ
2

xex] 

. L EuM\e 3hM] 
I e 2F3IM L c 2F3Im] 

_ifdx\{dx\^ [L 3F1/2(>/) Neffe 1 
- x\dTj\dv) + 1L C 2F3l2(rl) 

+ 2YJXNXZ
2

X0X} 

+ ¡n, EuM\q EiiM] 
T 2F3iM L e 2Fm(r,)] 

+ 
AL 

2YjXNxz
2

xel 

d2x 
dfdV 

d2r¡ 
dTÜV 

+ 
N„ 

2^NXZ, vb-TSääom 

ô2x_i(ex\2^ í i L 1 ^ 
dv2~x\dv) +Xl2V2 + lUe 2F3/M 2^^} dV2 

L 3F1/2(>?) r 3F1/2(>/)~|  AL / AL^ WM2] 
■ I e “ 2F3IM Ie' 2f3/m1 2lxNxz

2
xex V

e ^zjeJÍWJ i 

d2x 1 / V dx \ xZ 
dTdNß = X \dT)\dÑ~] ~ 

d2x _lí dx\í dx \ _ 

2F3/2(»j)J ^ 2YjXNxZ
2

x6¡ 

\ _ xZj NeQ'e (drA 
J 2(^xNxZ¡dx)2 \dTj ’ 

xZ2Ne6'e 

ÖVdNß x\dv)\dNßJ 2(YJXNXZ
2

X6X)2 \ôVj ’ 

ôrj 

^ e ; 

ß ¥= e ; 

d2x 1 /5xV dx 
ST<5AL = x \öf)\dN 

+ 
{ 

3f1/2(>?) í 
2F3l2(r,) \dTdNe 

' ElM 
. e 2F3/2(t]) (È-M)} 

+ 
2L ̂ iN-iM,m) + i£ + N- 

d2r¡ \ 9e + Ne9'e{dr¡ldNe)^ 
dTdNj Z'NXZ

2
X6X 

e dT 

and 

dVdN, 
■x 1 f dx\f dx \ IT _ 3F1/2(>?) Í d2n , fa _ 3F1/2(>?)~|/_^/_V 
3Ne~ x\dv)\dNj + Xl 2F3l2(r,)\dVdNe [ ‘ 2F 3lM]\dN J\dV J ) 

i F. + o'(^ + n - e-^ÆMEÀ 
1*Z2

X0X L
e0eV^A^J + VF e dVdNj 

Other derivatives not defined here are given in Appendix A of Paper II. 

V. FREE ENERGY OF RADIATION 

Fr=- iaT4F ; 

Er = aT*V ; 

PR=iaT4; 

 N ff — 
lxNxz

2
xex °edv. ] 

dT2 

^=--aT3- 
dTdV 3 

= —4aT2F ; 

4 

269 

(A46) 

(A47) 

(A48) 

(A49) 

(A50) 

(A51) 

(A52) 

(A53) 

(A54) 

(A55) 

(A56) 

(A57) 

(A58) 

(A59) 

(A60) 
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and 

where 

DÄPPEN ET AL. 

d2FR 

dF2 “U’ 

d2FR 02Fr 

dNsdT dN-dV 
= 0 . 

VI. FREE ENERGY OF PRESSURE IONIZATION TERM 

dF_ 
ÔT 

F 
ÔV 

dF 

— = In Tv; 

dV 

e^F_ 
5T2 = 0 ; 

-d2F _ _jiy N à ln 

dTdv t v dv 

ô^il=_kTyN 52 ln 

,2 KI dV2 ÔV2 

d2F" œ ain'P,, 
= -kl In + YJNi  

2 

8TdN. dN„ 

d2Fl 

ÔV8N. 
-=„kT(dJ^ + YN 

(A61) 

(A62) 

(A63) 

(A64) 

(A65) 

(A66) 

(A67) 

(A68) 

(A69) 

ô ln »Pv -« ln »P, 
ÔV ~ V 

a2 In *PV _ — (n + 1) g In >PV 

ÔV2 ~ V ÔV 

d2 In ¥v n ô In *PV 

eVdNv ~ ~ V 0NV ' 

(A70) 

(A71) 

(A72) 
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