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ABSTRACT 

We discuss a free-energy-minimization method for computing the dissociation and ionization equilibrium of 
a multicomponent gas. The adopted free energy includes terms representing the translational free energy of 
atoms, ions, and molecules; the internal free energy of particles with excited states; the free energy of a par- 
tially degenerate electron gas; and the configurational free energy from shielded Coulomb interactions among 
charged particles. 

Internal partition functions are truncated using an occupation probability formalism that accounts for per- 
turbations of bound states by both neutral and charged perturbers. The entire theory is analytical and differ- 
entiable to all orders, so it is possible to write explicit analytical formulae for all derivatives required in a 
Newton-Raphson iteration; these are presented to facilitate future work. 

Some representative results for both Saha and free-energy-minimization equilibria are presented for a 
hydrogen-helium plasma with N(He)/V(H) = 0.10. These illustrate nicely the phenomena of pressure disso- 
ciation and ionization, and also demonstrate vividly the importance of choosing a reliable cutoff procedure for 
internal partition functions. 
Subject headings: atomic processes — equation of state stars: atmospheres 

I. INTRODUCTION 

In a previous paper (Hummer and Mihalas 1988, hereafter 
Paper I) we presented an analytical expression, differentiable to 
all orders, for the free energy of a multicomponent partially 
ionized plasma. In this theory continuous and differentiable 
bound-state partition functions are obtained by use of an 
occupation probability formalism, which accounts for pertur- 
bations by both charged and neutral perturbers. We showed 
that the theory can be made statistical mechanically consistent 
for perturbations by charged particles, and by neutral particles 
in the low-excitation limit. In addition, Däppen, Anderson, 
and Mihalas (1987) have shown that the occupation probabil- 
ities given in Paper I permit an accurate simulation of the 
radiation emitted from a precision plasma experiment (Wiese, 
Kelleher, and Paquette 1972). 

The purpose of the present paper is threefold: (1) to docu- 
ment the mathematical details of our method, including a full 
set of explicit analytical expressions for all first and second 
derivatives required by the free-energy minimization pro- 
cedure; (2) to describe the atomic and molecular data base that 
we have employed; and (3) to present some representative 
results for a hydrogen-helium mixture and show their sensi- 
tivity to the cutoff procedure used to truncate internal parti- 
tion functions. A description of the calculation of 
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thermodynamic properties of the plasma will be given in a 
future paper (Däppen et al. 1988). 

II. ALGORITHM 

a) Free Energy 
The free-energy minimization procedure is based on the 

“chemical picture” (Ebeling, Kraeft, and Kremp 1977), in 
which one identifies particle clusters (atoms, ions, molecules) as 
distinct particle species within the plasma. In terms of this 
picture, the free energy of a volume V of gas at temperature T 
can be written (Graboske, Harwood, and Rogers 1969; Paper 
I) as 

F(T, V, {Ns}) = F1+F2 + F3 + Ft, (1) 

where 

F1 = -kT X Wit ln T + ln F — In Ns + In Gs + 1), 
s^e 

F2=Yj Ns(Eu - kT ln Z*) 

F3 = -kTN 

and 

F. 

13 F 1/2(ti) ’ 

(2) 

(3) 

(4) 

(5) 
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The occupation numbers {Ns} are the number of particles of 
species s contained in volume V in thermodynamic equi- 
librium. 

The term F1, in which 

Gs = (2nms k/h2)312 , (6) 
accounts for the translational free energy of the atoms, ions, 
and molecules, which are assumed to behave as classical point 
particles. 

The term F2 gives the free energy associated with the inter- 
nal excitation of species with excited states. The energy Eu is 
the absolute energy of the ground state of species s, which 
corresponds to ionization stage j of chemical element k. For 
hydrogen, the zero point of the energy scale is taken to be the 
lowest vibration-rotation level of H2 ; for all other elements it is 
the ground state of a neutral atom. In equation (3) Z* is the 
modified internal partition function 

Zf = 'L»is9ise-(Ei’-E^kT, (7) 
i 

where gis and Eis are the statistical weight and energy of excita- 
tion state i of species s. As was shown in Paper I, the 
occupation probability wis is given by 

In w,, = 
Wjlr 

E Vv(r,s + riv)3 

'8> 
In the first term, which represents a hard-sphere interaction 
between neutral particles, the index v runs over neutral par- 
ticles only, and rI7- is the radius associated with state i of species 
j. This term is retained only if species s is neutral ; exceptions to 
this rule are that it is used also if s corresponds to H~ or H2 . 
In the second term, which accounts for perturbations by 
charged particles, the index a runs over all charged particles 
except electrons, Za is the net charge on ion species a, Zs is the 
net charge on species s (Zs = 0 for neutrals), is the ionization 
energy of level i, and Kis is a quantum correction of order unity 
(see Paper I). For particles with no internal structure (i.e., bare 
nuclei) we take Z* = gla = 1. 

The term F3 gives the free energy of an ideal gas of partially 
degenerate electrons. Here Fn(r¡) is the standard Fermi-Dirac 
integral of order n (Cox and Giuli 1968, p. 793), and rj is the 
degeneracy parameter, which is related to the number of elec- 
trons by 

n1/2 N 
Fl/2^ = 4ÖI FT3^ ’ ^ 

Finally, the term F4 accounts for the free energy of Coulomb 
interactions among all charged particles, including electrons, in 
the approximation used by Graboske, Harwood, and Rogers 
(1969). In equation (5) the sum on a runs over all charged 
species, and 

and 

ee = F_1/2(r])/2F1/2(ti), (10a) 

6X=1 (a # e), (10b) 

t(x) = 3x“3[ln (1 + x) - x + ^x2] , (11) 

X = 
Í2n1/2e3\ 
v k312 J 

1 F1/2(r,){l^eNaZ\ 
Vi,2T3/2F3/2(rj)\ l^Na ) 

I 
1/2 

(12) 

In this paper we omit all radiation terms (which are impor- 
tant contributors to the pressure and energy density at high 
temperatures and low densities) because they do not affect the 
equilibrium occupation numbers, which are our main interest 
here. It is trivial to include radiation effects because the radi- 
ation free energy is a function of T and V only, and simply 
adds linearly to the right-hand side of equation (1). 

b) Minimization Procedure 

To determine the equilibrium occupation numbers {Ns} we 
must minimize F(T, F, {Ns}) with respect to all variations 
W permitted by the stoichiometric relations (which 
describe possible dissociation/ionization processes in the gas) 
and the constraints of number conservation and charge neu- 
trality. 

For hydrogen we consider the species H2, H2
+, H“, H, and 

protons (p). The relevant stoichiometric equations are 

and 

dF 
dN] 

. dF r, 
2dNH-°’ 

dF 
ÔN, h2 + 

dF 

h2 

dF dF 
' dNH - dNp ~ ° ’ 

dF ÔF 
dNH- cW„ dN, = 0. 

dF 
dN, 

8F 

h dN„ 

dF 
dN. 

= 0. 

(13) 

(14) 

(15) 

(16) 

Let a*, be the fraction, by number, of all nuclei that belong to 
chemical element k (in any ionization stage), normalized such 
that 

E a* = 1 • (17) k 
Then the total number of nuclei in volume F of a gas of density 
p is 

JVtot = pV/pm0 , (18) 
where m0 is one atomic mass unit, and the mean molecular 
weight is 

F = Ea*^> (19) k 
where Ak is the atomic weight of element k. In practice we 
always choose F = 1 cm-3. The number conservation relation 
for hydrogen is then 

2(nh2 + nh2+) + Nh- + Nh + ATj, = ocHNiot . (20) 
For all other elements we ignore molecule formation and 

treat only a ladder of Jk ionization stages (Jk = Z* + 1, where 
Zk is the nuclear charge of element k). Then for each element 
we have Jk — 1 ionization equations 

dF dF dF 
dNjk - dNj+l k ~ dNe~° O' = 1, J 

and a number conservation equation 

(21) 

Jk 
E ;= 1 

Njk cck Nlot (22) 

Finally, the entire system is closed by the charge conservation 
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equation 

NH2+ - Nh- + IVp + X ¿ O' - l)Njk = Ne • (23) 
k j-1 

Equations (13)-(16) and (20H23) are nonlinear in {Ns}, and 
must therefore be solved iteratively. Because we can write ana- 
lytical expressions for both first and second derivatives of F 
with respect to the {Ns} (see Appendix A), it is easy to use a 
Newton-Raphson scheme. Thus starting from a trial set {N°} 
of occupation numbers, we calculate F(T, F, {iV®}), (dF/dNs)°, 
and (ô2F/dNsdNt)°. Inserting these values in linearized ver- 
sions of equations (13)-(16) and (20)-(23), we obtain a linear 
system for the corrections {ôNs} comprising dissociation and 
ionization equations of the form 

^ , V d2F ZM - V 21 
^A^ôNsdNt

ÔN,~ Ç " dNs ’ 
(24) 

and number and charge conservation equations of the form 
XBre<5JVc = Cr-XBrsJVs. (25) 
s S 

Here the sums on s run over all species, including electrons. We 
improve the numerical condition of equations (24) and (25) by 
additional procedures described below; they are then easily 
solved by standard techniques. For example, it is preferable in 
practice to solve for ÔNJNS instead of 0NS itself. 

c) Numerical Details 

i) Fermi-Dirac Integrals 

The Fermi-Dirac integrals F3/2, F1/2, and F_1/2 were com- 
puted using a subroutine FERDIR written by K. S. Kölbig for 
the CERN Computer Center Program Library. This sub- 
routine is based on rational approximations by Cody and 
Thacher (1967); it provides results accurate to at least 10 sig- 
nificant digits in the domain of principal interest. The deriv- 
atives F'_ 1/2 and F"_ 1/2 were computed from formulae obtained 
by differentiating the approximation for F_i/2 twice analyti- 
cally. Note that the usual recursion formula connecting F'k to 
F*-! breaks down when k < thus F_3/2 and F_5/2 do not 
exist, whereas F'_1/2 and F'l1/2 are bounded and well behaved 
because F _ 1/2(rj) is holomorphic in r¡. 

ii) Computational Strategy 
The present code is designed to produce tables, rather than 

results for an arbitrary choice of (p, T, {afc}). Therefore, the 
code marches along an isotherm, starting from the lowest 
density point. This procedure is advantageous because purely 
temperature-dependent quantities can then be computed once 
and for all. At the lowest densities we use, nonideal effects are 
usually negligible, so it suffices to start the iteration procedure 
from the corresponding Saha equilibrium. At subsequent 
points we change log p by a constant increment, compute a 
new value for iVtot, and estimate starting values for the 
occupation numbers either by scaling those at the previous 
point on the isotherm by {pneJp0id\ or by using a linear 
extrapolation of the logarithms of the occupation numbers at 
the two previous points on the isotherm. 

iii) Windowing 
A characteristic feature of occupation numbers in a ionizing 

(or dissociating) gas is that the corresponding occupation frac- 
tions 

(26) 

typically vary by many orders of magnitude along an isotherm. 
Once a given/jfc drops below some minimum threshold (we use 
f. = 1(T14), the contributions of that component 
of the gas to number or charge conservation gets lost in the 
roundoff, and the set of stoichiometric relations connecting 
that species to others may become ill conditioned. To avoid 
these problems, we choose a “window” containing all the 
dominant ionization (or dissociation) stages of each element, 
and discard (i.e., force to zero) the occupation numbers of all 
ion stages outside the window. For example, at moderate tem- 
peratures and low densities the window for, say, silicon might 
include Si i, Si n, Si m, and Si iv; as we move to higher den- 
sities along the isotherm, recombination occurs, so that at the 
highest densities the window might include only Si i and Si n. 
Similarly, at very high temperatures and low densities the 
window for, say, neon might include only Ne x and the bare 
ion Ne xi, but at much higher densities at the same tem- 
perature it might contain Ne i and Ne n. In practice we always 
retain at least one ion stage above and below the most abun- 
dant ion (if they exist physically). 

The linearized reaction equations for discarded species are 
replaced by a one on the diagonal, and zeros elsewhere in the 
row and on the right-hand side, which guarantees ÔN/N = 0 
for those species. This procedure significantly improves the 
stability and the accuracy of the solution, and eliminates physi- 
cally unneeded ions (e.g., the highest ionization stages of, say, 
Fe at log T = 3.5) from the computation. It is probably not 
necessary for a simple H — He mix, but becomes essential 
when many elements are included simultaneously. 

iv) Convergence Criteria 

To determine convergence we examine the occupation frac- 
tions/^. We demand that 

max I ôfjk I < e = 10"10 (27) 
U,k) 

for all species, including electrons (for which we take fe = 
NJNiot). Use of equation (27) gives us good control of the 
dominant ion stages of each chemical element. But it should be 
noted that for species for which fjk becomes comparable to £, 
the error in SNjk/Njk may be considerably larger than e ; these 
errors are, nevertheless, acceptable because such species are 
only minor players in determining ionization equilibrium, 
number conservation, and charge conservation. The code fails 
to converge altogether when the electron occupation fraction/, 
drops below machine-word accuracy (~ 10"15). This problem, 
which occurs at the lowest temperatures and very (indeed 
unrealistically) high densities can be avoided by including a 
low ionization potential species such as K, or by accounting 
adequately for the effects of pressure ionization in neutral 
material (discussed in § IV and Appendix B). 

Finally, it should be mentioned that very stringent tests, to 
be described in our next paper (Däppen al 1987), were 
applied to assure that the results produced by the code are 
correct. 

III. ATOMIC AND MOLECULAR DATA BASE 

a) Hydrogen 

The following species of hydrogen are included in the calcu- 
lation: H2, H2

+, H~, H, and H+. A total of 284 vibration- 
rotation levels of the ground electronic state of H2 were 
computed from the empirical anharmonic-oscillator and 
vibrating-rotator constants given by Herzberg and Howe 
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(1959). Initially another 28 excited electronic states (yielding a 
total of 6438 vibration-rotation levels) were also included, but 
it was found that these states are appreciably populated only 
when the dominant form of hydrogen is H; hence, they were 
dropped. For we computed a total of 443 vibration- 
rotation levels from constants given by Vardya (1966), which 
were adjusted slightly to give a good fit to theoretical energies 
of high vibration-rotation levels as given by Hunter, Yau and 
Pritchard (1974). 

For neutral hydrogen we used 100 distinct states specified by 
the principal quantum number n with energies calculated from 
the standard formulae. The dissociation and ionization ener- 
gies we adopted for hydrogen species are listed in Table 1. 
Absolute energies Els of the ground state of each species rela- 
tive to the ground level of H2 are given in Table 2. 

Estimates of atomic and molecular radii are required in 
order to calculate the neutral-neutral perturbation contained 
in equation (8). To calculate effective radii for H2 we solved 
equations (11) and (12) of Vardya (1965) for each vibration- 
rotation level, using a Newton-Raphson iteration. The 
geometry assumed by Vardya implies that the effective colli- 

^3^^ radius between the atom and the center of the molecule is (i)r. For H2 we solved equations (9), (14), and (15) of Vardya 
(1966) for each vibration-rotation level. Here the assumed 
geometry implies that the effective collision radius is 0.433r. 
For H we adopted a radius of 1.5 Â based on the data by 
Pekeris (1962) and in the Handbook of Chemistry and Physics 
(Weast 1979). For H we used the formula 

<r> = (a0/2Z)[3n2 - /(/ + 1)] (28) 

for all excited states. For the ground state we adopted r = a0 as 
a somewhat more conservative (i.e., smaller) estimate. The 
adopted ground-state radii for all species of H are shown in 
Table 3. 

b) Other Elements 

For He we made use of extensive NBS tables of energy levels 
supplemented with estimated values of quantum defects to fill 
in values for all (n, L, S) states with n < 10. Hydrogenic ener- 
gies were used for 11 < n < 100. Hydrogenic values were used 
throughout for 1 < n < 100 of He+. Radii of the excited states 
of He were estimated from equation (28); for the ground state 
we adopted 0.5 Â. 

Although the data are not used in the calculations discussed 
in this paper, we mention that we have assembled a databank 
of ~ 20,000 energy levels for all ions of the astrophysically 
abundant (or otherwise important) elements C, N, O, Ne, Na, 
Mg, Al, Si, S, Ar, K, Ca, and Fe. These data will be used at a 
later time in calculations of various mixes. 

TABLE 1 

TABLE 2 
Absolute Ground State Energies for Species of Hydrogen 

h2 
h2

+ 

H“ 
H . 
H + 

Species 
Numerical 

Value (cm'1) 

0 0 
0(H2) + /(H) - 0(Hj ) 124418.5 
|D(H2)-/)(H-) 11976.5 
èO(H2) 18059.15 
ÍD(H2) + /(H) 127737.95 

IV. RESULTS AND DISCUSSION 
Using the free-energy minimization code described above we 

have calculated isotherms for several representative astro- 
physical mixtures. In this paper we restrict attention to only a 
hydrogen-helium mixture, having V(He)/JV(H) = 0.1, in the 
domain -10 < log p < +2 and 3.5 < log T < 7. We focus 
exclusively on equilibrium populations and ionization frac- 
tions, and defer discussion of thermodynamic quantities and 
application to opacities to later papers. 

Although the density domain where our equation of state 
will be used for opacity calculations in stellar envelopes is log 
p < —2, we have pushed it to much higher densities in order to 
explore the effects of pressure dissociation and pressure ioniza- 
tion. Preliminary computations showed that in the low- 
temperature regime (log T < 4.75) the occupation probabilities 
used in equation (8) do, in fact, produce pressure dissociation 
of H2 for log p> -2 but are unable to produce pressure 
ionization of neutral hydrogen atoms at yet higher densities. 
Instead, the plasma collapses into a dense neutral “jelly” in 
which every hydrogen nucleus is counted as a “neutral 
particle ” with a “ bound ” electron even though its perturbed 
internal partition function is orders of magnitude smaller than 
the unperturbed ground-state statistical weight. This behavior 
is unphysical because in reality the atoms are so strongly per- 
turbed that the electrons should be free in a Fermi gas, in 
which each electron may interact with several ions simulta- 
neously. Fontaine, Graboske, and Van Horn (1977) similarly 
report that their free-energy minimization technique broke 
down for p> 10“2 when T < 105 K. In order to obtain at 
least a qualitatively reasonable pressure ionization effect we 
therefore introduced an additional configurational term, 
described in Appendix B, into the free energy. This term pro- 
vides a stiffer neutral-neutral interaction (rising as the square 
of c, the ratio of the volume occupied by extended particles to 
the total available volume), and does lead to complete ioniza- 
tion of all components of the gas at sufficiently high densities 
(log p > 0 for hydrogen). We emphasize that the results dis- 
cussed below for the low-temperature high-density regime are 
qualitative and illustrative only. At higher temperatures (log 
y — 4.75) there are always enough ions to assure pressure ion- 
ization at high densities through the destruction of bound 
states by perturbations by charged particles. 

Adopted Dissociation and Ionization Energies for 
Species of Hydrogen 

Species Energy 
Numerical 

Value (cm-1) 
h2 
h2

+ 

H- 

H . 

m2) 
mt) 
D(H) 
/(H) 

36118.3 
21378.6 
6082.65 

109678.8 

TABLE 3 
Adopted Radii for Species of Hydrogen 

Species Radius (Á) 
h

2   1.45 
H2

+    1.56 
H'      1.5 
H   0.529 
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Fig. 1.—Abcissa: logarithm of density. Ordinate: logarithm of molecular 
hydrogen fraction fHl = N(H2)/(total number of hydrogen atoms). Note that 
log /h2 = —0.3 corresponds to all hydrogen bound into molecules. Solid 
curves: free-energy-minimization equilibrium using modified internal partition 
functions. Dotted curves: Saha equilibrium using full internal partition func- 
tions for H2 and H2 , and ground states only for all other species (SAHAG). All 
curves are labeled with log T. 

Results for and/He+ are shown in Figures 1-4. In 
all of the figures the solid curves show the free-energy mini- 
mization equilibrium using modified internal partition func- 
tions (FMIN). Dashed curves show a Saha equilibrium 
(SAHAZ) using internal partition functions which include all 
bound states contained in the data base, i.e., a large but arbi- 
trary number for all species. Dotted curves show a Saha equi- 
librium (SAHAG) using these internal partition functions only 
for H2 and H2 (which have a finite number of states), and only 
ground states for all other species. The density variation (i.e., 
slopes) of all the Saha curves in Figures 1-4 can be understood 
easily from simple analytical arguments; the behavior of the 
FMIN curves is more complex. 

In Figure 1 we see that at sufficiently great densities a Saha 
equilibrium always leads to the physically absurd result of 
complete recombination of all the hydrogen into molecules no 
matter how high the temperature is. In contrast, in the FMIN 
equilibrium the neutral-neutral interactions in the occupation 
probability of equation (8) destroy all bound states of H2 for 
log p ä — 1, thereby forcing pressure dissociation of H2. (At 
high temperatures interactions with charged perturbers are 

also important.) Thus at log T = 3.5 we find that all hydrogen 
exists as H2 for log p > —4 until it pressure dissociates at log 
p & -1.5. For log T > 4 we find that the molecular hydrogen 
fraction reaches a maximum well below full recombination, 
and then decreases monotonically with increasing density. 

In Figure 2 we see that Saha equilibrium predicts that at a 
given temperature the neutral hydrogen fraction becomes 
nearly unity at some density, and then declines at higher den- 
sities as H recombines into H2. For log T = 3.5 and 4.0 there is 
no difference in/H between the SAHAZ (dashed curves) and 
SAHAG (dotted curves) equilibria because these temperatures 
are too low to produce significant population of the excited 
states of H. But for log T > 4.5 the excited states of H become 
heavily populated, and there is a huge discrepancy between the 
SAHAG and SAHAZ equilibria. For example, notice that/H 
for the SAHAZ isotherm with log T = 7.0 is nearly the same as 
/H for the SAHAG isotherm with log T = 4.5. Said differently, 
at the same temperature and density the neutral hydrogen 
fractions for the two sets of Saha equilibria can differ by as 
much as six orders of magnitude. This discrepancy results 
because hydrogen ionization is greatly decreased when a large 
number of excited states are available in neutral H ; indeed, it 

Fig. 2.—Ordinate : logarithm of neutral hydrogen fraction/H = iV(H)/(total 
number of hydrogen atoms). Dashed curves : Saha equilibrium using full inter- 
nal partition functions for all species (SAHAZ). Abscissa, solid curves, and 
dotted curves : as in Fig. 1. 
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820 MIRALAS, DÄPPEN, AND HUMMER Vol. 331 

Fig. 3—Ordinate: logarithm of neutral helium fraction /He = 
JV(He)/[iV(He) + iV(He+) + iV(He++)]. Abscissa, solid curves, dashed curves, 
and dotted curves: as in Figs. 1 and 2. 

can be made arbitrarily large simply by including more bound 
states. It is thus clear that the choice of the number of states 
kept in an internal partition function is of central importance, 
and therefore that it is vital that the theory used to truncate 
internal partition functions be accurate. 

For log T = 3.5, the run of /H for the FMIN equilibrium 
follows the SAHAG curve (which shows progressive recombi- 
nation of H into H2) until log p « - 2, at which point H2 

pressure dissociates and fH rises back to unity on the range 
— 1 < log p < 0; at log p « 0 the hydrogen atoms undergo 
pressure ionization, and /H plummets. For log T = 4, essen- 
tially all the hydrogen is Ff atoms for -7 < log p < -3; for 
— 3 < log p < —1.5 the FMIN curve dips slightly as some H2 
forms and then pressure dissociates; for -1.5 < log p < -0.5 
the hydrogen is again all neutral atoms; and for log p > -0.5 
pressure ionization occurs and /H drops to zero. The behavior 
of/n for the other three isotherms shown is qualitatively identi- 
cal; consider the case with log T = 6. At densities lower than 
the lowest plotted, perturbations of bound states by neighbor- 
ing particles become negligible; hence, the bound-state parti- 
tion function becomes fully populated and the FMIN curve 
converges to the SAHAZ curve. At higher and higher densities, 
more and more bound states are destroyed, until finally only 
the ground state remains; the FMIN curve then crosses the 

SAHAG curve (near log p = -3). At yet higher densities the 
FMIN curve drops below the SAHAG curve as even the 
ground state becomes perturbed, until at some point (log 
p ä -1.5) perturbations destroy all the bound atoms and 
pressure ionization ensues. 

Figure 3 shows the variation of/He along several isotherms. 
For log T = 3.5 and 4.0 both of the Saha equilibria predict 
that all of the helium remains neutral for log p > -10. The 
FMIN results agree with the Saha results up to log p æ +1, at 
which point He abruptly pressure ionizes into He+. For log 
T > 4.5 the behavior is qualitatively the same on all isotherms. 
Here both the SAHAG and SAHAZ equilibria predict even- 
tual recombination to pure neutral He at sufficiently high den- 
sities for any temperature. Notice that the discrepancy between 
the SAHAG and SAHAZ curves is much smaller for He than 
for H. The reason is that the He<-^He+ equilibrium depends 
on the ratio of the partition functions for He and He+; when 
excited states are included, both partition functions increase by 
a large factor, but their ratio changes relatively little by com- 
parison. In contrast, for hydrogen the neutral atom has a parti- 
tion function which can change by a large factor when excited 
states are included, but the (bare) ion has a fixed statistical 
weight; therefore the ratio of atomic to ionic partition function 
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can vary drastically between the SAHAG and SAHAZ cases. 
For log T > 4.5 the FMIN results all show a rise to maximum, 
followed by abrupt pressure ionization at log p ~ 0. 

The variation of/He+ shown in Figure 4 is qualitatively the 
same for the three SAHAG isotherms: fHe+ rises with increas- 
ing density as He++ recombines to form He+, reaches a 
maximum, and then declines as He+ recombines to form He. 
The FMIN curves are more complicated. At log T = 4.0,/He+ 
declines for -10 < log p < 0 as He+ recombines to form He, 
then rises rapidly for log p > 1 to a maximum at log p = 2 as 
He pressure ionizes to He+. At yet higher densities/He+ would 
decrease again as He+ pressure ionizes to He++. At log 
T = 4.5,/He+ is essentially unity for log p < —6, drops to a 
minimum at log p « —0.5 as He+ recombines into He, returns 
to unity at log p « 1 when He pressure ionizes, then drops 
sharply at log p = 1.5 as He + pressure ionizes to He+ + . At log 
T = 5,/He+ first rises with increasing density as He+ + recom- 
bines to form He+, and reaches a maximum near unity at log 
p « —2.5. It then declines as He+ recombines to form He until 
pressure ionization of He into He+ begins at log p ä —0.5 and 
drives/He+ back to unity at log p ä 0.5;/He+ then drops sharply 
as pressure ionization of He+ occurs at log p « 1. At yet higher 
temperatures the behavior is simpler: /He+ first rises with 
increasing density as He++ recombines into He+, reaches a 
maximum well below unity, and then decreases sharply when 
pressure ionization converts He + into He + +. 

We have checked our ionization fractions against results 
from a completely independently written Saha ionization equi- 
librium code in the appropriate (i.e., low-density) regime, and 
against other results (usually very sparse) published in the liter- 
ature or made available by private communication. In all cases 
agreement was at least as good as the method of comparison 
would permit. Nevertheless, we would be happy to participate 
in joint efforts to make detailed comparisons with other codes. 

v. CONCLUSION 

The FMIN results presented above are based on a free- 
energy-minimization technique which accounts for (1) the 
translational free energy of classical point atoms, ions, and 
molecules; (2) the internal free energy of particles with multiple 
bound states; (3) the free energy of partially degenerate elec- 
trons; and (4) the configurational free energy of Coulomb 
interactions among charged particles. The internal partition 
functions are kept finite by use of an occupation probability 

formalism which accounts for perturbation of bound states by 
both neutral and charged neighboring particles. 

Our method successfully produces pressure dissociation and 
ionization in both neutral and partially ionized gases. To 
achieve pressure ionization in a completely neutral gas we are 
forced to introduce an additional configurational free energy, 
which mimics the second-order term in an expansion of the 
classical hard-sphere interaction. In the (p, T) regime where 
this additional term is important (log p > — 1 and log 
T < 4.75) our results are only qualitative. In contrast, in all 
other regimes, where perturbations by charged particles domi- 
nate, our estimates of internal partition functions should be 
reasonably accurate, and ionization fractions (and other ther- 
modynamic properties) should be reliable. 

At low densities our FMIN results approach those given by 
a Saha equilibrium with full internal partition functions, and at 
high densities they approach those given by a Saha equilibrium 
with ground states only. This behavior is readily explained in 
terms of the destruction of bound states of an atom or ion by 
perturbations from neighboring particles. Furthermore, the 
large discrepancies between the two Saha equilibria show that 
it is essential to have the ability to calculate the internal parti- 
tion functions accurately, i.e., to be able to determine reliably 
the total number of levels that remain bound in atoms and 
ions. We believe that the occupation probability method 
satisfies this requirement. In addition, the qualitative differ- 
ences in behavior between the FMIN results and both sets of 
Saha results at high densities shows the great importance of 
accounting for pressure dissociation and ionization. 
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Colorado and National Science Foundation grant AST 85- 
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APPENDIX A 

DERIVATIVES OF THE FREE ENERGY WITH RESPECT TO OCCUPATION NUMBERS 

In this appendix we present a complete collection of analytical expressions for the derivatives needed to carry out the free energy 
minimization procedure. While they are straightforward to derive in principle, the algebra is tedious and error prone, and we believe 
that they will be useful to other workers in this field. Additional derivatives needed for the calculation of thermodynamic quantities 
will be given in the next paper of this series. 

I. TRANSLATIONAL FREE ENERGY 
For any particles (r, s) other than electrons 

-/crf-ln T + ln K-lnJVs + lnGs), (Al) 
dNs \2 J 
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and 

while for electrons (e). 

MIRALAS, DÄPPEN, AND HUMMER 

J^£j_ = fcT 
ÔNrÔNs Ns

d's’ 

dF d2F1 d2F1 

dNe 8N2 dN, SN, = 0. 
^ s 

II. INTERNAL FREE ENERGY 
We assume that the occupation probability wis depends only on the occupation numbers {AT.} and the volume 

independent of the temperature T. Then for r # c and 4 # 

dF, N ¿7* 
—l = Eir- kT In Z* -kT 
dNr s*eZ?dNr- 

and 

while for electrons 

82F2 

dNrÔNq 
= —kT\ 

,rj_<5Z? _l_dZ£ Ns / ô2Zf 1 ÔZf ÔZ* 
IZ* 8Nq Z* 8Nr sjte Zf \8NrdNq Z* 8Nr 8N, 

8F2 82F2 82F2 

8Ne 8NrdNe 8N2 

To calculate derivatives of the partition function we use the identities 

dw 

= 0. 

and 

din w 
dx W dx ’ 

d2w f d2 \n w d in w d in w 
= w( ^ . + dx dy dx dy dx dy 

to write, for any variables x and y other than T, 

dZ? = y 
dx i 

d In wh 

dx ^is Gis ^ -(Eis-Eis)/kT 

In turn 

d2Zs* _ v /In wis 8 In wis 8 In w,s\ 
8x8y Y V ¿be 8y + 8x 8y )Wis9i!¡e (Eis-Els)/kT 

gjn w,.s = J4n\ , 
8NV \3F/ i5 + lv) ’ 

where v corresponds to a neutral species and s to a neutral species or H2 or H“, 

d In 
8N, KjJ2

Xis ]Z° ’ 

where a corresponds to a charged species (other than electrons), and 

82 In w„ 
8Nq8Nr 

^ = 0 

for all (q, r). Equation (A13) provides a valuable simplification that makes the evaluation of equation (A 10) much easier. 

III. FREE ENERGY OF PARTIALLY DEGENERATE ELECTRONS 
For partially degenerate electrons 

^3 

82F3 2kT Fll2(ri) kT 

Vol. 331 

(A2) 

(A3) 

V, and is 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

(A10) 

(All) 

(A 12) 

(A 13) 

8N2 Ne F_m(r,) Nede ’ 

(A 14) 

(A 15) 
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and 

ÔF3 d2F3 ç>2F3 

ÔNS ~ dN* — 8NS ôNe 
= ' 

In addition 

ôn 

ôji _ 2F1/2(>?) _ 1 
NeF_ll2(ri) Ne6e’ 

and 

= _ F-i/3>7) / ^ V 
5Ne

2 F_1/2W 1,5VJ • 

823 

(A 16) 

(A 17) 

(Al 8) 

(A19) 

IV. CONFIGURATIONAL FREE ENERGY OF COULOMB INTERACTIONS 
Let the subscripts (a, ß, y) refer to charged particles only. Then for the free energy of Coulomb interactions we have 

and 

df4 

dNi 

72 
T 

+ - 
dx 

ß TÖNß, 

1 ÔF4 ÔFa 

f4 ôn« ôn 

(ß * e) 

ôNfiÔNy 

ÔF, 
dN, 

d2F4 

dNtôN, F. ÔN„ 8N. 

+ F4 
ß Ulyv 

(h + NJ'JÔy/ÔNJ 
ll.NxZ

2Jx 

1 ÔF4 ôFa 

— (tY1 (T' 
t Vrj J öNß ôNy 

+ \t. 

t' ôx "1 
Tâ^j’ 

+ F, 
dx dx 

w„w„ 

d2x 
dN„ dN^ 

d2x 
InTôm, 

3 mi ) 
2 (L. N.zjefi 

iß * e, y é), 

3 Z2[Ôe + NMdnldN')]} 
2 (L, Nxzief J’ 

d2F4 

dN2
e 

Here 

d2x 3 

âiv2 + 2 L« Nxzlex 

dr\_ 
dN, 

+ Nt 
d2r] 
9Ñ2 

iee + Ne0'e(Ôr,/dNe)-]2)l 

la Nxzjex ]J- 

(A20) 

(A21) 

(A22) 

(A23) 

(A24) 

and 

Further 

'••'(ísíí 

«■•{35 
e'a = d: = o, 

- 3ô; - d2], 

a # ^ , 

(A25) 

(A26) 

(A27) 

(A28) 

(A29) 

d2x 
dïïymy 

dx 
ÔN, = x 

1 dx dx F 
xdÑ~pdÑ'y 

+ Xl{ 

N'ZX N, 
1 

+ T 

-z„z. 
(l^eNxZf Nf 2 

2 Z, Nxz
2

xex 

1 1 
2 (Z. AfaZ

20a)2J 

iß + e), 

(ß ^=e, y ^ e), 

(A30) 

(A31) 
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and 

d2x 
8Ñ2 

dx Jiee + Ned'e(dr,/dNe)-] 3Fm(,1) en i] 
dNe \ 2^ NxZX 2F3l2(n)dNe 

+nJ 

 S2x 1 dx dx xZj\_ee + Ne9'e(dt]/dNe)] 
dNß dNe - x dNß dNe ~ 2(X, Nx Z2M2 

(A32) 

(A33) 

l 
x 

J 3F1/2(>?) ( d2t] + f_di¡_ 
N2

e 2.F3/2(t]) \ÔN2 dN. 
3 FuM   
2 F3/2(r,)tt " 2 X* Nx Z29a 

e:N llV , n/2 ^ ,N d2ri 
- 1 +endFe 

+ N°dM dNeJ 

[ee + Ne0'e(dri/dNe)2l 

Z« Naz
2

aea 

(A34) 

APPENDIX B 

PRESSURE IONIZATION IN NEUTRAL GASES 

As was noted in § IV, the neutral-neutral perturbations contained in equation (8) are adequate to pressure-dissociate H2, but fail 
to produce pressure ionization of H or He at low temperatures. The basic reason for this failure is that at the temperatures and 
densities^ of relevance the electrons are strongly degenerate; it is therefore energetically more favorable for electrons to be counted as 
“bound” than to overcome the Fermi energy in the free electron gas. In contrast, dissociation proceeds without difficulty because 
no free electron is produced, hence no degeneracy barrier is encountered. 

In Paper I we pointed out that our neutral-neutral interaction term is only linear in £, the ratio of the volume filled by particles 
having extended radii to the total volume; hence, that it cannot be expected to be accurate as Ç approaches unity. More rigorous 
expressions for the free energy of a hard-sphere gas contain logarithmic or rational polynomial singularities as Ç -> 1; see e.g., 
equations (6.4) and (6.8) of Graboske, Harwood, and Rogers (1969). Those singularities prevent a collapse of a partially ionized 
plasma to a dense neutral state, and guarantee that as the density increases, a free-energy minimum with the gas partially or 
completely ionized can always be found. However, these expressions are difficult to implement numerically because as the 
occupation numbers fluctuate in the Newton-Raphson iteration, the arguments of some of the terms may be driven into a forbidden 
domain, and the free energy driven through the singularity, thus disrupting the calculation. 

We have therefore examined the effects of a simple, nonsingular, and differentiable supplement to our original neutral-neutral 
interaction term. To provide a rationale for our choice, start with the classical free energy of a hard-sphere gas: 

F5 = -kT X N¡ In [l - X N+Ri + R/] . (Bl) 

Expanding to first order we obtain 

kT X 1 \ N/R, + Rf (B2) 

which, to within a factor of 2 in density, is what one obtains from equations (7) and (8) and the definition F = — kT ln Z if one 
assumes that all states of the atom or ion are perturbed by the same amount as the ground state (i.e., replace wIsin eq. [7] by wls). 

This correspondence suggests that we supplement equation (8) by a term resembling the next (quadratic) term in the expansion of 
equation (B 1 ). Thus defining 

we expect the next term to be of the general form 

^ = (i?) ^ iV^ri'‘+ riv^3 ’ 

F= -feTXNv(-ca, 

(B3) 

(B4) 

where C is a numerical constant. In equations (B3) and (B4) the indices jâ and v range over neutral particles (and H and H2 ) only. 
Thus for the purpose of numerical experimentation we have taken the additional free energy to be 

F= -kTX Vvln'Fv, (B5) 
V 

where 

In 'Ey = — . (B6) 

Equations (B3), (B5), and (B6) are equivalent to multiplying the occupation numbers of all states in the internal partition function of 
species v by an additional occupation probability exp ( —a^). Because x¥v depends only on ground-state radii, it remains essentially 
unity until the density gets so high that even the ground state is perturbed. 
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In the computations discussed in this paper we used n = 2 and a = 10; this value for a is much larger than the correct coefficient 
of the quadratic term in the expansion of equation (Bl). The effect of F' becomes noticeable for ^ ^ 0.3, and strongly dominates as 
^ ^ 1. In principle, one could calibrate the choice of a and n by using experimental data for dense hydrogen plasmas; unfortunately 
we do not know of any data of this kind. In practice the choices we have made for a and n produce pressure ionization very 
efficiently once F' becomes comparable to through F4. 

The derivatives of F' are straightforward. One finds 

and 

dF' 
dNv 

= —kTl In 'F. + ^JV, 
d In TA 

-¿d’ 
(B7) 

where 

and 

d2F _ i g ln ^ i v y ln ^ 
ÔN^ dNv YN" ÔNJN dN^ÔN, 

ö ln »Fv n In T, Í4n 
dNv él V3F 

T7J Fu + ''ir) , 

ô2 In 'P, n - 1 a In T, 5 In 'F¡ 
ôN^ôN, n ln T, 8NV ‘ 

(B8) 

(B9) 

(B10) 

The pressure ionization produced by F' is quite abrupt. It is therefore essential to have good starting values for occupation 
numbers if the Newton-Raphson iteration is to converge. To obtain these estimates we precede the Newton-Raphson step by a 
binary chop procedure that scans for the minimum of the free energy as ionization fractions are varied between 0 and 1 ; the scan is 
continued until the relevant ionization fraction is determined to within ±0.001 in the logarithm. We found it satisfactory to vary the 
ionization fractions one at a time, first scanning H -► H+, then He -► He+. We believe that a sequential scan procedure will also 
work in a gas composed of several elements if one proceeds from the most abundant to the least abundant element in order. 

In general, the method outlined above has performed reliably, but it appears that the computation, as implemented, may suffer 
from severe numerical calculations, or a mild instability, because relatively minor algebraic rearrangements of terms can sometimes 
lead to divergence of the iteration procedure. In addition, even though occupation fractions, such as those shown in Figures 1-4, 
always vary smoothly, thermodynamic quantities (e.g., xp, cv, Fx, etc.), which are more demanding on the quality of the solution, are 
sometimes noisy in the part of the (p, T) domain where F' dominates. Thus unless our code contains an undetected error, it seems 
that a computationally more rugged method for forcing pressure ionization in a low-temperature neutral gas is still needed. 
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