THE ASTROPHYSICAL JOURNAL, 331: 583–604, 1988 August 15 © 1988. The American Astronomical Society. All rights reserved. Printed in U.S.A.

# A CASE FOR $H_0 = 42$ AND $\Omega_0 = 1$ USING LUMINOUS SPIRAL GALAXIES AND THE COSMOLOGICAL TIME SCALE TEST

Allan Sandage

Center for Astrophysical Sciences in the Department of Physics and Astronomy, The Johns Hopkins University; and Space Telescope Science Institute

Received 1987 May 29; accepted 1987 September 9

# ABSTRACT

There are two internally self-consistent methods of finding the Hubble velocity-distance ratios for individual galaxies. In the first, one assumes a linear velocity-distance relation, from which *relative* distances are found from the velocities. A system of absolute magnitudes is obtained thereby, later zero-pointed using Cepheid distances to local calibrating galaxies. In the second, one uses some parameter such as 21 cm line width, or the internal velocity dispersion, or the de Vaucouleurs  $\Lambda$ -index, etc., to which is assigned a *fixed* absolute magnitude  $\langle M \rangle$  for each value of the parameter, again zero-pointed later from the Cepheid calibrating galaxies.

Neither of the two methods can be faulted by considering only the internal data of a flux-limited sample, yet one or the other gives the wrong mean Hubble constant unless external information is known, either on the form of the velocity field (i.e., whether the redshift-distance relation *is* linear), or on the dispersion of the luminosity function. The self-consistency can be broken by adding data from a fainter flux-limited sample, seeking a contradiction in one of the methods.

The test of which method is in error, and therefore whether the high or low value of  $H_0$  is correct, is made here by combining redshift and magnitude data for bright ScI galaxies from the RSA with faint ScI galaxies from two catalogs in the literature to demonstrate the bias in the second method directly. It is shown that the method of assigning a fixed  $\langle M \rangle$  to each ScI galaxy in the bright sample (or to any other parameter that might be adopted as a distance indicator) produces an artificially compressed distance scale, imitating a varying Hubble ratio that appears to increase outward. However, adding the bright and faint samples gives a list that approaches a volume-limited catalog for redshifts smaller than ~4000 km s<sup>-1</sup>, from which it is demonstrated that (1) the local velocity-distance relation *is* linear over this redshift range (2), the ScI luminosity function is broad with  $\sigma \langle M \rangle = 0.7$  mag, and (3) the value of the Hubble constant is low.

Calibration of the ScI magnitude and redshift data in the  $v \rightarrow 0$  limit, using M31, M81, and M101 as calibrators, gives

$$H_0 = 42 \pm 11 \text{ km s}^{-1} \text{ Mpc}^{-1}$$
,

where the error is estimated by assigning an absolute magnitude uncertainty of 0.6 mag for the combined errors of (1) the calibration of the relevant ScI zero point from only three local galaxies, and (2) the uncertainty of the apex magnitude ( $\langle M_{B_T} \rangle$  at  $v \to 0$ ) which is determined from the upper and lower envelope fits to the  $M_{B_T}$ , log  $v_0$  diagram. Cepheid distances to many more ScI calibrating galaxies, and a complete (volume-limited) survey for such galaxies will be needed to improve the value of  $H_0$  via this method.

The age of the globular clusters is adopted to be  $13.5 \pm 1$  Gyr from the precision measurement of the age of 47 Tuc (Hesser *et al.*) using VandenBerg isochrones that permit [O/Fe] to vary with [Fe/H], now required from the recent subdwarf data. From the globular cluster age, plus the gestation period of galaxies, the age of the universe is put at  $14.9 \pm 2$  Gyr, giving  $H_0 T_U = 0.64 \pm 0.19$  and thereby

$$\Omega_0 = 1.2^{+3}_{-0.9}$$

Although the errors on  $\Omega_0$  are large, the increase in the  $H_0^{-1}$  Hubble time to ~23 Gyr if  $H_0 = 42$ , and the decrease in the globular cluster ages to ~14 Gyr now permits  $\Omega_0 = 1$  with  $\Lambda = 0$  from the time scale test, whereas earlier literature values on ages did not.

Subject headings: cosmology — galaxies: distances

#### I. INTRODUCTION

After ~50 years of effort—some sporadic, some intense the Gauss-Riemann space-time scalar curvature (kc/R) is not yet accurately known. Hubble (1936c) attempted to measure it directly from galaxy counts, following the method of experimental geometry begun by Gauss and by Schwarzschild. He used a semi-heuristic method (Hubble and Tolman 1935) to relate apparent magnitudes and redshifts to distances in a program aimed at finding a deviation of the measured volume from that expected in Euclidean space.

Hubble's 1936 conclusion concerning the value of  $R^{-1}$  was inconclusive for a variety of reasons. Some were technical concerning magnitude scale errors (Stebbins, Whitford, and Johnson 1950), an inadequate definition of total galaxy magnitudes (Humason, Mayall, and Sandage 1956, hereafter HMS, appendix A), imprecise knowledge of the K-effect of redshifts

on magnitudes (Greenstein 1938; HMS 1956, Appendix B; Oke and Sandage 1968; Lasker 1970; Whitford 1971), etc. Some were conceptual such as the use of inappropriate definitions of the proper distance-magnitude-redshift relations for different geometries (Hubble and Tolman 1935 compared with Mattig 1958, 1959; Sandage 1961*a*, 1962) because the precise theory was unknown until Mattig derived the equations in closed form.

The geometry of space-time is measured either by the deceleration parameter  $q_0$  [related to  $R_0^{-1}$  by  $k^{1/2}CR_0^{-1} = H_0(2q_0 - 1)^{1/2}$ ] or by the ratio,  $\Omega_0$ , of the present-day density to the closure density  $3H_0^2/8\pi G$ . The relation between them is  $\Omega_0 = 2q_0 + 2/3\Lambda c^2/H_0^2$  if we wish to retain a nonzero cosmological constant,  $\Lambda$ . From the requirement of grand unification for inflation in the early universe so as to achieve both the present-day near-flatness and the observed homogeneity of the Gamow-Alpher-Herman 3 K radiation,  $\Omega_0$  must be infinitesimally close to 1 except in highly contrived circumstances. The primary aim of observational cosmology is then to measure an accurate value of either  $q_0$  from geometry, or  $\Omega_0$  from dynamics to test these predictions of the connection between classical cosmology and particle physics, brought about by the grand unification hypothesis.

There are four known direct ways to  $q_0$ , but only the timescale test is robust. (1) The N(m) count test is degenerate in  $q_0$ to first order in z (Sandage 1961*a*; Robertson and Noonan 1968; Misner, Thorne, and Wheeler 1973), and is highly sensitive to luminosity evolution in the look-back time (Brown and Tinsley 1974). The N(z) test recently applied by Loh and Spillar (1986) requires precise knowledge of the incompleteness of the counts in any redshift bin  $z^2\Delta z$ . This knowledge is almost impossible to obtain, given the available sampling procedures using galaxies with their large range of surface brightness and absolute luminosities. (2) Luminosity evolution is the stumbling block for the best known of the tests via the m(z) Hubble diagram. (3) Evolution of linear sizes with time or with the absolute radio power also complicates the angular diameterredshift,  $\theta(z)$ , test (cf. Miley 1971; Kapahi 1975, 1987; Swarup 1975; Hickson 1977; Bruzual and Spinrad 1978). The problem common to these three classical tests is the variation with time of some measured property of the galaxies that mark the space. On the other hand, the time-scale test is evolution-free because we only compare two time scales, each of which is independent of secular variations of the measured parameters.

The time since the beginning of the expansion,  $T_E$ , depends only on the density parameter  $\Omega_0$  and the Hubble time constant,  $H_0^{-1}$  for those Friedman models with  $\Lambda = 0$  (Sandage 1961*a*, § V). For models where  $\Lambda \neq 0$ , the calculations by Refsdal, Stabell, and de Lange (1967), following Solheim (1966), are complete over the relevant parameter range of  $T_E$ ,  $\Omega_0$ ,  $\Lambda$ , and  $H_0^{-1}$ . The test is made by comparing  $T_E = f(\Omega_0, \Lambda)H_0^{-1}$ with the age of the universe,  $T_U$ , determined from some independent age dating method. The numerical value of f constrains the acceptable range of  $\Omega_0$  and  $\Lambda$  (Robertson 1955, Fig. 3; Sandage and Tammann 1984, Figs. 6 and 9; 1986 Figs. 6 and 8). If  $f = \frac{2}{3}$  and  $\Lambda = 0$ , then  $\Omega_0 = 1$  exactly. Even if not,  $\Omega_0$  can be determined by the comparison of  $T_E$  and  $T_U$ .

Clearly, the present dichotomous value of  $H_0$  near either 50 or 100 km s<sup>-1</sup> Mpc<sup>-1</sup> is intolerable for the test. No satisfactory critical analysis has yet appeared in the literature contrasting the two methods of using redshifts combined with some distance-indicating parameter (e.g., angular size, apparent magnitude, Hubble type, 21 cm line width, etc.) to find  $H_0$ . The two general methods of using the data differ only in whether the *redshift* or the *other parameter* (magnitude, 21 cm line width, etc.) is used as independent variable. The purpose of this and the following paper is to show that this seemingly trivial choice is the cause of the present disagreement over  $H_0$  rather than any difference in the input data for the local calibrators. A review of the general agreement for the very local distance scale to the calibrating galaxies and the problem of the bias is given by Tammann (1987).

In this first paper we compare the two principal methods of treating the data and show therein that one route to  $H_0$  is flawed by selection effects when using flux-limited catalogs. The proof is made by analyzing two sets of catalogs that reach different apparent flux levels. In this way, the selection effects are shown directly. In the following sections we analyze the optical data on field spiral galaxies of the brightest van den Bergh luminosity class. Calibration using M31, M81, and M101 which have Cepheid distances gives  $H_0 = 42 \pm 11$  km  $s^{-1}$  Mpc<sup>-1</sup>. A similar analysis and a similar result that  $H_0$  is low ( $\sim 55 \text{ km s}^{-1} \text{ Mpc}^{-1}$ ) is given in the following paper using 21 cm radio line width data. The exact value that we derive is not the purpose of this paper. Rather, it is to show that all values of  $H_0$  derived by the method of assigning an  $\langle M \rangle$  value to any given distance indicator is subject to systematic error, giving too large an  $H_0$  value if uncorrected for bias.

As to the *form* of the expansion, the empirical proof given here that the apparent increase of  $H_0$  with distance (Hawkins 1962; de Vaucouleurs 1972; Segal 1975, 1981, 1982; Nicoll and Segal 1982 in answer to Soneira 1979; de Vaucouleurs and Peters 1986; Giraud 1985, 1986a, b) is a result of selection bias is an extension of a previous argument (Sandage, Tammann, and Yahil 1979, hereafter STY) that used only field galaxies brighter than apparent magnitude ~13, and is parallel to the formal proof via the Malmquist bias equations given by Teerikorpi (1975a, b; 1984) and applied by Bottinelli *et al.* (1986). The conclusions of the three sets of studies agree that the very local Hubble velocity field *is* linear and that the value of  $H_0$  is low.

#### **II. TWO SECONDARY METHODS TO DETERMINE DISTANCE RATIOS**

We suppose in what follows that data on redshift and apparent magnitude (or any other supposed distance indicator such as angular diameter, or Hubble type, or luminosity class) exist for galaxies in a catalog such as the RSA (Sandage and Tammann 1981) that is complete in redshift and complete also to a given flux limit, or whose incompleteness function is known (cf. Tammann, Yahil, and Sandage 1979, hereafter TYS).

After the primary distance indicators such as Cepheids or bright resolved stars have been exhausted because of insufficient range, only methods using secondary brighter indicators are available. Two different methods are being used in the current literature to obtain distances far beyond the Local Group. Because these two distance scales progressively diverge with increasing distance, at least one of them must be wrong. The methods are as follows.

1. In the first it is assumed that an ideal *linear* redshiftdistance relation exists, justified by the data on nearby clusters, groups, and local galaxies with Cepheid distances (Sandage 1972a, b, c, 1975, 1986; Sandage and Tammann 1975a, 1985; Sandage, Tammann, and Hardy 1972). From the ratios of the redshifts we can then obtain relative distances. Further, if we adopt a working value of  $H_0$  (later to be determined), the absolute magnitude  $M_i$  can be calculated for any galaxy *i* from

1988ApJ...331..583S

## No. 2, 1988

its apparent magnitude  $m_i$  and from the distance given by  $r_i =$  $v_i/H_0$ . The zero point of the absolute magnitude scale is then calibrated using Cepheid distances to suitable local galaxies.

2. In the second method it is assumed that any indicator such as the van den Bergh luminosity index for a given galaxy type, or a given 21 cm line width, has a stable mean value  $\langle M \rangle$ . One then applies  $\langle M \rangle$  to each galaxy *i*, from which individual distance moduli  $m_i - \langle M \rangle$  are obtained, and thereby individ-ual Hubble ratios  $h_i = v_i/r_i$  using  $r_i = \text{dex} [0.2(m - M + 5)]$ .

For each method one proceeds to the mean Hubble constant for the sample as follows. In method (1) the mean  $M_i$  values are compared with  $\langle M_i \rangle$  from the local calibrating galaxies that have Cepheid distances such as M31, M81, and M101 for luminosity class I systems. To find the proper value of  $\langle M_i \rangle$ , the data for the field sample must be read at the redshift limit of  $v_i \rightarrow 0$  which defines the volume element of the local calibrators. The working value of  $H_0$  is then changed by requiring that this mean  $\langle M_i \rangle$  for the field sample be the same as for the *local calibrators* (§ VI) in the redshift limit of  $v_i \rightarrow 0$ . In method (2) we use the individual  $h_i = v_i/r_i$  values, which then must be corrected for the bias caused by the flux-limited nature of the data before a correct  $\langle H_0 \rangle$  value is found.

The two methods address different questions. In the first we adopt a linear velocity-distance relation and find properties of  $\langle M \rangle$  thereby. In the second we *adopt* a fixed  $\langle M \rangle$  for every galaxy in the subset and from the resulting parameter distance  $r_i$  one attempts to find properties of the Hubble flow itself as if  $v_i$ , rather than  $r_i$ , is suspect. Note again that the difference between the methods is in which parameter ( $v_i$  or  $\langle M \rangle$  coupled with  $m_i$ ) is taken to be the independent variable.

If the local velocity field is indeed linear, we demonstrate later (Fig. 9) that the results of each method converge to the same value of  $H_0$ , as the flux limit of the sample is progressively decreased to form a data subset that approaches a distance-limited sample. However, the methods do not give the same result when a given flux-limited catalog is analyzed by either (a) using an incorrectly narrow luminosity function  $\Phi(M)$ in method (2), or (b) by ignoring the bias, which is equivalent to assuming an infinitely narrow delta function for  $\Phi(M)$ . Because the luminosity function is not known a priori, there is no a priori way to decide between the methods except by comparing a faint and a bright catalog.

Because each method is self-consistent in the absence of external data on  $\Phi(M)$ , a decision between them can only be made either from (1) an independent knowledge of the true luminosity function (the method of TYS 1979, by adopting the great cluster function) or (2) by sampling fainter apparent magnitudes in a general field catalog to approach a distancelimited sample for at least part of the data set-our present route.

### a) Expected Distribution of $M_i$ in a Flux Limited Sample Using a Linear Velocity-Distance Relation

The steps to be followed in method (1) are the following. a. Assume  $r_i = v_i/H_0^A$  where  $H_0^A$  is an arbitrarily adopted number to be adjusted later (§ VI) via the local calibrators.

b. For every galaxy in the sample, calculate the kinematic distance  $r_i$  from  $v_i/H_0^A$  and then calculate  $M_i$  from  $M_i = m_i + 5$  $-5 \log r_i$ .

c. Construct a "bias diagram" by plotting  $M_i$  versus log  $v_i$ (or  $m_i - M$ ) for the total sample. This diagram is useful to test if bias is present. Examples are Figure 7 of Sandage (1972c) where the increase of radio power as  $z^2$  for 3CR radio sources is clearly due to selection bias, and Figures 1 and 3 of STY where the bias of the RSA sample is shown.

A demonstration of the usefulness of the M,  $\log v$  diagram is the Monte Carlo simulation by Spaenhauer (1978). A different version of his original diagram is shown as Figure 1 here, also calculated by Spaenhauer for Tammann's (1987) review given elsewhere. The top panel shows the distribution of  $M_i$  for a complete distance-limited sample whose luminosity function is Gaussian with a dispersion of  $\sigma = 2.0$  mag. Because the volume enclosing the sample increases with increasing distance, the bright and faint envelope lines open out. These envelopes define the  $M_i$  values where the luminosity function  $\Phi(M) = 1$  in both its bright and faint wings.<sup>1</sup>

If we were to assign the mean absolute magnitude  $\langle M \rangle$  that is appropriate for the complete distribution to every galaxy in a distance-limited sample, we would make as many mistakes toward the bright end as the faint, and the mean  $\langle \log r_i \rangle$  for the complete sample would not be a function of distance. However, in flux-limited data sets the sample is truncated by the flux limit of the catalogs, with the consequence that different fractions of  $\Phi(M)$  are sampled at different distances (Fig. 1b). This produces an artificial increase in absolute luminosity with distance which is the Malmquist bias.

Note that if method (2) is used to analyze such a truncated sample, where a fixed  $\langle M \rangle$  is applied to all galaxies without regard for the bias, then progressively incorrect values of  $\langle \log r_i \rangle$  will be obtained as the distance is increased. To test if this is the origin of the divergence of the distance scales in the current literature all we need to do is to change the limit line in Figure 1 toward fainter apparent magnitudes. For if the apparent increase in  $\langle M \rangle$  with distance in Figure 1b is due to bias, i.e. is not caused by incorrectly using a linear velocity-distance relation if it is really nonlinear, then the fainter galaxies analyzed using method (1) will begin to fill the region between m = 13 and a fainter line at m = 15.5, say. However, if the velocity-distance relation is not linear, then the apparently fainter galaxies will continue the apparent trend of  $\langle M_i \rangle$ , either seeming to become even brighter with increasing distance or will tack on in a continuous manner to the end of the trend in Figures 1b or 4b.

### b) Expected Distribution of the Apparent Hubble Ratio Using Method (2) without Bias Correction

The steps to be followed in method (2), making no a priori assumption on the form of the velocity-distance relation, are:

a) assign a fixed value of  $\langle M \rangle$  to each galaxy *i*;

b) form  $m_i - \langle M \rangle$  for each galaxy and calculate the photometric distance  $r_i$  from  $m_i - \langle M \rangle + 5 = 5 \log r_i$ ;

c) use the observed velocity (corrected to the Local Group centroid and for Virgocentric infall if desired) to obtain the Hubble ratio  $h_i = v_i/r_i$  for each galaxy;

d) plot  $h_i$  versus log  $v_i$  (or log  $r_i$ ) to determine the nature of the local velocity field.

We note again that it is impossible to decide between the

<sup>&</sup>lt;sup>1</sup> The  $\sigma$  value of 2 mag in Figure 1 is larger than the  $\sigma = 0.7$  mag appropriate for ScI galaxies. This, however, is of no consequence in illustrating the principle of the bias problem in flux-limited samples. The same type of variation  $\langle M \rangle$  with distance that is shown in Figure 1 is present in every such sample whenever  $\sigma(M) \neq 0$ . The amplitude of the  $\langle M \rangle = f(D)$  variation, of course, depends on the  $\sigma(M)$  value. The point is that diagrams isomorphic to Figure 1 are obtained by changing  $\sigma$  to any desired value, together with a corresponding change in the scale of the ordinate. Figure 11 later here shows such a set of isomorphic diagrams for different values of  $\sigma(M)$ .

1988ApJ...331..583S



FIG. 1.—Monte Carlo simulation by Spaenhauer of the distribution of absolute luminosities if  $\Phi(M)$  is a Gaussian with  $\sigma = 2.0$  mag and  $H_0 = 50$  km s<sup>-1</sup> Mpc<sup>-1</sup>. *Top*: Distribution of M for a complete sample of galaxies in a given volume. The upper and lower envelope lines open symmetrically about the assumed mean absolute magnitude  $\langle M \rangle$ . *Bottom*: The distribution that would be observed in a flux-limited sample, cut at m = 13 mag. The observed  $\langle M \rangle$  becomes brighter with increased distance due to the imposed flux-limit on the complete sample. If the abscissa had been given as log distance, the lower flux limit-line would have been straight.

results of method (1) and (2) if the luminosity function is unknown and if only a single data sample to a given flux limit is available. This is why adding a fainter data set to the RSA sample is so important in deciding if there is a nonlinear velocity field in which  $H_0$  increases outward, or whether  $\Phi(M)$  is broad and the very local velocity field is *linear*, meaning that  $H_0$  is constant with distance.

# III. REDSHIFT AND MAGNITUDE DATA FOR LUMINOUS SPIRALS FROM SAMPLES WITH DIFFERENT FLUX LIMITS

Galaxies of a particular Hubble type can be used as relative distance indicators if they have a moderately narrow range of intrinsic luminosities. Hubble (1936*a*, *b*) was the first to suggest that a near Gaussian  $\Phi(M)$  distribution exists for galaxies of high surface brightness—i.e., those which had redshift and magnitude data in the mid-1930s. He obtained  $\sigma(M) = 0.84$  mag for his particular sample that contained both spirals and E systems.

Due to the statistical problems with flux-limited samples in this and in subsequent studies of the same kind (cf. HMS 1956), the conclusion of a narrow  $\Phi(M)$ , even one *bounded* at the faint end, was questioned (Zwicky 1957). However, van den Bergh (1960*a*, *b*) demonstrated that late-type galaxies could be divided into luminosity classes on the basis of appearance, that

1988ApJ...331..583S

The next step was the demonstration that ScI galaxies in a fainter sample than the RSA continued to define a restricted band in the *m*, log *v* Hubble diagram (Sandage and Tammann 1975*b*, Fig. 1) rather than to merely increase the apparent magnitude scatter at a given redshift, which would have indicated a very broad  $\phi(M)$ . The magnitude residuals at a given velocity for the RSA sample, combined with the fainter sample, continued to have nearly a Gaussian distribution with  $\sigma(M) = 0.6$  mag.

However, the idea of a moderately narrow  $\Phi(M)$  for spirals (especially for luminosity classes > II) was then questioned by TYS (1979) in their analysis of the RSA data to obtain the correction due to the flux-limited sample. The idea was defended by Kennicutt (1982), and his result was discussed by Kraan-Korteweg, Sandage, and Tammann (1984, KKST) who showed that the local velocity perturbation had negligible effect on the calculated  $\phi(M)$ . It was then demonstrated from the distance-limited sample in the Virgo Cluster (Bingelli, Sandage, and Tammann 1985; Sandage, Bingelli, and Tammann 1985b, hereafter SBT, Figs. 4, 7, and 18) that Kennicutt's conclusion is, indeed, correct that a usefully narrow  $\Phi(M)$  does exist<sup>2</sup> for spirals.<sup>3</sup>

#### a) Data from the RSA

It was known from HMS (1956) that apparent magnitudes are well correlated with redshifts for bright field galaxies. However, the HMS data sets for each Hubble type show a shallower slope in the m, v correlation than  $m \sim 5 \log v$  (HMS 1956, Figs. 3–12; Hawkins 1962). In this section we show that the same is true for the Sb and Sc galaxies of luminosity class I and I–II in the RSA. The result is similar to that discussed for E and SO galaxies by STY (1979), which was shown there to be explained by the Malmquist bias if the field  $\Phi(M)$  is closely the same as for the great clusters. It needs to be emphasized that we require no such assumption on  $\Phi(M)$  in the demonstration made here in which we add a fainter sample.

Data for Sb, Sbc, and Sc galaxies of luminosity classes I–I.3 and I–II are listed in Table 1, taken from the second edition of the RSA (Sandage and Tammann 1987). Column (3) shows the adopted velocity, reduced to the centroid of the Local Group

<sup>2</sup> The discussion by KKST centered on whether the inclusion of a Virgo velocity perturbation in the calculations did, in fact, make  $\phi(M)$  narrower than without the correction. The seeming difference between the TYS and the Kennicutt conclusions was due to different representation of  $\phi(M)$  appearing to differ in their narrowness. TYS viewed  $\phi(M)$  in its log form; Kennicutt plotted the data more directly as  $\phi(M)$  itself, whose visual impression is for a much narrower distribution.

<sup>3</sup> The de Vaucouleurs  $\Lambda$  index is a generalization of the variation of  $\langle M \rangle$ along the Hubble sequence and among the van den Bergh luminosity classes, correcting for the variation of the gross  $\Lambda$ -M correlation which exists, albeit with a dispersion whose size is still under discussion (SBT 1985*a*; de Vaucouleurs and Corwin 1986*a*). Note that if a sample is restricted to say ScI galaxies alone, the discussion is, then, necessarily restricted to a particular de Vaucouleurs  $\Lambda$ -value. Therefore, the demonstration made here of selection effects for ScI galaxies can be generalized to apply to other discussions of the distance scale that use say  $\Lambda$  for galaxies along some range of the Hubble sequence, or 21 cm line width (Aaronson *et al.*, 1982; Giraud 1985, 1986*a*, *b*), or corrected internal velocity dispersion  $\sigma_D$  (Dressler *et al.* 1987), or H $\beta$  flux of H II regions (Melnick, Terevich, and Moles 1987), etc., each of which uses method (2), and hence all are suspect. as listed in column (20) of the RSA. Column (4) is the velocity correction for Virgocentric infall calculated by Kraan-Korteweg (1986) using v = 220 km s<sup>-1</sup> for the Local Group infall in the density model she adopts. Column (5) is the log of columns (3) plus (4). The "total" blue magnitude  $B_T$  from column (12) of the RSA is in column (6). The magnitude in column (7) is corrected for galactic and internal absorption taken from column (15) of the RSA. Absolute magnitudes, calculated as if  $H_0 = 50$  km s<sup>-1</sup> Mpc<sup>-1</sup>, are listed in columns (8), (9), and (10) with and without internal absorption corrections, and using the velocities in column (3) for the listings in (8) and (9) or in column (5) for the listing in column (10).

The  $v_0^{220}$ ,  $B_T^{o,i}$  Hubble diagram for Sb, Sbc, and Sc galaxies of luminosity classes I–I.3 and I–II is shown in Figure 2. Small magnitude corrections have been applied to the Sbc and Sb galaxies to reduce them to the same mean luminosity as for the ScI–I.3. These corrections, shown in the code to the diagram, were determined by plotting the v,  $B_T$  diagrams for each type separately from the data in Table 1, and finding the offset in the distribution of points relative to the ScI data simply by sliding one diagram over any other.

The envelope and ridge lines in Figure 2, drawn to guide the eye, have a slope of 5, required if the local velocity field is linear and if there are no selection effects in the data. The data clearly deviate from this slope, showing brighter magnitudes at higher velocities relative to the ridge line. This is the same sense as in HMS (Figs. 3-10) and in the E and SO galaxies of the RSA (STY 1979).

In Figure 3 we show data with and without correction for internal absorption (CIA) and using  $v_0$  velocities uncorrected for Virgo infall. The purpose is to illustrate that these corrections are minor and do not alter the situation. A least-squares line through the data in both Figures (2) and (3) and later in Figure (6) has a smaller slope than 5.

# b) The $M_{B_T}$ , log $v_0$ Bias Diagram

The consequence of this slope difference from 5 in Figures 2 and 3 is that the  $M_{B_T}$  which is calculated using  $r_i = v_i/H_0$  varies progressively with log  $v_0$  for galaxies in the sample, shown in Figure 4*a*. The variation is clear and, as previously discussed, is either what is expected due to bias in a flux-limited sample (Fig. 1*b*), or is due to a real departure of the local velocity field from the assumed linearity.

For later reference we show upper and lower envelope lines in Figure 4b that enclose the distribution. Also shown is the apparent magnitude limit of the RSA, put at  $m_{0,i} = 12.5$  which is the approximate catalog limit corrected for an internal absorption of ~0.4 mag for Sc galaxies.

The arrow in Figure 4b put at  $M_{B_T}^{o,i}(H_0 = 50) = -21.0$  is the apex where the two envelope lines, assumed to be symmetrical due to an assumed symmetrical  $\Phi(M)$ , meet in the  $v \to 0$  limit. This is an important point in the final determination of  $H_0$  using the local calibrators (§ VI).

#### c) Data from the Fainter ScI Samples

To decide between the two explanations of Figure 4a (i.e., bias or nonlinear velocity field) we now add fainter ScI galaxies. Two samples of such galaxies exist. A catalog of 69 ScI galaxies between m = 13 and ~15.7, chosen by inspecting the POSS original plates, with redshifts measured at Palomar, was made by Sandage and Tammann (1975b), hereafter called the S-T sample. An independent catalog of 202 such galaxies was made by Rubin *et al.* (1976) in their search for large-scale devi-

| $\begin{tabular}{ c                                   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Galaxy<br>(1) | Type<br>(2)             | $(km s^{-1})$ (3) | $\Delta v_0^{220}$ (4) | $\log v_0^{220}$ (5) | В <sub>т</sub><br>(6) | B <sup>o, i</sup><br>(7) | $-M^{0}_{B_{T}}$ (RSA) (8) | $-\frac{M_{B_T}^{o,i}}{(\text{RSA})}$ (9) | $-M_{B_T}^{o,i}$<br>(220)<br>(10) |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------|-------------------|------------------------|----------------------|-----------------------|--------------------------|----------------------------|-------------------------------------------|-----------------------------------|--|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               | а.<br>С                 |                   | {Sbc, SBt<br>{I-I.3}   | )<br>()<br>()        |                       |                          |                            |                                           |                                   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NGC 309       | Sc(r)I                  | 5786              | -180                   | 3.748                | 12.40                 | 12.07                    | 22.92                      | 23.25                                     | 23.17                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 521           | SBc(rs)I                | 5223              | -161                   | 3.704                | 12.5                  | 12.19                    | 22.57                      | 22.88                                     | 22.83                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 628           | Sc(s)I                  | 861               | -42                    | 2.913                | 9.77                  | 9.43                     | 21.44                      | 21.75                                     | 21.64                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 958           | Sc(s)I.2                | 5837              | -137                   | 3.756                | 12.95                 | 12.32                    | 22.39                      | 23.03                                     | 22.97                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1232          | Sc(rs)I                 | 1775              | -63                    | 3.233                | 10.50                 | 10.18                    | 22.25                      | 22.57                                     | 22.49                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2207          | Sc(s)I<br>Sc(s)I 2      | 4198              | -90                    | 3.013                | 12.79                 | 12.43                    | 21.89                      | 22.19                                     | 22.14                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2280          | Sc(s)1.2<br>Sc(s)1.2    | 1709              | 103                    | 3 258                | 11.55                 | 11 04                    | 22.34                      | 22.97                                     | 23.02                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2776          | Sc(rs)I                 | 2673              | 247                    | 3.466                | 12.20                 | 11.84                    | 21.50                      | 21.80                                     | 21.99                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2835          | SBc(rs)I.2              | 624               | 151                    | 2.889                | 10.95                 | 10.25                    | 20.23                      | 19.81                                     | 20.70                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2942          | Sc(s)I.3                | 4399              | 236                    | 3.666                | 12.79                 | 12.39                    | 21.97                      | 22.33                                     | 22.44                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2955          | Sc(s)I                  | 7051              | 201                    | 3.860                | 13.45                 | 12.90                    | 22.34                      | 22.85                                     | 22.90                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2989          | Sc(s)I                  | 3916              | 222                    | 3.617                | 12.42                 | 12.87                    | 21.22                      | 21.60                                     | 21.72                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2997          | SC(s)I.3<br>Sc(rs)I     | /99               | 196                    | 2.998                | 10.32                 | 9.62                     | 21.03                      | 21.40                                     | 21.87                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3294          | Sc(s)I 3                | 4613              | 356                    | 3.702                | 12.05                 | 11.00                    | 22.30                      | 22.04                                     | 22.93                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3464          | Sc(rs)I                 | 3571              | 263                    | 3.584                | 12.82                 | 12.31                    | 21.55                      | 21.96                                     | 22.11                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3478          | Sc(s)I                  | 6730              | 217                    | 3.842                | 12.95                 | 12.38                    | 22.70                      | 23.27                                     | 23.33                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3614          | Sc(r)I                  | 2362              | 321                    | 3.429                | 12.21                 | 11.75                    | 21.16                      | 21.62                                     | 21.90                             |  |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3735          | Sc(s)(I)                | 2836              | 220                    | 3.486                | 12.50                 | 11.62                    | 21.32                      | 22.15                                     | 22.31                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3893          | Sc(s)I.2                | 1026              | 305                    | 3.125                | 11.1                  | 10.65                    | 20.46                      | 20.91                                     | 21.48                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3938          | Sc(s)I                  | 844               | 214                    | 3.025                | 10.91                 | 10.60                    | 20.23                      | 20.54                                     | 21.03                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4254          | Sc(s)I.2                | 2301              | 520<br>Virgo           | 3.337                | 12.33                 | 11.24                    | 20.01                      | 21.00                                     | 21.95                             |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4303          | Sc(s)1.2                | 1404              | Virgo                  | 3.074                | 10.45                 | 9.86                     | 21.53                      | 21.39                                     | 22.01                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4321          | ScI                     | 1464              | Virgo                  | 3.074                | 10.11                 | 9.79                     | 21.59                      | 21.91                                     | 22.08                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4535          | SBc(s)I.3               | 1818              | Virgo                  | 3.074                | 10.51                 | 10.12                    | 21.19                      | 21.58                                     | 22.15                             |  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4653          | Sc(rs)I.3               | 2433              | 384                    | 3.450                | 12.82                 | 12.51                    | 20.62                      | 20.93                                     | 21.24                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5161          | Sc(s)I                  | 2113              | 290                    | 3.381                | 11.98                 | 11.24                    | 21.32                      | 21.92                                     | 22.17                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5230          | Sc(s)I<br>Sc(r)I        | 6755              | 256                    | 3.846                | 12.75                 | 12.43                    | 22.90                      | 23.22                                     | 23.30                             |  |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5457          | Sc(s)I                  | M101Grp           | 423                    | 2 460                | 8 18                  | 10.04                    | 20.74                      | 21.15                                     | 21.84                             |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5660          | Sc(s)I.2                | 2433              | 296                    | 3.436                | 12.3                  | 11.99                    | 21.14                      | 21.31                                     | 20.91                             |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6118          | Sc(s)I.3                | 1535              | 250                    | 3.252                | 11.91                 | 11.24                    | 20.65                      | 21.20                                     | 21.52                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6878          | Sc(r)I.3                | 5791              | - 57                   | 3.758                | 14.07                 | 13.58                    | 21.36                      | 21.74                                     | 21.71                             |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | Sc(s)I                  | 2600              | -48                    | 3.407                | 12.56                 | 11.78                    | 21.07                      | 21.80                                     | 21.76                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |               |                         |                   | {Sbc, SBb<br>{I-I.3}   | ic}                  |                       |                          |                            |                                           | 1                                 |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NGC 1241      | SBbc(rs)I.2             | 4072              | -115                   | 3.597                | 12.66                 | 12.21                    | 21.89                      | 22.34                                     | 22.51                             |  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1365          | SBbc(s)I                | 1486              | -32                    | 3.163                | 10.21                 | 9.45                     | 22.19                      | 22.95                                     | 22.87                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1566          | Sbc(s)I.2               | 1303              | 18                     | 3.121                | 10.21                 | 9.79                     | 21.91                      | 22.27                                     | 22.32                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2223          | SBDC(T)I.3<br>SBbc(r)I  | 2529              | 12                     | 5.415<br>3 11 2      | 12.15                 | 11.48                    | 21.72                      | 22.04                                     | 22.10                             |  |
| 2713       Sbc(s)I       3690       226       3.63       12.60       11.87       21.86       22.17       22.60         3054       SBbc(s)I       1923       268       3.341       12.13       11.47       21.02       21.46       21.97         3124       SBbc(r)I       3307       254       3.552       12.35       11.87       21.89       22.23       22.39         3145       SBbc(rs)I       3416       265       3.566       12.35       11.73       21.92       22.44       22.60         3259       Sbc(rs)I       2005       256       3.355       12.91       12.12       20.17       20.91       21.16         3444       Sbc(rs)I.2       627       19       2.811       10.48       10.14       20.01       20.35       20.42         3433       Sbc(r)I.3       2566       353       3.465       12.28       11.97       21.27       21.58       21.86         3486       Sbc(r)I.2       636       10       2.811       10.85       10.47       19.67       20.05       20.09         3687       Sbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.                                                                                                                                                                           | 2369          | Sbc(s)Inec              | 2424              | 64                     | 3.413                | 12.68                 | 10.48                    | 22.45                      | 22.94                                     | 23.09                             |  |
| 3054       SBbc(s)I       1923       268       3.341       12.13       11.47       21.02       21.46       21.97         3124       SBbc(r)I       3307       254       3.552       12.35       11.87       21.89       22.23       22.39         3145       SBbc(rs)I       3416       265       3.566       12.35       11.73       21.92       22.44       22.60         3259       Sbc(r)I       2005       256       3.355       12.91       12.12       20.17       20.91       21.16         3344       Sbc(r)I.2       627       19       2.811       10.48       10.14       20.01       20.35       20.42         3433       Sbc(r)I.3       2566       353       3.465       12.28       11.97       21.27       21.58       21.86         3486       Sbc(r)I.2       636       10       2.811       10.48       10.47       19.67       20.05       20.09         3687       SBbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.31         3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.                                                                                                                                                                           | 2713          | Sbc(s)I                 | 3690              | 226                    | 3.593                | 12.60                 | 11.87                    | 21.88                      | 22.47                                     | 22.60                             |  |
| 3124       SBbc(r)I       3307       254       3.552       12.35       11.87       21.89       22.23       22.39         3145       SBbc(rs)I       3416       265       3.566       12.35       11.73       21.92       22.44       22.60         3259       Sbc(r)I       2005       256       3.355       12.91       12.12       20.17       20.91       21.16         3344       Sbc(rs)I.2       627       19       2.811       10.48       10.14       20.01       20.35       20.42         3433       Sbc(r)I.3       2566       353       3.465       12.28       11.97       21.27       21.58       21.88         3486       Sbc(r)I.2       636       10       2.811       10.48       10.47       19.67       20.05       20.09         3687       SBbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.31         3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.03         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       2                                                                                                                                                                           | 3054          | SBbc(s)I                | 1923              | 268                    | 3.341                | 12.13                 | 11.47                    | 21.02                      | 21.46                                     | 21.97                             |  |
| 3145       SBbc(rs)I       3416       265       3.566       12.35       11.73       21.92       22.44       22.60         3259       Sbc(r)I       2005       256       3.355       12.91       12.12       20.17       20.91       21.16         3344       Sbc(rs)I.2       627       19       2.811       10.48       10.14       20.01       20.35       20.42         3433       Sbc(r)I.3       2566       353       3.465       12.28       11.97       21.27       21.58       21.86         3486       Sbc(r)I.2       636       10       2.811       10.48       10.47       19.67       20.05       20.09         3687       Sbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.31         3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.03         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I.3       2853       330       3503       12.43       12.44       21.42       20.09                                                                                                                                                                                    | 3124          | SBbc(r)I                | 3307              | 254                    | 3.552                | 12.35                 | 11.87                    | 21.89                      | 22.23                                     | 22.39                             |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3145          | SBbc(rs)I               | 3416              | 265                    | 3.566                | 12.35                 | 11.73                    | 21.92                      | 22.44                                     | 22.60                             |  |
| 3344       Sbc(rs)I.2       627       19       2.811       10.48       10.14       20.01       20.35       20.42         3433       Sbc(r)I.3       2566       353       3.465       12.28       11.97       21.27       21.58       21.86         3486       Sbc(r)I.2       636       10       2.811       10.85       10.47       19.67       20.05       20.09         3687       Sbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.31         3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.03         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(rs)I       2903       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbc(rs)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       2                                                                                                                                                                           | 3259          | Sbc(r)I                 | 2005              | 256                    | 3.355                | 12.91                 | 12.12                    | 20.17                      | 20.91                                     | 21.16                             |  |
| 3435       350       353       3463       12.28       11.97       21.27       21.38       21.80         3486       Sbc(r)I.2       636       10       2.811       10.85       10.47       19.67       20.05       20.09         3687       Sbc(r)I.2       2456       362       3.450       12.85       12.57       20.59       20.89       21.31         3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.03         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(r)I       2003       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbc(r)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbc(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.44 <tr< td=""><td>3344</td><td>Sbc(rs)1.2<br/>Sbc(r)1.2</td><td>627</td><td>19</td><td>2.811</td><td>10.48</td><td>10.14</td><td>20.01</td><td>20.35</td><td>20.42</td><td></td></tr<>     | 3344          | Sbc(rs)1.2<br>Sbc(r)1.2 | 627               | 19                     | 2.811                | 10.48                 | 10.14                    | 20.01                      | 20.35                                     | 20.42                             |  |
| 3687       Sbb(r)I.2       2456       362       3.451       10.85       10.47       11.07       20.05       20.89       21.31         3720       Sbb(r)I.2       2456       362       3.450       12.851       12.57       20.59       20.89       21.31         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(r)I       2903       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbc(r)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbc(r)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbc(r)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48 <td< td=""><td>3486</td><td>Sbc(r)I.2</td><td>2300</td><td>10</td><td>3.403<br/>2.811</td><td>12.28</td><td>10.47</td><td>21.27</td><td>21.58</td><td>21.80</td><td></td></td<> | 3486          | Sbc(r)I.2               | 2300              | 10                     | 3.403<br>2.811       | 12.28                 | 10.47                    | 21.27                      | 21.58                                     | 21.80                             |  |
| 3720       Sbc(s)I       5831       264       3.785       13.70       13.39       21.63       21.94       22.03         3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(r)I       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5324       Sbc(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbc(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       21.93                                                                                                                                                                                    | 3687          | SBbc(r)I.2              | 2456              | 362                    | 3.450                | 12.85                 | 12.57                    | 20.59                      | 20.89                                     | 21.31                             |  |
| 3963       Sbc(r)I.2       3295       254       3.550       12.38       12.07       21.71       22.02       22.18         4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(rs)I       2903       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbc(rs)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbc(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbc(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbc(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       <                                                                                                                                                                       | 3720          | Sbc(s)I                 | 5831              | 264                    | 3.785                | 13.70                 | 13.39                    | 21.63                      | 21.94                                     | 22.03                             |  |
| 4030       Sbc(r)I       1322       474       3.255       11.07       10.69       21.04       21.42       22.09         4939       Sbc(rs)I       2903       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbc(rs)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbc(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbc(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbc(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       21.93                                                                                                                                                                                                                                                                                             | 3963          | Sbc(r)I.2               | 3295              | 254                    | 3.550                | 12.38                 | 12.07                    | 21.71                      | 22.02                                     | 22.18                             |  |
| 4939       Sbq(rs)I       2903       332       3.510       11.56       11.05       22.26       22.77       23.00         5324       Sbq(rs)I.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbq(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbq(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbq(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbq(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       21.93                                                                                                                                                                                                                                                                                                                                                                                                                     | 4030          | Sbc(r)I                 | 1322              | 474                    | 3.255                | 11.07                 | 10.69                    | 21.04                      | 21.42                                     | 22.09                             |  |
| 5324       Sboqril.3       2853       330       3.503       12.43       12.14       21.35       21.64       21.88         5351       Sbc(rs)I.2       3663       291       3.597       13.00       12.25       21.32       22.07       22.24         5426       Sbc(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbc(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4939          | Sbc(rs)I                | 2903              | 332                    | 3.510                | 11.56                 | 11.05                    | 22.26                      | 22.77                                     | 23.00                             |  |
| 501       501       501       501       501       15.00       12.25       21.32       22.07       22.24         5426       Sbc(rs)I.2       2455       343       3.447       12.78       12.28       20.68       21.18       21.46         5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbc(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5351 5351     | SDC(r)1.3<br>Sbc(rs)1.2 | 2855              | 330                    | 3.503                | 12.43                 | 12.14                    | 21.35                      | 21.64                                     | 21.88                             |  |
| 5427       Sbc(s)I       2565       335       3.463       12.07       11.76       21.48       21.79       22.05         5905       SBbc(rs)I       3544       225       3.576       12.33       11.77       21.92       22.48       22.61         6699       Sbc(s)I.2       3357       26       3.529       12.73       12.22       21.62       21.92       21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5426          | Sbc(rs)I.2              | 2455              | 343                    | 3 447                | 12.00                 | 12.23                    | 21.32                      | 22.07                                     | 22.24                             |  |
| 5905         SBbc(rs)I         3544         225         3.576         12.33         11.77         21.92         22.48         22.61           6699         Sbc(s)I.2         3357         26         3.529         12.73         12.22         21.62         21.92         21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5427          | Sbc(s)I                 | 2565              | 335                    | 3.463                | 12.07                 | 11.76                    | 21.48                      | 21.79                                     | 22.05                             |  |
| 6699 Sbc(s)I.2 3357 26 3.529 12.73 12.22 21.62 21.92 21.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5905          | SBbc(rs)I               | 3544              | 225                    | 3.576                | 12.33                 | 11.77                    | 21.92                      | 22.48                                     | 22.61                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6699          | Sbc(s)I.2               | 3357              | 26                     | 3.529                | 12.73                 | 12.22                    | 21.62                      | 21.92                                     | 21.93                             |  |

 TABLE 1

 Redshift and Optical Luminosity Data for Intrinsically Bright Spirals of Hubble Type Sc, Sbc, and Sb

| TABLE 1—Continued |                                   |                   |                        |                      |           |                 |                        |                            |                             |  |  |  |
|-------------------|-----------------------------------|-------------------|------------------------|----------------------|-----------|-----------------|------------------------|----------------------------|-----------------------------|--|--|--|
| Galaxy<br>(1)     | Туре<br>(2)                       | $(km s^{-1})$ (3) | $\Delta v_0^{220}$ (4) | $\log v_0^{220}$ (5) | $B_T$ (6) | $B_T^{o,i}$ (7) | $-M_{B_T}^0$ (RSA) (8) | $-M_{B_T}^{o,i}$ (RSA) (9) | $-M_{B_T}^{o,i}$ (220) (10) |  |  |  |
|                   |                                   |                   | {Sbc, SBt              | )<br>()              |           |                 |                        |                            |                             |  |  |  |
|                   |                                   | 4757              | 101                    | 2///                 | 12.05     | 12.40           |                        |                            | 22.25                       |  |  |  |
| 214               | SDC(r)I-II<br>SBbc(rs)I-II        | 4/5/<br>1834      | - 121                  | 3.000                | 12.95     | 12.48           | 22.03                  | 22.41                      | 22.35                       |  |  |  |
| IC 1788           | Sbc(s)I-II                        | 3366              | -116                   | 3.512                | 13.10     | 12 53           | 21.01                  | 21.41                      | 21.51                       |  |  |  |
| 976               | Sbc(r)I–II                        | 4550              | - 99                   | 3.648                | 13.21     | 12.79           | 21.68                  | 22.01                      | 21.85                       |  |  |  |
| 1097              | RSBbc(rs)I-II                     | 1284              | - 52                   | 3.090                | 10.16     | 9.75            | 21.89                  | 22.30                      | 22.20                       |  |  |  |
| 1625              | Sbc(s)I–II                        | 3032              | -23                    | 3.478                | 13.2      | 12.32           | 20.83                  | 21.59                      | 21.57                       |  |  |  |
| 1040<br>2347      | SBOC(r)I-II<br>Sbc(r)L-II         | 1600              | 126                    | 3.205                | 12.45     | 11.96           | 20.17                  | 20.57                      | 20.57                       |  |  |  |
| 2545              | SBbc(r)I-II                       | 3312              | 120                    | 3.545                | 13.30     | 12.34           | 21.72                  | 22.52                      | 22.38                       |  |  |  |
| 3001              | SBbc(s)I-II                       | 2171              | 241                    | 3.382                | 12.72     | 11.99           | 20.78                  | 21.20                      | 21.42                       |  |  |  |
| 3162              | Sbc(s)I.8                         | 1226              | 356                    | 3.199                | 12.15     | 11.82           | 19.80                  | 20.13                      | 20.68                       |  |  |  |
| 3338              | Sbc(s)I–II                        | 1171              | 398                    | 3.196                | 11.32     | 10.89           | 20.53                  | 20.96                      | 21.59                       |  |  |  |
| 3430              | Sbc(rs)I-II<br>Sbc(a)L_II         | 1555              | 383                    | 3.288                | 12.15     | 11.68           | 20.31                  | 20.78                      | 21.26                       |  |  |  |
| 3953              | SBbc(r)I-II                       | 1036              | 237                    | 3.820                | 13.44     | 12.97           | 22.08                  | 22.55                      | 22.03                       |  |  |  |
| 3981              | Sbc(s)I-II                        | 1554              | 368                    | 3.284                | 12.44     | 11.39           | 20.09                  | 21.07                      | 21.53                       |  |  |  |
| 4045              | Sbc(s)I–II                        | 1765              | 442                    | 3.344                | 12.65     | 12.26           | 20.09                  | 20.48                      | 20.96                       |  |  |  |
| 4123              | SBbc(rs)I.8                       | 1159              | 517                    | 3.224                | 11.84     | 11.47           | 19.99                  | 20.36                      | 21.15                       |  |  |  |
| 4412              | SBbc(s)I-IIpec                    | 1577              | Virgo                  | 3.074                | 13.07     | 12.76           | 19.42                  | 19.73                      | 19.11                       |  |  |  |
| 4005              | SDQ(S)I-II<br>SBbc(r)I-II         | 2073              | 207                    | 3.309                | 12.09     | 11.43           | 21.22                  | 21.66                      | 21.92                       |  |  |  |
| 4947              | Sbc(s)I-IIpec                     | 2222              | 281                    | 3.399                | 12.01     | 12.23           | 20.85                  | 21.17                      | 21.39                       |  |  |  |
| 5194              | Sbc(s)I-II                        | 541               | 52                     | 2.774                | 8.98      | 8.57            | 21.24                  | 21.65                      | 21.80                       |  |  |  |
| 5248              | Sbc(s)I–II                        | 1049              | 468                    | 3.182                | 10.80     | 10.42           | 20.81                  | 21.19                      | 21.99                       |  |  |  |
| 5350              | SBbc(rs)I–II                      | 2305              | 337                    | 3.422                | 12.2      | 11.84           | 21.12                  | 21.48                      | 21.77                       |  |  |  |
| 5430              | SBDC(s)I.8<br>Sbc(s)I_II          | 3016              | 251                    | 2.514                | 12.78     | 12.10           | 21.12                  | 21.80                      | 21.97                       |  |  |  |
| 5921              | SBbc(s)I-II                       | 1428              | 323                    | 3.043                | 11.53     | 12.74           | 21.48                  | 21.88                      | 21.99                       |  |  |  |
| 6780              | Sbc(rs)I–II                       | 3381              | 8                      | 3.530                | 13.15     | 12.64           | 21.16                  | 21.14                      | 21.50                       |  |  |  |
| 6814              | Sbc(rs)I-II                       | 1643              | 43                     | 3.227                | 12.02     | 11.37           | 20.91                  | 21.21                      | 21.27                       |  |  |  |
| 6925              | Sbc(r)I-II                        | 2780              | -35                    | 3.438                | 12.10     | 11.36           | 21.73                  | 22.37                      | 22.33                       |  |  |  |
| 6984              | Sbc(r)I.8                         | 4435              | -60                    | 3.641                | 13.33     | 12.84           | 21.48                  | 21.90                      | 21.87                       |  |  |  |
| 7038              | Sbc(s)I-U                         | 4/85              | - 80                   | 3.687                | 12.30     | 11.84           | 22.00                  | 23.06                      | 23.02                       |  |  |  |
| 7171              | Sbc(r)I–II                        | 2758              | -95                    | 3.425                | 13.00     | 12.48           | 20.76                  | 22.30                      | 21.38                       |  |  |  |
| 7392              | Sbc(s)I–II                        | 3035              | -124                   | 3.464                | 12.65     | 12.19           | 21.27                  | 21.73                      | 21.63                       |  |  |  |
| 7479              | SBbc(s)I–II                       | 2630              | -98                    | 3.403                | 11.7      | 11.27           | 21.97                  | 22.34                      | 22.25                       |  |  |  |
| 7531              | Sbc(r)I–II                        | 1607              | -62                    | 3.188                | 12.14     | 11.54           | 20.40                  | 21.00                      | 21.23                       |  |  |  |
| 7755              | SBDC(s)I-II<br>SBbc(r)/Sbc(r)I-II | 3/30              | 109                    | 3.362<br>3.455       | 12.8      | 12.33           | 21.67                  | 22.05                      | 21.98                       |  |  |  |
|                   |                                   |                   | {Sb, SBb               | }                    | 12.10     | 11.75           | 21.77                  | 22.14                      | 22.05                       |  |  |  |
|                   |                                   |                   | {I-I.3}                | ,                    |           |                 | )                      |                            |                             |  |  |  |
| NGC 210           | Sb(rs)I                           | 1875              | -115                   | 3.246                | 11.65     | 11.01           | 21.22                  | 21.86                      | 21.72                       |  |  |  |
| 1300              | SD(rs)I<br>SD(a)I 2               | 2645              | -93                    | 3.407                | 11.10     | 10.33           | 22.59                  | 23.29                      | 23.20                       |  |  |  |
| 1417              | Sb(s)I.3                          | 4139              | - 33<br>- 93           | 3.607                | 12.75     | 10.43           | 21.32                  | 21.99<br>22 57             | 21.91                       |  |  |  |
| 1512              | SBb(rs)Ipec                       | 760               | 12                     | 2.888                | 11.38     | 10.77           | 19.58                  | 20.14                      | 20.17                       |  |  |  |
| 1832              | SBb(r)I                           | 1855              | 24                     | 3.274                | 12.1      | 11.32           | 20.89                  | 21.53                      | 21.55                       |  |  |  |
| 2523              | SBb(r)I                           | 3638              | 157                    | 3.579                | 12.65     | 11.86           | 21.78                  | 22.45                      | 22.54                       |  |  |  |
| 2033<br>2935      | SBD(S)I.5<br>SBb(s)I 2            | 2416              | 189                    | 3.416                | 12.85     | 12.09           | 20.67                  | 21.33                      | 21.49                       |  |  |  |
| 3200              | SD0(S)1.2<br>Sb(r)I               | 2003              | 204 260                | 3.333                | 12.00     | 11.25           | 21.22                  | 21.76                      | 22.03                       |  |  |  |
| 3347              | SBb(r)I                           | 2626              | 243                    | 3.458                | 12.27     | 11.10           | 21.54                  | 22.33                      | 22.50                       |  |  |  |
| 3642              | Sb(r)I                            | 1733              | 297                    | 3.308                | 11.53     | 11.01           | 21.17                  | 21.69                      | 22.03                       |  |  |  |
| 3992              | SBb(rs)I                          | 1134              | 310                    | 3.159                | 10.64     | 9.95            | 21.14                  | 21.83                      | 22.35                       |  |  |  |
| 4814              | Sb(s)I                            | 2650              | 276                    | 3.466                | 12.8      | 12.21           | 20.82                  | 21.41                      | 21.62                       |  |  |  |
| 4999<br>5033      | Sb(rs)I                           | 2904<br>897       | 550<br>240             | 3.519                | 12.64     | 12.12           | 21.22                  | 21.74                      | 21.98                       |  |  |  |
| 5172              | SbI                               | 3960              | 309                    | 3.630                | 12.60     | 11.85           | 20.04                  | 22.64                      | 22.81                       |  |  |  |
| 5371              | Sb(rs)I/SBb(rs)I                  | 2616              | 320                    | 3.468                | 11.40     | 10.81           | 22.19                  | 22.78                      | 23.03                       |  |  |  |
| 5406              | SBb(r)I                           | 5241              | 252                    | 3.740                | 12.96     | 12.58           | 22.14                  | 22.52                      | 22.62                       |  |  |  |
| 5533              | Sb(s)I                            | 3903              | 277                    | 3.621                | 12.65     | 11.98           | 21.81                  | 22.48                      | 22.63                       |  |  |  |
| 5792              | SBb(s)I.3                         | 1889              | 332                    | 3.347                | 11.72     | 10.54           | 21.21                  | 22.35                      | 22.70                       |  |  |  |
| 5985              | SD(S)1.2<br>SBb(r)I               | 1974<br>2604      | 291                    | 3.335<br>3.465       | 12.3      | 11.35           | 20.77                  | 21.63                      | 21.93                       |  |  |  |
| 6384              | Sb(r)I.2                          | 1735              | 182                    | 3.403                | 11.00     | 10.42           | 21.90<br>21.65         | ∠2.04<br>22.28             | 22.82                       |  |  |  |
| 6753              | Sb(r)I                            | 3001              | 23                     | 3.481                | 11.93     | 11.25           | 22.14                  | 22.64                      | 22.65                       |  |  |  |
| 6951              | Sb/SBb(rs)I.3                     | 710               | 113                    | 3.261                | 12.2      | 11.31           | 20.85                  | 21.36                      | 21.50                       |  |  |  |
| 7606              | Sb(r)I                            | 2323              | -120                   | 3.343                | 11.55     | 10.65           | 21.79                  | 22.69                      | 22.57                       |  |  |  |

| Galaxy<br>(1) | Туре<br>(2)                    | $\binom{v_0^{220}}{(\text{km s}^{-1})}$ (3) | $ \Delta v_0^{220} $ (4)                         | $\log v_0^{220}$ (5) | В <sub>Т</sub><br>(6) | B <sup>o, i</sup><br>(7) | $-M_{B_T}^0$ (RSA) (8) | $ \begin{array}{c} -M_{B_{T}}^{o,i} \\ (RSA) \\ (9) \end{array} $ | $ \begin{array}{c} -M_{B_{T}}^{o,i} \\ (220) \\ (10) \end{array} $ |
|---------------|--------------------------------|---------------------------------------------|--------------------------------------------------|----------------------|-----------------------|--------------------------|------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|
| -             | 4<br>                          |                                             | $\substack{\{\text{Sb, SBb}\}\\\{\text{I-II}\}}$ | *                    | 1                     | - (                      | *                      |                                                                   | *                                                                  |
| NGC 23        | SbI–II                         | 4836                                        | -119                                             | 3.674                | 12.80                 | 12.07                    | 22.22                  | 22.86                                                             | 22.80                                                              |
| 224           | SbI-II                         |                                             |                                                  |                      | 4.38                  | 2.71                     | 20.50                  | 21.53                                                             | 21.53                                                              |
| 615           | Sb(r)I–II                      | 1971                                        | -106                                             | 3.271                | 12.3                  | 11.39                    | 20.68                  | 21.59                                                             | 21.46                                                              |
| 670           | Sb(s)I–II                      | 4023                                        | -94                                              | 3.594                | 13.17                 | 12.19                    | 21.47                  | 22.34                                                             | 22.28                                                              |
| 779           | Sb(rs)I–II                     | 1492                                        | -83                                              | 3.149                | 11.86                 | 10.80                    | 20.51                  | 21.57                                                             | 21.45                                                              |
| 782           | SBb(r)I–II                     | 5881                                        | -97                                              | 3.762                | 12.83                 | 12.36                    | 22.52                  | 22.99                                                             | 22.95                                                              |
| 986           | SBb(rs)I-II                    | 2006                                        | - 73                                             | 3.286                | 11.8                  | 11.21                    | 21.22                  | 21.81                                                             | 21.72                                                              |
| 1228          | Sb(r)I–II                      | 4461                                        | -104                                             | 3.639                | 12.80                 | 12.33                    | 21.95                  | 22.42                                                             | 22.37                                                              |
| 1433          | SBb(s)I-II                     | 923                                         | 4                                                | 2.967                | 10.68                 | 10.18                    | 20.65                  | 21.15                                                             | 21.16                                                              |
| 1964          | Sb(s)I-II                      | 1579                                        | 49                                               | 3.212                | 11.60                 | 10.49                    | 21.06                  | 22.01                                                             | 22.07                                                              |
| 2551          | Sb(r)I–II                      | 2484                                        | 182                                              | 3.426                | 13.05                 | 12.31                    | 20.54                  | 21.17                                                             | 21.32                                                              |
| 2642          | SBb(rs)I-II                    | 4262                                        | 185                                              | 3 648                | 12.54                 | 11.88                    | 21.33                  | 21.77                                                             | 22.86                                                              |
| 2712          | SBb(s)I-II                     | 1892                                        | 263                                              | 3,333                | 12.70                 | 11.89                    | 20.26                  | 21.00                                                             | 21.28                                                              |
| 2815          | Sb(s)I-II                      | 2333                                        | 231                                              | 3 409                | 12.66                 | 11 34                    | 20.99                  | 22.00                                                             | 22.21                                                              |
| 3031          | Sb(r)I-II                      | 2000                                        | 201                                              | 5.105                | 7.86                  | 7.01                     | 21.01                  | 21.79                                                             | 21.79                                                              |
| 3147          | Sb(s)I 8                       | 2899                                        | 197                                              | 3 491                | 11.00                 | 10.88                    | 21.01                  | 22.75                                                             | 23.08                                                              |
| 3169          | Sb(r)I-II                      | 1067                                        | 327                                              | 3 144                | 11.45                 | 10.56                    | 20.42                  | 21.09                                                             | 21.66                                                              |
| 3223          | Sb(s)I-II                      | 2619                                        | 238                                              | 3 4 5 6              | 11.20                 | 10.50                    | 21.98                  | 22.69                                                             | 21.00                                                              |
| 3504          | Sb(s)/SBb(s)I_II               | 1480                                        | 410                                              | 3 276                | 11.00                 | 11.25                    | 20.56                  | 21.11                                                             | 21.64                                                              |
| 3673          | Sb(s)I_II                      | 1662                                        | 315                                              | 3 208                | 12/1                  | 11.25                    | 20.30                  | 20.96                                                             | 21.04                                                              |
| 3681          | SBb(r)I_II                     | 1135                                        | 477                                              | 3 207                | 12.41                 | 11.03                    | 10.32                  | 20.90                                                             | 21.54                                                              |
| 3705          | Sb(r)I II                      | 870                                         | 4//                                              | 2.016                | 11.77                 | 11.74                    | 19.30                  | 19.04                                                             | 20.00                                                              |
| 4050          | Sb(r)I = II                    | 1661                                        | 292                                              | 2.910                | 12.25                 | 11.50                    | 19.43                  | 20.32                                                             | 20.20                                                              |
| 4050          | SD(1)I = II<br>SDb(cr)I II     | 1001                                        | Viraa                                            | 3.310                | 12.23                 | 11.30                    | 20.41                  | 21.05                                                             | 21.40                                                              |
| 4574          | SDU(SI)I = II                  | 033                                         | Virgo                                            | 3.074                | 11./0                 | 11.28                    | 20.94                  | 21.42                                                             | 20.39                                                              |
| 4540          | SDD(IS)I = II<br>SDb(rs)I = II | 300                                         | virgo                                            | 3.074                | 10.98                 | 10.43                    | 20.72                  | 21.27                                                             | 21.44                                                              |
| 4595          | SDU(IS)I - II                  | 2505                                        | 308                                              | 3.438                | 11.72                 | 11.15                    | 21.78                  | 22.35                                                             | 22.04                                                              |
| 40/9          | SD(S)I-II                      | 4509                                        | 211                                              | 3.074                | 12.95                 | 12.23                    | 22.03                  | 22.55                                                             | 22.04                                                              |
| 5054          | SDD(S)1-11<br>Sh(-)1 11        | 2420                                        | 347                                              | 3.443                | 11.90                 | 11.39                    | 21.57                  | 22.04                                                             | 22.33                                                              |
| 5150          | SD(S)I = II                    | 1524                                        | 380                                              | 3.280                | 11.51                 | 10.75                    | 20.98                  | 21.69                                                             | 22.15                                                              |
| 5150          | SD(r)I-II                      | 4127                                        | 241                                              | 2.640                | 13.26                 | 12.72                    | 21.43                  | 21.86                                                             | 21.98                                                              |
| 5150          | SBD(rs)I-II                    | 2670                                        | 212                                              | 2.460                | 12.87                 | 12.15                    | 21.20                  | 21.55                                                             | 21.65                                                              |
| IC 4351       | SD(s)I = II                    | 2367                                        | 284                                              | 3.423                | 12.30                 | 10.86                    | 21.23                  | 22.55                                                             | 22.76                                                              |
| 5347          | SBD(s)I-II                     | 2394                                        | 348                                              | 3.438                | 13.40                 | 12.86                    | 20.00                  | 20.54                                                             | 20.83                                                              |
| 5740          | SD(s)I-II                      | 1490                                        | 362                                              | 3.268                | 12.62                 | 11.86                    | 19.75                  | 20.51                                                             | 20.98                                                              |
| 5850          | SRD(sL)I-II                    | 2430                                        | 304                                              | 3.437                | 11.71                 | 11.20                    | 21.76                  | 22.23                                                             | 22.49                                                              |
| 688/          | SD(S)I-11                      | 2938                                        | -17                                              | 3.465                | 12.46                 | 11.43                    | 21.49                  | 22.42                                                             | 22.40                                                              |
| 7083          | Sb(s)I-II                      | 2951                                        | -30                                              | 3.466                | 11.80                 | 11.04                    | 22.12                  | 22.81                                                             | 22.78                                                              |
| 7329          | SBb(r)I-II                     | 3043                                        | - 39                                             | 3.478                | 12.32                 | 11.84                    | 21.65                  | 22.08                                                             | 22.28                                                              |
| 7331          | Sb(rs)I-II                     | 1114                                        | 1                                                | 3.047                | 10.39                 | 9.14                     | 21.59                  | 22.60                                                             | 22.60                                                              |
| 7552          | SBb(s)I–II                     | 1565                                        | -67                                              | 3.176                | 11.40                 | 10.99                    | 21.08                  | 21.49                                                             | 21.39                                                              |
| 7723          | SBb(rs)I–II                    | 1976                                        | -111                                             | 3.271                | 11.85                 | 11.23                    | 21.13                  | 21.75                                                             | 21.62                                                              |
| 7782          | Sb(s)I–II                      | 5584                                        | -158                                             | 3.734                | 13.1                  | 12.36                    | 22.14                  | 22.88                                                             | 22.81                                                              |

ations from the Hubble flow. Redshifts, 21 cm line widths, and magnitudes are listed for these galaxies between  $m \sim 14$  and  $m \sim 15$  in their original paper.

The data for the S-T sample are listed in Table 2. The galaxy name is in column (1); identification data can be found in the original catalog (ST 1975b). Columns (2), (3), and (5) list  $m_{pg}$  magnitudes (based on the Zwicky *et al.* 1961/68 catalogs), axial ratios a/b, and redshifts relative to the Local Group centroid. The magnitudes<sup>4</sup> in column (4) are the column (2) values corrected for galactic and internal absorption, the latter adopted from the RSA to be  $A^i = 0.28 + 0.88 \log a/b$  for this type of galaxy.

The  $B_T$ , log  $v_0$  Hubble diagrams for the bright RSA spirals with both the S-T and the Rubin faint samples added are shown in Figure 5. Only the RSA spirals of type Sb, Sbc, and Sc of luminosity class I–I.3 are plotted. The total S-T sample is added in Figure 5a. The subset of the Rubin sample that is restricted to their type I to I.3 is plotted in Figure 5b. The envelope and ridge lines are drawn with a slope of 5.

The bias effect is again seen in each plot, but now with a most interesting difference. As in Figures 2 and 3, the slope of the RSA sample alone is again less than 5, but the slope of the fainter sample alone (open circles for the S-T sample and triangles for the Rubin) is also less than 5, i.e., there is a different distribution of points between the envelope lines for the bright compared with the faint samples. This is because each shows the Malmquist bias separately (each being flux-limited samples), but the bias starts at different magnitudes. This, of course, is the expected behavior if method (1) is correct as seen from Figure 6 where least-squares regressions are put separately through the RSA and the fainter S-T sample, taking the residuals as magnitude differences. The discontinuity between the two samples in Figure 6 can be understood from the bias diagram of Figure 7, similar to Figures 1a and 4a but now with the faint S-T sample added in Figure 7b. This discontinuity would not be present if the velocity field were nonlinear,

<sup>4</sup> See page 591.

4.2

3.8

3.4

3.0

2.6

LOG v<sub>o</sub><sup>220</sup>



12

FIG. 2.—The magnitude-redshift diagram for Sb and Sc galaxies of the brightest luminosity classes that are contained in the RSA catalog. Galaxies with Hubble types and van den Bergh luminosity classes that differ from those of ScI–I.3 are reduced to that absolute magnitude system by the corrections shown in the code, found from the data in Table 1. The ridge and envelope lines are drawn with a slope of 5.

B<sup>o,i</sup> (Sc I - I.3)

10

<sup>4</sup> The  $m_{pg}$  magnitudes in column (2) are those listed by S-T in their Table 4, column (3). They are based on the Zwicky *et al.* (1961/68) magnitudes, corrected for a mean zero point difference of  $m_{pg} - m_{ZW} = -0.1$ , applied independent of the diameter. This correction was determined by S-T from their aperture photometry of 11 galaxies fainter than  $m_{ZW} = 13.8$  (ST 1975*a*, Table 3). The S-T photoelectric values were reduced to the HMS (1956, Appendix A)  $m_{pg}$  system, which is the same to within 0.04  $\pm$  0.2 mag as the zero point of the Holmberg (1958) system (HMS, Figure A5). In turn, the Holmberg zero point differs by 0.12 mag from  $B_T$  for Holmberg colors of C = 0.5 in the sense of  $B_T$  being *fainter* than  $m_{H_0}$  (Table 11 of the RC2).

8

If this were the correct reduction of  $m_{ZW}$  magnitudes to the  $B_T$  system, then the  $m_{pg}$  values in column (2) of Table 2 would be 0.12 mag brighter than the RC2  $B_T$  values in Table 1 here. However, Graham's (1976) photometry shows a stronger aperture effect, consistent in sign with what was known before (ST, 1975b; § IIIb) but very much larger in amplitude, giving corrections that range from  $\Delta m = B_T - m_{ZW} = -0.9$  to +0.9 mag for the Table 2 galaxies, depending on the estimated diameters. These magnitude corrections depend critically on the diameter values, which are quite uncertain, making this route to the conversion of  $m_{ZW}$  to  $B_T$  untenable at present.

Indeed, comparison of the Table 2  $m_{pg}$  values with  $B_T$  determined from the photoelectric aperture photometry of Bothun et al. (1984, Table 2) as reduced to the RC2 system by the referee, gives a correction of  $\langle B_T - m_{pg}(\text{Table 2}) \rangle =$  $-0.3 \pm 0.1$ . But even this correction is small compared with the intrinsic scatter in Figures 5a, 6, 7, 10, and 12. More importantly, it is negligible for the proof given in Figure 7 that the fainter S-T sample and the Rubin et al. sample (Figures 8 and 9 here) fill the M, log v diagram, as expected if the  $\langle M \rangle = f(D)$ correlation of Figure 4a is due to the flux-biased RSA sample. To destroy the proof would require a mean magnitude correction far in excess of any of the suggested small corrections discussed above and/or a gross misidentification of ScI type galaxies toward later luminosity classes for the faint galaxy samples used here (see footnote 5). Because the magnitudes of the faint galaxies are used only for qualitative tests for bias in the remainder of the paper, we make no distinction in the following diagrams between  $B_T$  and the  $m_{pg}$  values that are listed either by S-T or by Rubin et al. (1976), because the magnitude corrections to  $B_T$  are, themselves, small.

according to the argument given in § II and shown later in § IV (Figs. 11 and 12) because the triangles in Figure 7b would not fill the space between the two limit lines but would tack on smoothly to the distribution shown by the closed circles.

14

Instead, what we see in Figure 7b is the filling out of the Figure  $1a \Phi(M)$  distribution with what is becoming an approximate distance-limited sample, now complete to  $\log v_0 \sim 3.5$  rather than only  $\sim 3.0$  as in Figure 4, for the RSA sample. That the triangles in Figure 7b do not abut smoothly onto the upper part of the distribution of the circles near  $\log v \sim 3.7$  is one of the two proofs that the results of using method (2) are wrong. For the other we now follow method (2) to reach a contradiction.

# IV. A MULTIVALUED HUBBLE CONSTANT OBTAINED BY APPLYING A FIXED $\langle M \rangle$ to each data sample separately

The steps for method (2) have been given in § IIb. We have applied the method to the three ScI data lists set out in the previous sections. For definiteness  $\langle M_{B_T}^{o,i} \rangle$  was adopted as -21.2, to be adjusted later (§ VI) using the local calibrations of M31, M81, and M101.

It is clear from Figures 1b, 4a, and 7a that if we require  $\langle M \rangle$  to be constant for the sample, the  $h_i = v_i/r_i = v_i/\text{dex} [0.2(m_i - \langle M \rangle + 5]]$  must vary with  $v_i$ . Figure 8a shows the result of calculating  $h_i$  for galaxies in Table 1 of the types indicated. We have simply reproduced here results similar to those shown by de Vaucouleurs (1972), by de Vaucouleurs and Peters (1986, their Figs. 2a and 2b), and by Giraud (1986a, Fig. 1; 1986b, Figs. 4 etc.), and explained as bias by Teerikorpi (1975a, b, 1984), STY (1979), TYS (1979), and Bottinelli *et al.* (1986).

The mean  $\langle h_i \rangle$  values vary from ~35 to 90 km s<sup>-1</sup> Mpc<sup>-1</sup> in Figure 8*a* over the redshift range from 1000 km s<sup>-1</sup> to 7000 km s<sup>-1</sup>. If this variation were to be real, the fainter ScI





FIG. 3.—The magnitude-redshift diagram for Sb and Sc galaxies of lower luminosity class than in Fig. 2. Top panel shows the correlation using fully corrected magnitudes  $B_T^{a,i}$ . The mean magnitude difference between the data here from those in Fig. 2 is  $\Delta B_T^{a,i} = 0.15$ ; the data here being fainter. The bottom panel shows the correlation without the magnitude correction for internal absorption.

samples must give the same values of  $h_i$  at any given common redshift. Figure 8b shows the calculation using the S-T faint sample of Table 2. The mean regression through the points of Figure 8a is shown as a solid line.

The data points for the faint S-T sample, in Figure 8b, again show a variation of  $\langle h_i \rangle$  over the same range from ~ 30 to 100 but now displaced toward larger velocities. Said differently, the effective Hubble constant  $h_i$  found by using method (2) is multivalued at a given redshift—clearly a contradiction. The same is shown in Figure 8c from the Rubin et al. sample.<sup>5</sup>

What, in fact, we are seeing in Figure 8 is a proper filling out of the  $h_i$ ,  $v_i$  plane using a total sample that approaches a volume limited set for  $v \leq 3000$  km s<sup>-1</sup>. This is similar to the

<sup>5</sup> The validity of the argument of why adding the faint sample in Figure 7bgives a direct demonstration of the bias, and why method (2) gives a multivalued Hubble constant in Figure 8 depends on the supposition that the faint galaxies we have added are ScI types, similar in their relevant properties with the bright RSA galaxies listed in Table 1. The question was discussed by S-T (1975b) in their § V, listing six points in support of this supposition. Furthermore, the experiment they performed on the effect of reduced spatial resolution of faint galaxies relative to the RSA sample was conclusive in showing that remote ScI galaxies at  $v \sim 10,000$  km s<sup>-1</sup> could be recognized on the POSS (S-T 1975b, § II) plates. The experiment consisted of inspecting selected nearby galaxies from Table 1 on the Lick Observatory Sky Atlas prints whose scale for these bright ScI galaxies matched the much larger focal length scale of the POSS from which the remote ScI sample was chosen. This is the same resolution test that was made later by Rubin et al. (1976), with the same conclusion that the galaxies in the faint sample are predominantly SbI and ScI types with very little confusion as to the morphological classification.

1988ApJ...331..583S



FIG. 4.—*Top*: The apparent variation of the absolute magnitude  $M_{B_r}^{o,i}$  with redshift for the RSA sample of Sb to Sc galaxies of bright luminosity class, reduced to the magnitude system of the ScI–I.3 sample by the corrections shown in the code. *Bottom*: Same as the top panel but with envelope lines and the m = 12.5 flux limit line superposed. The apparent increase in mean luminosity with distance is an artifact of the flux limitation of the sample.

effect seen in Figures 4b and 7b in the different representation of the same result. This is shown more clearly in Figure 9 where the separate samples of Figure 8 have been combined. The top panel is the same as Figure 8a but with the m = 13limit line of the RSA shown, and with an upper envelope line drawn by eye to accommodate most of the data. The beginning of a lower envelope is shown, truncated at  $v \sim 2000 \text{ km s}^{-1}$  by the m = 13 limit line. Figure 9b shows the S-T sample added from Figure 8b, now with a m = 15.5 limit line drawn that truncates the lower envelope at  $v \sim 5000 \text{ km s}^{-1}$ . The same for the Rubin et al. sample is shown in Figure 9c.

The sum of the top three panels is in Figure 9d which contains the principal conclusion. The  $h_i$ ,  $v_i$  plane is filled in a more proper way as the sample approaches a volume-limited set, showing that the apparent variation of  $h_i$  with  $v_i$  using RSA sample alone is not real. To the extent that the statistics of the present ScI total sample approximates a proper volumelimited set,<sup>6</sup> the mean Hubble constant from these data is  $\langle \text{dex} [\log h_i] \sim 50 \text{ km s}^{-1} \text{ Mpc}^{-1} \text{ if } \langle M_{B_T}^{o,i} \rangle = -21.2 \text{ for the set. The correct value of } \langle M_{B_T}^{o,i} \rangle$  to use is the subject of § VI where data for M31, M81, and M101 are applied to obtain a direct calibration of  $\langle M \rangle$  and therefrom a proper value for  $H_0$ .

<sup>&</sup>lt;sup>6</sup> The distribution of points in Figures 7b, 9, and later in Figures 10 and 12 is not uniform, showing gaps between the bright and faint samples. This is most likely due to the incompleteness of the RSA near its flux limit of  $m \sim 13$  (STY 1979, Fig. 6), and even greater incompleteness of the two faint surveys, especially near their bright boundary between  $m_{pg} \sim 13$  to 14. These discontinuities are especially visible in Figures 10 and 12. It is for this reason that we prefer the upper and lower boundary argument of the next section to estimate  $M_{B_T}(apex)$  rather than an analysis of the distribution of points within the boundary lines.

Figure 9 with its upper and lower envelope lines and the flux cutoff lines is similar to Figure 9 of de Vaucouleurs and Bollinger (1979), but with a different conclusion drawn here as to the meaning of the apparent increase of  $H_0$  with redshift for the incomplete sample that is flux-limited. The similarity of the two diagrams, but their different interpretation, was recalled by de Vaucouleurs as a helpful comment on an early draft of this paper.

|         |           |         | Т    | ABL | E 2     |         |     |        |        |
|---------|-----------|---------|------|-----|---------|---------|-----|--------|--------|
| MAGNITU | JDE AND R | EDSHIFT | Data | FOR | THE FAI | INT S-T | ScI | GALAXY | SAMPLE |

|                       |        | /1   | ai    | $v_0$                         | 1         | $M_{pg}^{o}$        | $M_{pg}^{o,i}$      |
|-----------------------|--------|------|-------|-------------------------------|-----------|---------------------|---------------------|
| (1)                   | (2)    | (3)  | (4)   | (KIII S <sup>-</sup> )<br>(5) | (6) $(6)$ | $(H_0 = 50)$<br>(7) | $(H_0 = 50)$<br>(8) |
| NGC 7816              | 13.90  | 1.23 | 13.54 | 5285                          | 3.723     | -21.22              | -21.58              |
| 0008+02               | 15.54  | 1.56 | 15.09 | 12874                         | 4.110     | -21.52              | -21.97              |
| NGC 36                | 14.40  | 2.11 | 13.83 | 6241                          | 3.795     | -21.08              | -21.65              |
| NGC 99                | 13.90  | 1.04 | 13.60 | 5343                          | 3.728     | -21.25              | -21.55              |
| NGC 105               | 14.00  | 1.33 | 13.61 | 5439                          | 3.736     | -21.19              | -21.58              |
| 0028+13               | 15.20  | 1.35 | 14.80 | 10081                         | 4.004     | -21.33              | -21.73              |
| 0033+12               | 15.20  | 1.04 | 14.90 | 10205                         | 4.009     | -21.35              | -21.65              |
| NGC 173               | 14.40  | 1.35 | 14.00 | 4332                          | 3.637     | -20.29              | -20.69              |
| NGC 180               | 14.20  | 1.38 | 13.80 | 53//                          | 3.731     | - 20.96             | -21.30              |
| $1000 182 \dots 100$  | (13.7) | 2.19 | 13.24 | 5244                          | 3.729     | -21.43              | -21.91              |
| NGC 257               | 13.60  | 1.16 | 13.12 | 5420                          | 3 734     | -21.41<br>-21.58    | -22.03              |
| 0054 - 01             | 15.20  | 1.18 | 14.86 | 15124                         | 4.180     | -22.21              | -22.55              |
| 0112-00               | 14.40  | 1.00 | 14.12 | 10209                         | 4.009     | -22.15              | -22.43              |
| 0115+11               | 14.20  | 1.60 | 13.74 | 5170                          | 3.713     | -20.87              | -21.33              |
| 0116+01               | 15.67  | 1.14 | 15.34 | 13412                         | 4.127     | -21.47              | -21.80              |
| 0117+07               | 14.80  | 1.05 | 14.50 | 9564                          | 3.981     | -21.61              | -21.91              |
| NGC 497               | 14.00  | 2.34 | 13.40 | 8176                          | 3.913     | -22.07              | -22.67              |
| NGC 521               | 12.80  | 1.00 | 12.52 | 5100                          | 3.708     | -22.25              | -22.53              |
| IC 1706               | 14.10  | 1.33 | 13.71 | 6461                          | 3.810     | -21.46              | -21.85              |
| $0135 + 07 \dots$     | 14.70  | 1.42 | 14.29 | 4307                          | 3.634     | - 19.98             | - 20.39             |
| NGC 658               | 13.50  | 2.08 | 12.94 | 3078                          | 3.488     | - 20.45             | -21.01              |
| NGC 604               | 13.80  | 1.30 | 13.42 | 5276                          | 3./38     | - 21.40             | -21.78              |
| $0145 \pm 12$         | 13.20  | 1.50 | 12.60 | 5383                          | 3.720     | -21.94<br>-21.26    | -22.34<br>-21.62    |
| NGC 706               | 13.50  | 1.25 | 12.66 | 4974                          | 3.697     | -21.20<br>-21.89    | -22.33              |
| IC 1743               | 13.90  | 2.19 | 13.32 | 4646                          | 3.667     | -20.94              | -21.52              |
| 0152+06               | 14.40  | 1.29 | 14.02 | 5251                          | 3.720     | -20.71              | -21.09              |
| IC 173                | 14.80  | 1.42 | 14.39 | 13947                         | 4.144     | -22.43              | -22.84              |
| 0158+08               | 14.30  | 2.00 | 13.76 | 4819                          | 3.683     | -20.62              | -21.16              |
| IC 198                | 14.70  | 2.10 | 14.14 | 9476                          | 3.977     | -21.69              | -22.25              |
| NGC 840               | 14.60  | 2.34 | 14.00 | 7196                          | 3.857     | -21.19              | -21.79              |
| IC 211                | 14.40  | 1.52 | 13.96 | 3355                          | 3.526     | - 19.74             | -20.18              |
| NGC 926               | 13.80  | 2.57 | 13.16 | 6510                          | 3.814     | -21.78              | - 22.42             |
| $0228 \pm 01$         | 14.50  | 1.82 | 13.99 | /40/                          | 3.870     | -21.30              | -21.87              |
| NGC 1010              | 14.20  | 1.39 | 14 12 | 7258                          | 3 861     | -22.37<br>-21.31    | - 23.03             |
| NGC 1015              | 13 50  | 1.23 | 13 14 | 6986                          | 3 844     | -21.31<br>-22.23    | -22.59              |
| NGC 1094              | 13.40  | 1.50 | 12.96 | 6284                          | 3.798     | -22.10              | -22.54              |
| 0950 + 43             | 14.40  | 1.06 | 14.10 | 4798                          | 3.681     | -20.51              | -20.81              |
| 1001 + 14             | 15.10  | 1.07 | 14.79 | 8828                          | 3.946     | -21.14              | -21.45              |
| 1001 + 13             | 13.50  | 1.25 | 13.13 | 2577                          | 3.411     | -20.06              | -20.43              |
| 1002 + 51             | 15.67  | 1.43 | 15.25 | 14092                         | 4.149     | -21.58              | -22.00              |
| 1012+55               | 14.50  | 1.24 | 14.14 | 7301                          | 3.863     | -21.32              | -21.68              |
| 1013+05               | 14.50  | 1.85 | 13.98 | 13586                         | 4.133     | -22.67              | -23.19              |
| $1014 + 53 \dots$     | 15.20  | 1.23 | 14.84 | 13658                         | 4.135     | -21.98              | -22.34              |
| NGC 3191              | 13.80  | 1.50 | 13.30 | 9146                          | 3.901     | - 22.51             | - 22.95             |
| NGC 3202              | 14.10  | 1.20 | 13.73 | 7660                          | 3.828     | -21.55              | -21.92<br>-21.26    |
| NGC 3408              | 14.00  | 1.15 | 14.07 | 9670                          | 3.005     | -20.93<br>-22.43    | -21.20<br>-22.71    |
| $1049 \pm 59$         | 14.00  | 1.00 | 14 38 | 8489                          | 3.929     | -21.35              | -21.77              |
| $1051 + 56 \dots$     | 15.67  | 1.36 | 15.27 | 14575                         | 4.164     | -21.66              | -22.06              |
| NGC 3470              | 14.20  | 1.06 | 13.90 | 6737                          | 3.828     | -21.45              | -21.75              |
| 1103 + 57             | 14.90  | 1.16 | 14.56 | 9886                          | 3.995     | -21.58              | -21.92              |
| 1111+57               | 15.20  | 1.25 | 14.83 | 10079                         | 4.003     | -21.32              | -21.69              |
| 1111+56               | 15.54  | 1.29 | 15.16 | 10432                         | 4.018     | -21.06              | -21.44              |
| NGC 7428              | 13.70  | 1.85 | 13.18 | 3195                          | 3.504     | -20.33              | -20.85              |
| 2255+02               | 14.80  | 1.07 | 14.49 | 4955                          | 3.695     | -20.18              | -20.49              |
| NGC 7460              | 14.10  | 1.39 | 13.69 | 3482                          | 3.542     | -20.12              | -20.53              |
| 2342+06               | 14.70  | 1.03 | 14.41 | 5507                          | 3.741     | - 20.51             | - 20.80             |
| NGC 7750              | 13.70  | 1.64 | 13.23 | 3053                          | 5.485     | -20.23              | - 20.70             |
| NGC 7/56              | 15.80  | 1.14 | 13.47 | 32/0                          | 3.313     | - 20.28             | - 20.61             |
| $2340 \pm 00$         | 14 20  | 1.30 | 14.00 | 271<br>271                    | 3.002     | - 19.22             | - 19.00             |
| 2340 + 00<br>NGC 7780 | 14.30  | 2.93 | 14 21 | 5307                          | 3.725     | -21.02<br>-20.43    | - 22.51             |
| NGC 7782              | 13.10  | 1.75 | 12.66 | 5519                          | 3 742     | -20.43<br>-2212     | -22.52              |
| IC 1515               | 14.70  | 1.19 | 14.35 | 6856                          | 3.836     | - 20.99             | -21.34              |
| IC 1516               | 14.20  | 1.00 | 13.92 | 7507                          | 3.875     | -21.68              | -21.96              |



FIG. 5.—The Hubble diagram for Sb and Sc galaxies of the brightest luminosity class in the RSA (*closed circles*) combined with the two fainter catalogs of ScI galaxies. The faint S-T sample (*open circles*) is in the top panel. The faint Rubin *et al.* sample (*triangles*) is in the bottom panel. The ridge and envelope lines are drawn with a slope of 5.

## V. THE ABSOLUTE MAGNITUDE DISPERSION FOR SCI GALAXIES FROM A NEAR VOLUME-LIMITED SAMPLE

If the data in Tables 1 and 2 were, indeed, to form a complete volume-limited sample, the standard deviation of the luminosity function could be found from the scatter in  $B_T^{o,i}$  at a given  $v_0$  in Figure 6. The least-squares regression lines there give  $\sigma(B_T^{o,i}) = 0.53$  mag for the bright RSA sample alone about the mean relation  $B_T^{o,i} = 3.186 \log v_0 = 0.657$ , and  $\sigma(B_T^{o,i}) = 0.56$ mag for the S-T faint sample alone about the equation  $B_T^{o,i} =$ 2.338 log  $v_0 = 4.995$ . The standard deviation for the combined sample is  $\sigma(M_{B_T}^{o,i}) = 0.70$  mag about the line  $B_T^{o,i} = 4.445 \log v_0$ -3.38. The slope of this last regression is not yet 5.0, showing that the sample is not entirely volume-limited, but this is not surprising because the data consist of two merged catalogs, each of which are only semicomplete themselves to particular flux levels (see footnote 6). Imposing a slope of 5 on the data in Figure 6 gives the ridge line that is drawn whose equation is  $B_T^{o,i} = 5 \log v_0 - 5.30$ . The magnitude residuals from this line give a standard deviation of

$$\sigma(M_{B_T}^{o,i}) = 0.72 \text{ mag}$$

Another way to estimate the magnitude dispersion is to assume a particular form for  $\Phi(M)$  and to calculate from it the predicted envelope lines in the bias diagrams of Figures 4 and 7 using the condition that  $\Phi(M) = 1$  in each redshift interval. Because the volume increases as  $v^2\Delta v$ , the normalization factor of  $\Phi(M)$  becomes larger in each such interval by this volume factor, making the upper and lower envelope absolute magnitudes become brighter and fainter. If the form of  $\Phi(M)$  is symmetrical about  $\langle M \rangle$ , these envelope lines will be mirror images about the  $\langle M \rangle$  = constant mean line.

That this is approximately so is shown in Figure 10 which is similar to Figures 4b and 7b but with the envelope lines drawn to encompass most of the points, neglecting the four nearby galaxies near log  $v_0 = 2.8$ . Figure 10 differs from Figure 4 in this neglect and also in using  $B_T^0$  values uncorrected for internal absorption rather than  $B_T^{o,i}$  as in Figure 4. A more appropriate lower envelope line in Figure 10, taking the fainter galaxies into account, would be drawn ~0.7 mag below that shown, giving the apex of the upper and lower envelopes to be between values  $M_{B_T0}$  of -20.8 and -20.4, as used in § VI.

The envelope lines in Figures 4 and 10 have been drawn by





 $B_T^{o,i}$  or  $m_{pq}^{o,i}$ 

FIG. 6.—The Hubble diagram using fully corrected  $B_T^{o,i}$  magnitudes and velocities, uncorrected for Virgo infall. Separate least-squares regressions for each sample, taking the residuals in magnitude rather than velocity give a slope to the RSA regression of 3.19 and a slope to the S-T sample of 2.34 respectively. The least-squares regression for the total data is  $M_{B_T}^{o,i} = 4.445 \log v_0 - 3.38$  with a standard deviation of  $\sigma(M) = 0.70$  mag. The ridge and envelope lines drawn have a slope of 5.0. The magnitude residuals about the ridge line of  $B_T^{o,i} = 5.0 \log v_0 - 5.30$  have a standard deviation of  $\sigma(M) = 0.72$  mag.

eye, and it is of interest to see how closely they agree with the expectation of the envelope shapes using an adopted form for  $\Phi(M)$ . Figure 11 shows the calculated envelope lines as if  $\Phi(M)$ is a Gaussian with the  $\sigma(M)$  dispersion values shown along the upper curves. To calculate the upper and lower M values that correspond to the  $\Phi(M) = 1$  condition in each redshift interval requires an absolute volume normalization factor for  $\Phi(M)$ . For Figure 11 we have assumed that there are 1000 galaxies in the redshift interval of  $\Delta \log v_0 = 0.2$  centered at  $\log v_0 = 3.9$ . It can be shown that for any other normalization we generate a second set of envelope curves that are identical with those in Figure 11 but with a constant difference in the log  $v_0$  abscissa. The curves in Figure 11 are, then, universal in the sense that they are zero-point free. They can be shifted both in ordinate and abscissa so as to envelope any particular data set in the M, log  $v_0$  plane such as that in Figures 4, 7, or 10. Of course, the independence of the envelope lines to the zero points of the ordinate or abscissa does not apply to the magnitude limit lines shown at m = 13 and 15.5 in Figure 11 relative to the envelopes. Obviously, these do depend on the M and the log  $v_0$ scale values, calculated from  $m - M = 5 \log v_0 + 16.50$ (corresponding to  $H_0 = 50$ ) to obtain their positions in Figures 4, 7, and 10.

The general shape of the calculated envelope lines in Figure 11 agrees well with the lines drawn by eye in Figure 10 showing that the assumption of a symmetrical Gaussian shape to  $\Phi(M)$  is reasonable. A fit of Figure 11 curves to the Figure 7b data is shown in Figure 12 where we have shifted the envelope family of Figure 11 both in abscissa and ordinate for a best fit to the data by eye.

Although the data points do not fill the enclosed area partic-

ularly well at the faint end in Figure 12, it is here that the data in Tables 1 and 2 are expected to be most incomplete (cf. footnote 6 again). Clearly it will be of the greatest interest to apply the test in Figure 12 to the complete all-sky redshift surveys now in progress that reach a fixed flux level as faint as say m = 15. Figure 12 shows that if  $\sigma = 0.7$  mag, then a volumelimited sample of ScI type galaxies should appear as a subset of a sample that is flux-limited at m = 15 out to redshifts of log  $v_0 \sim$ 3.5 (or  $v_0 = 3200$  km s<sup>-1</sup>). A study of the distribution of  $M_i$  in such a sample using this redshift restriction will give  $\Phi(M)$ directly, which is surely a next step in this problem.

16

The fit of the calculated curves to the data in Figure 12 shows that  $\sigma(M) \sim 0.6$  to 0.7 mag is a good fit, provided that  $M_{B_T}^{\circ,i}(H_0 = 50) = -21.4$  is used for the apex to the envelopes (i.e., in the  $v \rightarrow 0$  limit). This value of  $\sigma$  agrees with  $\sigma(M) = 0.72$  mag from the direct calculation using magnitude residuals in Figure 6. It is this large  $\sigma$  value which leads to the large Malmquist bias implied in Figure 4*a*, the apparent increase of  $h_i$  with redshift in the top panels of Figures 8 and 9, the apparent multivalued  $h_i$  values at a given redshift in the bottom two panels of Figure 8 using method (2), and the broadness of the  $h_i$  distribution at a given redshift in the bottom panels of Figure 9 in the approximate volume-limited sample to ~4000 km s<sup>-1</sup>. This broadness in the  $h_i$  distribution is a direct consequence of the large  $\sigma(M)$  of  $\Phi(M)$ .

#### VI. THE VALUE OF $H_0$ USING THE LOCAL CALIBRATORS

#### a) Photometric Data for the Three Calibrating Galaxies

The adopted photometric data for M31, M81, and M101 are listed in Table 3. Column (3) is the  $B_T$  magnitude as listed in



FIG. 7.—The Spaenhauer bias diagram of M, log v, similar to Fig. 1b, for the samples listed in Tables 1 and 2. Top: The RSA sample of Sb and Sc galaxies of bright luminosity classes with the data treated using method (1) of the text, reduced to the ScI-I.3 magnitude system. Bottom: The data of the top panel with the ScI data from the S-T sample of Table 2 added. The flux limit lines of m = 12.5 and 15.0 are shown. Similar to Fig. 4 but with the faint sample added. The apparent increase of  $\langle M \rangle$  with increasing distance has now disappeared for the total sample.

| Galaxy<br>(1)      | Type<br>(2)             | В <sub>Т</sub><br>(3) | A <sup>0</sup><br>(4) |                      | A <sup>i</sup><br>(6) |                      | $\frac{(m-M)^o_{AB}}{(8)}$ | М <sup>о</sup> <sub>Вт</sub><br>(9) | $M^{o,i}_{B_T}$ (10)       | $M_{B_{T^{0}}}^{ScI}$<br>(11) | $\begin{array}{c}M^{\mathrm{ScI}}_{B_{T^{o,i}}}\\(12)\end{array}$ |
|--------------------|-------------------------|-----------------------|-----------------------|----------------------|-----------------------|----------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------|-------------------------------------------------------------------|
| M31<br>M81<br>M101 | SbI–II<br>SbI–II<br>ScI | 4.38<br>7.86<br>8.18  | 0.64<br>0.07<br>0.00  | 3.74<br>7.79<br>8.18 | 1.03<br>0.78<br>0.29  | 2.71<br>7.01<br>7.89 | 24.24<br>28.7<br>29.2      | -20.50<br>-20.91<br>-21.02          | -21.53<br>-21.69<br>-21.31 | -20.85<br>-21.26<br>-21.02    | -21.88<br>-22.04<br>-21.31                                        |
|                    |                         |                       |                       |                      | ×                     |                      | Means                      | -20.81                              | -21.51                     | -21.04                        | -21.74                                                            |

 TABLE 3

 Data for the Three Calibrating Galaxies





FIG. 8.—The apparent Hubble ratio  $v_i/r_i$  calculated by method (2) of the text in which a fixed  $\langle M \rangle$  value is assigned to each galaxy in the sample. Top: The data for Sb, Sbc, and Sc galaxies from the bright flux-limited catalog of the RSA. *Middle*. Same as the top but for the faint ScI sample from S-T. The mean relation from the top panel is shown as the solid line. *Bottom*: Same as the middle panel but using the faint ScI sample from Rubin *et al.* (1976). The multivalued Hubble constant at a given distance for the combined sample is an artifact of the analysis that assigns  $\langle M \rangle$  to each galaxy.

the RSA. The original source for these values is either Holmberg (1958) or de Vaucouleurs (1958), based on photographic integrations over the area covered by these large galaxies. Column (4) is the adopted correction for galactic absorption<sup>7</sup> from column (13) of the RSA. Column (5) is column (3) corrected by column (4). The adopted mean correction to  $B_T^{o}$  for internal absorption is in column (6), taken from column (14) of the RSA using the precept given on page 8 of that catalog.

The adopted apparent blue distance moduli, corrected for galactic absorption alone, are given in column (8), based on

Cepheid variables as taken from a review by Tammann (1987). Combining columns (5) and (8) gives column (9) for  $M_{B_T}^0$ . Applying a correction of 0.35 mag to convert the SbI–II absolute magnitude system to that of ScI galaxies (discussed in § II and shown in the code to Figs. 2 and 7, based on data in Table 1) gives the  $M_{B_T}^{ScI}$  values listed in column (11).

The galaxian absolute magnitudes corrected for the internal absorption  $A^i$  are listed in column (10), found by subtracting column (6) from column (9), a procedure requiring a comment. The  $A^i$  values are those which are expected to apply to an average taken over the entire galaxy face so as to reduce  $B_T$  to what would be observed,  $B_T^i$ , in the absence of all internal absorption. The  $A^i$  value must not be applied to  $(m - M)^0_{AB}$  to obtain the true modulus because Cepheids or brightest stars do not suffer the total  $A^i$  values. For example,  $A^i \approx 0$  in the Baade-Swope field IV of M31, hence their (m - M) value (corrected for galactic absorption alone) is the true modulus for Andromeda. The Cepheids and the brightest stars that have been observed in M81 and M101 are the brightest found and, in the absence of additional information we make the same assumption as for M31 that the  $(m - M)^0_{AB}$  value in column (8) must not be corrected by the  $A^i$  value (col. [6]) that applies in correcting the  $B_T$  value to  $B_T^i$ . Justification to take the (m - M)value in column (8) as the presently best value for the true

<sup>&</sup>lt;sup>7</sup> The listed value of  $A^o = 0.64$  mag for M31 in the RSA requires special comment. This is obtained from the observed color excess of E(B-V) = 0.16 in the Baade-Swope (1963) field IV of M31, giving  $A_B^o = 4E(B-V) = 0.64$ . The value differs from the cosec equation on p. 8 of the RSA that has been adopted for all other galaxies in the catalog. This equation would have given  $A^o = 0.21$  mag for M31. However, the reddening in M31 field is well determined from the Swope photometry that was calibrated photoelectrically. We adopt E(B-V) = 0.16 to be the total reddening due to galactic absorption alone. This is because field IV is far removed into the outskirts of M31, resembling fields in IC 1613, SMC, LMC, Sextans A, etc., where the internal reddening is known to be negligible over the face of most of these galaxies. The statement that the listed value of  $A^o$  for M31 in the RSA "appears to be a misprint" (de Vaucouleurs and Corwin, 1986b, footnote 2) is, then, not the explanation of this entry for M31.

SE 85 . 1088861



FIG. 9.—*Top:* Same as Fig. 8 for the RSA sample alone but now with an upper envelope line and the line for a flux limit of m = 13.0 drawn. (b) Same as top panel but with the S-T sample of Table 2 added, calculated by method (2) which assigns a fixed  $\langle M \rangle$  value to every galaxy. The m = 15.5 flux limit line is shown. (c) Same as panel (b) but using the Rubin *et al.* ScI sample from data listed in their catalog. *Bottom:* The RSA sample of the top panel to which the S-T and the Rubin *et al.* ScI samples have been added. The m = 15.5 flux limit line is drawn. Note that the data approach a distance-limited sample for  $v_0 \leq 5000$  km s<sup>-1</sup>, from which a bias-free value of  $H_0$  near 50 km s<sup>-1</sup>/Mpc<sup>-1</sup> can be deduced if  $\langle M_{sel} \rangle = -21.2$ .

modulus that can be defended on principle is not only based on the M31 case (data from field IV), but also from NGC 2403. The Cepheid apparent modulus of  $(m - M)_{AB} = 27.6$  for NGC 2403 (Tammann and Sandage 1968) has been found to be close to the true modulus (McAlary and Madore 1984) (actually is somewhat *smaller*) rather than to be only the apparent blue modulus as initially claimed by Madore (1976).

The magnitudes in column (12) of Table 3 for M31 and M81 are those listed in column (10) but again corrected by 0.35 mag brighter to put them on the ScI system.

# b) Table 3 Values Applied to the Table 1 and 2 data

The most transparent way to use the calibrations of Table 3 to find  $H_0$  would be to apply the column (9) or (11) values to the ridge lines of Figures 5a and 5b (no CIA), and/or columns (10) or (12) to the ridgeline of Figure 6 (has CIA) as if there was no bias effect (cf. Sandage and Tammann 1984, 1985, 1986). The equation of the ridge line in Figure 5a is  $B_T^0 = 5 \log v_0$ - 4.85 which, with  $\langle M_{B_T}^0 \rangle = -20.81$  from Table 3 (col. [9]) gives  $H_0 = 64$  km s<sup>-1</sup> Mpc<sup>-1</sup>. Using the reduced value in





FIG. 10.—The M, log  $v_0$  bias diagram for the RSA sample (*closed circles*) and the S-T fainter ScI sample (*Triangles*). Envelope lines are shown, put by eye. The flux limit line is put at  $m_B = 15.5$ . A more realistic lower envelope line that encompasses the faintest seven galaxies with log  $v_0 \le 3.1$  gives  $M_{B_T}^0$  (apex) between -20.8 and -20.4, used in Table 4.



FIG. 11.—Theoretical envelope lines in the M, log  $v_0$  bias diagram calculated using symmetrical Gaussian  $\Phi(M)$  luminosity functions with marked  $\sigma(M)$  values.

600



FIG. 12.—Superposition of Fig. 11 on the data of Fig. 4b, showing an apex absolute magnitude of  $\langle M_{B_T}^{o,i} \rangle = -21.4$  used for the calculations in Table 4. Circles: data from the RSA (Table 1 here); triangles: data from the faint S-T ScI sample (Table 2).

column (11) of -21.04 gives  $H_0 = 58$  km s<sup>-1</sup> Mpc<sup>-1</sup>, again neglecting the bias. Using the data corrected for internal absorption with the ridge line of Figure 6 whose equation is  $B_T^{o,i} = 5 \log v_0 - 5.35$ , and the calibrations of  $\langle M_{B_T}^{o,i} \rangle =$ -21.51 and  $\langle M_{B_T}^{o,i} (SCI) \rangle = -21.74$  from columns (10) and (12), give  $H_0 = 59$  and  $H_0 = 53$ , respectively.

However, the Malmquist bias is present even in the ridge lines of Figures 5 and 6b (see Sandage and Tammann [1974] for a similar discussion with an independent calibration of  $M_{B_T}^{o,i}$ and a different correction procedure for the bias, that gave  $H_0 = 57$ ). Merely applying the mean magnitudes from Table 3 to these ridge lines gives only an upper limit to  $H_0$ .

With only three calibrators we have no way of knowing where within the scatter of the luminosity function the mean values in Table 3 lie. Because all three galaxies are nearby, they define an average for a sample as the volume approaches zero. Hence, the Table 3 values must be applied to the data in Figures (4), (10), and (12) at the apex of the envelope lines, i.e., in the  $v_0 \rightarrow 0$  limit. This apex point is not well defined by our present data set because the envelope lines can be drawn in several ways that give a range for the apex position. Figures 4, 10, and 12 show different ways to encompass the points.<sup>8</sup>

In Figure 4 where the five faint galaxies near log v = 2.8 are

considered, the apex point is at  $M_{B_T}^{o,i(220)} = -21.0$  (if  $H_0 = 50$ ). In Figure 12 where the three faintest galaxies are ignored, the apex point is drawn at  $M_{B_T}^{o,i} = -21.4$  (again if  $H_0 = 50$ ). Because both these values are fainter than the mean values in columns (10) and (12) of Table 3, the true value of  $H_0$  must be smaller than our arbitrarily assumed value of 50. The range of  $H_0$  from these apex values and from the calibration of -21.51and -21.74 for  $\langle M \rangle$  from Table 3 is listed in Table 4. The mean value from this section of Table 4 is  $H_0 = 41.3$  as if all entries using  $\langle M_{B_T}^{o,i} \rangle$  are equally probable.

Results of the same procedure applied to the data in Figure 10, uncorrected for internal absorption (Figs. 3 and 5), using the different lower envelopes mentioned in the last section, are listed in the second part of Table 4 using the two calibrations of Table 3, columns (9) and (11).

There is no formal way via statistics to put a rigorous error budget on the final mean value of  $H_0 = 42$  km s<sup>-1</sup> Mpc<sup>-1</sup>. There are, however, reasonable limits on the uncertainties in (1) the Table 3 calibration of  $\langle M \rangle$ , and (2) the apex value of M as if  $H_0 = 50$  in Figures 4, 10, and 12.

The outside limits of these errors are taken to be  $\sim \pm 0.4$  mag for each, suggesting a total error of  $\sim \pm 0.6$  mag.<sup>9</sup>

<sup>9</sup> To determine the range of error of the envelope fits to Figures 10 and 12, the referee ran Monte Carlo simulations of the M,  $\log v$  diagram using a Gaussian  $\phi(M)$  with  $\sigma = 0.65$  mag. From seven such simulations, which were sent with the referee's report, eye fits of the envelope lines, taken from Figure 11, were made with an initial blind eye to the ordinate. The range of the apex magnitude found in these seven fits was less than 0.2 mag, suggesting that the envelope fits we have made in Figures 10 and 12 do, in fact constrain the apex  $M_B$  value to better than the guessed value of 0.4 mag. I am grateful to the referee for this determination of the envelope fitting error.

<sup>&</sup>lt;sup>8</sup> Several commentators (Koo, Faber, Green) on an early draft of this paper suggested that the apex magnitude could be obtained from the data in Figures 10 and 12 by analysis of the *distribution* of  $M_{B_T}$  in given redshift intervals. Because our catalogs are incomplete (footnote 6) the apparent distribution function  $f(M, v_0)$  from these data are poor representations of the true function, which can only be found from a complete survey of ScI galaxies to faint magnitudes, a feasible project but one not yet accomplished.

| Apex $M_{B_T}^{o,i}$<br>As if $H_0 = 50$ | Source  | Adopted $M_{B_T}^{o,i}$<br>Calibration | Required $H_0$ | Apex $M_{B_T}^0$<br>As if $H_0 = 50$ | Source  | Adopted $M_{B_T}^0$<br>Calibration | Required<br>H <sub>0</sub> |
|------------------------------------------|---------|----------------------------------------|----------------|--------------------------------------|---------|------------------------------------|----------------------------|
| -21.0                                    | Fig. 4  | -21.51                                 | 39.5           | -20.4                                | Figs    | -20.81                             | 41.4                       |
| -21.0                                    | Fig. 4  | -21.74                                 | 35.6           | -20.4                                | 10 + 11 | -21.04                             | 37.2                       |
| -21.4                                    | Fig. 12 | -21.51                                 | 47.5           | -20.8                                | Figs    | -20.81                             | 49.8                       |
| -21.4                                    | Fig. 12 | -21.74                                 | 42.7           | -20.8                                | 10+11   | -21.04                             | 44.8                       |
|                                          |         | Mean                                   | 41.3           |                                      |         | Mean                               | 43.3                       |

If  $\langle H_0 \rangle = 42$  km s<sup>-1</sup> Mpc<sup>-1</sup> is the best mean value from Table 4, then the 0.6 mag uncertainty corresponds to a factor of  $\pm 1.3$  times this value for the error in  $H_0$  giving a final result as

$$H_0 = 42 \pm \sim 11 \text{ km s}^{-1} \text{ Mpc}^{-1}$$

This corresponds to an inverse Hubble constant of

$$H_0^{-1} = (23.2 \pm 6) \times 10^9 \text{ yr}$$
 (1)

for the Hubble time.

#### VII. THE VALUE OF $\Omega_0$ FROM THE TIME SCALE TEST

### a) Age of the Galactic Globular Clusters

Catalogs of isochrones for main-sequence turn-off ages using different Y and Z values include those of Simoda and Iben (1970), Iben and Rood (1970), Ciardullo and Demarque (1977), VandenBerg (1983), and VandenBerg and Bell (1985). Cluster ages using these isochrones require absolute calibration of cluster distances so as to change apparent magnitudes to absolute luminosities.

Most of the differences between various reviews of cluster ages (cf. Demarque 1979; Sandage 1982; Vandenberg 1986) at fixed chemical composition are due to different assignments of cluster distances, and hence to differences in  $L_{TO}$ , rather than to differences in the isochrones calculated by the different groups. An example are the ages discussed by Demarque (1979) that average ~13.5 Gyr compared with ~17 Gyr for the same clusters (Sandage 1982). This ~25% difference can be traced to distance moduli that differ by ~0.24 mag for the same clusters (Table 1 of Demarque [1979] compared with Table 2 of Sandage [1982]).

The mean age of ~17 Gyr from the Yale (or VandenBerg) isochrones are based on distance moduli that used  $M_V = 0.63$  for RR Lyrae stars of Oosterhoff group II, and 0.80 mag for those of group I (Sandage 1982, Table 2 and § VIIIb). The most recent statistical parallax values of  $M_V = 0.76 \pm 0.14$  (Hawley *et al.* 1986) or  $M_V = 0.86 \pm 0.14$  (Barnes and Hawley 1986) for field RR Lyraes, averaged over the Oosterhoff types, belie values 0.2 mag brighter than this RR Lyrae calibration that gives  $T_c = 17$  Gyr. However, it now seems likely that the globular cluster ages are, in fact, ~14 Gyr, rather than 17 Gyr, based on new data on the chemical abundances of low-metallicity stars, rather than on a change in  $M_V(RR)$ .

Simoda and Iben (1968) were the first to show that varying the CNO abundance at fixed Z abundance has the same effect on the ages as varying the average Z value. This is because a significant fraction of the opacity comes from the CNO elements. This means that for a fixed main-sequence turn-off luminosity,  $L_{TO}$ , an increased CNO abundance means decreased age, keeping Y and the remaining heavy elements, Z, constant. Hence, the age depends on  $L_{TO}$ , Y, Z, and the [O/Fe] ratio. Explicit calculations of the effect of varying [O/Fe] at fixed Y, and Z have been made by Rood (1978), by Rood and Crocker (1985), by Vandenberg and Demarque (quoted in Demarque 1979), and by VandenBerg (1985, 1986). In the last references VandenBerg concludes that the age at a given  $L_{TO}$  is decreased by 15% as [O/Fe] changes from 0.0 to 0.5.

Observational evidence has become convincing that [O/Fe]progressively increases from 0.0 to ~0.5 as [Fe/H] decreases from 0 to -1; thereafter [O/Fe] may remain at about +0.5 as [Fe/H] decreases further. Part of the evidence is from Lambert, Sneden, and Ries (1974), Sneden, Lambert, and Whitaker (1979), Clegg, Lambert, and Tomkin (1981), Leep and Wallerstein (1981), Barbury (1983) and others. Reviews are given by Sneden (1985), Barbury (1985), Kraft (1985), and Matteucci (1986). The reason for the increased [O/Fe] abundance ratio in low [Fe/H] stars appears to be enhanced oxygen production in explosive nucleosynthesis (Arnett 1978) in massive stars. The abundance ratios [M/Fe] early in the Galaxy differs from the ratios in the later chemical input produced by an IMF that is now peaked toward later ejecta from lower mass stars (cf. Twarog and Wheeler 1982).

With [O/Fe] adopted to be +0.5 for globular cluster stars, assuming the oxygen effect to be the same as in field subdwarfs, and using the estimates of the effect given by VandenBerg of a  $\sim 15\%$  age reduction, the earlier estimates of  $\sim 17$  Gyr are reduced to 14.5 Gyr.

However, a more secure value comes from the high weight age measurement of 47 Tuc where the values of Y, [Fe/H], [O/Fe], and the distance are optimized to fit the predicted C-M diagram over its entire range (Hesser et al. 1987). These authors estimate the age of 47 Tuc to be  $13.5 \pm 1$  Gyr, which is probably the most accurate age determination made to date. For all the standard reasons (Sandage 1982) we adopt this to be the age of the globular system in the Galaxy, to which we must now add the gestation time of galaxies to find the age of the universe.

#### b) The Cosmological Time Scale Test

The gestation time of globular clusters, counted from the creation event, must be added to the globular cluster ages to obtain the age of the universe. One way to estimate this is to determine the look-back time to the highest redshift gravitational potential wells that eventually have become galaxies.

Quasars are known to redshifts of 4.0. Because quasars are events in the nuclei of galaxies, galaxian potential wells must have existed at least this look-back time ago. Objects at a redshift of 4 have a look-back time of between 0.80 and 0.91 of the age of the universe,  $T_U$ , depending on the value of  $\Omega$ between 0 and 1 (Sandage 1961b, Table 2). Therefore, the gestation time of galaxies is no longer than either 20% (for  $\Omega_0 = 0$ ) or 9% (if  $\Omega_0 = 1$ ) of  $T_U$ .

Later in this section we obtain  $\Omega_0 \approx 1$  by an iteration and  $T_{\rm U} \approx 15$  Gyr for the age of the universe, requiring thereby a galaxy gestation time that is shorter than  $\sim (0.09)$  $(15) \sim 1.4$  Gyr. This, then, taken at its upper limit and added to the age of the globular cluster system of the Galaxy, gives the age of the universe to be

$$T_U = 14.9 \pm 2 \text{ Gyr}$$
, (2)

where we have adopted the Hesser et al. uncertainty of 1 Gyr for 47 Tuc and have doubled it for the uncertainty of the galaxian gestation period.

Equation (1) for the Hubble time of  $H_0^{-1} = (23.2 \pm 6)$  Gyr together with equation (2) gives then

$$H_0 T_U = 0.64 \pm 0.19 \tag{3}$$

where the listed error is the combination of the quoted 26% uncertainty in  $H_0$  and the quoted 13% uncertainty in  $T_U$ .

The time ratio  $H_0 T_U$  is a function only of  $\Omega_0$  if  $\Lambda = 0$ , where the values are listed elsewhere (Sandage 1961a, Table 8). Interpolation in this table for the "dust universe" with  $H_0 T_U$  from equation (3) gives

$$\Omega_0 = 1.2^{+3.0}_{-0.9} \tag{4}$$

where we have taken the upper and lower limit on  $\Omega_0$  to be 0.81 and 0.47 using the 29%  $error^{10}$  given by equation (3).

 $^{10}$  Adopting a less pessimistic error budget to  $H_{\rm 0}$  by assigning 0.3 mag rather than 0.6 mag to the uncertainties in  $\langle M \rangle$  from both the calibrators and the apex magnitude, gives  $H_0 = 42 \pm 6$ . This smaller error of 14% together with the 13% error in  $T_U$  propagates to the time ratio as  $H_0 T_U = 0.64 \pm 0.12$ . This constrains  $\Omega_0$  more tightly to  $\Omega_0 = 1.2^{+1.6}_{-0.7}$ . To obtain  $\Omega_0$  more accurately than this via the time scale test will be more difficult than the work to date, because it seems unlikely that the true errors in  $H_0$  and  $T_U$  can be pushed much below 10% to 15%, which still propagates to a large error in  $\Omega_0$ .

- Aaronson, M., et al. 1982, Ap. J. Suppl., 50, 241.
  Arnett, D. W. 1978, Ap. J., 219, 1008.
  Baade, W., and Swope, H. H. 1963, A.J., 68, 435.
  Barbury, B. 1983, Astr. Ap., 123, 1.
  —. 1985, in Production and Distribution of C, N, O Elements ed. I. J. Danziger, F. Mateucci, and K. Kjar (Garching: ESO), p. 49.
  Barnes, T. G., and Hawley, S. L. 1986, Ap. J. (Letters), 307, L9.
  Binggeli, B., Sandage, A., and Tammann, G. A. 1985, A.J., 90, 1681 (BST).
  Bothun, G. D., Aaronson, M., Schommer, B., Huchra, J., and Mould, J. 1984, Ap. J., 278, 475.
  Bottinelli, L., Gouguenheim, L., Paturel G, and Teerikorpi P. 1986, Astr. Ap.

- Bottinelli, L., Gouguenheim, L., Paturel, G., and Teerikorpi, P. 1986, Astr. Ap., 156, 157.
- Brown, G. S., and Tinsley, B. M. 1974, Ap. J., 194, 555.
- Bruzual, A. G., and Spinrad, H. 1978, Ap. J., 200, 1. Ciardullo, R., and Demarque, P. 1977, Trans. Yale Univ. Obs., Vol. 33.
- Clegg, R. D., Lambert, D. L., and Tomkin, J. 1981, Ap. J., 250, 262. Demarque, P. 1979, in IAU Symposium 85, Star Clusters, ed. J. E. Hesser
- Demarque, P. 1979, in *IAU Symposium 85*, Star Clusters, ed. J. E. Hesser (Dordrecht: Reidel), p. 281.
  de Vaucouleurs, G. 1958, Ap. J., **128**, 465.
  ——. 1972, in *IAU Symposium 44*, External Galaxies and Quasistellar Objects, ed. D. S. Evans (Dordrecht: Reidel), p. 353.
  de Vaucouleurs, G., and Bollinger, G. 1979, Ap. J., **233**, 433.

These formal limits on  $\Omega_0$ , dictated mostly by the large assigned error of 26% to  $H_0$  from equation (1), seem not to usefully constrain  $\Omega_0$  in equation (4). This, however, is not quite so if we are only asking if  $\Omega_0 = 1$  required by GUT is now at all possible from the astronomical data. When the age of the globular clusters had been put at 17 Gyr and the Hubble time at 19.5 Gyr (H = 50) there was no possibility for  $\Omega_0 = 1$ with  $\Lambda = 0$ . If, now,  $H_0 = 42$  ( $H_0^{-1} = 23$  Gyr) and  $T_U = 15$ Gyr, then  $\frac{2}{3}H_0^{-1} \approx 15$  Gyr, giving the possibility that  $\Omega_0 = 1$ . However, to emphasize, it is not to be claimed that the time scale test now requires  $\Omega_0 = 1$ ; the error in equation (1) on  $H_0$  is still too large. But clearly, if one accepts the ages from both equations (1) and (2) there is now no need to resurrect  $\Lambda \neq 0$  to obtain  $\Omega_0 = 1$ , suggesting that the universe can, in fact, be closed without a violation of the time scale test, bought now, however, at the price of accepting 99% of the mass of the universe in nonbaryonic hot dark matter.

It is a pleasure to thank many people for help in the preparation of this paper. G. A. Tammann has discussed the problems of bias as it affects the determination of  $H_0$ . I am grateful to R. C. Kraan-Korteweg for use of her catalog of velocity corrections for Virgocentric infall and to A. Spaenhauer for his diagram in Fig. 1. It is a particular pleasure to thank Janet Krupsaw for her preparation of so many drafts of this paper. Carl Schuetz and Stuart Simpson of the Space Telescope Science Institute graphics office prepared the diagrams for press, for which I am grateful. Barbara Eller was particularly important in coordinating the publication activities of Space Telescope Science Institute in the finalization of the manuscript for press. Finally, I am grateful to Gerard de Vaucouleurs, Sandra Faber, Richard Green, David Koo, Vera Rubin, Sidney van den Bergh, and the unknown referee for reading and commenting on early drafts of the manuscript.

#### REFERENCES

- Hesser, J. E., Harris, W. E. VandenBerg, D. A., Allright, J. W. B., Shott, P., and Stetson, P. 1987, *Pub. A.S.P.*, 99, 739.
  Hickson, P. 1977, *Ap. J.*, 217, 964.
  Holmberg, E. 1958, *Medd Lund Obs.*, Ser. II, No. 136.
  Hubble, E. 1936a, *Ap. J.*, 84, 158.
  ——. 1936b, *Ap. J.*, 84, 270.
  ——. 1936c, *Ap. J.* 84, 217.

- Kapani, Y.K. 1975, M.A.K.A.S., 112, 513.
   Bartin, Y.K. 1975, M.A.K.A.S., 112, 513.
   Burbidge, and L. Z. Fang (Dordrecht: Reidel), p. 251.
   Kennicutt, R. C. 1982, Ap. J., 259, 530.
   Kraan-Korteweg, R. C. 1986, Astr. Ap. Suppl., 66, 255.
   Kraan-Korteweg, R. C., Sandage, A., and Tammann, G. A. 1984, Ap. J., 283, 24 (KVST).

- Kraft, R. P. 1985, in Production and Distribution of C, N, O Elements ed. I. J. Danziger, F. Matteucci, and K. Kjar (Garching: ESO), p. 21.
- Lambert, D. L., Sneden, C., and Ries, L. M. 1974, *Ap. J.*, **188**, 97. Lasker, B. M. 1970, *A.J.*, **75**, 21.
- Lasket, B. M. 1970, A.J., 75, 21. Leep, E. M., and Wallerstein, G. 1981, M.N.R.A.S., **196**, 543. Loh, E. D., and Spillar, E. J. 1986, Ap. J. (Letters), **307**, L1. Madore, B. F. 1976, M.N.R.A.S., **177**, 157. Matteucci, F. 1986, Pub. A.S.P., **98**, 973. Mattig, W. 1958, Astr. Nach., **286**, 1

- Nicoll, J. F., and Segal, I. E. 1982, Ap. J., 258, 457.
- Oke, B. J., and Sandage, A. 1968, *Ap. J.*, **154**, 21. Refsdal, S., Stabell, R., and de Lang, F.-G. 1967, *Mem.R.A.S.*, **71**, 143.

Hawley, S. L., Jeffreys, W. H., Barnes, T. G., and Wan, L. 1986, Ap. J., 302, 626.

- Robertson, H. P. 1955, *Pub. A.S.P.*, **67**, 83. Robertson, H. P., and Noonan, T. W. 1968, in *Relativity and Cosmology* (Philadelphia: Saunders), § 15.7.
- Rood, R. T. 1978, paper presented at the NATO Advanced Study Institute on
- Globular Clusters, Cambridge, England. Rood, R. T., and Crocker, D. A. 1985, in *Production and Distribution of C, N, O* Elements ed. I. J. Danziger, F. Matteucci, and K. Kjar (Garching: ESO),
- p. 61. Rubin, V. C., Ford, W. K., Thonnard, N., Roberts, M. S., and Graham, J. A. 1976, A.J., **81**, 687. Sandage, A. 1961*a*, Ap. J., **133**, 313. . 1961*b*, Ap. J., **134**, 916. . 1962, Ap. J., **136**, 319. . 1972*a*, Ap. J., **178**, 185. . 1972*b*, Ap. J., **178**, 1. . 1972*c*, Ap. J., **178**, 25. . 1972*c*, Ap. J., **178**, 25. . 1982, Ap. J., **252**, 553. . 1986, Ap. J., **307**, 1. Sandage, A., Bingelli, B., and Tammann, G. A. 1985*a*, A.J., **90**, 395 (STB).

- Inst. Washington Pub. 635).
- p. 1.
- 1986, in Inner Space-Outer Space, Proc. Fermilab Conference, May
- Sandage, A., Tammann, G. A., and Hardy, E. 1972, Ap. J., 172, 253.

Sandage, A., Tammann, G. A., and Yahil, A. 1979, Ap. J., 232, 352 (STY). Segal, I. 1975, Proc. Nat. Acad. Sci., 72, 2473.

- Sneden, C., Lambert, D. L., and Whitaker, R. W. 1979, Ap. J., 234, 964.
  Solheim, J.-E. 1966, M.N.R.A.S., 133, 321.
  Soneira, R. M. 1979, Ap. J. (Letters), 230, L63.
  Spaenhauer, A. M. 1978, Astr. Ap., 65, 313.
  Stebbins, J., Whitford, A. E., and Johnson, H. L. 1950, Ap. J., 112, 469.
  Swarup, G. 1975, M.N.R.A.S., 172, 501.
  Tammann, G. A. 1987, in IAU Symposium 124, Observational Cosmology ed. A. Hewitt, C. Burbidge, and L. Z. Fang (Dordrecht: Reidel), p. 151.
  Tammann, G. A., and Sandage, A. 1968, Ap. J., 151, 825.
  Tammann, G. A., Yahil, A., and Sandage, A. 1979, Ap. J., 234, 775 (TYS).
  Teerikorpi, P. 1975a, Astr. Ap., 45, 117.
  —. 1975b, Observatory, 95, 105.
  —. 1984, Astr. Ap., 141, 407.
  Twarog, B., and Wheeler, J. C. 1982, Ap. J., 261, 636.
  VandenBerg, D. A. 1983, Ap. J. Suppl., 51, 29.
  —. 1985, in Production and Distribution of C, N, O Elements, ed. I. J. Danzinger, F. Matteucci, and K., Kjar (Garching: ESO), p. 73.
  —. 1986, in IAU Symposium 136, Globular Clusters Systems Around Galaxies, ed. J. Grindlay and A. G. D. Philip, (Dordrecht: Reidel).
  VandenBerg, D. A., and Bell, R. A. 1985, Ap. J. Suppl., 58, 561.
  van den Bergh, S. 1960a, Ap. J., 131, 215.
  —. 1960b, Ap. J., 131, 558.
  Whitford, A. E. 1971, Ap. J., 169, 215.
  Zwicky, F., and collaborators. 1961–1968, Catalog of Galaxies and Clusters of Colorise Volk (24) forming institute of Technology)

- Zwicky, F., and collaborators. 1961-1968, Catalog of Galaxies and Clusters of Galaxies, Vols. I-VII (Pasadena: California Institute of Technology).

ALLAN SANDAGE: Mount Wilson Observatories, Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101-1292