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ABSTRACT 
JPL pulse timing data extending from 1968 November to 1983 March were analyzed to study the time 

dependence of the spin frequency. Discontinuities in the spin frequency v have a bimodal amplitude distribu- 
tion: macrojumps (“ glitches”) occur about once every 1000 days with positive amplitudes Av/v « 10“6, while 
microjumps of both signs occur 10 times more often with |Av/v| « 10 “9. 

We quantify six macrojumps and their associated transients using a 10-parameter model for each jump. 
Amplitude and decay time parameters vary by a factor ~ 5 over the set of jumps. We find an anticorrelation 
of —94% between the measured second derivative v and the exponential time constant of one of the tran- 
sients. We are unable to construct a reliable predictor for macrojumps from the observed parameter values. 

Microjumps are identified by demonstrating that they are too large to be mere fluctuations produced by 
many, much smaller events comprising a random walk process. We suggest that microjumps are, in fact, the 
basic events that underlie the timing noise of the Vela pulsar. In contrast to macrojumps, which show a signa- 
ture (Av, Av) = (-h, — ), microjumps show all possible signatures and are not solely scaled-down versions of 
macrojumps. 

The results are discussed in terms of superfluid vortex models. Macrojumps are consistent with a model in 
which angular momentum is suddenly transferred to the crust from a more rapidly rotating superfluid core, 
followed by relaxation of the rate of spin-down. If the sudden transfers are due to catastrophic vortex 
unpinning events, then we conclude that the region in which vortices catastrophically unpin must move radi- 
ally by a few tens of meters in order to produce the observed variations in macrojump parameters. Although 
vortex events may also underlie microjump activity, some other triggering agent (such as crustquakes) is prob- 
ably also involved. The constancy of microjump activity in the intervals between macrojumps suggests that 
the star never reaches quasi-rotational equilibrium. 
Subject headings: pulsars — stars: neutron 

I. introduction 

As a rotation driven pulsar, the Vela pulsar is notable for 
showing pulsed emission throughout the electromagnetic spec- 
trum from radio waves to y-rays. The pulsar is situated inside 
the Vela supernova remnant, surrounded by a small synchro- 
tron nebula (Seward 1985). It is among the brightest of radio 
pulsars in the sky, making it suitable for studies of the radio 
emission mechanism and magnetospheric structure as well as 
studies of scattering and Faraday rotation in the interstellar 
medium. Vela also shows, through the phase of the received 
pulse train, large discontinuities in its spin rate. In this paper 
we analyze the rotation of this object in order to further con- 
strain the internal structure of a neutron star. 

Soon after its discovery, the Vela pulsar showed an abrupt 
increase in its spin frequency with an amplitude Av/v ~ 10-6 

(Reichley and Downs 1969; Radhakrishnan and Manchester 
1969). Since this first spin-up (also called a jump or glitch), six 
others have occurred at a rate of one every few years. These 
jumps in the rotation frequency (v ~ 11.2 Hz) are superposed 
on the general spin-down rate v ~ —1.6 x 10"11 Hz s_1 and 
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are accompanied by jumps in the spin-down rate of Av/ 
v ~ 10-2. 

The general behavior of the spin-down is represented in 
Figure 1 on a coarse scale. Since the last extensive analysis of 
the first four macrojumps (Downs 1981; henceforth Paper I), 
three more jumps have been observed (McCulloch et al 1981; 
Hamilton, McCulloch, and Royle 1982; Klekocink, McCul- 
loch, and Hamilton 1985). The fifth jump has been analyzed in 
considerable detail (McCulloch et al. 1983). One purpose of 
this paper is to present parameters of the first six jumps as 
derived from an analysis of arrival time data obtained at the 
Jet Propulsion Laboratory (Downs and Reichley 1983, here- 
after Paper II; Downs and Krause-Polstorff 1986, hereafter 
Paper IV). We quantify the six macrojumps and discuss the 
results in terms of the catastrophic vortex unpinning models 
proposed by Alpar et al. (1984a, b). 

In addition to the large (macro) jumps, which have also been 
seen from six other objects (Boynton et al. 1972; Groth 1975; 
Manchester 1981; Downs 1982; Backus, Taylor, and Dama- 
shek 1982; Lyne 1987), many pulsars show lower level “timing 
noise” (Cordes and Helfand 1980; Cordes and Downs, 1985 
hereafter Paper III). Timing noise is similar in behavior to 
noise in terrestrial oscillators and frequency standards which 
commonly show frequency fluctuations having power-law 
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YEAR 
1970 1975 1980 

^wi!00 decrease and associated jumps (spin-ups) between 1968 and early 1983, the time encompassed by the JPL timing program Numbered arrows mark the epochs oí macrojumps (“ glitches ”). ^ 

power spectra (e.g., Rutman 1978). In the case of pulsars, 
timing noise is roughly consistent with the occurrence of a 
random walk in either the rotational phase (<£), frequency (v), 
or frequency derivative (v), or some combination of the three. 
Paper HI analyzed the JPL data of 23 objects (excluding the 
Vela pulsar) and was able to identify some of the timing noise 
with specific small-amplitude events (which we shall term 
microjumps) in v and v. Alpar, Nandkumar, and Pines (1986) 
and Boynton and Deeter (private communication) have also 
analyzed the JPL timing data, with similar conclusions about 
microjump behavior. Alpar, Nandkumar, and Pines concluded 
that microjumps are not simply scaled-down versions of 
macrojumps. 

It is important to develop a complete observational descrip- 
tion of microjumps in order to weigh the applicability of 
models involving neutron star interiors (e.g., Alpar et al 1984a, 
b) and torque fluctuations from magnetospheric variability 
(Cordes and Greenstein 1981; Arons 1981). For this reason, 
and especially since it is important to understand the relation- 
ship of macrojumps and microjumps, we have also analyzed 
microjumps for the Vela pulsar in considerable detail. The 
quantification of microjump behavior for this object is much 
more complicated than for other pulsars because rotational 
phase deviations from a smooth spin-down model are domi- 
nated by macrojumps and their subsequent evolution. Much of 
the work has involved a careful estimation of the macrojump 
parameters (which themselves are made uncertain by the 
microjumps), followed by removal of the macrojumps from the 
data before study of the microjumps. 

In § II we present the analysis of macrojumps, which are 
generally describable by instantaneous discontinuities in v and 

v (and sometimes v) which exponentially decay with two dis- 
tinct time constants, superposed on a long-term linear decay. 
Section III is devoted to an anlysis of timing noise and micro- 
jumps. We present a statistical description of timing noise with 
the use, as in Paper III, of an analysis of variance. We identify 
and assess the significance of discontinuities in v and v and 
present a list of those that we consider real. In § IV we consider 
physical modes involving crust quakes and superfluid vortex 
flows. Section V summarizes the results of the paper. 

II. MACROJUMPS 
Recently, Alpar et al (19846) extracted curves of v following 

each jump from Figure 2 of Paper I and suggested that the 
decay of v consisted of short and intermediate components 
which meld into a linear decay of v. Here we carry out a 
considerably more detailed analysis than that of Paper I, and 
proceed independently to a similar conclusion. In the follow- 
ing, we present the detailed results on each macrojump and 
investigate correlations between the 10 parameters that char- 
acterize each macrojump and subsequent evolution. 

We analyze arrival time data obtained with the Deep Space 
Network from 1968 to 1983, as described in Downs and Reich- 
ley (Paper II) and Downs and Krause-Polstorff (Paper IV). The 
arrival times were referred to the solar system barycenter 
through use of the JPL planetary ephemeris DE 96 (Standish, 
Keesey, and Newhall 1976) and knowledge of the pulsar posi- 
tion. The optical position (Manchester et al 1978) was used 
because it is more accurate than the radio position. Proper 
motion was assumed to be zero since no measurements exist to 
suggest otherwise. The barycentric arrival times appear to be 
determined by the intrinsic rotational phase of the pulsar and 
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measurement errors. As we have argued in Paper III, time 
variable contributions from interstellar propagation processes 
(e.g., Armstrong 1984; Blandford and Narayan 1984; Cordes, 
Pidwerbetsky, and Lovelace 1986) are negligible for this object. 
In Paper IV, evidence was found for small (~25 /¿s) fluctua- 
tions in phase that were correlated over 1 hour but were uncor- 
related from day to day. While the physical interpretation of 
these perturbations is unknown (and may involve magneto- 
spheric processes), we consider them to be a contribution to the 
measurement errors in the analysis to be presented. 

a) Model for the Spin Frequency 
For most nonbinary radio pulsars, barycentric pulse arrival 

times are analyzed by fitting a simple power series phase model 
to the arrival times in a least-squares procedure. Expanding in 
a Taylor series about a reference epoch i0, the underlying fre- 
quency model takes the form 

v(i) = Vo + v0(í — ¿o) + v0(i — t0)2/2 , (1) 

where v0 and v0 are the first and second derivatives, respec- 
tively, of the frequency at time t0. Equation (1) is an excellent 
approximation to the spin-down function expected from elec- 
tromagnetic braking (Manchester and Taylor 1977) which, for 
Vela, occurs on a characteristic time v/| v | ~ 23,000 yr. 

The arrival times of the Vela pulsar are significantly affected 
by perturbations of the simple rotation law. An appropriate 
model for the spin-down rate, which is justified in the analysis 
below, can be written as 

v(i) = v0 + v0(i - t0) 

+ Z {[Kje~(t~Tj)TsJ + V-™ + Vi,. 
j 

+ Vi.(i - 7})]U(t - 7})U(7}+1 - t)} , (2) 

where v0 and v0 are associated with the general spin-down 
obtained in the absence of macrojumps and are evaluated at 
t = i0. In the analysis discussed below, 7} coincides with the 
first postjump observation since phase continuity is lost after a 
jump owing to the discrete sampling. The immediate postjump 
response comprises short and intermediate exponential decays 
described by the magnitudes vSj and vir The exponential com- 
ponents decay with time constants ts. and into the linear 
component of v such that 

^ *i¡ < i VV,; |. (3) 

The unit step function U(t — 7}) limits the influence of affected 
terms to times £ > 7}, while U(Tj+1 - t) turns off the decay at 
the epoch Tj+1 of the next jump. 

Thus, each interjump era is treated separately from other 
eras. The parameters v0j, v0,, and v0j then refer to the epoch 7} 
and necessarily change in value at each epoch such that 

Vqj == v0 + v0(7} — £o) + (i)*o(7} — t0)2 , 

Vo, = v0 + v0(7} - t0), 

v0, = v0 . 

In practice, the separation of the spin-down parameters from 
those describing the linear portion V/,. + v,.(£ — 7}) of the 
macrojump decay is not possible. We then obtain combined 
values v0. 4* V/,. and v0j. + v^. from the fits to the data. 

A likeíy braking index describing the spin-down is w = vv/ 
v2 ~ 3 (see Manchester and Taylor 1977), suggesting v0 ~ 7 
x 10"23 Hz s-2, a value that is evidently an order of magni- 

tude less than those found for v,. Therefore, while the presence 
of v0 is acknowledged, we are unable to determine its value 
because of the transients associated with macrojumps (and 
microjumps). We argue in § lie that each linear decay termin- 
ates abruptly with the next macrojump. 

The spin rate is obtained by integrating equation (2) (while, 
for notational simplicity, we drop the sum over all jumps), 
obtaining v(£) = ] dt v(£) + constant, where the constant of inte- 
gration is such that v(£ = 7}) = v0j. The phase of the pulsar 
signal is obtained by another integration, yielding 

m = v(t) + constant 

= <t>0i + v0jt + (v0j + v,)t2/2 + (v0y + Vi)t3/6 

+ Vs,[t + - 1)] + Vi.x^t + - 1)] , 
(4) 

where £ is now measured relative to 7} as discussed above, 
and where the constant of integration is chosen such that 
0(£ = 7}) = 0o,. For simplicity in the discussion below, we 
drop the subscript j and the parameters are understood to 
apply only to a particular postjump interval. 

Jump 2' is apparently linearly superposed on the decay fol- 
lowing jump 2 (see § lid). Therefore, jumps 2 and 2' are 
modeled together as in equation (2) except that only the short- 
term decay following jump 2' is retained. We then obtain a 
spin-up due to jump 2' 

vp(t) = {Avp — vspTsp[e“(i”Tp)/Zsp - l]}l/(£ - Tp), (5) 

where Avp is the measured spin-up at epoch Tp, vsp refers to 
epoch t = Tp, and the subscript p refers to jump 2'. The contri- 
bution (¡)p to the phase is then 

0p(O = <l>0p F {(Avp + vsp ^sp)(^ — ^p) 

+ vspTs
2
p[^

(t-r^ - 1]}U(£- Tp), (6) 

where 0Op (the phase at £ = Tp) takes into account the fact that 
we do noPt know the actual jump epoch or the history of the 
decay up until the first postjump observation. 

b) Jump Parameters 
It would be easy to recognize a macrojump during observa- 

tions because, for an amplitude Av/v ~ 10-6, the observed 
phase drifts by one pulse width (~3.3 ms) after ~ 37,000 
periods (~1 hr for Vela). Unfortunately, none of the macro- 
jumps occurred during an observing session, and more than 
one cycle of phase was lost between observing sessions that 
bracket any of the macrojumps. Therefore, macrojumps were 
identified in the JPL data by making fits of equation (1) to 
subsets of the available samples and finding the epoch at which 
the fits became catastrophically poor. 

Subsequently, two model fits were made, the first to the data 
spanning 30 to 90 days just prior to the jump, and the second 
to the first four observation days following the jump. In all 
cases the rms residual after each model fit was 20-25 ps. Model 
parameter differences (Av, Av, and Av) across each jump, listed 
in Table 1, were computed by extrapolating the prejump model 
parameters to the earliest postjump epoch (col. [3]) and sub- 
tracting from the postjump parameters. The estimated errors 
in Table 1 are due primarily to random phase variations inher- 
ent in the pulse train (see Paper IV), not due to noise extrinsic 
to the pulsar. 
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TABLE 1 
Large Jump Parameters for PSR 0833-45a 

Jump Epoch1* 
(JED—2,440,000) 

Jump After Before 

1    276.75 283.69 
2   1185.27 1199.23 
2'  1308.94 1315.87 
3....  2680.50 2685.67 
4   3681.40 3704.32 
5   4888.49 4889.30 
6 —  5191.58 5192.56 

a 2 errors. 

Rotational Parameters 

Av Av Av 
(10 7 Hz) (IQ-13 Hz s"1) (10“22 Hz s’2) 

261.81(0.96)±0.03 -1.58(-0.20) ± 0.05 347 + 54 
229.18(3.37) ± 0.01 -2.32(-0.94) ± 0.03 782 ± 19 

1.34(0.21) ± 0.01 — 0.30( —0.09) ± 0.03 143 ± 20 
222.48(0.84) ± 0.04 -1.66(-0.11) ± 0.09 214 ± 76 
342.90(7.13) ± 0.01 -2.87(-1.46) ± 0.03 736 ± 24 
127.44(0.09) ± 0.01 -1.32(-0.01) ± 0.01 169 ± 11 
229.61(0.31)10.01 - 3.61(-0.16) 1 0.04 1897145 

Period Parameters 

AP AP 
(10 9 s) (10~15 s s-1) (10-24 s s-2) 

—208.35(—0.77) + 0.02 1.25(0.16) ± 0.04 -276 ± 43 
-182.43( —2.68) ± 0.01 1.84(0.75) ± 0.02 - 622 ± 15 

-1.06(—0.16) + 0.01 0.31(0.07) ± 0.02 -114 + 16 
—177.16(—0.67) + 0.03 1.32(0.08) ± 0.07 -170 ±61 
— 273.12(—5.67) ± 0.01 2.28(1.16) + 0.02 - 586 ± 19 
-101.53(—0.07) ± 0.01 1.05(0.01) + 0.01 -134 + 9 
—182.94(—0.25) + 0.01 2.87(0.13) ± 0.03 -1511 + 36 

S^From eP°ChS published Downs 198 •> Manchester, Goss and Hamilton 1976, Hamilton, McCulloch, and Royle 1982, McCulloch et al. 1983, and McCulloch 

Values for the period parameter changes (AP, etc.) across a 
jump are included in Table 1 for comparison with the earlier 
values tabulated in Paper I. (Conversions between Av and AP 
and their time derivatives are discussed in Appendix A.) Slight 
differences are due mainly to the decision to confine the post- 
jump fit to only the first four observation days following a 
jump. Another contribution comes from use of the optical 
position of the pulsar rather than the radio position used in 
Paper I. 

Uncertainty in the jump epoch causes an additional uncer- 
tainty in the jump parameters. To estimate these possible 
parameter corrections, the postjump model parameters were 
backdated to the earliest epoch the jump could have occurred 
(col. [2] in Table 1), while the prejump parameters were 
updated to the same epoch and again subtracted. The differ- 
ences between the listed changes and these later estimates 
appear in parentheses in Table 1. The systematic errors can in 
fact be much larger. McCulloch et al. (1983) have analyzed a 
set of daily observations (the JPL observations were weekly) 
around jump 5, thereby detecting a small but significant expo- 
nential component of the jump which exhibits a decay time of 

1.6 day. The total Av reported by them exceeds that reported 
here by the amount of the fast-decaying component. The JPL 
observations missed the jump by 0.8-1.5 day. According to 
preliminary results of Hamilton, McCulloch, and Royle (1982), 
the JPL observations missed jump 6 by 1.1 day, so a strong 
short-term component may also contribute to jump 6. 

c) Postmacrojump Evolution of v 
Figures 2-6 trace the rapid changes in v immediately follow- 

ing the six macrojumps. The plotted values were obtained by 
fitting second-order phase models to three successive days of 
observation with the origin of each fit moved to later times at 
~ 1 week intervals (the typical interval between observations). 
About 150-200 days after a jump the initial transient has 
diminished, so third-order fits over extended intervals (30-90 
days) are possible. The results of these fits, wherein the rms 
residual was again typically 25 ps, are represented by the con- 
nected symbols in Figures 2-6. 

In each figure a single data point is plotted 5 days before 
each jump and represents the value of v predicted by the 
prejump behavior at the jump epoch. The value is based on a 

lone'soans f°IIo*in8"lacroJump.1 and preceeding macrojump 2. Filled circles: Second-order fits. Connected filled circles: third-order fits over g p . died squares. Third-order fits over restricted spans. Error bars are shown where large enough and are ±2 a. Broken line : estimate of linear behavior. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

33
0.

 .
84

7C
 

JPL PULSAR TIMING OBSERVATIONS. V. 851 No. 2, 1988 

Fig. 3.—Spin-down rate v following macrojump 2 and preceeding macrojump 3. Open triangles: second order fits. Connected open triangles: third order fits over 
long spans. Filled squares: third order fits over restricted spans. Error bars are shown where large enough and are ±2 o. Broken line: estimate of linear behavior. 

third-order model fit to the 30-60 days prior to the jump. A 
comparison of this value to one obtained from a third-order fit 
using the first four observation days following each jump 
(shown as a filled square) yields the jump in v presented in 
Table 1. Occasionally, other third-order fits using four suc- 
cessive observation days were made as a check on the stability 
of the results of the second-order fits. These results are also 
plotted as filled squares in Figures 2-6. 

d) Postjump Parameters 

Short and intermediate-term decays of v are evident in 
Figures 2-6: a short-term decay of a few days is followed by a 
longer, intermediate-term decay of 100 to 200 days. To investi- 
gate this behavior quantitatively we present the long-term 
linear decay as Viin(i) = vt + vl t. We then computed the differ- 
ence vd(t) = v(i) — vlin(i) to decouple the long-term decay from 

Fig. 4.—Spin-down rate v following macrojump 3 and preceeding macrojump 4. Filled triangles: second-order fits. Connected filled triangles: Third-order fits 
over long spans. Filled squares: third-order fits over restricted spans. Error bars are shown where large enough and are ±2 a. Broken line: estimate of linear 
behavior. 
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Fig. 5.—Spin-down rate v following macrojump 4 and preceeding macrojump 5. Open circles: second-order fits. Connected filled circles: third-order fits over long 
spans. Filled squares: third order fits over restricted spans. Error bars are shown where large enough and are ±2o. Broken line: estimate of linear behavior. 

the earlier transient decay. The magnitude | vd | is displayed in 
Figures 7-10 on semilog scales, wherein an intermediate-term 
exponential decay of v is clearly visible as a linear trend follow- 
ing each jump. A clear and separate short-term decay is also 
present therein, but the data are insufficient following all jumps 
to test the exponential form for the short-term decay. Never- 
theless, the short-term decay is modeled as such since McCul- 
loch et al (1983) have modeled the postjump 5 decay with, in 
part, a short-term (~ 1 day) exponential with some success. In 
Figure 8, and to some extent in Figure 3, we see the basis for 
treating jump 2' in § lia as superposed on the decay following 
jump 2. This jump clearly decays rapidly into a linear extrapo- 
lation (on the semilog plot) of the intermediate-term decay of 
jump 2. 

Attempts have also been made to fit an exponential decay 
model to the long-term (200-1400 days) behavior of the Vela 
pulsar (Manchester 1981, and most recently, McCulloch et al 
1983). The case was made in Paper I, however, that the magni- 
tude of v (as opposed to v) decreases linearly, not exponentially, 
with time for hundreds of days prior to the next jump. The 
dynamics following each jump have been displayed in terms of 
the spin-down rate v after each jump in Figures 2-6 to make 
this point clear. Dashed lines therein represent fits to the 
linear decay (tentative in the case of postjump 6 due to a lack of 
data). There is no evidence for a long-term exponential decay in 
the data; if the long-term decay is in fact exponential, then the 
time constant must be at least 50 yr. Fluctuations in v away 
from linearity appear to be due entirely to microjump fluctua- 
tions. 

The results of the model fitting of equation (4) are presented 
in Table 2 and Figures 7-10. The table gives values of the jump 
parameters and the rms phase residual following removal of 
the model from the data. As discussed below, the phase 

residuals are more than two orders of magnitude larger than 
typical measurement errors and are dominated by microjumps. 

In Figures 7-10, the models are shown as solid lines, rep- 
resenting the intermediate-term decays, and are limited in time 
to indicate the data points used in selecting the parameter 
values. Short-term decays are represented as dashed curves, 
while jump 2' is the solid curve in Figure 8. Formal statistical 
errors were possible only for the indicated parameters in Table 
2. In these cases nonlinear least-squares fitting was performed. 
The remaining parameters were evaluated as described below, 
and in these cases the error was evaluated by experimentation. 
We emphasize that the short-term decays are poorly sampled, 
so the listed parameter values are most certainly subject to 
unknown systematic errors. 

The fitting procedure was complicated by the timing noise 
due to microjumps. Preliminary evidence of this noise appears 
in Figures 2-6, where measurement error is several orders of 
magnitude below the observed fluctuations. In the sense that 
timing noise is not modeled, the phase model is incomplete, so 
it is not possible to obtain parameter values which are free of 
significant perturbation. In some cases the least-squares results 
were heavily dependent on the assumed initial values. For 
example, following jump 1, least-squares solutions for </>0 and 
^ simultaneously yielded values for t, of 124.3 + 3.6, 
115.4 + 1.6, 98.8 ± 0.8, and 91.1 + 1.7 days for initial values of 
105, 110, 120, and 125, days, respectively. Furthermore, the 
amount of data available for the short-term decays is so sparse 
that attempts to solve for vs and ts resulted in unstable compu- 
tations. Thus, while the long-term decay parameters v0, v0 
+ vh and v0 + vz were determined in a conventional iterative 
least-squares procedure, the exponential parameters vs, ts, v¿, 
and i* were selected in a hybrid (manual and least-squares) 
process. 
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Fig. 6.—Spin-down rate v following macrojumps 5 and 6. Crosses: jump 5. 
Open squares: jump 6. Unconnected points: second-order fits. Connected points: 
third-order fits over long spans. Filled squares: third-order fits over restricted 
spans. Broken lines: estimates of linear behavior. Error bars are shown where 
large enough and are ±2 a. 

One iteration of this procedure consisted of (1) fit v0, v0 + vh 
v0 + vl and 0O by least squares, using prior estimates of vs, ts, 
vf, and T, (on the first pass the values of v0 + Vj and v0 + vz were 
selected by inspection of data in Figs. 2-6, while the exponen- 
tial parameters were evaluated using earlier versions of Figs. 
7-10.); (2) evaluate\vd \ ; (3) determine v,- and a first guess of Tf by 
a linear least-squares fit to log (| vd |) in the range of applicabil- 
ity (see Figs 7-10); (4) adjust Tf using plots of <5v versus time as 
an aid in selecting the “ minimum perturbation ” (see Appendix 
B for more discussion on this point); (5) obtain vs from the fact 
that vd(0) = vs -F v, ; (6) select ts from a visual linear fit to the 
appropriate data in Figures 7-10. This procedure was per- 
formed for two iterations to arrive at values in Table 2. 

e) Correlations between Macrojump Parameters 
Alpar et al (1981) presented a strong linear correlation (0.95) 

between the observed time interval tg between macrojumps 
and that predicted from the observed Av (labeled i*h therein). 
This led to a predicted jump 5 epoch of between 1985 February 
and 1985 August whereas the observed jump epoch was about 
12 October 1981 (3.5 years earlier). However, their prediction 
was based on jump parameter values which differ (in one case 
substantially) from those in Table 1. Using our values in their 
analysis we would have predicted a jump epoch near 1982 
November, somewhat closer to the observed epoch. In any 
case, we find the correlation between tg and tf for six macro- 
jumps to be downgraded to 0.55. 

We consider observations during a macrojump to be of high 
importance, but a method of predicting the jump epoch is 
required in light of limited observing resources. We investi- 
gated several other parameter correlations in the hope that a 
predictor for the macrojump epoch could be constructed. The 
coefficient p describing the correlation of parameters p and q is 
written below as p(p, q). Few significant correlations were 
found. The computed correlations are listed in the correlation 
matrix of Table 3. All parameters except vt and vd have been 
defined earlier. Here vz = Vfi^/2 is the total change in rotation 
frequency associated with the linear decay, which may be due 
to a process different from those associated with the expo- 
nential decays. (At this point we ignore any contribution to v 
from the external magnetospheric torque, which is likely to be 
10 times smaller than vh as argued above). The parameter 
vd = J dt vd is discussed below. Most of the correlations are 
between parameters pertaining to a particular jump and its 
postjump era. In some cases, correlations between parameters 
of different jumps are made. We designate these with a plus or 
minus, where a minus denotes values of the quantity in a 
column chosen from the preceding jump, while a plus implies 
values taken from the following jump. As is clear, few of the 
correlations appear statistically significant. The exceptions are 
now discussed, one relating to data consistency and one rela- 
ting to the internal dynamics of the star. 

Given a purely exponential response, one would expect tran- 
sient derivatives (vs, vf) to be directly related to the presumed 
stimulus (Av). We found p(Av, vf) « 0.95 for jumps 1-5. Adding 
jump 6, p « 0.68. Inspection of Figure 10 suggests that vf may 
be biased high at the expense of ts, which may be biased low. 
Letting v, « —5 x 10-14, then p « 0.88, a reasonably high 
correlation. We find p(Av, vs) low, but vs is poorly determined 
due to sparse sampling, so this result is not surprising. 

Of some surprise, however, is a strong correlation between 
the linear decay and the time constant of the intermediate 
exponential decay: p(vz, tz) « —0.94, using the values of Table 
2. The relationship between these parameters is of the form 
vz = Kt* over the range of available values. Fitting a line by 
least squares to the logarithm of the values (shown as closed 
circles in Fig. 11), we obtain K = IOOÍ35 x 10-22 and 
a = — 0.6 ± 0.1 (quoted errors are 95% confidence limits). 
That is, a rapid decay results in a larger linear variation in 
torque, and vice versa. To alleviate concern that the correla- 
tion between vz and t, is caused by their simultaneous presence 
in the phase model, we independently computed the values of vz 
by averaging the values obtained in the postjump regions for 
which third-order fits were obtained (the connected segments 
in Figs 2-6). We used only segments beginning at times t > tc, 
where tc is the time at which the contribution to v due to the 
intermediate-term decay is only 0.1 vz. The total effect of the 
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Fig. 7.—Semilog plotof the magnitude of the differential spindown rate vd following jump 1. Filled circles: second- and third-order fits. Filled squares: third-order 
fit over first four observation days. Broken line: model of short term decay. Solid line: model of intermediate term decay. Error bars are ±2 o. 

tails of this decay in biasing values of vz is then much less than 
10%. Following jump 5 several events in v contribute to the 
effective value of v, so we made a third-order fit to the last 150 
days of that interval. Using these values of vz, we find 
P(Vh T/) = —0.89, thus confirming the original result. These 
data points are also shown in Figure 11 (open circles) with 
error estimates which primarily take timing noise into account. 
The extreme values allow correlation values between 
-0.92 < p < -0.84. 

We then asked whether the total decay (short plus 
intermediate) is related to vz. We therefore computed numeri- 

cally vd = J dtvd (i.e., the integrals of the curves in Figs 7-10). 
We obtain, for jumps 1-6 vd x 107 = (—4.3 ± 0.4) Hz, 
(-3.6 ±0.5) Hz, (-0.7 ±0.1) Hz, (-5.4 ±0.3) Hz, 
(—0.2 ± 0.1) Hz and (—1.65 ±0.1) Hz, respectively. Thus, 
P(Vh vd) Ä —0.87, still a significant correlation. 

The strongest implication of the large value of p(vz, v^) is that 
vz measured in a particular postjump era, pertains only to that 
era. That is, at the time of the macrojump, all memory of the 
prejump value of vz is lost. (Correlating vz with prior and next- 
jump values of tz, we obtain p = -0.2 and —0.38, 
respectively). In the context of the model of Alpar et al (1984a, 

DAYS PAST Tj 

Fig. 8.—Semilog plot of the magnitude of the differential spin-down rate vd following jumps 2 and 2'. Open triangles: Second- and third-order fits. Filled squares: 
third-order fit over first four observation days following jumps 2 and 2'. Broken line: model of short-term decay following jump 2. Solid line: model of intermediate 
term decay. Solid curve: model of short-term decay following jump 2'. Error bars are ±2o. 
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Fig. 9.—Semilog plot of the magnitude of the differential spin-down rate vd 
following jumps 3 and 4. Filled triangles: jump 3—second- and third-order fits. 
Open circles: jump 4—second- and third-order fits. Filled squares: third-order 
fit over first four observation days. Broken lines: models of short-term decays. 
Solid lines: model of intermediate-term decays. Error bars are ±2 a. 

Fig. 10.—Semilog plot of the magnitude of the differential spin-down rate 
vd following jumps 5 and 6. Crosses: jump 5—second- and third-order fits. 
Open squares: jump 6—second- and third order fits. Filled squares: third-order 
fit over first four observation days. Broken lines: model of short-term decay. 
Solid line: model of intermediate-term decay. Error bars are ±2 a. 

TABLE 2 
Parameter Values for Rotation Model of PSR 0833-45 

Post 
Jump 

Long-Term Decay3 Exponential Decay1* 

(Hz) 
v0 + v, v0 + V, 

(KT11 Hz s“1) (10-22 Hz s-2) (10 
v
s 14 Hz s" (days) (10~14 Hz s-1) (days) 

rms 
Residual 

(10“ 3 cycles) 

1.. 

2.. 

2'. 

3.. 

4.. 

5.. 

6.. 

11.20962150449 
±88 

11.20840613715 
±140 

0.00000013100 
±500 

11.20642053333 
±686 

11.20507908692 
±182 

11.20349067793 
±97 

11.20310323706 
±226 

-1.5670026 
±54 

-1.5680110 
±51 

0.0000000 

-1.5691413 
±358 

-1.5669843 
±77 

-1.5682267 
±171 

-1.5689134 
±680 

5.301 
±14 

8.602 
±8 

0.000 

13.193 
±80 

8.037 
±14 

21.060 
±130 

16.047 
±836 

-6.00 
±0.55 

-10.50 
±0.60 
-2.50 
±0.30 
-2.80 
±0.30 

-16.00 
± 1.60 
-2.00 
±0.20 

-22.00 
±0.30 

10.0 
±1.0 

4.0 
±1.0 
10.0 

±0.5 
4.0 

±0.4 
6.0 

±0.6 
6.0 

±0.6 
3.0 

+ 0.6 

-4.50 
±0.25 
-3.70 
±0.50 

0.00 

-2.60 
±0.20 
-6.00 
±0.30 
-2.00 
±0.30 
-6.80 
+ 1.00 

120.0 
±6.0 
94.0 

±5.0 
0.0 

35.0 
±2.0 
75.0 

±3.0 
14.0 

±2.0 
21.5 

±2.0 

143.1 

212.7 

212.7 

132.1 

96.2 

7.1 

44.0 

1 Errors are ±2 ít. 
* Errors are determined by inspection. 

855 
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TABLE 3 
Cross Correlation Coefficients of Model Parameters® 

0.86 0.40 
0.25 -0.64 
0.55 -0.23 
0.83 0.23 
0.65 
0.87 

1.00 -0.27 
0.15(—) 1.00 

a See text for definitions of the parameters and of the (—) and ( + ) symbols. 

Av 
Av , 

1.00 0.49 0.95 
1.00 0.89 

1.00 

0.53( + ) 

0.57 0.67 
-0.12 0.55(—) 

0.17 0.57 
1.00 0.62 

1.00 
-0.20(—) 
-0.30( + ) 

0.23(—) 

0.30( —) 
-0.08 
-0.34 
-0.94 
-0.70 

1.00 

b\ this result also suggests a dynamical connection between the 
region(s) determining the short and intermediate decays and 
that region determining the linear decay such that if the 
spin-up is not suitably relaxed by the earlier decays, the later 
linear decay responds accordingly. Clearly, this result needs to 
be confirmed using data collected elsewhere, since at least one 
more macrojump has occurred since the JPL observations ter- 
minated in 1983 March (Klekocink, McCulloch, and Hamilton 
1985). 

In Paper I a significant correlation between v, and Av of the 
next jump was found using data from jumps 1-4. With the 
addition of two more jumps we find p(vh Av) » 0.3, so that 
observed correlation is weak. This negative result is based on 
the assumption that the observed values of Av are free from 
bias due to an unobserved fastly decaying component. We 
know, however, that estimates for Av from the JPL data are 
probably biased due to the postjump decay that occurs faster 
than the 1 week sample time. 

We find no significant correlation of tg with any single 
parameter. In computing the correlations we use the fact that 

Fig. 11.—Log-log plot of vl vs. t¡. Numbers refer to the macrojump 
number. Solid circles: results of exponential model fits, including ±2 <r errors 
where significant. Open circles: values ofv, from independent third-order fits. 
Solid line: least-squares linear fit to the solid circles. 

jump 7 occurred within 1 day of MJD 6257 (Klekocink, 
McCulloch, and Hamilton 1985). It may well be that a particu- 
lar combination of parameters will correlate strongly with tg. 
We attempt such a combination here with no success. Imme- 
diately preceeding jumps 1-6 the value of v lies entirely within 
the range (1.560 + 0.003) x 10“11 Hz s-1. This suggests a 
critical value vcr must be reached by vlin before a macrojump 
can occur. If this were a firm rule, then the jump will occur at 
% = (vCr — vù/vi- One then hopes for a high value of p(îg, tg). In 
fact, using the data from Table 2 for jumps 1-5, we find p(îg, 
tg) = 0.78, the maximum obtainable with these data, requiring 
vcr = —1.56250 x 10“11 Hz s-1. The rms value of îg — tg is 
350 days. (Data on jump 6 are omitted here since the observed 
time span following that jump is short.) The moderate correla- 
tion and high rms deviation appears to be caused by the 
shallow decay in vlin in the presence of timing noise: therefore, 
a small change in v translates into a large change in time. 
Furthermore, vcr may not be a constant. Nevertheless, we note 
that this hypothesis does offer an explanation as to why jump 6 
occurred so soon after jump 5: the large value of vz caused v to 
cross the threshold after a much shorter time than for other 
macrojumps. 

III. TIMING NOISE AND MICROJUMPS 
The models of postjump decay presented in § II do not com- 

pletely model the rotational behavior of PSR 0833—45. We 
studied additional fluctuations in the spin frequency v and its 
derivative v by numerically differentiating phase residuals <5</>(i) 
after removal of the spin-down and macrojump model of § II. 
The resultant derivatives—designated Sv(t) and <5v(f)—are 
shown in Figures 12-17. Differentiation was accomplished by 
using coefficients of short polynomial fits performed over time 
spans of 10-60 days (depending on the sampling of the phase). 
The horizontal error bars in Figures 12-17 represent the 
lengths of such fits, and the vertical error bars are +1 <7 errors, 
where a is the formal error. In order to enhance the short-term 
fluctuations (which are the subject of this section), we have 
detrended the ôv curves by removing a running linear fit from 
the time series (of duration 200 days centered on each sample 
except at the edges where the fit became one-sided and 100 
days duration). Detrending is necessary because events in v 
dominate the long-term behavior, as discussed below, and tend 
to swamp the events in v visually. The <5v(i) curves have not 
been detrended; therefore the slope of the plotted Sv(t) is not 
the same as the plotted ôv(t). Figure 12 shows <5v(i) both before 
and after detrending. 

Figures 12-17 show a rich variety of structure in ¿v and 
especially <5v. The overall level of activity is different in the 
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TIME (MJD) 

Fig. 12.—Interval between macrojumps 1 and 2. Lower panel: Av(i) from short polynomial fits before (open circles) and after (solid circles) detrending, as discussed 
in the text. Upper panel: Av(t) from short polynomial fits. Vertical bars are ± 1 o formal errors. Horizontal bars indicate the time interval for the polynomial fit. 
Vertical arrows indicate the epochs of candidate microjump events found from a threshold test described in the text. 

different interjump intervals, the interval between jumps 1 and 
2 (Fig. 12) being the quietest. Episodes of quiesence in <5v 
(defined as contancy in the slope of <5v, <5v) are rare. The longest 
interval of constant ö'v is only 100 days, and the largest pertur- 
bations are ~4 x 10^15 Hz s-1 in ~12 days. Therefore, it is 
clear that the star is almost always rotationally active. To 
survey the nature of this activity, we first consider the phase 
residuals in statistical terms and then identify the forms of 
individual perturbations in v. 

a) Scaling Laws of Timing Noise 
The simplest method for quantifying timing noise is to inves- 

tigate the rms residual phase after performing least-squares fits 
of polynomials to the barycenric phase, as discussed in Paper 
III. A fit of an mth-order polynomial to ô(j) (the residual phase 
after removal of macrojumps) over a subinterval of length T 
yields an rms phase residual oR(m9 T), which receives contribu- 
tions from white noise (measurement errors and other contri- 
butions that are uncorrelated over 1 day, such as scintillations 
and pulse phase jitter) and timing noise which is highly corre- 
lated from sample to sample. Thus (jR = (<7tN + c^)1/2. The 
white noise contribution may be estimated from phase differ- 
ences of samples separated by less than Aimax = 0.2 days, as 
discussed in Paper III (see eq. [12]). Restricting time separa- 
tions in this fashion effectively filters out the correlated timing 
noise from the estimate; <jw may then be quadratically sub- 

tracted from (jR to yield o-XN(m, T). Values of ow range from 20 
to 30 ps. 

Figure 18a shows (rTN(m = 3, T « 100 days) as a function of 
time across the entire 14.5 yr of data. Vertical errors are based 
on the finite number of data points (see eq. [14] of Paper HI). 
For comparison we also show (open circles) oTN as estimated 
for pseudo-white noise with the same amplitude as that of 
measurement errors in the pulsar data ( ~ 25 ps). This demon- 
strates the reality of the excess phase residuals in the real data. 
The excess phase residuals quantified by <jtn are highly vari- 
able, and there is no obvious evolution of <txn with time rela- 
tive to the most recent macrojump. However, the scatter in 
values depends on the particular interjump interval, being 
smallest between jumps 1 and 2 and largest after jump 4. 

To investigate the timing noise further, we performed a 
series of “ octave fits ” whereby each interval of length Tmax 
between macrojumps was divided into Nn = 2n blocks of 
length Tn — Tmax 2_n for n = 0,1, 2, 3 (see Paper III). We do not 
fit across the macrojumps because, as stated before, there are 
unknown phase jumps at the macrojump epochs. In the follow- 
ing we designate the intervals between macrojumps as R12, 
R2 3, R34, R45, and R6 + , where we analyze data only after 
jump 2' for the second interval. The intervals R56 and R6+ are 
short and consequently only n = 0,1 fits were performed. 

Results are given in Table 4 where we tabulate crXN for octave 
fits of various length. We give results for third-order fits 
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Fig. 13.—Interval between macrojumps 2' and 3. Lower panel: Av(i) from short polynomial fits and after detrending, as discussed in the text. Upper panel: Av(i) 
from short polynomial fits. Vertical bars are ± 1 <7 formal errors. Horizontal bars indicate the time interval for the polynomial fit. Vertical arrows indicate the epochs 
of candidate microjump events found from a threshold test described in the text. 

(m = 3) because they completely remove any contributions 
from a systematic v. The mean, <7TN, is simply the quadrature 
average of the Nn fits made for each octave. For Nn > 2 we also 
give the error in <txn, calculated as the rms scatter in individual 
values about the mean and divided by N^2. Figure 18h shows 
<7Tn plotted against Tn. The remarkable features of this figure 
are as follows : 

1. The timing noise is obviously nonstationary in that it 
grows as a positive power of T. [White noise only would yield 
<xtn(3, T) independent of T]. 

2. The scaling of ¿ttn with T is roughly (from a visual 
estimate) 

. _ Í0.32 ms (773OO days)15 T < 300 days , 
<7™ ~ {0.32 ms (773OO days)2 5 T > 300 days . ^ 

A formal least-squares fit to the points for T < 250 days yields 
an exponent of 1.6, while for T > 250 days, the exponent is 2.1. 
Although the uncertainties in the exponents are large, it is clear 
that steepening occurs. 

3. The timing noise for T < 300 days is within a factor of 2 
of being the same for all interjump intervals. 

4. For large T (>300 days), the scatter in àXN becomes 
much larger. 

b) Random Walk Processes 
The scaling of öTN with T is easily understood by consider- 

ing the timing noise to result from small discontinuities in the 

TABLE 4 
Timing Noise versus Length of Fit 

0tn 
Interval Nn (days) (ms) 

*23  1 
2 
4 
7 

16 

2 
4 
7 

14 

*45   1 
2 
4 
8 

15 

*56  1 
2 

*6 +  1 
2 

902 1.920 
445 0.480 ± 0.009 
215 0.145 ± 0.043 
108 0.074 ± 0.037 
48 0.020 ± 0.012 

1341 5.340 
665 2.455 ± 0.258 
324 0.286 ± 0.039 
164 0.092 ± 0.012 
79 0.027 ± 0.003 

975 12.000 
463 1.805 ±0.011 
227 0.158 ± 0.028 
116 0.064 ± 0.008 
54 0.013 ± 0.005 

1153 7.450 
568 2.320 ± 0.092 
277 0.446 ± 0.039 
134 0.088 ± 0.010 
69 0.039 ± 0.006 

183 0.163 
80 0.047 ± 0.008 

176 0.246 
85 0.055 ±0.010 
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Fig. 14—Interval between macrojumps 3 and 4. Lower panel: Av(i) from short polynomial fits and after detrending, as discussed in the text. Upper panel: Av(i) 
from short polynomial fits. Vertical bars are ± 1 <r formal errors. Horizontal bars indicate the time interval for the polynomial fit. Vertical arrows indicate the epochs 
of candidate microjump events found from a threshold test described in the text. 

spin frequency and its derivative. In Paper III and elsewhere 
we have defined random walk processes in v and v that com- 
prise an ensemble of many small step functions in v and v, 
respectively. Each process, when integrated the appropriate 
number of times, yields a /cth-order random walk in the phase 
(see Paper III), where k = 1 for step functions in v and k = 2 for 
step functions in v. We refer to these, for later simplicity, as 
“frequency noise” (FN), and “spin-down noise” (SN). The 
phase variance produced by each process individually over a 
time span T is (in the continuum limit or for uniform sampling 
with a large number of samples) 

in which FN and SN events occur together with correlated 
amplitudes. Therefore, we use the “uncorrelated” admixture 
model to interpret Figure 186. 

Although the total mean square phase is the sum of the 
variances of FN and SN in equation (8), the measurable timing 
noise [e.g., o-TN(m, T)] is not. This difference arises because an 
mth-order polynomial removes a larger fraction of SN than 
FN as a consequence of the two processes having different 
power spectra (actually, in this case, they have different ampli- 
tudes of polynomial components). Therefore we model the 
phase residual variance as 

°l(T) = 
\ùôS2 T

5 

Strength parameters are defined as 

FN , 
SN . 

S1 = RAv] 
2 
rms ’ S2 = R Av3

m 

(8) 

(9) 

where R is the step rate and the rms quantities refer to the 
amplitude distributions of individual events. We do not include 
macrojumps in these distributions. 

An admixture of FN and SN yields a phase variance that is 
the sum of the variances if the two processes are statistically 
independent, which will hold if the events in Av and Av occur at 
independent times or if the amplitudes are uncorrelated. As 
discussed below, the data support this model, rather than one 

^N(m, T) = Si T3 + S2 T
5 , (10) 

where Ck m are factors accounting for the effects of the fit. 
These are estimated in Cordes (1980) for k = 1, 2 and are (for 
m = 3) ^,3*27,^3*72. 

The scaling of <rTN in Figure 18b therefore suggests that Av 
events dominate the phase for T < Tx& 300 days, while Av 
events dominate for T > 7^ days. Assuming that the two kinds 
of events have the same rate R, this requires that 

Avri 
(10)1/2C2i3 Avri 

Ci,3 Tx 
(11) 

In the analysis below, events are found with <5v « 10 8,3 Hz 
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which require ôv « 10 14,7 Hz s 1, as is consistent with actual 
events. 

c) Identification of Microjumps 
We identify and establish the significance of specific events in 

v and its derivatives comparing by the observed amplitudes 
with random walk processes formed from very frequent events 
with amplitudes much too small to detect individually. Reali- 
zations of such processes (e.g., Fig. 13 of Paper III) show that 
spurious events which are produced by the combined effects of 
many small events can be identified by eye. For the FN and SN 
processes defined above, the differences ôv(ôt) = v(i + ôt) - v(t) 
and ôv(ôt) = v(t + ôt) — v(t) are Gaussian random variables 
with standard deviations <röv = St)1/2 and aôi> = (S2 ôt)112, 
respectively, so long as RSt > 1. Consequently, a reasonable 
test is to compare candidate event amplitudes with these stan- 
dard deviations. 

Consider the sole occurrence of a random walk in v and that 
v(i) has been obtained by numerical differentiation of the 
phase. How small must the rate R be in order that events can 
be recognized? If all events have the same amplitude and if the 
amplitude is required to be larger than Noôi> to be considered 
real, then the rate must satisfy R-1 ^ N2ôt, where we have 
made use of the definition of S2 above. For ôt = one sample 
interval « 1 week, the constraint is R“1 £ 63 days for N = 3. 
Another requirement is that the contribution of white noise to 

the errors in v and v must also be small. In general, the errors in 
estimating ôv seem to be dominated by the events themselves 
rather than by measurement errors. 

To perform significance tests on individual events in <5v, we 
estimated the strength parameter S2 for v events, defined the 
rms difference crô. = (S2ôt)112 appropriate for a large rate 
process, and numerically tested the difference | <5v(<5i) | against 
N<Tôi, with AT = 3. This test is less stringent than what we used 
in Paper III for other objects in the JPL sample, but for those 
objects measurement errors were considerably larger and were 
accounted for by requiring N = 5. Since the writing of Paper 
III, we have performed numerical experiments on simulated 
random walks which indicate that an iV = 3 test finds very few 
spurious events. 

In Figures 12-17 we indicate with arrows the epochs at 
which ôv(ôt) formally passes the 3 o test. It is clear that some of 
these are due to bonafide step functions in v, while some 
(recognized as a close pair of arrows indicating a positive fluc- 
tuation followed by a negative one, or vice versa) are pulses in v 
(step functions in v). In some cases, only the rise or decay of the 
pulse passes the test, owing to the vagaries of sampling. In still 
other cases, events appear to be a combination of a pulse and a 
step. 

We summarize the results of significance tests in Table 5, 
which lists the epoch, duration (actually an upper limit), ampli- 
tude, and type of event. For cases where a pulse occurs, we 
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Fig. 16.—Interval between macrojumps 5 and 6. Lower panel: Av(i) from short polynomial fits and after detrending, as discussed in the text. Upper panel. Av(f) 
from short polynomial fits. Vertical bars are ± 1 <7 formal errors. Horizontal bars indicate the time interval for the polynomial fit. Vertical arrows indicate the epochs 
of candidate microjump events found from a threshold test described in the text. 

designate using L and T whether the leading or trailing edge of 
the pulse is identified and subscripts u and d are used to desig- 
nate whether the fluctuation is upward or downward going. In 
some cases, we were unable to classify the type of event. Of the 
19 step functions, 11 have positive amplitudes. Of the ~25 
pulses, 15 have positive amplitudes. 

d) Forms of Particular Microevents 
The events that pass the threshold test show the following 

forms : positive and negative pulses in <5v, positive and negative 
step functions in <5v, and unclassifiable events. Figures 19a and 
19¿ show expanded portions of Figures 13 and 15 which are 
particularly good examples of prototype events that are super- 
positions of a pulse and a step function in <5v. Similar super- 
positions may be seen in Figures 12-17, some of them negative 
going (as identified in Table 5). Still others show only a pulse or 
a step in <5v. 

These variations in apparent microjump form suggest that if 
each is characterized by amplitudes Av and Av then the ratio 
Av/Av varies by much more than does the same ratio for 
macrojumps. This may be seen visually in Figure 20, which 
shows Av plotted against Av for macrojumps and microjumps. 
It is obvious that the ratio varies by many orders of magnitude 
between the two kinds of jumps. The figure underscores the 
fact that macrojump 2' is intermediate in its parameters 
between the other macrojumps and microjumps. 

In addition to pulse and step functions seen in ôv, ramp 
functions also sometimes appear. However, it is not clear if 
these are real or whether they are produced by the fortuitous 
superposition of other kinds of events. For example, there 
appears to be an apparent slope change in ôv at MJD ~ 1050 
(Fig. 12). This may be due to a true ramp event or it may be a 
succession of steps having the same sign. There appear to be 
episodes where a sequence of pulses and steps having the same 
sense may occur over the course of ~ 200 days. An example is 
the span from MJD ~ 2700-3050 where events seem to be 
positive going, while for the next ~200 days the events are 
negative going. 

As discussed below, whatever the nature of the events, it 
seems that the star attempts to achieve a rotational steady 
state after a macrojump through discrete (micro) perturbations 
and fails to do so in any convergent sense. The main evidence 
for the lack of convergence is that microjump activity in v has 
the same strength throughout each postmacrojump interval. 

e) Relative Contributions of Macrojumps and Microjumps 
Microjumps, although much smaller in amplitude than 

macrojumps, are sufficiently numerous that they contribute 
roughly the same amount to variations in rotational phase as 
do the macrojumps. Ignoring the linear and quadratic phase 
variations in the postmacrojump decay, the phase accumula- 
tion is roughly v^f and is typically a few cycles. For micro- 
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N 
X 

à 
KD 

TIME (MJD) 
Fig. 17 Interval after macrojump 6. Lower panel: Av(r) from short polynomial fits and after detrending, as discussed in the text, 

polynomial fits. Vertical bars are ± 1 cr formal errors. Horizontal bars indicate the time interval for the polynomial fit Vertical 
candidate microjump events found from a threshold test described in the text. 

Upper panel: Av(i) from short 
arrows indicate the epochs of 

jumps, we use the scaling in equation (7) for T > 300 days to 
estimate for T = 1000 days a similar amount of random phase 
(when corrected by the factor C2>3 that accounts for the effects 
of a least-squares fit). A similar consideration of fluctuations in 
y leads to the same conclusion that microjumps and macro- 
jumps contribute roughly equally to the departures of the spin- 
down from that expected for a simple torque mechanism. We 
note, however, that the amount of phase associated with the 
linear decay in v is at least 10 times larger than the microjump 
phase or the phase associated with the intermediate decay. 

IV. ROTATION PHYSICS 
Models for macrojumps have evolved considerably since the 

first macrojump from the Vela pulsar was seen in 1969. Ini- 
tially, it was thought that a macrojump represented a moment 
of inertia change satisfying AI/I = - Av/v and resulting from a 
decrease in rotation induced oblateness of the crust (or poss- 
ibly an interior solid core). It was realized—after the second 
Vela macrojump occurred only 2 years after the first—that 
such models failed, even for the most extreme equations of 
state of nuclear matter (Pines and Shaham 1972). The funda- 
mental problem with crustquake and corequake models is that 
the rotational oblateness is far too small to allow moment of 
inertia decrements of the implied amplitude at the observed 
rate. Although another explanation for macrojumps had to be 
found, a major success of the early model was the conclusion 

that superfluidity was responsible for the long decay times 
(days) after the macrojumps (Baym et al 1969). 

Recent models (Alpar et al 1984a, b) focus on the superfluid 
as the source for all discontinuities and decays and appear to 
have the same complexity as is exhibited in the macrojump 
data. In the following we summarize the model of Alpar et al 
and briefly discuss the implications of our macrojump results 
in terms of the superfluid model. We conclude that the model is 
successful in describing macrojumps and that the radius where 
catastrophic unpinning events occur must vary significantly 
from one macrojump to the next. 

We also consider microjumps in terms of the superfluid 
model and quake models, following the lead of Alpar, Nandku- 
mar, and Pines (1986), and conclude that neither model, by 
itself, can cause the observed microactivity. However, crust- 
quakes could conceivably trigger superfluid fluctuations and 
produce the observed kinds of microjumps so long as crust- 
quakes produce moment of inertia changes that are both posi- 
tive and negative. 

a) Summary of Superfluid Vortex Models 
Alpar et al (1984a) discuss a model where the torque on the 

neutron star crust from the external magnetosphere is aug- 
mented with time variable internal torques from superfluid 
components. The basic features of the model are as follows : 

1. Rotation tends toward a quasi-steady state wherein the 
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Fig. m 
Fig. 18.—(à) (Solid circles) Excess phase residual îtt^(3, T) vs. time from nonoverlapping third-order polynomial fits after removal of the spin-down and 

macrojump model described in § II. Horizontal bars designate the extent of the fit (T ~ 100 days), and vertical bars are ± 1 <r errors. None of the fits span the 
macrojumps. (Open circles) Excess residual for a simulation with white noise sampled at the same times as actual data and having a standard deviation of 25 ps. (b) 
Excess rms phase residual <ttn(3, T) vs. data block length T for third-order polynomial fits for the different postmacrojump regions. 

crust angular velocity Qc smoothly decreases at a rate iV (In 

this section our discussion uses £2 = 2nv and its derivatives for 
consistency with the work of Alpar et al and because of its 
utility in discussing the physics.) The core superfluid is rigidly 
locked to the crust (coupling time of a few seconds), while 
superfluid components that permeate the crust are less strong- 
ly coupled. Given sufficient time the crustal superfluid com- 
ponents will also achieve a quasi-steady state configuration 

Ù = Ùc9 but having an angular velocity that is slightly larger 
than Qc. It is not clear whether all components of the Vela 
pulsar reach a quasi-steady state condition. If so, then IÙC = 
AText, where Next is the external torque and I is the total 
moment of inertia. If not, then the equation r(t)Ùc = Ncxi 
holds where I'(t) < /. 

2. Superfluid components mimic the spin of ordinary fluid 
components through the presence of an array of quantized 
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TABLE 5 
Microactivity in v 

Macrojump Epoch ôt 
Region (MJD) (days) <5va Sigma Type of Event 

*12 300 
353 
405 
467 
485 
506 
745 
767 
864 
885 

1538 
1571 
1604 
1626 
1765 
1884 
2095 
2105 
2125 
2168 
2554 
2571 
2740 
2962 
3008 
3073 
3129 
3214 
3407 
3448 
3743 
3803 
3831 
3865 
3890 
3993 
4048 
4149 
4167 
4238 
4276 
4317 
4354 
4386 
4454 
4569 
4580 
4608 
4670 
4731 
4756 
4818 
4922 
4952 
4977 
5027 
5061 
5090 
5215 
5275 
5301 

24 
13 
13 
12 
26 

7 
18 
9 

16 
17 
18 
35 
16 
29 
63 
10 
26 
14 
26 
39 
22 

9 
48 
18 
40 
38 
23 
23 
35 
10 
17 
17 
22 
33 
21 
42 
16 
45 
59 
37 
28 
25 
37 
17 
34 
19 
19 
24 
45 
25 
23 
21 
16 
42 
45 
37 
21 
18 
10 
19 
32 

7.5 
2.0 

-2.9 
0.3 
1.9 
1.6 
2.3 

-1.9 
2.4 

-2.8 
2.5 

-3.0 
2.6 

-3.6 
4.0 
1.8 

-2.4 
-2.0 

2.1 
3.2 

-2.7 
1.6 
3.9 

-1.1 
-3.2 
-4.3 

2.6 
2.5 
3.0 

-1.7 
3.5 

-2.6 
3.0 

-3.4 
3.6 
3.8 
2.5 

-4.1 
-4.6 

3.6 
-3.5 

3.3 
-3.2 

2.7 
-4.0 

3.5 
3.0 

-2.4 
4.7 
3.6 

-2.9 
-2.4 

2.6 
-4.9 
-3.9 

4.3 
2.9 
2.4 
2.0 

, 2.6 
-3.7 

10.1 
3.3 
7.1 
6.0 
4.1 
3.5 
3.2 
3.6 
3.5 
4.0 
3.5 
3.0 
3.8 
4.4 
3.0 
3.3 
3.7 
5.4 
4.7 
3.1 
3.6 
3.1 
3.4 
3.9 
3.3 
4.1 
3.3 
3.1 
3.1 
3.2 
5.4 
3.9 
3.9 
3.5 
5.2 
3.9 
3.8 
3.7 
3.5 
3.7 
4.1 
4.0 
3.2 
3.9 
4.2 
4.9 
5.7 
3.1 
4.3 
4.4 
3.6 
3.2 
3.9 
4.6 
3.5 
4.4 
3.8 
3.3 
3.8 
3.6 
4.0 

Step 
Pulse (Lu)b 

Pulse (Td) 
? 
? 
? 
Pulse (Lu) 
Pulse (Td) 
Pulse (Lu?) 
Pulse (Ld?) 
Pulse (Lu) 
Pulse (Td) 
Pulse (Lu) 
Pulse (Td) 
Step (?) 
Step 
? 
? 
? 
Step + pulse (Lu) 
Pulse (Ld) 
Pulse (Tu) 
Step 
Pulse (Td) 
Pulse (Td) 
Step 
Pulse (Tu) 
Pulse (Tu) 
? 

Step 
Pulse (Ld) 
Pulse (Tu) 
Pulse (Ld) 
Pulse (Tu) 
Pulse (Tu) 
? 
Step 
Step 
Pulse (Lu) 
Pulse (Td) 
Step 
Pulse (Ld)? 
Pulse (Tu)? 
Step + pulse (Ld)? 
Step 
Pulse (Lu) 
Step 
Step + pulse (Lu) 
Pulse (Lu) 
Pulse (Ld) 
Step (d) 
Pulse (Lu) 
Pulse (Ld) 
Step 
? 
? 
Step? 
Step 
Pulse (Lu) 
Pulse (Td) + step 

1 lO-^Hzs“1. 
lF°rPulse events’ L and T denote “leading” and and d denote “ upward ” or “ downward ” going. trailing” edge, while 

vortices, each carrying vorticity k = h/2mn, where h is Planck’s 
constant and 2mn (twice the neutron mass) is the mass of a 
Cooper pair. The angular velocity of the superfluid as a func- 
tion of radius is 

ii(r) = Kr 2 j dr' r'n(r'), (12) 

where n(r) is the areal density of vortices. The total number of 
vortices in the star N » 2nR2£lc/K » 1017-3 for Vela. 

3. Spin-down of the superfluid requires that vortices move 
radially outward from the spin axis. Vortex motion represents 
a transfer of angular momentum without an accompanying 
transfer of mass. In some superfluid components (e.g., the core 
component), this motion is thought to be continuous and 
according to the quasi-steady state condition Ô = Ûc. In other 
regions, where vortices are pinned to crustal nuclei, vortex 
motion is due to thermally induced creep. In regions where 
vortices cannot creep sufficiently fast, spin-down is effected in 
an intermittent fashion. 

4. Macrojumps are spectacular examples of intermittent 
vortex motion, causing discontinuities AQC = 2n Avc and 
AÙC = 2nAvc followed by “healing” ofi\ back to its prejump 
(or extrapolated) value. Discontinuities occur when the differ- 
ence between superfluid and crustal angular velocities co = 
^ ~ exceeds a critical value o>cr as a result of the spin-down. 
Physically this corresponds to the radial Magnus force exceed- 
ing the pinning force. 

5. The discontinuity in Qc is the sudden transfer of angular 
momentum from unpinned vortices to the crust. If SN vortices 
unpin at a radius rG and move to a radius rG. = rG + SrG with 
ôra < rG, then the fluid velocity between regions G and G' 
changes by an amount 

0Qb = KÔIV 
2nr% (13) 

where rB — rG + SrG/2. The observable discontinuity (of the 
crust) is 

Aflc = ÔSlBIp/Ic, (14) 

where Ip is the moment of inertia of the affected regions. The 
fraction of all vortices involved in a macrojump is SN/N x 
A£ic ÙC/ÇÏC AÙC k 10“4 . 

6. The spin-down rate changes by Ai\/| Cic | = — / /¡c. The 
coupling of superfluid means that the moment of inertia Ic 
before the jump (which includes the crust, the strongly coupled 
core superfluid, and pinned superfluid components that satisfy 
the steady state condition) decreases to Ic — I 

7. Postmacrojump transients cause the superfluid rotation 
to tend toward quasi-steady state rotation. Alpar et al. (1984h) 
identify three superfluid components, each having an identi- 
fiable time scale. One is a “superweak” pinning component 
with tsw æ 3 days, the second is a “ weak ” pinning component 
with tw » 60 days, and a third is the region between rG and rc. 
which recouples on a time scale 

tB » ôQb/Ùc > 1600 days . (15) 

This last time scale exceeds all intervals between macrojumps, 
and therefore a linear torque is expected. The time scales tsw’ 
and tw are thought to correspond directly to those identified in 
our empirical model of § II—namely ts and t—while the linear 
torque contributes to v(. 
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Fig. 19a 

TIME (MJD) 
Fig. 19b 

Fig. 19.—(a) Expanded portion of Fig. 13 showing a pulse + step function event in ôv. (b) Expanded portion of Fig. 15. 

b) Comparison of Macrojumps with Superfluid Vortex Models 
The macrojump model of Alpar et al. (1984a, b) accounts for 

most but not all of the observed features of macrojumps. The 
variability of macrojump parameters (Tables 1 and 2) implies 
that there is not a unique threshold for the occurrence of a 
macrojump, although the variation in jump amplitudes is only 
a factor of 2 (excluding jump 2'). The variations in the time 
constants ts and Tf suggest there are significant variations in 
the radial locations at which vortices unpin/repin. In the 
model, the time constant for a given local region is 

-(Äk)- <16) 

where p is the mass density, r is the radial location, ^ is the 
radius of a vortex line, and b is the distance between pinning 
centers. The factor in the first pair of parentheses is unlikely to 
change by a factor of 2, while the second factor could easily 
change by a factor of 2 (or more) with a modest change in 
radius. 

Indeed, Figure 6b of Alpar et al 1984h shows the time con- 
stant of the weakly pinning component to decrease with 
decreasing density (increasing radius). The location in density 
of the regions of pinned vorticity apparently must change by a 
few times 1013 g cm-3 (a few tens of percent) to account for the 
observed variations. Using the equation of hydrostatic equi- 
librium (relativistic corrections are small), we estimate that the 
associated change in radius is 

ôr 
R 

ÍVJ\2(3\Í^\ 
\c) UAp/’ 

(17) 

where vs is the speed of sound in the relevant layer and Rs « 4 
km is the Schwarzschild radius. For a relatively hard equation 
of state (e.g., Pandharipande, Pines, and Smith 1976; Shapiro 
and Teukolsky 1983), ôr « 10~2 7R, or a few times 10 m for 
R = 10 km. 

Variations in the location of the unpinning/repinning region 
may also explain the observed anticorrelation of the interme- 
diate time constant t, with the linear decay Vj. In the Alpar et 
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qI. model, Tj- is associated with the weakly pinned component 
residing outside the glitch region (i.e., radius > rG ), while the 
linear decay is caused by vortex recoupling in regions G and G'. 
The linear decay (described by the quantity v, in the data 
analysis) is given by 

ÙCI = Ùc IA/IC tB = Ú¿IA/IC ÓÜB , (18) 

where IA is the combined moment of inertia of regions G and 
G' and t,- is given as above for a region external to G'. An 
increase in IA associated with a larger glitch region may corre- 
spond to the region exterior to G' being at a larger radius and 
characterized by a smaller t,-. 

Unfortunately, this picture encounters difficulty because a 
small radial change induces a change in ÙCI (via IA) dominated 
by the change in density, not by the radial factors. This can be 
seen from the fact that ÙCI oc pr5. For a TNI equation of state 
(Friedman and Pandharipande 1981), we estimate that the 
pinning region has a radial thickness of -0.5 km for a 1.4 M0 
star with a radius 11 km. The change in radius accounts for 
only a 25% change in ÛCI, while the density changes by an 
order of magnitude across the region. Therefore, the observed 
correlation QCi oc t,- °-6 implies that t( oc p-17, in contrast to 
Figure 6b of Alpar et al. (1984h), which shows Tj- varying with a 
positive power of p. Formally, one could conclude that rather 
than corresponding to a region of weak pinning, the region 
responsible for i; comprises strong pinning, as in Figure 6a of 
Alpar et al. This conclusion contradicts Alpar et al. who con- 
cluded that pinning had to be weak on the basis of X-ray 
observations and vortex creep energy dissipation calculations. 
Further work in this area must await better microscopic calcu- 
lations of the pinning parameters, a point already emphasized 
by Alpar et al. (1984h). 

c) Microjump Models 
The notable aspect of microjumps is that, whereas macro- 

jumps have a well-defined signature (AQC, A0C) = ( + , — ), 
microjumps show a large range of structure and signatures. 

Some of the variations seem to be resolved in time, but it is 
uncertain whether the apparent resolution represents a rise 
time of an event or a decay time after an event, because of the 
discrete sampling of the data. 

Alpar, Nandkumar, and Pines (1986) have discussed micro- 
activity for some two dozen pulsars, including Vela, in sta- 
tistical terms by comparing power spectra of Ûc with those 
predicted from several models. They considered three basic 
models for microactivity: 

Case 1: Microjumps are due solely to vortex unpinning 
events and are therefore qualitatively like miniature versions of 
macrojumps. 

Case 2: Microjumps are mixed events, initiated by some 
process other than vortex unpinning, such as a crust quake, 
which then induces vortex unpinning. 

Case 3: Microjumps are purely due to process(es) other than 
vortex unpinning. 

In all three cases, the pinned superfluid produces a transient 
response to the microjump, regardless of the initial cause of the 
microjump. Alpar, Nandkumar, and Pines found that the 
microactivity of most pulsars could not be accounted by for by 
case 1. There were pulsars for which cases 2 and 3 seemed to 
apply, and others for which the activity could not be accounted 
for if pinned regions have the same properties (e.g., time 
constants) as found in the Vela pulsar. 

It is useful to consider the possible microjump signatures for 
the three cases. Since case 1 is essentially the same as a macro- 
jump model, event signatures must be of the same form, 
namely (A£2C, Ai^c) = ( + ,—). In case two, the discontinuity in 

receives a contribution from both the cause of the event, say 
a moment of inertia change A/, and the unpinning event. Con- 
sequently, the net AQC can be +, —, or 0 (assuming AI can be 
+ or — ) but will always be accompanied by a negative change 
in Qc, as in a macrojump, because the unpinning always 
reduces the moment of inertia acted upon by the external 
torque. Therefore the possible signatures for case 2 are (AQC, 

= ( + , —),( — , — ), and (0, — ). For cases 1 and 2, the post 
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microjump response is described by exponential response(s) 
with time constant(s) t, as before, and the fraction of the jump 
in AQC that decays away is Q. For case 1, Q = 1, whereas for 
case 2, Q > 1. For case 3, the superfluid is involved only as a 
response to the initial event. Alpar, Nandkumar, and Pines 
argue that the event decay has Q = Ip/Ic ä 10" 2 and therefore 
the superfluid response is negligible. Consequently, the pos- 
sible event signatures for case 3 are effectively (AQC, A0C) = 
( +, 0) and ( —, 0). 

The observational results we have obtained on microjumps 
are apparently in conflict with the event signatures predicted 
for all three cases. That is, some of the events may be produced 
by the model described above, but the appearance of positive 
discontinuities in Ùc (or equivalently, v in the data analysis 
section of the paper) is in conflict with the expected signatures. 
Of course, the observed microjumps may only apparently show 
events of both signs. Suppose that all events in Óc are negative 
going, followed by healing on some time scale t. If the rate of 
such events R satisfies Rt <0 then events will be widely 
separated and the signature will be easy to discern. If Rt ~ 1 
(as observed), then apparently positive going pulses in Qc can 
be observed when an event in Ùc heals and another event 
occurs just after. Similarly an apparently negative going pulse 
in Ûc may appear from a negative going discontinuity followed 
by a rapid healing (i.e., t < sample interval « 7 days). 

If positive discontinuities in Qc actually occur, there must be 
some mechanism causing increases in moment of inertia that 
involve a sudden, coherent repinning of uncoupled vortices or 
there must be a way for vortices to move inward toward the 
spin axis. The distribution of vortices may be locally irregular, 
as suggested by Alpar et al, so that motions of vortices on the 
local scale can run counter to the spatially and temporally 
averaged flow. If vortex motions are of importance in micro- 
jump discontinuities, then coherent action by ÔN ä 
N AQC Ùc/Qc AíX « 1011 vortices is required. 

It is worthwhile considering pure crustquake models for 
microjumps, because they can be rejected as the sole cause of 
microactivity. Moment of inertia discontinuities in the crustal 
component induce jumps satisfying 

AQç AÔC _ Âfç /I Q\ 

a” iar /c • ( j 

Clearly, events involving moment of inertia changes produce 
fractional amplitudes of events that are anticorrelated. This 
model can be immediately rejected because the observed events 
satisfy 

|Aiic|/i)c « 10~ 5| AÙJÙCI . (20) 

Therefore, the only possibility is that quakes produce discon- 
tinuities in Qc and that they possibly trigger events in Ùc. 

V. SUMMARY AND CONCLUSIONS 

We have analyzed 14.5 yr of JPL timing data to study the 
spindown of the Vela pulsar. Discontinuities in the spin fre- 
quency and its derivatives have bimodal amplitude distribu- 
tions. Macrojumps (“glitches”) are characterized by relative 
changes in spin rate Av/v ~ 10-6 and derivative Av/v ~ 10_2, 
while microjumps have |Av/v| < 10-9 and |Av/v| < 10“4. 
Macrojumps display a signature (Av, Av) = ( + , — ) with a well- 
defined ratio of the amplitudes. Microjumps, however, show all 
possible signs of events and a large range in Av/Av. The average 
interval between macrojumps is ~1000 days, while micro- 
jumps occur about once every 100 days. 

Ten parameters are required to quantify each macrojump 
and the subsequent evolution of v. The macrojump itself is 
described by three amplitudes Av, Av, and Av and an epoch. 
The postjump evolution of v, given by six parameters, consists 
of a short-term exponential decay (characterized by an ampli- 
tude vs and decay time ts ~ 6 day) ; an intermediate-term expo- 
nential decay (characterized by vt and ~ 60 day); and a linear 
decay (characterized by v* and vt with | v* |/| Vj | ~ 500 yr). All 10 
macrojump parameters vary significantly from jump to jump, 
suggesting that the threshold for occurrence of a macrojump 
varies within the star and/or with time. Furthermore, the linear 
decay parameter vl is highly negatively correlated ( — 94%) 
with the exponential parameter Tt. 

Microjumps are analogous to the “timing noise” that has 
been identified in most other pulsars. The arrival time mea- 
surements are sufficiently accurate to allow identification of 
individual discontinuities in v and its derivatives. Arrival times 
obtained at 2.4 GHz have a typical uncertainty of 25 ps. The 
weekly sampling of the data is sufficient to resolve different 
events, and some appear to have rise times ~5-20 days. 
Microjumps are typically combinations of step functions in v, 
v, and possibly v. Microactivity occurs throughout the inter- 
vals between macrojumps. It appears stronger between some 
macrojumps than others, but has no obvious dependence on 
the elapsed time since the latest macrojump. 

Some components of the star evidently fail to achieve a rota- 
tional steady state after a macrojump (if ever). The angular 
velocities of different components evolve through sequences of 
discrete microjumps rather than through smooth variations. In 
terms of superfluid vortex models, the variation in macrojump 
parameters and the correlation between v* and suggest that 
the location in density of the relevant region of pinned vorticity 
varies by some ~1013 g cm-3, corresponding to a radial 
change of tens of meters. The behavior of microjumps cannot 
be explained with models solely involving vortex unpinning or 
solely by moment of inertia changes associated with crust- 
quakes or corequakes. Evidently, some combination of the two 
or additional mechanisms are required to explain microjumps 
fully. Some microactivity may be associated with sudden, 
coherent repinning events comprising ÖN æ 1011 vortices that 
counter the effects of sudden unpinning events of similar 
numbers of vortices. 
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APPENDIX A 

CONVERSION OF PERIOD TO FREQUENCY 
The rotation frequency v, the spin-down rate v, and its derivative v can be expressed concisely as functions of the pulsation period 

P and its derivatives P and P: 

v = P-1 , 

v=-p-2p, 

v =-P~2P + 2P~3P2 . 
Similarly, abrupt changes Av, Av, and Av can be written in terms of the measured changes AP, AP, and AP: 

(Al) 

(A2) 

(A3) 

Av = —P 2AP , (A4) 

Av = —P~2AP + 2P“3PAP , (A5) 

Av = —P“2AP + 4P~3PAP + (2P~3P - 6P~4P2)AP . (A6) 
The quantities AP, AP, and AP are measured for each jump, and by using nominal values of P, P, and P in the vicinity of the 

jump, we evaluate Av, Av, and Av using equations (A4)-(A6). 
Finally, dividing the changes of equations (A4)-(A6) by the corresponding nominal parameter values of equation (A1HA3) we 

compute the fractional changes Av/v, etc., in terms of changes in the period parameters. Note that fractional changes in'the 
rotational parameters are not precisely identical to the fractional changes in the period parameters : 

Av/v = -AP/P , 

Av/v = AP/P — 2A P/P , 

Av/v = [AP/P - 2ßA P/P - 2(1 - 3/?/2)AP/P](l - jg)“1 , 

where 

(A7) 

(A8) 

(A9) 

ß = 2P2/PP. (AlO) 
Variations in ß are caused mostly by changes in P. Since | P | > 5 x 10~ 24, we always have | ß | < 5 x 10-2 for PSR 0833 45. 

APPENDIX B 

SELECTING PARAMETER VALUES 
The difference between the measured phase 4>m(t) and the predicted phase </>(t) is the phase residual A4>(t). Differentiating 

numerically A(/>(t) yields Av(t), the perturbed or unmodeled component of the spin rate. That is, 

Av(t) = 
dA4>(t) 
dt (Bl) 

becomes1111311118 f°r ^ m°ment °n the intermediate and long-term components of the rotation, the unmodeled component 

Av(r) = Av0 + (v0 + Av,)i + i(v0 + Av,)í2 - Aív.-t^I - e~‘,Ti). (B2) 
Each error (Ay0, etc.) has its own characteristic signature. In particular, discrete events in v and v produce level shifts and slone 

changes, respectively. Plots of Av(t) were an aid in selecting t, and were indispensible in selecting values for the four parameters 
aescnbingjump 2. 

• If.thtpulsar í™1"8 da(a were free of a11 noise except measurement noise, then a perfect selection of the model parameters would yield phase residuals which, when plotted versus time, are distributed symmetrically about Av = 0. Imagine, however that one 
unmodeled event in y perturbs the Av(t) curve at some epoch in the data span. One or both linear segments of the curve will then be 
tilted relative to the Ay - 0 axis. Next allow an exponentially decaying jump such as 2' to occur in one segment, thus perturbing that 
segment from a straight line. If we choose the model of that perturbation and the values of its parameters correctly, the linear trend 
ot that segment of Av(i) will be recovered. 

It is toward this ideal that we have adjusted the model parameters to obtain a minimum perturbation from a straight but not 
necessarily horizontal line. This aid was used in selecting parameter values for the intermediate-term decays, in the short-term decay 
tollowingjump 2, and in assessing the errors in modeling the short-term decays. 
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