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ABSTRACT 

We study the equation of motion of the pinned superfluid which couples to the crust of neutron stars via 
thermal vortex creep. An analytical solution can be obtained even when cocr(r), the maximum value of the lag 
Qs - Qc that can be supported by pinning forces, has large spatial variations. Substantial inhomogeneous dis- 
tributions of vortex lines will result from this kind of spatial variation; vortex lines can be either accumulated 
or depleted from these regions, depending upon the sign of dcoCT/dr. At a boundary between a vortex accumu- 
lating region with da>CT/dr > 2Qc/r, and a neighboring depletion region, a single free vortex line can initiate the 
unpinning of a whole layer of pinned vortex lines. In vortex depletion regions with dœCT/dr < — 2Qc/r(vortex- 
free regions), the Magnus force is larger than the pinning force, so that vortices cannot be pinned. The condi- 
tions for the occurrence of these two situations are discussed. We suggest that such structural inhomogeneities 
in the crust of neutron stars may be responsible for frequent microglitches which lead to pulsar timing noise. 
Model calculations are compared with observations. A generalization of the model shows promise for explain- 
ing the origin of the giant glitches in pulsars. 
Subject headings: dense matter — pulsars — stars: neutron 

I. INTRODUCTION 

Neutron stars have (1) a solid outer crust of increasing mass density (7 x 106 gem 3<p<4x 1011 g cm 2), which contains a 
solid array of fully ionized nuclei and highly degenerate relativistic electron plasma (Ruderman 1969); (2) an inner crust containing a 
lattice of increasingly neutron-rich nuclei and relativistic electrons at density 4.3 x 1011 g cm 3 < p ^ 2.4 x 1014 g cm , which 
coexist with a highly degenerate neutron superfluid liquid likely in a pairing state, and (3) a quantum liquid interior,^where the 
neutron-rich crustal nuclei have dissolved into free neutrons and protons which form a. 3P2 paired superfluid and a S0 paired 
superconducting fluid, respectively. If the basic hadron equation of state is comparatively stiff (Pines 1980), the crust may be a 
kilometer thick. r i. • r a a • 

The irregularities in the rotation period of pulsars can be understood as a dynamical consequence of the existence ol supemuid in 
the interior of neutron stars. In particular, the observed relaxation of the rotation rate Qc(i) and the spin-down rate Cic(t) after 
sudden jumps (glitches) in these quantities detected in the Crab and Vela pulsars can be successfully explained by the vortex creep 
theory, in which the crust and the crustal neutron superfluid (Alpar et al 1984a, b; Alpar, Nandkumar, and Pines 1985) are assumed 
to be coupled primarily via the thermal creep of superfluid vortex lines which are pinned to the crustal nuclei and thus corotate with 
the neutron star with angular velocity Qc. . 

Baym, Pethick, and Pines (1969) showed that the electrons and protons must corotate with the crust by electromagnetic coupling, 
irrespective of whether or not the protons are superfluid, since any appreciable differential rotation will give rise to an inordinately 
large magnetic field. Easson (1979) has carried out a model calculation which shows that the core plasma responds to sudden 
changes in the crustal angular velocity with a characteristic spin-up time of the order of seconds. Recently, Alpar, Langer, and Sauls 
(1984) have examined the coupling of the core neutron superfluid to the crust which results from the interaction between the neutron 
and proton condensates in the quantum liquid interior. They show that superfluid drag induces a proton charge current around 
each neutron vortex, which in turn gives rise to a huge magnetic field. The scattering of charges off such magnetic flux lines 
equilibrates the core superfluid to the plasma and crust on a time scale of the order of minutes. Since such times are short compared 
with characteristic postglitch relaxation times, the liquid core of the neutron star can be considered to rotate rigidly with the crust in 
responding to sudden jumps of rotation rate, whether the liquid core is superfluid or not. However, the distinction between 
superfluid and normal fluid in the core of the neutron star becomes possible if the perturbation time scale of an external torque 
applied to the crust is less than or comparable to the coupling time between superfluid core and the crust (Cheng 1987a). 

Pulsar glitches have been attributed to a wide variety of causes, e.g., crust quakes, core quakes and the catastrophic unpinning of 
vortices in the crustal neutron superfluid. Ruderman (1969), before the first glitch observation, had already pointed out that since 
the neutron star is covered by a solid crust of nuclei in a crystalline lattice when the star is spinning comparatively fast in an early 
epoch, it will be relatively oblate. Because of the rigidity, the solid crust is more oblate than it would be in equilibrium at current 
rotational velocity; therefore, spin-down can lead to events in which the crustal matter moves inward to relieve the stresses resulting 
from the excessive oblateness. Such a “ star quake ” mechanism was explored in some detail by Baym and Pines (1971). However, this 
model cannot explain the interval between glitches in the Vela pulsar. u u * 

Anderson and Itoh (1975) suggested, by analogy to the phenomenon of flux pinning in type II superconductors, that the entire 
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dynamics of the glitch process was related to the neutron superfluid vortex pinning and unpinning in the crustal lattice of a neutron 
star Following this idea, Ruderman (1976) argued that such pinning by the Vela crust lattice would indeed strain it enough to break 
the tetbœ periodically and that the crust spin-up came from the sudden sharing of angular momentum between the neutron 
superfluid and the more slowly rotating parts of the neutron star. However, Anderson et al. (1982) concluded that such a 
crust-breaking mechanism was not dynamically plausible because the global pinning forces are not contained by elasticity but bv 
the much stronger gravitational force. j j j 

Anderson et al. (1982) thus conclude that catastrophic unpinning events, in which a large number of vortex lines suddenly unpin 
from the lattice, represent a reasonable model for glitches. Alpar et al. (1984a, b) have worked out a general theory of postglitch 
behavior, m which the superfluid follows the crust’s spin-down by means of the thermal creep of vortex lines against the pinning 
energy This theory provides a quantitative explanation of the postglitch behavior observed in the Vela and Crab pulsars 
and in PSR 0525 + 21, and makes it possible to infer their internal temperature. In the present paper, we examine a possible 
mechanism for the initiation of glitches: spontaneous unpinning at locations characterized by a very inhomogeneous distribution of 
vortex lines. 

II. VORTEX CREEP THEORY IN A REGION WITH LARGE SPATIAL VARIATION 
The distribution of vortex lines in a rotating superfluid is related to the rotation rate: 

ens(r, t) Kn(r, t) = 2£2s(r, i) + r 
dr (1) 

Here k [- h/2mj is the vorticity quantum carried by each vortex line, and r is the distance to the rotation axis. Í2 will change with 
time according to the following equation : 6 

t)~j iy(r, t) 
r J r 

dn,(r, t) _ T 
dt L 

2£}s(r, t) + r (2) di L"'S'',V ' ' dr 
if vortex lines move radially with velocity vr. Equation (2) is a direct consequence of conservation of vorticity and equation (1). In the 

mStar CrUf,,tnoe^?UÍr0rí.SUpe,rfluÍd coexists with a lattice, and vortex lines pin to the nuclei forming the lattice (Anderson et al. 1982 Alpar et al. 1984b) As the pulsar spins down, a relative angular velocity oi (= £2S - fic) builds up between the superfluid and 
pinned vortex lines which move with the star’s crust. This relative velocity is sustained by pinning forces on the vortex line through 
the Magnus equation of motion: >6 

/= PK X (fls - VL) . (3) 
The largest value of the lag, Í2S — Í2,., is given by the maximum pinning force/,,; 

pKr pKrçb (4) 

where p is the nucleon density, Ep is the pinning energy, £ is the coherence length of the neutron superfluid, and b is the spacing 
between successive pinning centers. Vortex creep is quantum tunneling between adjacent geometric possibilities for pinning. The 
mean radial velocity vr of vortex creep in a medium characterized by a temperature T and pinning energy barriers of size E can be 
estimated by means of a simple statistical argument (Alpar et al. 1984a) which gives P 

{ 
Ep Aoc - 

(5) iV = v0 exp . . 
|_ kT \ tu, 

T is the internal temperature of the neutron star, and v0 is about 107 cm s’1. Combining equations (2) and (5), we obtain the 
equation of motion for the pinned neutron superfluid coupled to the normal component. At values of the lag co > w a condition 
under which vortex lines cannot pin, the expression for vr becomes ~ cr> 

». - »,-P [-§ (!^)]/{«xp [-^ (^ 

The equation of motion of the normal component of the star is 

h &c = N'X, - j* dIpÙs(r, t). 

^)H' 
(6) 

(7) 

Here Ncxt is the external torque, which we take to be constant because the time scale of the pulsar torque is much longer than the 
0t ,er,!lme sca es , t®ie Pr°blem. The second term is the internal torque from the pinned superfluid. We can rewrite equations (1) (2) and (6) in terms of co and Í2C : ”v 

n(r, t) :(t) + 2œ(r, i) + r 
dca(r, t) 

dr ']■ (8) 

(9) 
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where 

. . if,. dco(r, t) 
Ùc(t) = Ùm-jjdIp , 

Ûx = N'JI and 1 = lc + lp . 

(10) 

a) Accumulation and Depletion Regions of Vortex Lines 

The vortex creep process has a steady state characterized by a specific value of the lag ils — Clc. In steady state, the superfluid and 
the crust decelerate at the same rate [in other words, (dcojdt) = 0], so that they share the effect of the external torque in 
proportion to their respective moments of inertia. The subscript oo indicates the steady state value of these quantities. Previous 
applications (Alpar et al. 1984a, b) to postglitch relaxation indicate that vortex creep is in the regime co < (oct, where equation (5) 
holds. As we show in Appendix A, one does not need to work with the more general expression, equation (6), since using the latter 
gives rise only to minute changes in the steady state solution co x, in most regions of interest. From equations (1), (2), (5), and (8) we 
obtain 

- Mg, _ fcT ^ 

"cr Ep 
(11) 

where 

 I ^00 k  _ 1^00 k (12) 
V°° * 2QC + 2cox + tidcojdr) Knm 

Even for a hot young pulsar such as the Crab pulsar, the internal temperature is somewhat smaller than Ep (~ 100 keV); for typical 
older pulsars, with internal temperatures ~ 105 K, one finds Ep ~ 104 k T. Therefore, cox should have a spatial variation similar to 
that of cocr(r), and we have 

njr) 1 dwcr\ (13) 

where we have neglected coCT (~0.1 radians s_ 1) compared with Qc (^10 radians s 1). It is rather interesting to note that the local 
vortex density can be extremely high (a vortex accumulation region) or low (a depletion region), depending upon the sign of dœcr/dr, 
if the spatial variation is very large. In the accumulation regions, the vortex density could be further approximated by 

"ooW : 
r dœcr 

k dr 
= nn if 

dœcr 

dr 
2QC 

r 
(14) 

However, equation (13) becomes incorrect in the regions with -dcojdr > 2f2c/r, since the vortex density must remain positive. In 
other words, dco^/dr cannot be approximated by dcoCT/dr; moreover, co^ will be bigger than cocr in these regions as a consequence of 
cocr falling off more rapidly than co^. Therefore, an extremely small vortex density will obtain; will tend to follow œcr as closely as 
possible in order to reduce the Magnus force on the vortex lines. The steepest negative slope in these regions is easily shown to be 

(15) 

such that 

n 00 2fic + r dm*, 
dr 

There are some interesting features of regions in which -dcojdr > 2Slc/r. First, these are vortex depletion regions with extremely 
low nœ, of the order of zero; hence we may consider them to be “vortex-free regions.” In order to maintain steady state, the radial 
velocity of the vortex line must be very high, basically vr » v0, which implies a huge Magnus force. No vortex line can be pinned in 
these regions, since co > co,.,. In Appendix B we choose a simple form of cocr and use the general expression for vr (eq. [6]) to give an 
explicit demonstration of this argument. Second, such regions will extend far beyond the region where cocr varies, which we shall call 
the “ fluctuation region ” (Fig. 1). It is easy to estimate the radial size of the depletion region (“ vortex-free ” region) by using equation 
(15): 

ôrâ « [abo - (ftOo>o _ boj0 r0 

2QC ~ 2fic 

(16) 

Here r0 is the distance of the fluctuation region from the rotation axis, <5co0 is the maximum value of cojr) - co0(r), co0 is the smooth 
part of cocr, and (cojois the steady state value of co outside the region of spatial variation. 
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{OI the
n

flufuation s'te- The vortex accumulation region (dcojdr > 0) and vortex depletion region are adjacent to each other. We have ssumed that the pinned superfluid is in steady state before the glitch, i.e., oAr,0 ) = a>Jr). (b) Change of vortex density at the glitch. A single layer of vortex lines is 
unpinned from the accumulation region, passing through the depletion region and repinned right after this region, where ôn1 « nma , ôn2 /k ôr, ^ 
"max/2 - 10 cm, and ôr2 « nmax ôrjrio * 1 cm. (c) Change of w in different regions. 0 c/ ’ 1 

b) Basic Time Scales for Reaching Steady State 
Let us consider the spatial variation of cocr in the following form : 

McÁr) = C0o(r) + àa>cÂr) > r0 “ <fr0 < r < >*o + ^ 
= co0(r), otherwise 

Here a>0(r) is a spatially smooth function which can be treated as a constant in the range in which we are interested ;(5co (r) is the size 
ol the small local deviation from co0(r), and ôr0 is the radial distance over which this deviation exists. The spatial derivative of <5a> 
can be bigger than 2Qc/r in absolute value. Equations (8) and (9) can be further simplified by the following approximations: (a) w¿ 
can neglect co ^ cocr(~0.1 radianss x) m equations (8) and (9) in comparison with Qc (~ 10 radians s-1); (h)í\(í) in equation (9) can 
be replaced by since the inertial moment of the pinning region (Ip < 10~2I) is so small; (c) r can be approximated by r0; and (d) 
we neglect higher order terms in (ôœcr/œ0). Equations (8) and (9) become 

dco(r9 

dœ(r, t) 
dt 

= _£o [~ 
ro L 

2QC + r, 
dco(r, 

dr 

n{r,() = “ 

’ r»] f -J exp |_ kT 

2ßc + r0 

CO 0(Oc 

» <^0 

' J’ 
(18) 

(19) 

The general solutions are presented in Appendix A. The internal torque can be obtained from equation (10). 
It is interesting to note that there are only two important time scales to reach the steady state in this superfluid-crust coupling 

system (the time scale in the depletion region is too short to be of interest). The first is the thermal relaxation time, 

kTœ0 
T = £P|ÛJ ’ (20) 

which characterizes the thermal creep process. By using equation (A 10), one can see that this is the only relevant time scale in the 
case of microghtches, for which (Ep/kT) (ôcom^Ja>0) <4 1, where <5<wmax is the maximum value of co(0, r)) - ojM(r). A second time scale, 

ín = • 
0CO„ EP ¿¿Umax 

(21) IÛJ kT „ 
characterizes the relaxation if t0 t. These two time scales are independent of the functional form of <5cocr(r). 

c) Dynamic Response of the Pinned Superfluid in the Accumulation and Depletion Regions 
In Appendix A we show that the whole depletion region responds to any change from the steady state almost coherently. This can 

be understood as follows. Suppose that any part of the depletion region responds differently from the rest of the region, because the 
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spatial derivative of co(r, t) is not close to — 2Qc/r. However, —dco/dr > 2Qc/r is impossible because 2Qc/r is the steepest negative 
slope oi dco/dr. Similarly, if the vortex density 2QC + r{dcoJdr) is greater than zero, it must be very small, because vortices cannot be 
pinned in this region. Therefore, the entire depletion region must respond. In order to change the superfluid velocity in the depletion 
region, some vortex lines must enter from the accumulation region. The superfluid velocity of the accumulation region is then also 
changed as a result of the migration of vortex lines. The vortex lines released from the accumulation region immediately traverse the 
entire depletion region where they cannot pin. Therefore, the depletion region as a whole partakes in the response of one 
accumulation region. The response from these two regions can be expressed as 

AÛc(t) _ Jd + ÔÎA (ct0/T - l)e-t/T 

íX* I 1 + (ei0/t - l)e-i/T ’ 
(22a) 

where Id and 0IA are respectively the moments of inertia in the depletion region and in that part of the accumulation region involved 
in vortex unpinning (see Fig. 1), and t0 = <5QS/| |. We will show that Id 0IA and i0 t in the case of microglitches. Equation 
(22a) can then be approximated by 

AÙc(t) = 
AQC 

T 
e -t/T (22b) 

where AQC = Id ÔQJI is the initial frequency jump experienced by the crust as a result of the unpinning event. 

III. APPLICATIONS AND DISCUSSION 

a) A Naive Spontaneous Unpinning Scenario 
In the last section, we saw that the spatial variations in coCT(r) can result in vortex accumulation (depletion) regions if dcojdr is 

positive (negative). In the accumulation region, the Magnus force on a particular vortex line required to balance the local superfluid 
velocity set up by a neighboring vortex is 

ôfm*PK^. (23) 

The total force in steady state,/ = picrw^, is below the critical value for unpinning, by an amount 

<5/ = fp -/= pKr(mCT - (oj 

= kTPKr0mor ln /£o\ (24) 
Ep VtW ' 

Suppose that a few free vortex lines migrate into the vortex accumulation region. The source of these vortex lines will be discussed 
later. They will rotate with the superfluid, which is moving faster than the crust. These free vortex lines will circulate around the spin 
axis of the neutron star and drift out slowly, contributing additional local superfluid velocity to the pinned vortex lines; an extra 
pinning force of order Sfm, given in equation (23), is then required if these lines are to remain pinned. If <5/ or, equivalently, pK2nl12, 
exceeds 

kTpKr0 coC] In (25) 

then some vortex lines will be forced out of their pinning sites. Since the pinning sites are the local energy minima for the vortex 
lines, unpinned vortex lines will try to return to these positions. However, for certain fluctuations in cocr, the accumulation region is 
adjacent to a depletion region as the calculation in Appendix A indicates (see Fig. 1). If that is the case, the pinned vortex lines at the 
boundary between the accumulation and depletion regions, which are expelled from their pinning sites, will immediately pass 
through the “ vortex-free ” region without being repinned. They will be repinned once they are past the depletion region. It is likely 
that because of its fast azimuthal velocity a free vortex line will complete many cycles around the star’s rotation axis, without 
moving significantly (more than a single vortex layer) in the radial direction. This will persist until almost all vortices in the layer are 
unpinned and scattered through the depletion region. The initial free vortex line that triggered this unpinning is then in an 
unbalanced vortex environment, with accumulated vorticity to one side and no vorticity to the other. Any further scattering will 
then move it into the depletion region, where it will shoot radially outward. The total number of vortices unpinned is then 

Nu^2nr0n
1

a
/2 . (26) 

We call this the “ single-layer unpinning ” mechanism, It can be shown from equation (25) that na~1/2 ~ 10 4 cm for this mechanism, 
so that ÔIJI « n~1/2/r0 - 10“10. The resulting change of angular velocity of the superfluid in the depletion region is then 

(27) 

As we shall see, the inertial moment of the “vortex-free” region is much bigger than the inertial moments of the accumulation or 
depletion regions. Hence the inertial moment associated with the glitch is that of the depletion region and is 

h àrd_ Scoa 

J * r0 ” 2QC ’ 
(28) 
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where we have used equation (16) to express the width ôrâ of one depletion region in terms of the excess rotation <5cua built up in the 
accumulation region. Because of the conservation of angular momentum in the glitch, the crust will be suddenly°spun up bv an 
amount 

(29) 

We now apply these considerations to pulsar glitches and noise. The local vortex density in the accumulation region is given by 

öa>a ôrd naK = r — = —-2£l, 
àr„ ör„ (30) 

so that 

<Ki __ njnp ,2 
öra 2Ü n° v (31) 

where we have introduced the intervortex spacing lv and vortex density n0 = 2Q/k corresponding to uniform rotation at the rate Í1 
Using this expression in equation (29), we obtain 

Q r r a Z r r ’ (32) 

this expression determines the magnitude Aiîc/£îc of events resulting from unpinning in a single-layer accumulation region. For a 
succession of N adjacent accumulation-depletion regions of similar widths, one could conceive a generalization of this unpinning 
mechanism in which vortices moving through one depletion region start the unpinning process in the next accumulation region 
resulting m a cascade involving the N regions. In this case, ’ 

£2C r r (33) 

The factor N brjr reflects the fractional moment of inertia in the vortex depletion regions, IJI (eq. [28]). This should be less than, 
but comparable to, the fractional moment of inertia 1J1 in the pinned superfluid, or in the regions involved in postglitch relaxation 
Application of vortex creep theory to postglitch relaxation data has yielded 1J1 ~ 10“4-10'2 (Alpar et al. 1984h; Alpar, Nandku- 
mar, and Pines 1985). In terms of the fluctuation ô(oa in critical frequency in the vortex accumulation regions, equation (33) can be 
written as 

AQC _ Nôo)a Ík A1/2 

flc 2ÎÎ Q \r ôra) 

Generalizing equation (28) to 

I_i _ N ôcûa 

I - 2Q 
and using the assumption IJI ~ IJI, one obtains 

r~|2 

K n0 LV Ip/I ) 2/J ' 

(34) 

(35) 

(36) 

(37) 

(38) 

Substituting observed values of AQ/Í2 and values for Ip/I referred from postglitch fits, one finds that parameters that may seem 
reasonable ior individual glitches are obtained. There is also a suggestive correspondence between the values of b<ajbra obtained 
through equation (37) (which, incidentally, does not involve IV) and the values obtained by using equation (30) and setting n to its 
critical value in equation (25): a 

SCOg 
ôra 

(39) 

Taking coCI » 10 4, Ep ss 0.1 MeV, In (vjvm) k 35, and using T inferred from postglitch timing fits or from the rate of energy 
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dissipation in vortex creep (Alpar, Nandkumar, and Pines 1985; Alpar et al. 1987), we find agreement between equation (37) and 
equation (39), within an order of magnitude or better, for the Crab pulsar, PSR 0525 + 21, and PSR 0355 + 54. For the Vela pulsar 
glitches, however, the estimate given by equation (39) is 4 orders of magnitude smaller than the value inferred from the observed 
glitches through equation (37). Thus, the Vela pulsar differs from the other pulsars in that its glitches seem to involve a much higher 
vortex accumulation of vortices than the critical density required for spontaneous unpinning. More generally, a consistent picture in 
terms of similar values of ôcoa, ôra, ôrd, and N for glitches of similar magnitude AQ/Q does not follow. Equation (36) serves to 
illustrate this: glitches of the same magnitude and similar IJI—say, in the Vela pulsar and in PSR 0355 + 54 (AÍÍ/ÍI ~ 10 6) or in 
the Crab pulsar and in PSR 0525 + 21 (AÍI/Í2 ~ 10 _9)—require quite different values of the product N ôa>a. This implies that if<5wa 
were to be a typical fluctuation size—say, comparable to <ucr in the weakest pinning layers, with similar values in all neutron 
stars—then the number N of accumulation-depletion regions required cannot be a parameter of neutron star structure, determined 
solely by microscopic pinning structures, but scales with the ii of the pulsar. Thus, to apply the above arguments of spontaneous 
unpinning to macroscopic glitches as a class, one must understand the parameters of accumulation and depletion regions, i.e., the 
effective distribution of pinning inhomogeneities, as functions of the rotation rate of the star (and possibly its age and thermal 
history). A related question is the relationship of the regions involved in spontaneous unpinning (1JI) to the regions involved in 
postglitch response (IJl). A discussion of this set of problems is beyond the scope of the present work. 

b) Pulsar Timing Noise and Microglitches 
The fluctuations in the pulsar period, known as timing noise, were first recognized in the Crab pulsar by Boynton et al. (1972). 

They found a large phase residual remaining after removal of the low-order polynomial and noted that this could result from a 
random walk in the rotation frequency. Cordes and Helfand (1980) found that noise was a characteristic feature of the timing 
behavior of 50 pulsars they examined using JPL data (Cordes and Downs 1985). Alpar, Nandkumar, and Pines (1986) used vortex 
creep theory to construct model noise power spectra to compare with the power spectra of 25 pulsars analyzed by Boynton and 
Deeter (1986). The results show no clear evidence of the kind of structure which would indicate that the source of the noise lies in the 
pinned superfluid alone. Cordes and Downs (1985) analyzed the arrival time of 24 pulsars and concluded that simple random walk 
processes composed solely of step functions in rotational phase or in one of its derivatives are generally not consistent with the data. 
Rather, it appears that most activity is due to a mixture of discrete changes in the phase frequency (or frequency derivative). Cheng 
(1987b) has presented a modified timing noise model in which the variations in rotation period are contributed by two related 
mechanisms, microglitches and the fluctuating magnetospheric torques induced by microglitches. 

On the basis of the observational upper limits on Ai2c of the individual (unresolved) microglitches, one concludes that the time 
scale t0 (eq. [21]) is too small to be relevant to structures in the power spectra, and t is the only time scale left in this model. It is 
natural to assume that the rate of microglitches R will be of the order of 1/t. In the present single-layer unpinning model, AQC/QC is 
indeed very small, and gives a negligible r0/

T I we need at least one free vortex line to initiate the whole mechanism. Such free vortex 
lines could be created as the pinned vortex lines creep outward and encounter a spatially irregular region with missing pinning sites. 
This situation can happen anytime, but the mean time interval for such events must be the relaxation time scale t for excursions 
from the steady state of thermal creep. 

By fitting the data analyzed by Boynton and Deeter (1986), one can obtain the random walk parameter SpN, which is related to 
AQC through (Cheng 1987b) 

where the superscript “ obs ” represents the observed value of AQC. Using the above argument for R, equation (40) can be expressed 
as 

<4i) 

for the typical event size inferred from the noise strength. To obtain a theoretical estimate based on our picture of spontaneous 
vortex unpinning, once again we postulate that the vortex density in accumulation regions does not increase beyond the critical 
density for unpinning obtained from expression (25), 

1/2 = [o ®çr fcT ln /Vj (42) 
K Ep \vj 

On combining equations (28), (29), and (42), we have 

AiTh = 
0<oa q>c, 
2a e„ 

kT In (43) 

where the superscript “th” refers to the theoretical value of Aa- The internal temperature is calculated by using the model of 
Gudmundsson, Pethick, and Epstein (1982) and assuming that vortex creep is the ultimate heating mechanism of neutron stars, 
(Alpar et a/. 1984a; Alpar, Nandkumar, and Pines 1985; Cheng 1987a): 

T6 = 2.3(/P,430>crii_14)0-455. (44) 

In Table 1 we summarize our model results by using the data analyzed by Boynton and Deeter (1986). In order to eliminate the 
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LABLH 1 
Noise Levels of 14 Pulsars, Normalized to Results Obtained for PSR 2021 + 51 

Pulsar 

0329 + 54. 
0355 + 54. 
0628-28. 
0736-40. 
0833-45. 
1133 + 16. 
1237 + 25. 
1642-03. 
1706-16.. 
1749-28.. 
1818-04.. 
1911-04.. 
2021 + 51.. 
2045-16.. 
2217 + 47.. 

cobs // cobs\ ‘3pJV/WpJvl2021 [Aiy(AQc)2021]o' 

(3.91 
<(5.39 
<(5.34 
<(8.80 
<(2.22 

(1.83 
(2.61 
(1.83 
(5.30 
(2.19 

<(6.80 
(0.65 
(1.0 
(1.43 

<(4.0 

+ 0.12) x 10“ 
± 1.6) x 10_1 

± 0.17) 
+ 0.83) x 10" 
± 0.24) x 10~ 
± 0.13) x 10" 
± 0.15) x 10" 
± 1.43) 
± 0.21) x 10" 
± 0.27) 
± 0.46) 
± 1.68) 
± 0.08) 
± 0.05) x 10" 
± 0.27) x 101 

(4.59 + 
<(4.77 + 
<(1.76 ± 
<(9.17 + 
<(2.93 ± 

(2.82 ± 
(2.08 + 
(1.31 ± 
(7.81 + 
(1.80 ± 

<(2.81 ± 
(0.82 + 
(1.0 + 
(2.54 ± 

<(5.90 ± 

0.07) x 10" 
0.12) 
0.03) 
0.43) x 10" 
0.13) x 101 

0.09) x 10"; 

0.06) x 10"] 

0.51) 
1.53) x 10"] 

0.11) 
0.10) 
1.68) 
0.04) 
0.04) x 10"1 

0.20) 

AQ, 

10- 

9.0 x 10“1 

1.13 
1.71 
7.83 x 10" 
7.0 
1.2 
7.1 x 
0.85 
1.47 
1.7 
1.57 
1.3 
1.0 
2.1 
1.0 

Vol. 330 

unknown parameter we choose PSR 2021 + 51, which has the smallest variances in S°p
b

N
s and S°s

b
N

s (Cheng 1987h), as a reference. 

ai* thxrVe jipu sar’ wh,lcJ'1.1S t0° y°ung for equation (44) to apply, we have taken T = 108 K. In expression (44), / 4, m < 1 (cf. 
^andku™ar>.anl| Pm®s 1986) refers to the strongest pinning regions in the star, which dominate the energy dissipation and set the temperature in old pulsars The observed values and theoretical values of AÍ2C are consistent with each other, suggesting that 

e noise process has the T, CÏ Ù dependence predicted by the spontaneous unpinning model, with the unpinning of a single vortex 
accumulation region at critical density responsible for each event. We now employ the data on PSR 2021+51, used as the reference 

equadoi^^k^Xl^k^nd^+l),^' t0 ^ ^ values of ^ ôm^r- and ^ Setting for this pulsar, and using 

0(0. » 1.7 x 10“ 3 

ôr„ 

wcr. -4 \ 3/2f In {vjvjl 1 

Ep/0.l MeV/ L 35 J ’ 

—~ o 14Í 0Jcr’ — ^ T 
Sra ‘ V£p/0.1 MeV/ L 35 J ’ 

1.2 x 10“—°Jcr' “4—^ 7/TM£o/01 
VV0.1 MeV/ L 35 J 

(45) 

(46) 

(47) 

These values are entirely reasonable. For the superweak regions where the spontaneous unpinning events are likely to originate E 
could actually be significantly lower than 0.1 MeV, which would lead to ôœa « cocr and ôra much smaller than 10" 2 cm. P 

IV. DISCUSSION 
The above arguments show that for the sample of pulsars exhibiting phase noise, an evaluation of the observed noise strengths in 

“the sP°ntaneous vortex unpinning events as modeled in the present work yields encouraging results, both in terms of the peeling scaling of noise strengths as a function of the Í2, Ù, and T of the pulsars (assuming that T is related to Ù through the 
energy dissipation rate in the neutron star) and in terms of the microscopic parameters of the spontaneous unpinning regions 

An application of the same ideas to the glitches in the Crab pulsar, PSR 0525 + 21, and PSR 0355 + 54, which requires a cascade of 

T?T!ug fr°m S°,m.e ar?e number W of accumulation regions, also yields the expected scaling; however, the Vela pulsar glitches do not fit the same relationship, and there are further problems in solving the relation of the spontaneous unpinning process to vortex 
creep and relaxation processes. This set of problems concerning the macroglitches will be addressed in future work. 

We would like to thank Drs. E. H. Gudmundsson, R. Nandkumar, and M. Ruderman for helpful discussions, and Professors P 
Boynton and J. Deeter for sending us their data in advance of publication. We thank the Aspen Center for Physics for its hospitality 

PHYSO^fiO^rnd PHY M wfii "Tm °f
n thls Problem; This research is supported by National Science Foundation grants fti i oU ¿>bU5 and PHY-86-00377, and National Aeronautics and Space Administration grants NAGW-567 and NSG-7653. 

APPENDIX A 

A GENERAL SOLUTION OF THE EQUATION OF MOTION FOR PINNED SUPERFLUID 

In this 
variation. 

appendix we present the general solution of the equation of motion of the pinned superfluid when 
Let us define the dimensionless quantities œcr has a large spatial 

<5rn 
y = kT ’ 

T = COn 
Xi = ^ , U(Xl, x) = ^ , SUJx) = ^2^ , 

T a>0 (o0 
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Here r0 is the mean distance of the spatial variation region from the rotation axis, ôr0 is the radial dimension of this region, and co0 
and ôœcr(r) are the smooth part and spatial fluctuation part of cocr(r), respectively. Then the equation of motion of the pinned 
superfluid in terms of these dimensionless quantities is 

dU(xl9 x) _ 1_ 

y 

du . 
a2 + -)exP 

[y([7 - ÓUJ-] 
[exp y(U - 0Uct) + 1] 

(Al) 

where ax = œ0 v0!ôr0\ | and a2 = 2fic <5r0/coo r0- The condition for steady state discussed in § II simply means dU(x^ x)!dxi = 0. 
Equation (A 1) becomes 

dUJx) = exp {-yÇ^oo - ¿UJx)]} 
dx a. 

- I a7 - — (A2) 

where the subscript oo represents the steady state value. It is easy to show that a2 is much larger than 1/a!. The solution is 

exp [yUJx)] = — exp (-ya'2x) ai 
exp [y(a'2 x <5l/cr)]dx , 

where a2 = a2 - 1/«!. The vortex density distribution and mean radial velocity of vortex lines in steady state are 

"ooW = ^ ( 1 + 
1 dUa 

oc? dx 
(, ^ 1 dU^X 

= "°V 
and 

^oeW = 
l^oc ko 

K 

respectively. 
To solve the time-dependent equation (Al), we first introduce the quantities 

ÔUix^ x) = U(xu x) - UJx), 

y(x) = exp [7(1/^ - <5Ucr)] , 

z(x!, x) = exp [yôll(xu x)] . 
Equation (Al) becomes 

1 \dz ai dz 

~z + y)dx1-
{ ] yysx' 

(A3) 

(A4) 

(A5) 

(A6) 

(A7) 

(A8) 

(A9) 

The solution of equation (A9) is obtained by using the method of characteristic curves (John 1986), as an implicit function of two 
parametric functions and S2 ■ 

z(xl5 x) = 1 + {exp [y¿>1/(0, SJ] - 1} exp (-SJ , 

SiiXi, x) = — [(axa2 - l)x + al/Jx)] - — [(cc^ - 1)S2 + ajl/^ÍSz)] , 
(Xi Oil 

al Í S2(X!, x) = X - y jXi + 
y ¿17(0, S2) - In z 

exp [y ¿1/(0, S2)] - 1 

with initial conditions 

(A10) 

(All) 

(A 12) 

(A 13) 

(A14) 

(A15) 

This full solution is somewhat inconvenient. We concentrate, therefore, on the solutions in the two types of regions of interest, 
namely, in vortex accumulation and depletion regions. In Figure 1, we, plot the steady state solution of U. One can see that 
U — ôUcr < 0 in the accumulation region and U x — ôUCT > 0 in the depletion region. Since y is a large parameter (~ 10 for a 
typical pulsar), y is much smaller (larger) than unity in the accumulation (depletion) regions. Let us now solve equation (A9) in these 
two regions separately. 

I. IN THE ACCUMULATION REGION 

Since vortex lines only unpin near the boundary between the accumulation region and the depletion region, we have (51/(0, x) 
= Afic/cuo < I U^ - ôLJct I in most of this region. Equation (A9) can be approximated by 

XiiSi = 0, S2) = 0 , 

x(S1 = 0, S2) = S2 , 

z(S! = 0, S2) = exp [y (51/(0, x)] . 

dzA dzA (A16) 
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where x - yx/otj and we use the subscript A to represent the quantities in the accumulation region. The solution of equation (A16) is 
an implicit function of the parameter S; it is 

*) = [!+ {exp l-yôUA(0, S)] - 1} exp (-xj}-' , (A17) 

where 

o ~ 1 r s = x+ {_X1 + ytUjix!, x) - UA(0, S)]} KX. (A18) 

Here we use the fact that a,a2 = i;0 2i2c/r0| ÙXj \ « 1013 is much bigger than all the other quantities. Equation (A17) is identical to the 
solution obtained by Alpar et al. (1984a). 

It is easy to show that 
II. IN THE DEPLETION REGION 

ÔU(0, x) =   * » —5 < I {/«X, - <5Ccr| « 0UC 
(JJq COq 

in most of the accumulation region. We can approximate equation (A9) by 

<5z<¡ .. . ôzi 

where the subscript d represents the quantities in the depletion region. The solution is 

1 - exp [y<S!7/0, x - x,)] záxu x) = 1 exp {(aia2 - l)x2 + yCC/Jx) - U„{x - xt)]} ' 
Equation (A20) is subject to a boundary condition, 

(A19) 

(A20) 

oUd(xi9 xB) — SUA(xl9 xB), (A2I) 

InT PuSÍÜT °f thj ^U?dary between the accumulation region and the depletion region, 0UA(Xl, xB) is the value of ¿VJx^x) at the boundary, and ÔUA(xu xB) is described by equation (A17). The reason for such matching is that the vortex lines are 
ways flowing from the accumulation region to the depletion region (creeping radially outward); therefore the boundary value of 

ôU^Xi, x) is controlled by the activity of the vortex lines in the accumulation region. We are going to show that the pinned 

tm o^quadoí (A2^ for°largfy D reSp°nds almoSt coherently- Consider xt < 5c, and expand the exponential factor in the denomina- 

1 - exp [y <5[/(*!, x)] = {1 - exp [y ¿[7,(0, x - x^jj/exp (x^x,) « {1 - exp [y ÔUJO, x - xj]} ; (A22) 

here we have used equation (A2). Equation (A22) is a solution of a wave equation (one can obtain this result by omitting the first 

th^orteí Slde 0f eq' CA19])’ Whluhu™ 3 characteristic velocity dr/dt = v0. Physically, this can be understood because 
íeoion il L A, -"lí1!^8!011 pe Wlth VhlS microsc°Pic velocity (see Appendix B). Therefore, the typical time scale in this region is ¿>rá/r0 « 10 (drd)6 s. For later tune we have 

¿[/¿(xi, x) = SUJO, xB), (A23) 

where SU/0, xB) is the value of ôU^xu x) at the boundary. Since this value is not constant (see eq. [21]) equation (A23) should read 

ôU/xu x) = ôUJXi, xB). (A24) 

Equation (A24) tells us that the whole depletion region responds to the accumulation region almost simultaneously. 
The vortex density distribution, the mean radial velocity of vortex lines, and the internal torque acting on the crust due to the 

reaction of the superfluid are 

and 

«(Xi, x) = nl\+ — = njx) + 3Î2- 
\ a2 oxj ol2 yz 

dz(xu x) 
ijz ôx 

”r(*i, x) = v0 exp {y[t/(x„ x) - <517cr]} 

= x), 

(A25) 

(A26) 

NjnM 
N 

1 r dlp - n(i, r)vr(t, r) : 
ÔTq kAtq j*10 

l^oo ko Jo 
dxrdx^, x)!;r(xl, x), (A27) 

where Ar0 is the radial size of the pinned superfluid, which is about ô<x>0r 0/2Q.c + dr 0, and x0 equals Ar0/Ör0. The most interesting 
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AÙc(t) = gü# - AUQ-) 
i 

845 

~ _ p0 J 

''o Jo xCn(jci> x) - njx)vjx)] 

= vß Aro¿ro P0 J ô 
'¡l ^ ^ Here, we assume Ihal the superâuid * ’ ’ ^ ^ W<)“>' IA28, 

and IA24| yield “ S"ad-V slaK Wore (lie gldch, /f ujiU x|| - . , 

' ' » - of*, equafon, (A28) 

^ . U±£U _[2iP.(V.) - n eap (-,M 

where 00 7 1 + [exp (¡~JT) Z jj cx^Oa) ’ 
(A29) 

and ^ fo>o l° - ¡Ts T and —^ 1 .tá ~ oajo 
which is the combined moment of inertia in th °° 1 ~ 2Clc ’ 

of inertia m the accumulation and depletion region afTected by Ihe unpinning event. 

APPENDIX b 

The associated distribution f M°DEL F°R THE SPATIAL VARIATION OF 

0<x<¡ 

where = 0, 
otherwise , 

r-rn 

0and ¿n,, are the heigh! and t,1® base of this triangle, resp«:tively. Hence,1,16 spatial derivative of&o^js a constant, 

I ÓCÚo 

SuWrenag(B3) ,n eqiiat.oi] (A3) ^ 

(l)xsO: 

d(ô^cr) =J K ’ 

ÓCO0 
K ’ 

dr 

0 c jc < £ , 

i < x < 1 

(Bl) 

(B2) 

(B3) 

1 
where n0 equals 2Qjk; 

(2) i > x > 0.C 

exP (yt/oo) - —— = constant, n - n 
a1a2 ’ nco — n0 

exp (yUJ = £ÏEX_2^x) fj_ + exp [y(¿I/n + g'ly1 _ 
0(1 «VTIT 

(B4) 

, exp (-y¿I/nJe) 

(¿í/0 + ay«! 

ôU0 -f- a' 

if c5i/0 a' 

n„*n0^K
rJ>*?o 

«2 K <5r0 
1 ¿í/o ^ a2 , 

(B5) 

(B6) 
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which agrees with the result obtained in the text by general argument; 

(3) 1 > x > £: 

exp (7^/^) = 
exp (-yoc'2x) [ 1 | exp [y(öU0 + ccf

2)/2] - 1 ^ exp (yôU0){exp [y(oc'2 - öU0)x] - exp - ôU0)/2]} 
7 + 

«2 ôU0 + a'2 a'2 — ôU0 

2 exp ( —ya2x + ySU0/2) 
ol^Uq 

1 - exp |^ —y^Uo^x _ ^ j , if ôU2 > a2 

«^(x) » n0 - ^ 1 
2QC v0 

(4) x> 1: 

exp (ßUJ = ■ 
exp (—ya2x) [ 1 exp [_y(ôU0 + a'2)/2] - 1 

a2 + 0U0 + a2 

+ exp (y ÔU0){çxp [y(a2 -ôUpj]- exp [y(a2 - ôü0)/2']} exp (ya2 x) - exp (yoc1 

a2 — 0U0 oc'2 

exp [-y(a 
a 

1 

-] 

+ »(.'„,"21] (, . ¿v„ (■ / , ÍL'0iTl 
ä— i1+“p K"jX ~ ~jJ} 

axa2 

njx) » n0 < w0 if SU0 > a'2 and x < , 
2&2C t^Q 2a2 

which verifies that the vortex-free region will extend to a length scale of order r0 âco0/2iïc. 

(B7) 

(B8) 

if <5i70 > a'2 and x < . 
2ol2 

if X > àüp 
2a; ’ 
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