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ABSTRACT 
We reconsider the pregalactic hypothesis for the formation of globular clusters in the light of Zinn’s dis- 

covery published in 1985 of a two-component globular population in the Milky Way. For a cold dark matter 
spectrum, high-a fluctuations of 105-106 M0 are assumed to be the progenitors of the spheroidal population 
of globular clusters. The mass fraction of globular clusters in galaxies then requires that perturbations above 
rougly 2.8 a survive as globulars, and their observed radii require baryonic collapse factors of order 10. Such 
an absolute density threshold for globular cluster formation achieves adequate fits to observed cluster radii 
and densities, the mass fraction of globulars versus Hubble type, the radial density profile of globulars within 
galaxies, and the globular luminosity function. However, a fixed density threshold criterion for cluster survival 
lacks convincing physical justification and does not by itself explain the homogeneous metallicities within clus- 
ters or the large metallicity variations from cluster to cluster and from galaxy to galaxy. 
Subject headings: clusters: globular — dark matter — stars: formation 

I. INTRODUCTION 
The baryonic Jeans mass after decoupling in the early uni- 

verse was 105 M0 (Peebles and Dicke 1968). For a flat or 
monotonically declining density fluctuation spectrum, the first 
structures to collapse by gravitation would have had this 
minimum mass. Peebles and Dicke suggested that such struc- 
tures can be identified with present-day globular clusters. Such 
a picture in which globular clusters form well before galaxies is 
often called the “primordial,” or “pregalactic,” model for 
globular cluster formation. 

As theories for the shape and amplitude of the initial density 
fluctuation spectrum have developed, it is now possible to 
predict not only the masses but also the radii, densities, and 
collapse epochs of early collapsing objects. Peebles (1984) 
reconsidered the pregalactic model in the context of the cold 
dark matter (CDM) density fluctuation spectrum, in which 
perturbations on any mass scale have a Gaussian distribution. 
His estimated radii for collapsed protoglobular clusters were 
rather large: ~ 1 kpc for a 3 a perturbation of 108 M0. If true, 
this would argue against pregalactic fluctuations since 
observed globular radii are much smaller, by a factor of about 
100. Very large baryonic collapse factors would be required, 
inconsistent with reasonable limits on initial angular momenta 
(Peebles 1980). 

A second class of models has globulars forming somewhat 
later, during the galaxy collapse process itself. Such models 
might be termed “secondary” models. Examples include the 
suggestion by Fall and Rees (1985) that globulars formed from 
a two-phase thermal instability in 106 K protogalactic gas, or 
Gunn’s (1980) cloud-cloud collision model involving shock- 
induced cooling. 

In yet a third class of models, which we designate as 
“ tertiary,” globulars continue to form well after active collapse 
has ceased and perhaps even throughout the lifetime of a 
galaxy. This category would also include any clusters that 
might have formed via galaxy-galaxy interactions. 

1 Lick Observatory Bulletin, No. 1097. 
2 Visiting Graduate Student, Department of Astronomy, University of 

California, Los Angeles. 

Observations of globulars themselves suggest they may con- 
stitute an inhomogeneous population that formed in a variety 
of ways (Burstein 1987). Young and intermediate-age 
“ populous ” clusters that are morphologically similar to 
globulars are frequent in the Magellanic Clouds (e.g., Freeman 
1980) and in M33 (Christian and Schommer 1983). NGC 2158 
is a rich, middle-aged cluster far from the Sun near the plane of 
the Milky Way. For years it was classified as a true globular 
based on morphology and richness, but its turnoff* age is only 
3 x 109 yr (Christian, Heasley, and Janes 1985). Intermediate- 
age globulars may also exist in M31 and M33 (Burstein et al 
1984). 

An important recent study of Milky Way globulars by Zinn 
(1985) addresses the question of their homogeneity. Zinn con- 
cludes on both spatial and dynamical grounds that Milky Way 
globulars divide naturally into two groups: a “halo” popu- 
lation spherically distributed throughout the halo with low 
rotation and low metals, and a “disk” population concen- 
trated toward the Galactic center with a highly flattened 
spatial distribution, high rotation, and relatively high metals. 
Individual globulars can be assigned to the two groups on 
the basis of composition—Zinn puts the dividing line at 
[Fe/H] = —0.8. An important by-product of this new picture 
is the fact that there is little or no evidence for any metallicity 
gradient within the halo population itself. The apparent abun- 
dance gradient within the cluster system is due instead to the 
changing ratios of the disk and halo populations versus radius. 
A further implication is that only the halo population should 
properly be compared to either pregalactic or secondary 
models of cluster systems. The disk system apparently formed 
after the gas collapsed to a rotating disk and is thus a tertiary 
component. 

Zinn’s proposal has led us to a new consideration of the 
pregalactic model. We have always considered a serious weak- 
ness of this model to be its difficulty in explaining the radial 
abundance gradient of globulars within the Galaxy. This weak- 
ness stems from the fact that pregalactic globulars by definition 
form well in advance of galaxy collapse. There is thus no 
natural mechanism whereby metallicity ought to correlate with 
final position. In an effort to address this question, Peebles 
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(1984) speculated that, owing to statistical correlations with 
environment, inner globulars would be denser and more able 
to retain metals produced by their own supernovae. Although 
inner clusters are indeed denser in the CDM picture (see 
below), the metallicity distribution within individual globulars 
is not broad enough to suggest much self-enrichment. All self- 
enriched models with constant IMF (with or without gas loss) 
predict an internal spread in [Fe/H] of at least 0.5 dex (e.g., 
Zinn 1978), whereas a spread of this magnitude is seen only in 
(jo Cen and possibly in M22 (Kraft 1979). Zinn’s identification 
of a gradient-free halo population solves the problem nicely by 
removing any need for such a correlation. 

In this paper we reevaluate the pregalactic model in the 
context of cold dark matter by making a more detailed com- 
parison with the observed structural properties of halo globu- 
lar clusters. We stress a point implicit in Peebles’s picture, but 
not much emphasized by him, that the most natural identifica- 
tion with globulars is achieved using high-cr, strongly over- 
dense perturbations. High overdensity lessens the required 
baryonic collapse factors and generally improves the match 
with observations. It is also implicit in this model that each 
globular is surrounded initially by a dark matter halo. 
However, most of the mass is outside the visible structure and 
does not affect the observable cluster dynamics. The halo is 
also probably tidally stripped during galactic collapse, and the 
dark matter left today is substantially reduced from its initial 
value. 

A major uncertainty is whether the structural parameters of 
globulars today reflect their primordial values. There are a 
number of processes that may have altered those parameters 
over the years, including tidal stripping, mass loss, and two- 
body relaxation. For the most part we have ignored these 
effects because of their complexity, but the models have a 
degree of uncertainty on that account. 

A second major question is how to decide which fluctuations 
survive as globular clusters as opposed to those that are 
destroyed in the collapse of higher mass fluctuations. We con- 
sider three possible models, and for one of these, which we call 
the fixed-density model, we obtain a fair match to globular 
radii, densities, mass fraction versus Hubble type, and lumin- 
osity function. However, this particular scheme is not well 
motivated physically, and there still remain significant puzzles 
surrounding the origin of globular cluster metallicities. In the 
end, we conclude that the adequacy of the pregalactic model, 
even for halo globular clusters, remains somewhat problem- 
atic. 

As stated previously, we do not believe the pregalactic model 
is necessarily the only mechanism whereby globulars can form. 
Observations of globular clusters in our Galaxy and others 
suggest that the true picture is more complicated. We examine 
the pregalactic model keeping in mind that any single cluster 
system may represent a population of objects formed from 
several processes, including pregalactic, secondary, and ter- 
tiary phases. Several of our conclusions about the pregalactic 
model were noted, but more briefly, in a recent review by Fall 
and Rees (1986). 

II. COMPARISON WITH OBSERVED CLUSTER PROPERTIES 

a) Globular Mass Fractions in Galaxies 
The calculations in this paper make use of the cold dark 

matter spectrum computed by Primack and Blumenthal 
(1985) and discussed in the context of galaxy formation by 

Blumenthal et al. (1984, hereafter BFPR). As noted previously, 
a key assumption of the pregalactic model is exactly which 
density perturbations at a given mass survive as globular clus- 
ters. Let us assume for the moment that all 106 M0 pertur- 
bations everywhere in the universe above some no survive as 
globulars. Such a trend is plausible since dense perturbations 
have at least two survival advantages over their low-density 
counterparts. They collapse at an earlier epoch relative to their 
parent galaxy and are therefore not as easily disrupted by 
parent galaxy collapse. In addition, their higher binding energy 
may allow them to survive better against cluster-cluster tidal 
collisions and supernovae explosions. Relative to 1 cr fluctua- 
tions at a given mass, the equilibrium radii of collapsed no 
fluctuations scale as n-1, their collision cross section as n~2, 
their collapse times as n~3/2, and their densities as n- 3. 

With CDM the density distribution function is Gaussian, 
and the fraction of mass in perturbations above 2 <7 is 2.3%, 
and above 3 a is 0.13%. These values are compared to 
observed globular mass fractions in galaxies in Figure 1. 
Details are given in the legend and Table 1. Baryon masses of 
globulars and galaxies are based on their observed luminosities 
plus mass-to-light ratios from stellar population models. From 
the figure, cluster mass fractions average around 0.25%, imply- 
ing n = 2.8. This value is only a lower limit if contamination by 
tertiary clusters is important. We believe that such contami- 
nation may be severe in dwarf galaxies and may account for 
their somewhat high mass fractions in Figure 1. Tertiary con- 
tamination in large galaxies is probably not a significant factor, 
however. For example, if the tertiary fraction in our Galaxy 
based on Zinn’s (1985) counts is typical of spirals generally, the 
median spiral mass fraction would decrease to 0.17%, and 

TABLE 1 
Globular Cluster-Galaxy Mass Fraction Data 

Object Type Mv*-b Nobs
b N,b \00MJMg log Mcl/Mg 

M31   S 
Galaxy  S 
LMC    I 
SMC   I 
M33  S 
Fornax  dSph 
NGC 147 ...... dE 
NGC185   dE 
NGC 205   dE 
NGC 6822   I 
IC 1613   I 
WLM    I 
NGC 4216  S 
NGC 4340   E 
NGC 4374..... E 
NGC 4406   E 
NGC 4472   E 
NGC 4486   E 
NGC 4526   E 
NGC 4564   E 
NGC 4569   S 
NGC 4594   S 
NGC 4596   E 
NGC 4621   E 
NGC 4636   E 
NGC 4649   E 
NGC 4697   E 

-21.1 300 450 
-20.0 131 180 
-18.5 17 23 
-16.8 10 15 
-18.9 6 20 
-13.6 6 6 
-14.9 4 4 
-15.2 6 7 
-16.4 8 8 
-15.7 0 0 
-14.8 0 0 
-16.0 1 1 
-21.0 21 520 
-19.9 26 650 
-21.6 98 2500 
-21.7 108 2600 
-22.5 1700 4200 
-22.3 6000 15000 
-21.3 87 2200 
-20.0 35 900 
-21.4 32 800 
-22.6 290 2800 
-20.4 82 2000 
-21.1 63 1600 
-21.3 143 3600 
-22.1 170 4200 
-21.6 72 1800 

0.16 -2.80 
0.18 -2.74 
0.30 -2.52 
0.85 -2.07 
0.06 -3.22 
3.3 -1.48 
0.65 -2.19 
0.90 -2.05 
0.33 -2.48 

<0.16° < — 2.80c 

<0.35c < — 2.46c 

0.12 -2.92 
0.20 -2.70 
0.35 -2.46 
0.28 -2.55 
0.26 -2.59 
0.20 -2.70 
0.88 -2.06 
0.32 -2.49 
0.44 -2.36 
0.22 -2.66 
0.25 -2.60 
0.67 -2.17 
0.28 -2.55 
0.53 -2.28 
0.30 -2.52 
0.20 -2.70 

a H0 = 75 km s 1 Mpc 1 is assumed. 
b From Harqs and Racine 1979. 
c Upper limit assumes one globular cluster of 2.5 x 105 M0 (baryonic) in 

the galaxy. 
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Fig. 1. Globular cluster mass fraction, McJMg, vs. galaxy absolute magnitude from the data of Harris and Racine (1979). Total baryon mass in clusters is taken 
to be Nt mcl, where mcl, the mean individual cluster mass, is 2.5 x 105 M0, corresponding to the average luminosity of a Milky Way cluster and M/Lv = 1.6 
(Illingworth 1976). Nt is the estimated total number of globulars in each galaxy from Harris and Racine, with typical estimated errors of perhaps a factor of 2 or 
greater. Galaxy baryon mass is derived from Harris and Racine’s absolute V magnitudes, plus assumed baryonicM/LK as follows: E = 6; Spirals = 3; Dw E and Dw 
Sph = 2; Irr = 1. Cluster-to-galaxy total mass ratios are assumed to equal the baryon ratios. For massive galaxies the median value oiMJM is ~0.25%, implying 
cluster formation for perturbations above 2.8 a. eg* 

hence n = 2.9, only slightly larger. Our conclusion is that 
values of n ä 3 are required by the model, which in view of the 
above scaling relations, might be high enough to give over- 
dense protoclusters a plausible survival edge. 

b) Three Survival Scenarios 
It is desirable to have a more precisely defined survival cri- 

terion. We therefore consider three possible subscenarios. 
In the first scenario, called the fixed-density model, the 

amplitude of a peak is defined globally. Therefore, peaks at a 
given cr level all correspond to the same specific density at all 
points in the universe. The flatness of the CDM spectrum 
implies that there are substantial statistical correlations 
between peaks on different mass scales (Peebles 1984; BFPR; 
Bardeen et al 1986; Peacock and Heavens 1986). Therefore, 
fixed-density peaks above, say, 2.8 cr, will be relatively more 
common in overdense parent galaxies and hence will be as 
common there as lower a peaks elsewhere. The magnitude of 
this effect is calculated in § lie below. 

In the second scenario, called the fixed-probability model, 
the likelihood of finding a peak is defined locally, i.e., one 
considers the probability of finding a peak within a specific 
larger region. In this case, the cr of a peak is only a measure of 
its local probability, and 2.8 o peaks would be equally common 
in both overdense and underdense larger regions, but they 
would correspond to higher densities in overdense regions. 
Such peaks turn up with equal frequencies everywhere. 
Depending on the context, the size of the larger region can 
range from a galactic mass down to 10-2 to 10-3 times a 
galactic mass, the latter case corresponding to a localized 
environment within a protogalaxy. 

Neither of the above scenarios is strongly motivated by 
physics, as neither takes into account the detailed interactions 
between protoglobulars and the density perturbations in which 
they are embedded. We attempt to do this by considering yet a 
third model, in which survival depends on the existence of a 
minimum density contrast between the protoglobular and its 
environment. For simplicity we generally consider just density 
contrast against the parent galaxy. This alternative will be 
called the density-contrast model. 

Unfortunately, all of these three models are highly sche- 
matic. To do better, however, would require numerical simula- 
tions for cluster survival on a scale that is beyond our present 
capabilities. 

c) Radii and Densities of Globulars in the CDM Scenario: 
Dependence on Hubble Type and Spheroid Mass 

We first compare the expected structural properties of clus- 
ters in the three scenarios with those of clusters in the Milky 
Way. The approach used is identical to that of BFPR, who 
compared galaxies and clusters of galaxies with higher mass 
fluctuations. Comparisons are rough, being based on a simple 
spherical top-hat model for collapsing perturbations. Within 
that framework, however, we have made an attempt to arrive 
at consistent definitions of mass, potential energy, kinetic 
energy, radius, virial temperature, and baryon density to 
compare with observations (see Table 2). Further details are 
given in Figure 3 of BFPR and the figure legend here. 

Figures 2a, 2b, and 2c illustrate the results. The solid lines 
represent the fixed-density model and show the equilibria of 
collapsed 1 cr, 2 c and 3 cr perturbations sampled over the 
whole universe. These loci refer to objects that collapse dissi- 
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TABLE 2 
Data on 65 Galactic Globular Clusters 

NGC log nb log T [Fe/H]a r(GC)b 10~5Mc
d u(km s ~ 1)e 

104.. . 
362.. . 

1261... 
1851.. . 
1904.. . 
2419.. . 
2808.. . 
3201.. . 
4590.. . 
4833.. . 
5024.. . 
5053.. . 
5139.. . 
5272.. . 
5466.. . 
5694.. . 
5824.. . 
5897.. . 
5904.. . 
5986.. . 
6093.. . 
6121.. . 
6144.. . 
6171.. . 
6205.. . 
6218.. . 
6229.. . 
6254.. . 
6266.. . 
6273.. . 
6284.. . 
6287.. . 
6293.. . 
6304.. . 
6333.. . 
6341.. . 
6352.. . 
6356.. . 
6362.. . 
6397.. . 
6402.. . 
6426.. . 
6522.. . 
6528.. . 
6541.. . 
6553.. . 
6626.. . 
6637.. . 
6638.. . 
6656.. . 
6712.. . 
6715.. . 
6723.. . 
6752.. . 
6760.. . 
6779.. . 
6809.. . 
6838.. . 
6864.. . 
6934.. . 
6981.. . 
7006.. . 
7078.. . 
7089.. . 
7099.. . 

3.9 
4.0 
3.5 
4.6 
3.4 
1.3 
4.6 
3.0 
3.7 
3.6 
2.8 
1.4 
3.3 
2.0 
1.5 
3.5 
3.9 
2.6 
3.2 
2.9 
4.4 
3.7 
2.8 
0.68 
3.1 
2.6 
2.9 
3.7 
3.9 
2.4 
4.6 
3.9 
3.9 
4.0 
4.2 
4.1 
4.0 
3.9 
3.4 
3.3 
3.2 
1.4 
4.7 
4.5 
4.0 
3.8 
4.2 
3.8 
4.3 
4.1 
3.4 
3.8 
3.3 
3.8 
4.5 
3.1 
3.5 
3.2 
4.5 
3.8 
2.7 
2.7 
4.2 
3.9 
4.3 

3.92 
3.65 
3.21 
3.69 
3.27 
3.12 
4.09 
3.07 
3.18 
3.27 
3.35 
2.23 
3.94 
3.22 
2.43 
3.20 
3.64 
2.85 
3.52 
3.41 
3.71 
3.16 
2.78 
2.83 
3.42 
3.03 
3.22 
3.32 
3.75 
3.36 
3.48 
3.19 
3.32 
3.32 
3.47 
3.61 
3.14 
3.70 
2.94 
2.98 
3.67 
2.20 
3.55 
3.43 
3.57 
3.53 
3.65 
3.46 
3.29 
3.72 
3.20 
3.87 
3.20 
3.46 
3.42 
3.11 
3.10 
2.66 
3.81 
3.32 
2.85 
2.99 
3.88 
3.78 
3.42 

-0.71 
-1.27 
-1.29 
-1.33 
-1.68 
-2.10 
-1.37 
-1.56 
-2.09 
-1.86 
-2.04 
-2.58 
-1.59 
-1.66 
-2.22 
-1.92 
-1.87 
-1.68 
-1.40 
-1.67 
-1.68 
-1.28 
-1.75 
-0.99 
-1.65 
-1.61 
-1.54 
-1.60 
-1.29 
-1.68 
-1.24 
-2.05 
-1.92 
-0.59 
-1.78 
-2.24 
-0.51 
-0.62 
-1.08 
-1.91 
-1.39 
-2.20 
-1.44 

0.12 
-1.83 
-0.29 
-1.44 
-0.59 
-1.15 
-1.75 
-1.01 
-1.43 
-1.09 
-1.54 
-0.52 
-1.94 
-1.82 
-0.58 
-1.32 
-1.54 
-1.54 
-1.59 
-2.15 
-1.62 
-2.13 

6.4 
8.1 

15.5 
14.4 
17.0 
95.8 

9.7 
7.8 
9.2 
6.1 

18.2 
17.0 
5.6 

10.6 
15.6 
24.9 
17.9 
6.8 
5.5 
4.2 
2.9 
5.4 
2.9 
3.0 
7.5 
3.7 

27.6 
4.0 
2.3 
3.4 
3.5 
1.6 
1.0 
2.7 
1.5 
8.7 
3.3 
6.8 
4.4 
5.5 
3.9 

10.7 
1.0 
2.0 
2.0 
2.7 
2.3 
1.5 
1.3 
4.1 
3.3 

12.0 
2.4 
4.5 
4.7 
8.7 
3.3 
5.9 

10.5 
10.1 
11.4 
33.0 
9.5 
9.6 
6.5 

10 
6.8 
7.1 
3.6 
8.4 

70 
5.5 

11 
5.2 
7.1 

17 
25 
20 
38 
29 

7.8 
6.8 

13 
13 
17 
4.5 
5.2 
9.7 

115 
14 
16 
14 
6.5 
8.1 

28 
2.6 
4.2 
5.2 
4.5 
4.2 
5.5 
3.6 
7.8 
5.5 
6.8 

16 
24 

2.6 
2.9 
5.8 
7.5 
5.2 
6.8 
2.9 
6.5 
7.5 

11 
8.4 
6.2 
2.7 
9.7 
6.2 
5.2 
4.5 
5.5 

12 
14 
6.5 
8.7 
3.6 

8.0 
2.9 
1.1 
1.7 
1.5 
8.8 
6.4 
1.2 
0.72 
1.4 
3.7 
0.40 

17 
6.0 
0.74 
1.4 
2.9 
0.86 
4.2 
4.3 
2.2 
0.69 
0.56 
7.5 
3.4 
1.6 
2.2 
1.3 
4.3 
6.2 
0.78 
0.61 
1.0 
0.90 
1.2 
2.1 
0.45 
3.8 
0.46 
0.61 
7.2 
0.37 
0.86 
0.75 
2.1 
2.4 
2.2 
1.9 
0.53 
3.2 
1.1 
7.7 
1.3 
1.7 
0.69 
1.2 
0.72 
0.23 
2.8 
1.1 
0.79 
1.3 
4.8 
5.0 
0.91 

18.57f 

13.53f 

8.19 
14.18f 

8.80 
7.36 

22.46 
6.91 
7.85 
8.73 
9.65 
2.60 

18.98 
8.31g 

3.34 
8.04 

13.46 
5.39 

11.76 
10.34 
14.58 
7.66 
4.99 
5.28 

10.43 
6.63 
8.23 
9.28 

15.21 
9.73 

11.24 
7.98 
9.34 
9.30 

10.98 
12.97 
7.55 

14.46 
5.98 
6.22 

13.82 
2.56 

12.09 
10.55 
12.37 
11.83 
13.56 
10.95 
8.94 

14.65 
8.09 

17.55 
8.14 

10.86 
10.44 
7.28 
7.21 
4.36 

16.28 
9.27 
5.39 
6.32 

17.75 
15.84 
10.39 

a From Zinn 1985. 
b r(GC) is the distance from the galactic center in kpc. 
c Rv = GMJv2 is given in parsecs. 
d Cluster mass, Mc, in units of 105 M0. Mc is taken to be Mc = 1.6LC, 

where Lc is the observed cluster luminosity from Harris and Racine 1979. 
e v2 = 3cr2, where a is taken from Peterson and King 1975 or as noted. 
f Illingworth 1976. 
8 Gunn and Griffin 1979. 

pationlessly, their density represented by the baryonic com- 
ponent (nb = 0.1ntot). The contraction track in Figure 2a 
schematically illustrates baryon evolution under radiative dis- 
sipation within dark halos. The black dots are globular clusters 
in the Milky Way halo population, to be compared with the 
pregalactic model; open circles represent disk clusters, which 
are included for comparison. 

The vertical density displacement between the observed 
globulars and the models in Figure 2 is a measure of the 
required radial baryonic collapse factor (r « nb~

1/3). Compari- 
son with the 3 a curve shows that radial collapse factors of 
order 10 are needed, substantially reduced from the factor of 
100 in Peebles’ original estimate. This is due, we believe, to the 
attempt here to define all structural quantities self-consistently. 
Radial collapse factors of this magnitude are still difficult to 
account for physically, especially when the collapsed remnants 
rotate as slowly as globular clusters. However, elliptical gal- 
axies may have collapsed by a comparable factor yet also 
rotate slowly. Perhaps a similar mechanism acts to reduce 
rotation in both cases. If this objection can be tolerated, we 
conclude that the fixed-density model offers a reasonable fit to 
the radii and densities of observed clusters. 

As depicted in Figure 2, Milky Way globulars exhibit a fairly 
large spread in baryonic density at a given virial temperature. 
This spread may result from varying degrees of dissipation or 
may reflect observational errors (mass is probably better deter- 
mined from the present data than either density or velocity 
dispersion). A third possibility is cluster formation from pertur- 
bations over a range of initial wer. 

Next we estimate the radii and densities of globulars in the 
fixed-probability model. To do so, it is necessary to understand 
how protoglobular perturbations would depend on parent 
galaxy overdensity in the CDM picture. The methods for cal- 
culating such correlations have been developed by Peebles 
(1984), Bardeen et al (1986), Peacock and Heavens (1986), and 
G. R. Blumenthal (unpublished). They are used here to calcu- 
late how the distribution of density fluctuations on a small 
mass scale, M x, correlates with overdensity on a parent mass 
scale, M2, where the two masses are assumed to be spherical 
and concentric. The results for M1 = 106 M0 and M2 = 1012 

Mq are illustrated in Figure 3, where the Gaussian dashed 
curve shows the distribution of 106 M0 fluctuations for the 
whole universe with rms width taken to be unity. This is super- 
posed on four solid curves that correspond to fluctuations 
embedded within 1012 M0 perturbations of various degrees of 
overdensity, as indicated. The embedded distributions exhibit 
a mean offset that is proportional to parent overdensity and an 
rms Gaussian width that is slightly narrower than the distribu- 
tion for the universe as a whole. Additional calculations (not 
shown) indicate that the probability distributions in Figure 3 
vary only slowly with radius for R < RTH inside a top-hat 
fluctuation. 

Similar correlations have been calculated for other values of 
M! and the results translated into the densities and tem- 
peratures of collapsed objects in the nb, T plane in Figures 2a, 
2b, and 2c (dashed lines). The <r’s labeling the curves are now 
locally defined within a galaxy and are measured in units of the 
rms widths of the embedded distributions in Figure 3. These 
dashed curves are the predictions of the fixed-probability 
model. 

Figures 2a, 2b, 2c show that 1 <r fluctuations within a 3 <r 
parent are considerably denser than the average 1 a fluctua- 
tions, whereas 2 a and 3 a fluctuations remain more similar. 
This is so because the positive enhancement due to the mean 
offset is effectively canceled by the narrower a, leaving 2 a and 
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Fig. 2.—(a) Baryonic density vs virial temperature for theoretical collapsed objects and Galactic globular clusters. The precepts used to define nb and T are 
identical to those in Fig. 3 of BFPR. The dots represent Galactic halo globular clusters; the open circles are disk globulars shown for comparison. Velocity 
dispersions for Galactic globulars come from theoretical estimates by Peterson and King (1975) for M/Lv = 1.6 (Illingworth 1976); some directly observed values are 
also used (Illingworth 1976; Gunn and Griffin 1979). Globular masses are estimated from Harris and Racine’s My's and M/Lv = 1.6. From these we deduce a virial 
radius Rv = GM/3a2, and baryonic density nb = 3M/4nRv

3. For further details see Table 2. Solid curves represent collapse loci for dissipationless collapse of 1 <r, 2 <x, 
and 3 a perturbations from a cold dark matter density fluctuation spectrum, with nb assumed to be0.1«tot. The diagonal lines show the total mass of a perturbation 
including dark matter. The track leading downward through the clusters is a schematic dissipation track. For an assumed total cluster mass of 106 M0 and an initial 
overdensity of 2.8 a (§ IIu), this track agrees fairly well with the observed properties of clusters. The dashed curves show how the collapse loci change if perturbations 
are embedded within a 1012 M0 fluctuation of 1 <r overdensity. Both embedded and parent perturbations are assumed to be concentric and spherical. Embedded 
perturbations of 1 u are significantly more overdense than average, but 2 a and 3 a perturbations are only slightly altered. See text for further details, (b) Same as (a) 
except that the dashed lines refer to a 2 a fluctuation of 1012 M0. (c) Same as (a), except that the dashed line refer to a 3 <7 fluctuation of 1012 M0. {d) Similar to (a) 
except that the effect of biased galaxy formation is included. Spirals are assumed to be 2 cr fluctuations instead of 1 <x, as above. All curves scale likewise, now referring 
to 2 o-, 4 a, and 6 a perturbations {solid lines) embedded within a 2 (7 galaxy {dashed lines). The location of 106 M0 fluctuations at 5.6 <7 and 2.8 <j are indicated by the 
two crosses. 

3 a fluctuations at about the average levels. Figure 3 implies 
that this near constancy begins to break down in parent fluc- 
tuations below 1 <7, where offset and a no longer balance. The 
effect becomes stronger in negative-density fluctuations, where 
high-density 106 M0 peaks are predicted to be quite rare. The 
main point is that the predissipation radii and density of clus- 
ters in the fixed-probability model would not differ much from 
the fixed-density case, as indicated by the fact that the solid 

and dashed 2 it and 3 cr curves in Figures 2a, 2b, and 2c are 
substantially the same. Therefore it is likely that the final 
properties after dissipation would also be the same. 

Finally, we consider the density-contrast model, in which 
survival requires a minimum density contrast between a globu- 
lar cluster and the parent galaxy. Since high-o- parents are 
smaller and denser (see Fig. 2), protoglobular perturbations 
within them must be smaller and denser to survive. For 
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Fig. 3.—Distribution functions for the quantity <5 = ÖM/M for 106 M0 spherical volumes in a CDM universe. The dashed curve refers to the universe as a whole, 
and the horizontal axis is in units of this global a. The solid curves show the conditional distribution of ô for concentric spheres embedded within 1012Mo spherical 
fluctuations of overdensity, op, as shown. There is a mean offset in ô that is proportional to parent galaxy overdensity, and the (7 of the conditional distribution is 
reduced. 

example, if the contrast threshold is assumed to be fixed, in a 3 
a parent, protoglobulars would have to be smaller by a factor 
of 3 and denser by a factor of 27. This strong dependence on 
the nature of the parent is not predicted in the other two cases. 

Comparision of all three models with observations is pos- 
sible provided one is willing to adopt a theory for the origin of 
galaxy Hubble types under CDM—for example, that suggested 
by BFPR. These authors hypothesized that Hubble type is 
monotonically related to overdensity such that spirals, SO’s, 
and Es arise from 1 <r, 2 cr, and 3 a fluctuations respectively. 
Actual globulars seems to show little evidence for any varia- 
tion in properties with Hubble type (Harris 1987) although the 
data are skimpy. This lack of any correlation with Hubble 
type is consistent with either the fixed-density or fixed- 
probability models but not the density-contrast model. 

Figure 2 can also be used to predict whether and how the 
mass fraction of globulars should vary with Hubble type. In 
the fixed-probability scenario, the number of surviving globu- 
lars by hypothesis is a constant fraction by mass in all regions, 
and there is thus no predicted dependence of globular mass 
fraction on Hubble type. In this model, globulars should be 
found with equal probability in galaxies, in intergalactic space, 
and even in voids if there is any matter there today. In the 
fixed-density model, there is a strong trend with ambient 
density in the sense that protoglobulars should be more fre- 
quent in early-type (high-a) galaxies. For example, Figure 2c 
suggests that 2.8 a peaks reduce to 2 a locally in the centers of 
Es and would thus be nearly 9 times more frequent there. 
Conversely, globulars in low-density regions outside galaxies 
would be exceedingly rare. Finally, the density-contrast model 
predicts fewer globulars in early-type galaxies, as Figure 3 

shows that the density contrast between globular and parent 
galaxy is lowest in those regions, and survival there would be 
correspondingly impaired. Survival would actually be 
enhanced in intergalactic space in this model. 

Counts of globulars versus Hubble type are not extensive, 
but those that exist show substantially more globulars in early- 
type galaxies. The data as of 1979 are presented in Figure 1 and 
have been summarized more recently by van den Bergh and 
Harris (1982). These authors conclude that the specific fre- 
quency of globulars is 5-10 times larger in Es than in spirals 
and is lowest in spirals with little or no spheroid. These 
numbers are calculated relative to total galaxy light; the 
number relative to spheroid luminosity alone is more constant. 
This strong preference for early-type galaxies clearly favors the 
fixed-density model. 

A final point concerns the effect of biased galaxy formation. 
If the average spiral comes from a 2 a rather than a 1 cr fluctua- 
tion as assumed above, the CDM spectrum must be renorma- 
lized as in Figure 2d to maintain consistency with the 
amplitude of the galaxy-galaxy correlation function at 5/i-1 

Mpc (Davis and Peebles 1983). The previous 1 a curve 
becomes 2 a, 2 a becomes 4 a, and so on. Likewise, the a levels 
of embedded perturbations also scale by a factor of 2. To pre- 
serve baryonic collapse factors precisely equal to those stated 
previously would now require clusters to originate from higher 
cr perturbations, so high that globular clusters would be essen- 
tially nonexistent (see lower cross in Fig. 2d). Alternatively, if 
clusters still arise from 2.8 c perturbations, which preserves the 
observed mass fraction (upper cross), the required baryonic 
collapse factors double to roughly 20, and the low rotations 
of globulars become more difficult to explain. It should be 
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remembered that structural parameters are known only for 
Milky Way globulars and that globulars in other galaxies 
might lie higher or lower in Figure 2. Nevertheless, it appears 
that the low rotation of globulars would be somewhat more 
difficult to account for with biased CDM. 

d) Radial Distribution within Galaxies 
A third comparison involves the radial distribution of globu- 

lar clusters within galaxies compared to the dark matter and to 
spheroid field stars. If globulars are completely pregalactic, 
they would have collapsed dissipationlessly during galaxy for- 
mation along with the dark matter. Any difference between the 
two distributions today must therefore reflect a difference in 
the initial distributions prior to collapse. In certain scenarios 
such a difference is expected on theoretical grounds. As noted 
above, with a flat spectrum as in cold dark matter, high-<7 
peaks are expected to be statistically less common in the outer 
parts of protogalaxies (Bardeen et al 1986). Depending on 
exactly how protoclusters survive, the final distribution of pri- 
mordial clusters could be somewhat more (or less) centrally 
concentrated than the dark matter distribution. 

The magnitude of the effect can be estimated using the sta- 
tistical methods referred to earlier. For the fixed-density model, 
Figure 2 shows that 2.8 a reduces to 2.6 cr at the center of a 1 <7 
parent and to 2.3 <7 within a 2 cr parent. The latter value would 
be typical for a spiral galaxy like the Milky Way, assuming 
biased galaxy formation. These reductions in turn imply that 
protoglobular perturbations would be 1.9 and 3.9 times more 
frequent respectively in the centers of the two types of parent 
galaxies. The radial density profile of the cluster system and 

that of the dark halo should thus diverge by roughly the same 
factor over the distance from the centers to the edges of the 
galaxies. 

For the fixed-probability case, the number density of proto- 
globulars by hypothesis is the same everywhere, and the cluster 
and dark-matter profiles should agree at all radii. Finally, the 
density-contrast model predicts more surviving protoglobular 
perturbations at the edges of galaxies, and the cluster profile 
should be shallower than that of the dark matter. 

A crude comparison of the two density profiles for our 
Galaxy is shown in Figure 4. We have slightly modified Zinn’s 
(1985) halo cluster sample to reduce contamination by disk 
clusters by moving his dividing line from [Fe/H] = —0.8 to 
— 1.25. To reduce noise, we show the cumulative radial dis- 
tribution for the revised halo sample (solid line). This is com- 
pared to two models for the dark matter: a traditional 
isothermal sphere (short dashes) and a halo infall model of 
Blumenthal et al (1986) that takes into account dark matter 
compression by baryonic infall (long dashes; see legend for 
details). The models and the cluster data have been normalized 
at a radial distance of a few kpc. 

Relative to the isothermal sphere, the halo infall model is 
more centrally concentrated (i.e., has a steeper slope), but both 
models fit the inner part of the cluster distribution adequately 
within the errors. However, beyond R æ 10 kpc the observed 
clusters fall well below both models, indicating a significant 
paucity of clusters relative to dark matter in the outer parts of 
the Milky Way. A radius of 25-20 kpc is a reasonable 
minimum radius to assume for the dark matter halo, and by 
that point the divergence amounts to about a factor of 4. Since 

ô 
Fig. 4.—The cumulative radial distribution of Zinn’s halo clusters in the Galaxy compared to two models for the dark matter. Zinn’s halo sample has been 

trimmed at [Fe/H] — —1.25 to eliminate a few possible disk clusters. The two DM models are the standard isothermal sphere (short dashes) and a model showing the 
effect of baryonic infall on the DM distribution (Blumenthal et al. 1986). Relative to either DM distribution, there is a distinct paucity of observed globular clusters in 
the outer part of the Galaxy. 
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these are cumulative curves, the divergence in the space density 
profiles is somewhat larger still. 

Once again, only the fixed-density model correctly predicts 
the steeper fall-off of the globular clusters. Furthermore, the 
model fits quantitatively only if the Milky Way is a 2 <j or so 
fluctuation, and hence the data are somewhat more consistent 
with biased galaxy formation, in contrast with the argument 
above concerning low cluster rotations. 

Since the spheroid stars are almost certainly a highly dissi- 
pative system, all three models would suggest that primordial 
clusters should be significantly less concentrated relative to 
them. On balace this prediction is consistent with present evi- 
dence. Data on the Milky Way spheroid stars are too poor to 
use, but radial distributions in several ellipticals (Harris and 
Racine 1979; Harris and van den Bergh 1982; Forte, Strom, 
and Strom 1981 ; Lauer and Kormendy 1987) indicate that the 
clusters are on average less concentrated than the spheroid 
light, in some cases markedly so. The interpretation is still 
somewhat uncertain owing to possible dynamical friction and 
other effects which could preferentially destroy clusters in the 
inner regions of galaxies. However, Harris (1986) concludes 
that these effects are generally small over most of the radial 
profiles. 

e) Globular Cluster Luminosity Function 
A final comparison can be made with the observed lumin- 

osity function of globulars in the Local Group and Virgo 
cluster. This function is roughly Gaussian in magnitudes, with 
<Mk> = —7.3 and o = 1.2 mag (Harris and Racine 1979). For 
Mv/L = 1.6 (Illingworth 1976), this corresponds to a logarith- 
mic mean baryonic mass of ~ 105 M0 and a total initial mass 
of ~ 106 M0 before any tidal stripping. 

The existence of the lower mass cutoff at 105-6 M0 can 
naturally be explained as the Jeans mass (Peebles and Dicke 
1968), or alternatively as the threshold mass for efficient 
baryon dissipation and cooling (BFPR). The mass cutoff on the 
upper end, however, requires a separate explanation. To the 
extent that hierarchical clustering in this mass range is basi- 
cally a self-similar process, it alone cannot preferentially select 
any particular mass value. However, since the number of 
globulars left behind today depends critically on survival, it 
seems to be possible to couple this idea with hierarchical clus- 
tering in order to provide a natural decline at higher masses. 
The cluster mass fractions in Figure 1 suggest that roughly 
0.25% of all low-mass perturbations survive as globulars. In 
purely self-similar clustering, this percentage would remain 
constant at each level of the clustering hierarchy. Since at each 
level of the hierarchy the number of objects of a given mass, 
dN(M)/d log M, scales as M_1, we expect the number of sur- 
viving objects to scale likewise. Recalling that M oc Lv for con- 
stant M/L, and that 0(MK) = dN(Mv)/dMv, we have 

= const oc M ~1 oc LF ~1 , (1) 
d log M 

and also therefore 

N(M)ocLÿ1. (2) 

These expressions should be valid on all mass scales much less 
than a galaxy mass, M 1012 M©, where the clustering is 
nearly self-similar. Note that in deriving equations (1) and (2), 
we have not used the usual multiplicity function, as our 
hypothesis is that clusters of different masses are the densest 
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survivors from successive stages of the hierarchy, which is a 
diachronic concept. The multiplicity function is a snapshot of 
the mass distribution of fluctuations that exist at a given epoch 
and is a synchronic concept. 

The above scenario for the luminosity function is compatible 
with either the fixed-density or fixed-probability models 
because, in both of them, the threshold cr for survival is con- 
stant at each mass level in the hierarchy, and the percentage of 
mass surviving in globulars at each stage is therefore also con- 
stant. The predicted luminosity function of the density- 
contrast model is not so clear, but it, too, could plausibly yield 
similar results. 

Relations (1) and (2) are compared to observed luminosity 
functions in Figure 5. They are shown as the two straight lines, 
normalized to fit at the peaks. The data there have been gener- 
ously communicated by William Harris and represent the most 
recent update of figures shown by Harris and Racine (1979). 
Open circles represent Local Group globulars, and closed 
circles data from Virgo giant ellipticals. 

The relations fit the data fairly well within two magnitudes 
above the peak but predict too many clusters brighter than this 
level. For a total Local Group cluster population of ~450 
globulars, relation (1) predicts 11 objects between Mv = —9.8 
and —11.3, compared to an observed population of only five. 
The Poisson probability of seeing so few objects is 0.04. Since 
the predicted objects would have about the same density as 
normal globular clusters but have 10-30 times more mass, they 
would be easy to detect if present. The statistics for the Local 
Group are sparse but are supported by the Virgo sample. 

One plausible explanation for the deficit of brightest globu- 
lars is the preferential effect of dynamical friction on higher 
mass objects, causing them to spiral into the central region of 
galaxies (Tremaine 1976; Quinn and Goodman 1986). Using 
equation (8) of Tremaine (1976), we estimate that the spiraling- 
in time from a distance of 10 kpc in M31 is less than a Hubble 
time for clusters above 2 x 106 M0. Allowing for the fact that 
perhaps one-half or two-thirds of this mass might today be the 
inner remains of a dark halo, we find that this mass corre- 
sponds to Mv & —9 mag, which is about where the M"1 func- 
tions begin to depart from the data in Figure 5. If a little boost 
from dynamical friction is allowed, we conclude that, broadly 
speaking, any of the three survival models is able to produce a 
luminosity function with an upper cutoff like that observed. 

in. DISCUSSION 
The results of the preceding comparisons are summarized in 

the form of a truth table in Table 3. Interestingly, the model 
that consistently emerges as best is the fixed-density model, in 
which globulars arise from perturbations over a fixed density 
threshold that is constant everywhere in the universe. Unfor- 
tunately, this is one of the two models that is not well justified 
on physical grounds. Conversely, the model in which there is at 
least an attempt to incorporate a physical effect—the density- 
contrast model—is the one that fares worst in almost every 
test. 

In addition to structural properties and dependence on 
Hubble type, the metallicities of globular clusters provide a 
further stringent test of cluster models. As already noted, the 
radial gradient problem in Milky Way clusters is solved by 
Zinn’s isolation of the disk component from the halo com- 
ponent. This stratagem might work for other spirals, but it 
clearly will not work for Es, which have no disk. So far the only 
E with a known metallicity gradient is M87 (Strom et al 1981). 

ROSENBLATT ET AL. 
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Mv 

Fig. 5—The differential and integral luminosity functions of globular clusters in the Local Group {open circles) and Virgo Cluster (dots). N{MV) is the total 
number of globulars brighter than MK, with Virgo normalized to the Local Group. 0(MK) is the differential function dN/dMv. The data in this figure were generously 
communicated by William Harris and represent the most recent update to two figures shown in Harris and Racine (1979). The predicted relationsN(MV) « M~1 and 
0>{MV) » M 1 of eqs. (1) and (2) are shown as the straight lines. The equations fit the data well for Mv > —9 but depart from them above this level. 

However, if globular gradients prove to be a general phenome- 
non in E’s, this would show that at least some of the globulars 
in ellipticals are not pregalactic. 

Leonard Searle (private communication) raises another 
point. The mean metallicity of M31 globulars is considerably 
higher than those in the Milky Way, and this is true even if the 
sample is restricted to clusters with spheroid kinematics. How 

this might happen in a purely pregalactic picture is so far 
unexplained. 

This point is an example of a more general problem: what 
controls the final metal abundance of each cluster in the prega- 
lactic picture, and how does the metallicity within each cluster 
manage to be so uniform ? If globulars really are the very first 
structures in the universe to form, by definition there can be no 

TABLE 3 
Summary of Model Successes'* 

Observation 
Fixed- 

Density 
Fixed- 

Probability 
Density- 
Contrast 

Globular structural properties vs. Hubble type  Same in Same in 
all types all types 

Cluster mass fraction vs. Hubble type     Higher in Same in 
early types all types 

Radial distribution of globulars in galaxies relative 
to~dark matter    More Same 

concentrated 
Globular luminosity function   Fairfith Fairfitb 

Strongly 
dependent on type 
Lower in 
early types 

Less 
Concentrated 
Fair fit (?)c 

a Successes are denoted by italics. 
b Provided some dynamical friction is invoked to remove brightest clusters. 
c Prediction less certain than the other two models. 
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prior generations of stars to preenrich and homogenize the 
interstellar medium. For this reason, it is hard to avoid 
returning after all to Peeble’s conclusion that the clusters must 
be self-enriched. To minimize the internal abundance spread 
then requires a variable IMF such that the first stars were 
exclusively massive ones that enriched and homogenized the 
gas. After this initial phase, there must have been a rapid tran- 
sition to a normal IMF, after which the cluster as we see it 
today was formed. Adjusting the IMF in this way can minimize 
the internal abundance spread but still does not answer what 
controls the final metal abundance of each cluster, or why this 
varies from cluster to cluster or from galaxy to galaxy. 

It might appear tempting to try to merge the pregalactic and 
secondary theories and thereby capture the best features of 
both. For example, one might argue that primordial CDM 
fluctuations act as seeds for the Fall-Rees cooling instability or 
for clouds in the cloud-cloud collision model. Such models 
may work well dynamically, but they do not solve the metal- 
licity problem any more convincingly than the purely pregalac- 
tic picture. For, unless we want to adopt the self-enriched 
model with its variable IMF and other questions, we are still 
left with the need to enrich the ISM homogeneously to high 
levels on cluster-sized scales. This implies a prior generation of 
stars, and hence a prior generation of collapsed fluctuations. It 
is then difficult to continue to identify globular clusters with 
the seeds of the first generation to collapse, which is the essence 
of the pregalactic picture. 

IV. SUMMARY 

We have re-examined the Peebles-Dicke hypothesis for pre- 
galactic globular cluster formation in the light of Zinn’s dis- 
covery of a two-component globular population in the Milky 
Way. Although the calculations explicitly assume a cold dark 
matter density fluctuation spectrum, qualitatively the results 
would apply to any random-phase theory with a flat spectrum 
in the range 106-1012 M0. Peebles (1984) has previously con- 
sidered such a picture, but we amend his results slightly by 
assuming that only high-a fluctuations of 105“6 M0 survive as 
globular clusters. This assumption seems more intuitive and 

also yields smaller, denser structures that agree better with 
observations. 

To match the mass fraction of galaxies in globulars requires 
that perturbations above roughly 2.8 <7 survive as globulars. To 
match the observed radii and densities of clusters then requires 
baryonic collapse factors of order 10. Although there is no 
known mechanism whereby structures can dissipate by such a 
large factor and still not rotate strongly, the magnitude of the 
problem is not much worse than for elliptical galaxies. Perhaps 
a similar mechanism to suppress angular momentum operates 
in both cases. 

An attempt is made to compare the theory with the observed 
properties of globular clusters. The results are found to depend 
sensitively on the precise survival scheme for globulars that is 
assumed. The scheme that seems to work best is the assump- 
tion that all fluctuations above a fixed threshold a that is 
globally defined over the whole universe survive as globulars. 
This means that the absolute value of the density threshold 
decreases somewhat with cluster mass but is independent of 
local environment. For a density threshold level of roughly 2.8 
a, adequate fits are achieved to cluster radii and densities, the 
mass fraction of globulars versus Hubble type, the radial 
density profiles of globulars within galaxies, and the globular 
luminosity function. 

On the negative side, this particular rule for globular sur- 
vival seems rather arbitrary and lacks a convincing physical 
justification. Another major question is globular cluster metal- 
licities: how can clusters be so homogeneous internally yet 
show such large scatter from cluster to cluster and from galaxy 
to galaxy? It is tempting to try to merge the pregalactic and 
secondary scenarios to solve these problems, but exactly how 
to do this and preserve the identification with true primordial 
density fluctuations is not clear. 

We conclude that the pregalactic model as applied to Zinn’s 
pure halo population achieves some tantalizing successes but 
still presents some important, unanswered questions. 

We would like to thank Wm. Harris for communicating his 
unpublished data and Michael Fall for his comments on the 
first version of the manuscript. This work was partially sup- 
ported by NSF grant AST 87-02899. 
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