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ABSTRACT 
The intensity of soft X-rays (0.2-2 keV) emitted by some active galaxies is observed to vary on short time 

scales, from tens of minutes to days. In low-luminosity sources, these variations may be due in part to the 
motions of dense clouds in the broad-line region. The clouds partially block our line of sight to the X-ray 
emitting source, thought to be the inner regions of an accretion disk around a central black hole. 

We derive the autocovariance function of the uncovered area for a model of a circular source region and 
circular, Poisson-distributed, moving clouds with random directions and a given speed. We assume that the 
clouds are optically thick in the energy band used, so that the flux received is directly proportional to the 
uncovered area. Comparison of this model with soft X-ray light curves and measurements of the broad-line 
cloud covering fraction yields estimates of the sizes of the clouds and the source. Measurements of the flux of 
the broad component of H/?, or of the total X-ray flux, can both be used to estimate the value of the electron 
density in the broad-line clouds. We show that our results are rather insensitive to the assumed radial depen- 
dence of the surface brightness of the source, but are quite sensitive to a large dispersion in cloud sizes. The 
effect of finite optical depth of the clouds is also important. Although the current literature on soft X-ray light 
curves of active galactic nuclei is sparse, this formalism will be ideal for the analysis of data obtained with 
EXOSAT and AXAF. 
Subject headings: galaxies: nuclei — galaxies: Seyfert — galaxies: X-rays — X-rays: sources 

I. INTRODUCTION 
A large fraction of bright QSOs, BL Lac objects, and Seyfert nuclei (hereafter collectively called active galactic nuclei, or AGNs) 

have been detected at X-ray energies (e.g., Elvis et al 1978; Tananbaum et al 1978; Cañizares et al 1986). Indeed, X-ray emission 
may be one of the more universal properties of AGNs (Elvis and Lawrence 1985). 

The observed X-ray fluxes of many AGNs vary, with typical time scales that range from minutes to days and longer, depending on 
the object’s type (Barr and Mushotzky 1986; Cañizares et al 1986; Warwick 1986; Pounds and Turner 1987). Intrinsically luminous 
QSOs usually have long periods. Narrow emission-line galaxies, on the other hand, vary on time scales of days (Mushotzky 1982), 
and a few low-luminosity Seyfert 1 nuclei such as NGC 6814 and NGC 4051 vary over periods of -0.1-1 hr (Pounds 1979; 
Tennant et al 1981; Tennant and Mushotzky 1983; Lawrence et al 1985). Significant changes have been seen over time scales as 
short as 1 minute in certain luminous BL Lac objects (e.g., H0323 + 022, Feigelson et al 1986; O J 287, Worrall et al 1982), but they 
are probably related to beaming of the radiation (Blandford and Königl 1979; Phinney 1985) rather than to intrinsic variations of 
the X-ray luminosity. Beaming is unlikely to be important in type 1 Seyfert galaxies, whose X-ray fluxes are thought to vary due to 
changes in the rate at which a central black hole accretes matter from a surrounding disk (see, for example, Lightman, Giacconi, and 
Tananbaum 1978). 

The variability of soft X-rays (0.2-2 keV) in some low-luminosity type 1 Seyfert galaxies may partly be due to another mechanism: 
dense clouds of gas in the broad-line region (BLR) moving across our line of sight to the X-ray emitting portions of the accretion 
disk (Reichert, Mushotzky, and Holt 1986, hereafter referred to as RMH; Lawrence and Elvis 1982; Halpern 1984). As the clouds 
move, the covering fraction changes stochastically. Evidence for partial covering of the X-ray source has been deduced from soft 
X-ray spectra by Holt et al (1980) and Reichert et al (1985). 

This variability is not associated with changes in the intrinsic luminosity of the AGN, yet it may dominate the observed 
variability in some objects. If so, the soft X-ray light curve can be used, together with suitable models, to constrain some of the 
physical and geometric properties of the clouds and of the central source of X-ray energy. In this paper we consider the mathemati- 
cal aspects of this problem and present formulae to help in the interpretation of future observations of soft X-ray variability. RMH 
have already discussed the two limiting cases of many small clouds on a larger source, and of one large cloud on a smaller source. 
Here we deal with situations between these two extremes. 

In the next section we describe the basic principles behind this idea. Sections III and IV derive the autocovariance function of the 
uncovered area for circular clouds, moving with fixed speed, in uniformly distributed directions, from Poisson-distributed centers 
over a circular source in the plane. The derivation is the counterpart, for dynamic caps, of the variance formulae for fixed caps in the 
plane that go back to Moran and Fazekas de St. Groth (1962) and which underlie the elegant theory of random mosaics developed 
by Hall (1985). In § V, the closed-form formulae are evaluated over a range of covering fractions, cloud sizes, and X-ray source sizes, 
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providing the basis from which to estimate these quantities from observations of the soft X-ray variability of specific objects. 
Electron densities can also be calculated from observations of the flux of the broad component of Hß, or of the total X-ray flux. 
Section VI analyzes the sensitivity of such estimates to violations of the geometric assumptions. We summarize our results in § VII. 

II. MOVING CLOUDS AND SOFT X-RAY VARIABILITY 

A distinguishing feature of the optical and ultraviolet spectra of QSOs and Seyfert 1 nuclei is the presence of broad, permitted 
emission lines; see Osterbrock and Mathews (1986) for a recent review. The widths are almost certainly produced by bulk motions 
of line-emitting gas, typical speeds being ~3000 km s"1. Comparison of the observed luminosities of the emission lines with the 
results of photoionization models shows that the gas occupies only a small fraction of the total volume of the BLR in which it is 
located (e.g., Davidson and Netzer 1979). Thus, the gas is probably distributed in small “clouds” around the central source of 
ionizing radiation. The fraction of the sky covered by these clouds, as viewed by the central object (thought to be a massive black 
hole), must be small (<5%-10%) in luminous QSOs, since few high-redshift QSOs exhibit a dramatic cutoff in their X-ray spectra 
below ~3 keV. Low-luminosity AGNs [L^-IO keV) < 3 x 1043 ergs s_1], on the other hand, typically have much larger cover- 
ing fractions. In some cases these approach unity, as is evidenced by the strong absorption of soft X-rays in their X-ray spectra 
(Lawrence and Elvis 1982; Mushotzky 1982; Reichert et al 1985). 

Based on the absence of prominent forbidden lines and the presence of semipermitted lines, the gas density within the clouds has 
generally been quoted as n « 109-1010 cm-3. This argument may be vitiated by collisional effects in the optically thick regime, 
making the true value at least one order of magnitude higher (see, for example, Puetter 1986 and references therein). X-ray spectra of 
AGNs (Reichert et al 1985; Halpern 1984) and photoionization models of the BLR (Kwan and Krolik 1981 ; Halpern 1982) indicate 
that the clouds always have column densities of NH ä 1022-1023 cm“2. Hence, if the clouds have density w ä 5 x 109 cm“3, their 
radii are 1012-1013 cm, independent of the luminosity of the AGN. A range of lO^-lO14 cm, however, is not excluded by 
observations. 

How do these radii compare with the expected sizes of the X-ray emitting regions? The X-rays are believed to come from the 
hottest, innermost portion of the accretion disk, within distances of - 5RS (e.g., Shakura and Sunyaev 1973), where Rs = 2GM/c2 is 
the Schwarzschild radius of the putative black hole. If all AGNs accrete matter at their Eddington limit, as may be the case in 
luminous QSOs (Malkan 1983), then M ä (8 x 105)L44 M0, where the bolometric luminosity is L44 x 1044 ergs s“1. Thus, the 
radius of the X-ray source is d « 1012L44 cm. If AGNs actually accrete at sub-Eddington rates (Wandel and Yahil 1985; Wandel 
and Mushotzky 1986), the central mass and the size of the disk must both be correspondingly larger. (Note, however, that Bassani, 
Dean, and Sembay [1983] rederive the Eddington limit, taking into account various relativistic effects and beaming, and find a 
higher value than that obtained in the usual manner.) 

These calculations show that the X-ray emitting region of low-luminosity sources may be comparable to, or smaller than, a 
broad-line cloud, as in the limiting case of small source and large cloud treated by RMH. A cloud of radius 1012 cm, for example, 
moving across our line of sight with a speed of 3000 km s“ \ would traverse a source of comparable size(L44 ä 1) in 1 hr, occulting 
a fraction of it that depends on the alignment between the source and the cloud. A less luminous AGN, with a smaller disk, would be 
occulted more rapidly, and thus would have a greater probability of being completely eclipsed by a single passing cloud, with a 
correspondingly higher amplitude of fractional flux variation. An example of such an event may be the 2000 s intensity dip observed 
in NGC 4151 by Whitehouse and Cruise (1985). Very luminous QSOs, on the other hand, have large disks (1014-1015 cm), so an 
individual cloud cannot block a great fraction of the X-rays. Any variability is the result of the combined contributions of many 
small clouds, as in the small-cloud limit treated by RMH. Indeed, we find the amplitude of fractional variation to be smallest, and 
the time scales longest, in the most luminous QSOs (Lawrence and Elvis 1982; RMH), as expected if this mechanism is dominant. 
(Of course, the intensity of AGNs may also vary for other reasons ; see § I.) 

The nature of the cloud trajectories in the BLR is not known with certainty. Velocities are measured along our line of sight. We 
have equated them to velocities across our line of sight, which is appropriate if the clouds move in Keplerian orbits. A component of 
infall or outflow can be accommodated simply by reducing the value of our velocity parameter, v. Under the assumption of circular 
Keplerian orbits, the ratio of cloud orbital radius to source radius is - 1000 for velocities of 3000 km s“1. The nearest approach of 
clouds to the source cannot be very much less, even if eccentricity, infall, or outflow are present. Such distances from source to BLR 
render the curvature of any orbit as projected across our line of sight entirely negligible and permit the motions to be treated as 
rectilinear in projection. This simplification is convenient, although not necessary, to the methods presented in § IV. In order to 
preserve the Poisson hypothesis, we also ignore the possibility that a given cloud might be sufficiently long lived to pass through our 
line of sight more than once. This is reasonable, since a number of processes can destroy clouds on a dynamical time scale (e.g., 
Krolik, McKee, and Tarter 1981 ; Osterbrock and Mathews 1986). 

The optical depth, at frequency v, of hydrogen with a column density of NH cm“2 is given by (Longair 1981) 

( hv Y8/3 

Ty = 2 x 10 22\J^J N* ' 

Thus, T ä 1 at 2 keV for a column density of 3 x 1022 cm“2. We will assume in our analysis that the clouds are completely opaque 
to soft X-rays. The relevant band for observations will therefore be defined at the low-energy end by absorption within our own 
Galaxy along the line of sight, and at the high-energy end by the measured column density of the broad-line clouds. 

Of course, the broad-line clouds are largely transparent to hard X-rays because NH is much less than the Compton column 
density of ~ 1025 cm“2. In this regard, X-ray spectra of NGC 4151 (Barr et al. 1977; Holt et al. 1980) and MR 2251 —178 (Halpern 
1984) have shown dramatic changes in the soft X-ray flux between measurements separated by a year, while the hard X-ray flux 
remained unchanged. (The latter object, however, is a rather luminous X-ray source; it goes against the general trend discussed 
earlier. Also, the case for NGC 4151 has become more uncertain with recent EXOSAT observations; see below.) This provides some 
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evidence against intrinsic variation of the X-ray source, and supports the idea of variability in covering fraction by broad-line 
clouds. Furthermore, M81 has exhibited soft X-ray variability on time scales of 600 s to several years (Barr and Giommi 1985; Barr 
et a/. 1985), while the flux of the broad component of Ha remained steady (Filippenko and Sargent 1988), again suggesting that the 
ionizing radiation does not vary intrinsically. On the other hand, Lawrence et al. (1985) show that the X-ray light curves of 
NGC 4051 at 0.04-2 keV and at 2-6 keV have a very high correlation, implying that the rapid variability in this lr.w-1nminr.sity 
source is probably intrinsic. A similar correlation between hard and soft X-ray light curves is seen in MCG 6-30-15 (Pounds and 
Turner 1987). The relative contributions of extrinsic and intrinsic variability are certainly not the same in different objects. 

The case of NGC 4151 deserves further discussion. Although Holt et al. (1980) fitted the X-ray spectrum with a power law, 
absorbed by broad-line clouds covering 90% of the source, more recent EXOSAT measurements have shown that this picture is' 
incomplete. Pounds et al. (1986; see also Perola et al. 1986) model the spectrum with components having two different absorbing 
columns, and an additional soft X-ray excess seen in the low-energy telescope (0.15-2 keV). The soft component did not vary during 
a period when the 2-10 keV flux changed by a factor of 3, implying that it arises from a physically distinct region of the AGN. Soft 
X-ray excesses are found in a large variety of AGNs (e.g., Branduardi-Raymont 1986; Wilkes and Elvis 1987; Filippenko and 
Halpern 1988), and must be taken into account in a complete model of partial covering and soft X-ray variability. Here we will 
simply assume that the soft X-rays all arise from the central source. 

The average radius of clouds, as noted above, is uncertain to a factor of at least 10, and perhaps as much as 1000. In most AGNs, 
the radius of the X-ray source is also uncertain, since no direct measurements of the central black hole’s mass have yet been made! 
We shall show below that predictions of cloud radius and source radius can be obtained with our model from accurate measure- 
ments of the observed autocovariance of the soft X-ray light curve, if the flux variations are entirely due to the motion of clouds 
across our line of sight. These predictions require a measurement of the mean covering fraction from the soft X-ray absorption 
spectrum (e.g., Holt et al. 1980, Reichert et al. 1985), a method of quite limited precision, as we saw above. We also require some 
assumption about the extent of randomness in cloud sizes, as discussed in § VI. Finally, it is assumed that the broad-line clouds are 
completely opaque to soft X-rays; the effect of finite optical depth can be taken into account without much difficulty, however, and 
will be discussed in § VI. 

The autocovariance function allows one to define an unambiguous index of the time scale of variability, but it requires a long, 
well-sampled, and uninterrupted light curve (Schwartz 1987). Although Lawrence et al. (1987) have shown that the power spectrum 
of the soft X-ray light curve of NGC 4051 is a power law, implying that one cannot define any characteristic time scale of variability, 
we saw in § II that the variability of this source is intrinsic. Objects in which an unambiguous time scale is absent (i.e., the variability 
is fractal), or in which there is correlated soft and hard X-ray variability, cannot easily be analyzed in the manner described here. 

If, in addition to the soft X-ray light curve, one has a measurement of the flux in the broad component of H/i, one can use the 
method of Wandel and Yahil (1985) in conjunction with our model to derive an electron density (ne) in the broad-line clouds. Of 
course, one must be careful to keep in mind the uncertainties and assumptions associated with this technique (Filippenko 1988). 

All soft X-ray light curves available in the literature are of insufficient quality for immediate realization of these goals. With the 
demise of EXOSAT, it is currently difficult to obtain large quantities of new observational results to compare with the formalism 
presented here. On the other hand, the Japanese Ginga and Soviet Kvant X-ray telescopes may be capable of obtaining the necessary 
data for bright AGNs. Moreover, suitable light curves were obtained with EXOSAT for a few objects, and are starting to be 
published (e.g., Lawrence et al. 1987; Warwick 1986; Pounds and Turner 1987). Finally, development and criticism of estimation 
methods is important for planning observational strategies, before new X-ray satellites such as ROS AT and AXAF are launched. 

III. THE POISSON MODEL 
The model we propose treats the centers of the clouds projected onto the plane perpendicular to our line of sight to the AGN, at a 

fixed point in time, as a statistical Poisson process. The content of the Poisson specification is twofold. First, the locations of the 
(projected) centers are independently and uniformly distributed in the plane. Second, the total number of centers in a given region is 
not fixed; rather, it is a random variable with a Poisson distribution. These assumptions together entail the desirable property that 
the number of centers in any given subregion is independent of the number in any disjoint subregion at a fixed time. 

Under the reasonable hypothesis that the actual cloud centers are distributed independently and isotropically around the AGN, 
we require two conditions to realize the Poisson limit for the projected centers. The first is that the curvature of the orbits of the 
broad-line clouds be negligible in the region near our line of sight, thereby guaranteeing the uniform distribution of centers on the 
plane. That is, |hnb brightening due to the fact that we are looking at a spherical distribution in projection should be small over 
the region containing those clouds that might move across our line of sight in the relevant time interval. If the innermost part of the 
BLR lies 1000 source radii from the source (§ II), the resulting nonuniformity in the distribution of clouds 10 times larger than the 
sources does not exceed 1 %. 

The second condition pertains to the randomness of the number of clouds. The region containing clouds that might cover the 
source in the relevant time interval occupies less than 10“4 of the celestial sphere as viewed from the AGN. For plausible values of 
mean covering fractions, the random number of centers lying in such a small subregion has a distribution indistinguishable from a 
Poisson distribution, even if the total number of clouds in the BLR is assumed to be constant on time scales of days or weeks. 

With these conditions, we can go through the standard derivation of the mean covering fraction, f. Suppose that clouds, whatever 
their shape, are randomly oriented and have cross sections whose expected area equals the area of a circle of radius r. Imagine 
placing N cloud centers independently and uniformly on the surface of the celestial sphere, of area jrf, around the AGN. Pick a point 
P on the surface. There is a probability p = nr2¡sí that the first cloud covers the point P, and a probability 1 - p that it does not. 
Since the clouds are placed independently, the probability that neither the first nor the second clouds cover P is (1 - p)2. Given N, 
the probability that all N clouds miss P is therefore (1 — pf1. If p is small and -the number of clouds is constant and large, this 
probability can be approximated ase~f,'v + tO(e-

Np212). If the number of clouds is random and Poisson-distributed, this probability, 
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on average, is exactly equal to e pN, provided N is then interpreted as the mean number of clouds. In either case, the mean covering 
fraction, equal to the probability that an arbitrary point is not missed, may be taken to be 

/= 1 - e-™2”/-** = 1 - e~Xnr2 . (1) 

Here À = N/¿/ is the mean number of clouds per unit area—that is, the intensity of the Poisson process that deposits cloud centers. 
The covering fraction depends only on the product of À and the “ forbidden ” area nr2, from which cloud centers must be absent to 
avoid covering a given point. We emphasize that the observed energy band is assumed to be one in which the clouds are completely 
opaque, so that the flux is directly proportional to the uncovered fraction. The consequences of dropping this assumption are 
discussed in § VI. 

When the mean covering fraction is close to unity, the asymptotic theorems of Hall (1985) give approximations for the moments 
of the size and number of interstices between the clouds through which the X-ray source can be seen. When the covering fraction is 
large, the individual interstices are much smaller than the clouds, and the curvature of the segments that make up their sides 
becomes negligible. Thus, the distribution in area of the interstices is directly related to that of the polygons formed by placing 
random lines on a plane. To use such a relationship, we need to calculate how the intensity of the random line process depends on 
the radius of clouds and on the number of cloud centers per unit area. 

We derive the relationship for the simple case of uniform circular clouds of radius r. Imagine a point P in an interstice. How many 
clouds have boundaries that come within a distance p of P? In order for P to be in an interstice, the must be no cloud centers within 
a distance r—otherwise, P would be covered. Those clouds whose boundaries come within p of P, but do not cover P, have centers 
between r and r + p from P, in a ring of area 2nrp + np2. Multiplying this area by 2, the expected number of cloud centers per unit 
area, gives the expected number of cloud boundaries that come within p of P. In the limit of small p/r, the expected number is 2nXrp. 
We equate this to the expected number of lines in the analogous process of random lines in the plane. 

One can describe lines in a plane by the polar coordinates (p, 6) of the foot of the perpendicular from the origin onto the line. The 
intensity of the line process, k, is defined as the number of lines in a unit square of the (p, 6) phase space (Kendall and Moran 1963, 
§ 3). A Poisson line process is a set of random lines whose coordinates in this phase space are Poisson distributed. Since there are 
2nprk lines in our process within a perpendicular distance p of a given point, and within all 2n radians of angle, we have k = rL 

A rigorous version of these arguments is found in Hall (1985). He proves this result for clouds of arbitrary shape and a 
distribution of sizes, if 2nr in the above argument is replaced by 2nf, the expected value of the perimeter of a cloud. 

In the Appendix, we show that the expected area of the polygons formed between the lines of a Poisson line process of intensity k 
is 

This is reasonable, since k has the dimensions of number (of lines) per unit distance (from a point), and the expected area of 
interstices decreases as either the number density or the size of clouds increases. 

If ß is defined to be the radius of a circle of area equal to the expected area of an interstice, it follows that 

nßr = 1/2 = ^/N . (3) 

Using Equation (1) to solve for N in terms of the expected covering fraction, we obtain the ratio of typical interstice radius to the 
cloud perimeter parameter r as 

ß _ (r/r)2 

r ln [(1 —/)-1] 
(4) 

Given circular clouds all of the same radius, the numerator on the right-hand side is unity. 
For sources with high covering fractions, we can use equation (4) to estimate a period over which variability might be observed. 

This is the time scale on which one of the interstices can be obliterated by the motion of an adjoining cloud. As an example, imagine 
an AGN with a measured covering fraction of 90%. Equation (4) predicts interstices of radius ~0.4 times the radius of the clouds. 
We take as a typical cloud speed v æ 3000 km s" ^ If the broad-line clouds are 1011 cm across, an interstice could be covered in 2.4 
minutes. The corresponding time if they are 1014 cm across, at the other extreme of the suggested range (§ II), is ~4 hr. These values 
are within the time scales over which variability has actually been observed in some AGNs. 

Equations (1) and (3) also allow us to calculate the ratio of the expected number of interstices (N') to the expected number of 
clouds, a relation valid as long as AT is neither close to zero nor inordinately large : 

Nf f 
Ñ = (1 /T (5) 

For 90% covering, there would be around one-fifth as many interstices as clouds; for 99% covering, around one-twentieth. 
The covering fractions of AGNs are generally believed to range from ~0.05 in luminous QSOs to ~ 1 in low-luminosity Seyfert 1 

nuclei. It is well to bear in mind, however, that the expected covering fraction cannot be too close to unity if clouds are larger than a 
source, or the source would be observed in soft X-rays only on rare occasions. For instance, if the clouds and the source have equal 
size, a covering fraction of 99% could occur with an average of only 4.6 cloud centers in front of a source. Equation (5) then predicts 
-0.2 interstices on the source. This case oversteps the limits of validity of equation (5), but it is nonetheless clear that the source 
would be uncovered only a small fraction of the time. 
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IV. THE AUTOCOVARIANCE FUNCTION 
Detailed predictions of variability characteristics from our geometric model require computation of the autocovariance function, 

which gives the covariance between the area of the source uncovered by any cloud at time zero and the area uncovered at time i, as a 
function of t. Since the variance of the uncovered area, the mean square deviation from the mean, is independent of time, the 
autocovariance function is just the autocorrelation function multiplied by the variance. We assume that the clouds are completely 
opaque ; this assumption is relaxed in § VI. 

a) Notation 
We define the following parameters : 

The intensity parameter, or mean number of cloud centers per unit area, when the cloud centers are taken to be a realization 
of a homogeneous Poisson process in the plane perpendicular to our line of sight to the source. 

The radius of the assumed circular cross section of the X-ray source, whose uncovered portion is the variable of interest, 
radius of the assumed circular cross section of a given cloud, taken to be a random variable independent of the position 

of the cloud, with distribution given by the probability density function h(R). 
E—Expectation value. 
r = (ER2)1/2—The radius of a circle whose area equals the expected area of the cross section of a cloud. 
v The speed of the clouds. This is the same for all clouds, which are assumed to move in straight, randomly oriented paths 

across the plane. 
A and B—Points on the source, randomly chosen according to a radially symmetric density which reflects the X-ray surface 

brightness. The central source is assumed to be uniform in § V. We allow it to take other forms in § VI by varying the shape of the 
probability density function g(w), for the ratio w of distance between A and B to source radius d. 

I(A, t)—The indicator function of the event that the point A on the source is uncovered at time t; that is, let I take the value 1 
when A is uncovered, and 0 otherwise. 

b) Derivation 
The distribution of cloud centers in the plane, placed according to a Poisson process at time zero with a constant intensity 

parameter A, continues to be a Poisson process with the same constant A at any later time, as long as the direction of motion of each 
cloud is randomly chosen from a uniform distribution of directions independent of position. This fact follows from Liouville’s 
Theorem on the constancy of phase-space density under measure-preserving transformations in phase space (Goldstein 1980). Our 
phase space for a cloud’s initial conditions has two real-valued coordinates for position in the plane, and one coordinate on the 
half-closed interval [0, 1) giving the angle of the velocity vector relative to some fixed axis as a fraction of 27r radians. Were it 
necessary to take into account the curvature of Keplerian orbits in the BLR, the derivation could be carried out in a phase space of 
generalized Hamiltonian coordinates. 

For the case of a source with uniform surface brightness, the uncovered area at time zero is the surface integral J I(A, 0)dSA, and 
the uncovered area at time t is J I(B, t)dSB. Thus, the covariance between the areas uncovered at time zero and time t is 

cov = E J I(A, 0)I(B, t)dSA dSB - [e J I(A, 0)^ Je J I(B, . 

The expected uncovered area is the total area, nd2, multiplied by the mean covering fraction in equation (1): 

j/w. 0)dSA = EI(A, 0)dSA = j EI(B, t)dSB = nd2e 2 - — Xnr2 

(6) 

(7) 

The square of this quantity is the second term in the covariance. The first term requires finding an expression for EI(A, 0)I(B, t), the 
probability that every cloud fails to cover A at time zero and fails to cover B at time t. As in the derivation of/in § III, independence 
of cloud locations implies that 

E/(A,0)/(IU) = e-AK, (8) 

where V is the expected volume of the “ forbidden ” region of phase space—that is, the region of phase space which must be empty at 
time zero if a particular cloud, chosen at random, fails to cover A at time zero and fails to cover B at time t. 

Suppose a cloud with randomly selected radius R has its center at a point C at time zero and moves to a point D, distance vt from 
C, at time i, as shown in Figure 1. Then the cloud s coordinates fall in the forbidden volume of phase space either if C falls inside a 
circle of radius R around A at time zero, or if D falls inside a circle of radius R around B at time t. The total forbidden volume is the 
sum of tzR times 1 (since the condition on C does not restrict the angle coordinate), plus another nR2 for the region around D, 
minus the volume of the intersection of these two regions. It is the intersection which requires special attention. 

The distance from A to B is wd by definition, and let z be the distance from B to C. We define the angles 0 between the segments 
AB and BC, and ij/ between the segments BC and CD; see Figure 1. For a given z, a cloud can belong to the intersection only if the 
angle 6 satisfies an inequality based on the law of cosines : 

(z — wd cos 0)2 + (wd sin 6)2 < R2 . (9) 

The measure Q(z, wd, R) of this set of angles as a fraction of 2n radians, multiplied by 2nz, is the length of the arc containing possible 
choices of C. A cloud with its position coordinates on this arc contributes to the intersection if the angle \J/, which gives its direction 
of motion, satisfies a similar inequality : 

(z — vt cos i¡/)2 + (vt sin i//)2 < R2 . (10) 
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Fig. 1.—The geometry of the discussion in § IV. The large circle represents the X-ray source. Points A and B are randomly selected on it. A circular cloud with 
center C at time zero moves with velocity v to point D in time i. If this cloud has radius R, it covers both A at time zero and B at time t if, as shown here, C and D fall 
within circles of radius R around A and B, respectively. 

The direction of motion of a cloud is independent of its position, so the total volume of the intersection is obtained by summing 
contributions for all values z of the distance from 5 to C : 

J Q(z, wd, r)Q(z, vt, r)2nz dz . (11) 

The function Q, which gives the measure of the angles satisfying the law of cosines, has the formal definition 

6(z, y, x) = 0 

Q(z, y, x)= 1 

if (z - y)2 > x2 , 

if (z + y)2 < x2 , (12) 

Q(z, y, x) = - cos .-i/'*
2 +y 

2yz 
otherwise . 

The expected total volume of phase space, V, that must be empty of points of the Poisson process for A to be uncovered at time 
zero and B to be uncovered at time i, averaged over all values of the random cloud radius R, is given by 

J 2kR2 — J Q(z, wd, R)Q(z, vt, R)2tz;zdzJ/z(R)dR (13) 

This expression depends on A and B only through the distance wd between them, and we may re-express the double surface integral 
in equation (7) in terms of the density g(w) of w, which in the case of a source of uniform surface brightness takes the form 

g(w) Q(a, b, w)4abdadb 

For other source profiles there are corresponding expressions. In terms of g(w) we find 

=1 
0)/(B, t)dSAdSB = E/M, 0)I(B, t)g(w)dw , 

(14) 

(15) 
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and the final answer for the autocovariance function is then 

- ij . (16) 

Since nd2e ~ 'Ur2 is the mean uncovered area, the factor in double brackets is the ratio of the covariance to the squared mean of 
uncovered area, a quantity derivable from a well-sampled soft X-ray light curve. This factor multiplied by (1 -f)2 = e~22nr2, the 
covariance of fractional area uncovered, will be used extensively in the next section to derive values of d/r. 

cov = (nd2)2e 2\2^ — 2Xnr2\ 
g(w) exp ^ jj h(R)Q(z, wd, R)Q(z, vt, R)2nz dz dR 

V. RELATING OBSERVATIONS TO THEORY 
The formulae in § IV provide a basis for studying the effects of the mean covering fraction, and the relative sizes of source and 

clouds, on the variability of the soft X-ray intensity. We have evaluated the functions by numerical integration with 100-point grids 
using the S statistical system of Becker and Chambers (1984). In this section we assume the source to be of uniform brightness 
throughout its cross section, and we take the clouds to be of fixed radius r. The effect of varying these assumptions is discussed in 

[0V2]The denSÍty’ W3S calculated by differencing the double integral in equation (14) on a 200 point grid, for w on the interval 
A typical autocovariance function predicted from the model is shown in Figure 2 for the case of a source with twice the radius of a 

cloud. The mean covering fraction/is set at 50%, corresponding to a Poisson process intensity of 0.221 clouds per r2 units of area by 
equation (1). The autocoyariance of the fraction of the area of the source uncovered is shown as a function of the time lag in units of 
r/v. Thus, one time unit is the interval required for a cloud center to move one cloud radius. In Figure 2, the ordinate intercept of 
0.037 (the autocovariance at zero time lag) is the variance of the fractional area uncovered. The standard deviation of the fractional 
area uncovered is thus 20% around a mean of 50%. Normalization by the ordinate intercept gives us the autocorrelation function, 
which remains near 1.0 only for small time lags and descends to a value of one-half at t = t1/2 = l.6r/v. 

This “ half-life ” of the autocorrelation function, t1/2, will be our index of the time scale of variability throughout the investigation. 
For any Gaussian random process, the expected decay of a peak, m, above the mean at some time t is given by the autocorrelation 
multiplied by m. Though the process is not strictly Gaussian, the interpretation is a reasonable one, and the correlational half-life 
can be pictured as the half-life of the expected deviation from the mean after a given peak. 

A predicted power spectrum can readily be computed from the autocovariance function. The predicted spectrum typically 
decreases monotonically from a finite value at the origin, like the one corresponding to Figure 2. Since soft X-ray light curves long 
enough to estimate power spectra at low frequencies are likely to be rare, we concentrate here on the autocovariance function. 

Autocovariance 

* of * * 
** Fractional 

** Area 

d/r = 2 

Uncovered 

50% covering 

X, 

Time Lag in Units of r/v 
Fig. 2. A typical example of an autocovariance function predicted by the model. The autocovariance of the fractional area of the source uncovered is shown as a 

function of the time lag in units of cloud radius divided by cloud velocity. This example takes the source radius to be twice the cloud radius and the mean covering 
fraction to be 50%. 
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Ratio of Source Radius to Cloud Radius d/r 
pIG 3—Predicted half-lives of autocorrelations in units of cloud radius divided by velocity, as a function of the relative size of the source and the clouds, for 

different covering fractions. 

The dependence of the time scale of variability, as measured by the half-life of correlations, on the ratio of the source to cloud radii 
d/r9 is shown in Figure 3. The three curves correspond to three values of the mean covering fraction/: 10%, 50%, and 90% covering. 
The middle curve, for 50% covering, is nearly linear, with a fit 

Ti/2 = 0.564r/z; + 0.624d/t; . 

Hence, it takes a little over three correlational half-lives for a cloud center to traverse the diameter of the source when / = 50%. 
Approximately 2.6 half-lives are necessary when covering is sparser (/= 10%). When covering is denser (/= 90%), the relationship 
is less linear and the coefficient on r/v is as important as that on d/v9 thereby complicating the interpretation. The curves for/ = 50% 
and 10% converge at the left toward ordinate intercepts around n/4. This is half the average duration of an eclipse, in units of r/v9 
when a single huge cloud passes across a tiny source. With higher mean covering fractions, the variability reflects multiple eclipses, 
and the intercepts and slopes of half-life versus d/r could scarcely be foreseen without the full geometric model. 

The dependence of the variability amplitude on d/r is easiest to analyze if the quantity Q, the ratio of mean uncovered area to the 
standard deviation of uncovered area, is used. On this reciprocal scale, il is an almost linear function of d/r when d> r and / is 
moderate. When/ = 50%, we find Q ä 0.51 -b 1.07d/r. The ratio Q is directly observable from the mean and standard deviation of 
an X-ray light curve, provided the light curve pertains only to soft X-rays, to which the clouds are fully opaque. It is convenient to 
divide Q by the factor 1 —/, yielding the reciprocal standard deviation of fractional area uncovered, as an alternate index of the 
variability amplitude. 

Figure 4 is a contour plot of d/r and/ as functions of the half-life, in units of r/v on the abscissa and of Q/(l —/) on the ordinate. 
This contour plot can be used with empirical data to estimate the radii d and r of source and clouds, respectively. 

Although a fair number of well-sampled hard X-ray light curves exist in the literature (e.g., NGC 4151; Mushotzky, Holt, and 
Serlemitsos 1978), we are aware of well-sampled soft X-ray light curves only for MCG 6-30-15 (Pounds and Turner 1987) and 
NGC 4051 (Lawrence et al. 1987), both of which are inappropriate for this analysis (§ II). Pending publication of new EX OS AT 
data, we illustrate the application of Figure 4 with a hypothetical example. Consider a source with mean covering fraction/ = 90%. 
Assume a mean flux of 0.1 and a standard deviation of 0.04 in comparable units, for a ratio of 2.5. Suppose further that the 
autocorrelation function calculated from the soft X-ray light curve shows a half-life t1/2 of 0.5 day (12 hr). Then the value of 
Q/(l —/), corresponding to the ordinate of Figure 4, is 25. The leftmost dotted vertical contour corresponds to/ = 90%, on which 
the ordinate of 25 corresponds to a value of d/r = 5.3. The expected half-life (abscissa) is therefore 1.7 in units of r/v. Equating 1.7r/i; 
to the observed half-life of 0.5 day, and taking the velocity of the clouds v to be 3000 km s - \ we find r = 0.1 x 1013 cm. Multiplying 
by d/r = 5.3 gives d æ 4 x 1013 cm. Thus, the use of Figure 4 can lead directly to source and cloud size estimates that can be 
compared with the results of other, independent methods. 

Given our predictions for d and r, we can solve for ne in a variety of ways, and look for consistency between them. M81, discussed 
by Filippenko and Sargent (1988), provides a good example. This is the lowest luminosity Seyfert 1 galaxy known at optical 
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Fig. 4.—Contours of constant relative source size d/r, and of constant mean covering fraction /, on a plot of amplitude of variability vs. half-life. The index of 
amplitude of variability is the quantity Q/(l —/), defined in the text. These contours assume that all clouds have the same radius. The contour plot can be used with 
empirical measurements of soft X-ray light curves to estimate sizes of source and clouds. 

wavelengths, and one of the lowest at soft X-ray energies. Although a well-sampled soft X-ray light curve of this object does not exist 
in the literature, the relationship of d and r to ne can be analyzed from existing data. 

If & is an average distance from the central source to the broad-line clouds, then the definition of U, the ionization parameter, 
yields 

Lx 
4nnecU ’ 

(17) 

where Lx is the UV and X-ray photon flux (E > 13.6 eV) from the central source.4 Using the relation of Shakura and Sunyaev (1973) 
between source radius d and its mass, and the virial theorem to relate the mass to the velocity and distance of the clouds, we find 

d = ( Lx 

<4nnpcU 

1/2 
= 1.8 x lO11^ 

1/2 
cm (18) 

where = p/(1000 km s-1), LX48 = Lx/(1048 photons s-1), ne9 = ne/(109 cm"3), and U3 = U/10~3 (Halpern and Steiner 1983). 
For M81, Filippenko and Sargent (1988) quote v3 = 1.5 and assume U3 = 1, while Barr and Mushotzky (1986) give LX4r8 = 3.7, 
where we have assumed an average photon energy of 5 keV. Thus, we find d = 7.S x 10iln~9

1/2 cm in M81. 
Alternatively, we can calculate d from the relation between & and the broad Hß luminosity Lß (Wandel and Yahil 1985), which 

gives 

d. U x *i'56 x 10 ‘ -ÍIÜ- -) 
1/2 

\ r at J Cm ’ (19) 
\fne9 Nß23/ 

where LßA2 = Lß/(1042 ergs s"1), fis the covering fraction, and Nß23 is the column density of Hß-emitting gas in units of 1023 cm“2 

4 Note that U may not be constant in the BLR if clouds having a given density exist at different distances from the central source, or if a range of densities is 
present at a given distance. Also, U is not a well-defined quantity in AGNs with large covering fractions because many clouds see only diffuse or scattered ionizing 
radiation. Detailed treatment of these complications is beyond the scope of this paper, especially in light of the current observational uncertainties in the relevant 
parameters. 
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The parameters of M81 assumed or derived by Filippenko and Sargent (1988) are/= 1, Np23 = 0.3, and L^42 = 2.1 x 10-4. Thus, 
d = 93 x 1011n~9

1/2 cm, in good agreement with the value quoted above. Furthermore, if we assume that the broad-line clouds are 
roughly circular, r is given by one half the ratio of Nß to ne, or r = 1.5 x lO13«^1 cm. 

Imagine that we have access to a well-sampled, soft X-ray light curve from which we can derive Q and t1/2. We showed above how 
we can use them to find d and r as functions off, the covering fraction. But we have just found these two quantities in terms ofne! 
Thus, we have two equations in two unknowns, and can solve for both ne and /. In the happy situation where / is derived 
independently from measurements of the soft X-ray absorption, we can ask for consistency among all results. Lack of consistency 
either indicates that the fluctuations are not largely due to the movement of broad-line clouds, or perhaps that our model is too 
simplistic. 

VI. SENSITIVITY TO ASSUMPTIONS 

The estimates in § V depend on the assumptions that the source is of uniform surface brightness over its entire circular cross 
section, that the cloud radius is not random but fixed, and that clouds are totally opaque to X-rays in the monitored energy bands. 
Here we investigate the consequences of relaxing these constraints. We will continue, however, to assume that the clouds are 
circular ; modifications introduced by elongated clouds are beyond the scope of this paper. 

a) Source Surface Brightness 
We may alter the assumption of the uniform surface brightness of the source simply by altering the density function, g(w), for the 

distance between a pair of randomly selected points on the source. As an example, we consider the effect of substituting a source 
whose surface brightness declines linearly as a function of distance from the center, reaching zero at a distance d. Equation (14) is 
therefore modified to employ this “ triangular ” (tapered) profile function on a and on b, instead of the constant density da db. 

Figure 5 illustrates the consequences of this change. The stars on the plot pertain to the uniform source, and the triangles to the 
tapered source. The half-life is plotted on the abscissa, and Q/(l -/) on the ordinate, for various values of d/r and/ In comparison 
with the stars, the loci of triangles are compressed toward zero on both dimensions, since the “ effective radius ” of a source having a 
triangular profile is obviously somewhat smaller than the maximum radius d. The relationships between half-life and the ratio of 
mean to variance are in all cases so close to each other, however, that the assumption about source profile seems to be of little 
consequence for predictions. 

b) Cloud Radii 
If, on the other hand, the clouds obscuring the source have radii randomly distributed over a large range, predictions based on 

the assumption of a fixed common value of radius can be profoundly affected. Figure 6 shows predicted autocovariance functions as 
in Figure 2, but with different assumptions concerning the distribution of cloud radii. For each curve, the quantity ln R is given a 

Fig. 5.—Comparison of predictions from uniform {stars) and from tapered (triangles) source intensity functions. For the tapered case, the X-ray surface brightness 
declines linearly along the radius from the center. The predictions shown for three values of mean covering fraction are contours like those in Fig. 4. 
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0 2 4 6 8 10 12 14 
Time Lag in Units of r/v 

Fig. 6.—Dependence of a predicted autocovariance function on the variability assumed for cloud radii. The example of Fig. 2, with 50% mean covering, is plotted 
together with cases in which the standard deviation of the logarithm of cloud radius varies from 0.4 to 0.8, while the source radius is held constant at twice the 
root-mean-squared cloud radius. 

discrete approximation to a normal distribution. The mean of this approximate normal distribution is equal to the negative of its 
standard deviation. This is necessary for the expected cloud area to be kept at the same value nr2, so that the mean covering fraction 
/remain the same in all cases. In this plot,/ = 50% and d/r = 2. The discrete approximation is concentrated on nine values of R, 
chosen with a generous representation of values in the upper tail of the distribution in order to make the discrete approximation of 
J R2h(R)dR a good one. The four curves in Figure 6 correspond to standard deviations (jR of 0.8, 0.6, 0.4, and 0.0 in the underlying 
log-normal distribution. In the extreme case of a standard deviation of 0.8, the distribution of radii spreads over a factor of 20, from 
0.4r to 9.4r. The curve for <7Ä = 0 is the same fixed-radius curve as in Figure 2. 

The effect of random radius is to increase both the ratio of covariance to squared mean on the ordinate, and the half-life in units of 
r/v on the abscissa, shifting the autocovariance functions up and to the right. This is not surprising. The huge clouds that do occur, 
no matter how infrequently, produce occasional stretches of high obscuration with long persistence. Averaged with the more 
frequent small clouds, these huge clouds extend the amplitude and the time scale of variability, and give a long tail to the 
autocovariance, compared with the = 0 case. 

For the case of 50% covering, the half-life is reasonably well fitted by 

t1/2 = 23r/v -b 2.0d/v when aR = 0.8 , 

compared with 
ti/2 = 0.56r/i; + 0.62d/v when (jR = 0 . 

For ratios of d/r < 2, the quantity Q is given for 50% covering by 

Q = 1.3 + 0.$9d/r when (jR = 0.8 , 

compared with 

Q = 0.51 + l.Old/r when aR = 0 . 

The calculations of d and r from observables discussed in § IV can be repeated for any given value of gr, or any alternative 
distribution of source radius. For example, if the observed value of Q is 2.5 and/ = 0.9, as in the example discussed in § V, the 
estimate of d/r decreases from 5.3 for clouds of fixed radius to 3.5 for clouds of random radius, with the extreme value gr = 0.8. The 
half-life in terms of r/v shoots up from 1.7 to 9.0. If the observed half-life is 0.5 day, the estimate of source radius d drops nearly one 
order of magnitude, from 4 x 1013 cm to 6.8 x 1012 cm. The estimate of r, which is now the radius of a cloud of average area, drops 
from 0.7 x 1013 cm to 1.5 x 1012 cm as oR ranges from 0.0 to 0.8. Thus, a large dispersion in cloud sizes has a substantial effect on 
estimates of d and r. 
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If a soft X-ray light curve is sufficiently long to permit an estimate of the autocovariance function accurate to the point at which it 
drops to ~0.1 of its initial value, then its shape can provide clues to distinguish cases of low and high aR in cloud radii. The general 
effect of giving an appreciable dispersion to broad-line cloud sizes, for the ranges of parameters treated above, is to lengthen the tail 
of the autocovariance function. The ratio of “three-quarter life” to “one-quarter life” of the autocorrelation function is easily 
predicted from the geometric models, and might be a useful index from which to recognize, in individual cases, the effects of random 
cloud radii. 

c) Cloud Opacities 
The finite optical depth of clouds with low to moderate column densities also affects the predictions of our model. The effect on 

the mean covering fraction is readily calculated. Imagine that in the energy passband used for the observations, an individual cloud 
has an effective optical depth t. The mean flux received, F, is given by 

where the factor in brackets is the expected fractional area covered by q clouds under the Poisson hypothesis. The sum in equation 
(20) is just the expansion of an exponential, yielding 

F oc exp [ — hnr2(l — e_T)] . (21) 

Thus, for example, if the covering fraction is 0.9, then Ànr2 ä 2.3; if t = 1, then the mean flux received is greater than in the case of 
infinite optical depth by a factor of 2.3. 

Similarly, the results of § IV can be revised to incorporate the optical depth of clouds as a parameter. In effect, all we need to do is 
rescale the cloud intensity 2 in equation (16). Thus, the À in the factor in brackets is replaced by 2(1 — e~x)2. The effect on the mean, 
as we have seen, is equivalent to replacing 2 by the different quantity 2(1 — e~x). By equation (1), this is equivalent to a rescaling off: 

/^l-(l-/)(1-e-V (22) 

Consequently, the effect of finite t on the predictions of Figure 4 is to replace a curve calculated for an observed value of / by a 
revised value given by equation (22). 

As an example, imagine that/for a given source is measured to be 90%, and a light curve is observed in a passband with effective 
optical depth 0.5. According to equation (22), we should use the / = 60% curve in Figure 4. The scale on the ordinate remains 
unchanged, and our previous example with Q/(l —/) = 25 and an observed half-life of 0.5 day leads to the estimates d/r = 10 rather 
than 5 in the infinite optical depth case, r = 0.2 x 1013 cm rather than 0.7 x 1013 cm, and d = 2 x 1013 cm rather than 
4 x 1013 cm. 

If clouds have randomly distributed radii and are spherical rather than pancake shaped, then optical depth will be a function of 
the radius of the clouds. In principle, light curves in different passbands will carry information about clouds of different column 
densities, allowing us to probe the nature of the broad-line clouds in more detail. An additional complication is the fact that the 
optical depth of a spherical cloud is a function of the distance a light ray passes from its center. Such refinements go beyond the 
scope of the present paper. 

VII. SUMMARY AND DISCUSSION 

We have developed a model to explain the observed soft X-ray variability of some low-luminosity Seyfert 1 galaxies. The 
variability is due to changes in the covering fraction of the central source as broad-line clouds move across our line of sight. Our 
work is the natural extension of the analysis presented by Reichert, Mushotzky, and Holt (1986). Although much of the soft X-ray 
variability in AGNs may be unrelated to the process investigated in this paper, we emphasize that at least some of it must be, given 
the existence of dense clouds in the BLR and a reasonably well-defined source of soft X-rays. It is quite possible that objects exist in 
which variable covering fraction produces most of the observed variations in soft X-ray flux. 

The formalism developed in this paper is used to demonstrate how analysis of a soft X-ray light curve can provide three important 
quantities : the radius of the X-ray-emitting region, the radius of a typical broad-line cloud, and the electron density in the cloud. 
The first of these may be combined with measurements of the total X-ray flux to derive the Eddington ratio, Lx/LEdd. Our estimates 
are quite insensitive to effects of nonuniform sources, but relaxing our assumption that all broad-line clouds have the same size 
affects the results substantially. The effects of having a distribution of cloud sizes, however, can in principle be seen in the 
autocorrelation function of the soft X-ray light curve. 

The formulae in § IV are well suited not only to the assessment of such systematic errors, but also to Monte Carlo predictions of 
sampling errors. A thorough study of sampling errors is important for the design of observational strategies for the future. This, 
unfortunately, is a large subject; there are many competing factors and tradeoffs to consider. These include the amount of time a 
given source is observed versus the requirements of other projects, as well as the width of the adopted passband versus the effects 
produced by a wide range of cloud optical depths. There is nothing sacred about our choice of correlational half-life as the index of 
time scale of variability. It may be that a shorter baseline could be accommodated without much loss in estimation efficiency by 
taking correlational quarter-life or some other index. The feasibility of such a recourse depends on how random the radii of clouds 
are assumed to be; we saw in § VI that it is the long time-lag tail of the autocovariance function that carries information about the 
distribution in cloud sizes. In many cases, the uncertainties in the measurement of mean covering fractions for AGNs are likely to 
dominate other sources of error. A full study of such questions awaits a future paper. 

Ideally we want long, uninterrupted, soft X-ray light curves with frequent temporal sampling in order to carry out the proposed 
analysis. Thus, an AGN should be observed frequently enough that even the shortest variability time scales are adequately sampled, 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

33
0 

. .
 .9

1W
 

No. 1, 1988 SOFT X-RAY VARIABILITY OF AGNs 103 

over a period of time long enough that low temporal frequencies are covered. For a typical Seyfert galaxy, one week of continuous 
observations may be a reasonable goal, but this may mean that observations of other objects must be sacrificed. An example of what 
can be done is provided by Lawrence et al (1987) in the case of NGC 4051, but we saw in § II that this galaxy does not have suitable 
characteristics for our purposes. 

It is important to choose an X-ray passband in which the broad-line clouds have high optical depths, since the variability is 
reduced if the clouds are somewhat transparent. The passband should also exclude any known soft X-ray excesses; it is likely that 
they arise from a physically distinct region of the AGN and are not subject to absorption from the moving broad-line clouds 
(Filippenko and Halpern 1988). Simultaneous hard X-ray light curves may sometimes allow us to distinguish between intrinsic 
variability, perhaps due to a changing rate of accretion onto the central source, and extrinsic variability, due to fluctuations in the 
covering fraction of broad-line clouds. On the other hand, if the soft and hard X-rays are produced by intrinsically different 
mechanisms, it will be difficult to prove that the soft X-ray variability in a given object must be caused by motions of broad-line 
clouds. 

We eagerly look forward to the publication of more X-ray light curves and spectra from EXOSAT, and we urge observers to 
obtain high-quality data for at least a few of the most appropriate low-luminosity Seyfert 1 nuclei with Ginga and Kvant. Eventually, 
ROS AT, XMM, and AXAF will provide the largest and most complete set of observations for many AGNs. It will then be possible 
to derive the parameters discussed above for a substantial number of objects, and to study the systematic properties of the BLR. 

A. V. F. received financial assistance from CalSpace grant CS-27-87. M. A. S. gratefully acknowledges the support of an NSF 
Graduate Fellowship and a Berkeley Graduate Fellowship. We thank Joe Silk for many useful discussions that led to the 
formulation of this problem, Peter Hall for insight into the approach to the Poisson limit, Andy Lawrence for pointing out several 
recent references on EX OS AT observations, and Claude Cañizares, the referee, for some very important comments. Useful 
suggestions were also provided by David Band, Jules Halpern, Chris McKee, and Roger Romani. 

APPENDIX 

AREA OF POLYGONS FORMED BY A POISSON LINE PROCESS IN THE PLANE 

Here we consider the area of polygons formed by a Poisson line process in the plane. This problem was first solved in the context 
of cloud-chamber tracks by Goudsmit (1945); the present discussion follows Kendall and Moran (1963). We imagine the Poisson 
line process in the plane to be the limiting case of the problem of great circles placed randomly on the surface of a unit sphere. Each 
circle can be defined by the coordinates of its two poles on the surface of the sphere; the equator, for example, is defined by the 
North and South poles. Thus, our random hypothesis simply means that the poles are distributed randomly over the surface of the 
sphere. 

Let n be the number of great circles. The first one placed down creates two distinct regions on the sphere. In the nondegenerate 
case, the second circle cuts each of these regions in two, thereby producing four regions, and the third circle makes eight regions. 
Similarly, circle n + 1 intersects all n other circles, and thus creates 2n new regions. By induction, the total number of regions is 
2 + n(n — 1) when n great circles are placed on the sphere. We also deduce that the number of segments into which the great circles 
are chopped is 2n(n — 1). Since each is a border to two regions, the average number of sides per region is 

4n(n — 1) 
2 + n(n — 1) ’ 

which approaches 4 as n becomes large. The total surface area of the unit sphere is 4n; thus, the average area of a region approaches 
4nn ~ 2 for large n. 

Now consider a small circle of radius p and center P on the surface of the sphere. A great circle that intersects this small circle is 
one whose perpendicular distance from P is less than p. The locus of the most distant of the two poles of such great circles traces out 
a thin ribbon of thickness p on the sphere. The nearest edge of this ribbon is a great circle itself, with pole P, and the area of the 
ribbon is close to 2np. The number of great circles that intersect the small circle is pn, the ratio of the ribbon’s area to that of the 
hemisphere multiplied by n. Proceeding to the limit of large n and small p, we can treat the small circle as a plane circle and equate 
pn to 2npK, where k is the intensity of the Poisson line process for the plane region (as defined in the text). Hence n = 2%k, and the 
average area of each region (47in ~ 2) is simply (%k2) - \ as we wished to show. 
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