
19
88

A
pJ

. 
. .

33
0 

. .
 .

38
B

 

The Astrophysical Journal, 330:38-50,1988 July 1 
© 1988. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

INTERACTING BINARY GALAXIES. II. MATCHING MODELS TO OBSERVATIONS 

Kirk D. Borne1 

Department of Astronomy, University of Michigan, and Space Telescope Science Institute2 

Received 1985 October 3 ; accepted 1987 December 23 

ABSTRACT 

This paper presents an efficient numerical simulation algorithm for the study of interacting elliptical gal- 
axies. Each model galaxy, represented by a collection of gravitating particles, can be (1) endowed with arbi- 
trary degrees of flattening and rotation, (2) oriented in any spatial direction, (3) evolved along any chosen 
orbital trajectory for an arbitrary length of time, and (4) projected onto the “sky” of a randomly oriented 
observer. How “observations” of simulated tidal interactions between model galaxies are best matched to the 
measured properties of real binaries is discussed in detail. Rotation curves, radial variations in velocity disper- 
sion, and surface density maps are all matched to the data in an efifort to determine the physical state of an 
observed pair. Strong support is given to the acquisition of velocity measurements and to their application in 
any model-matching efforts. That the combined spectroscopic and photometric data for specific binaries can 
be reproduced by appropriate projections of select numerical simulations of the pairs is demonstrated in the 
companion papers (Papers III and IV). Each matching simulation constrains the masses of the galaxies, their 
internal dynamics, the properties of their relative orbit, and the three-dimensional orientation of the pair in 
space. The uniqueness of such dynamical solutions is discussed in detail in the context of a particular repre- 
sentation of the binary orbits: the specification of their speed and separation at pericenter. It is shown that 
tidal impulse and duration of pericenter passage are the relevant physical parameters affecting the observed 
tidal distortions in colliding galaxies. Provided that the images of such systems are supplemented with detailed 
kinematic data, the study of tidally distorted binary galaxies thus represents a fertile avenue to the direct 
measurement of galaxy masses. 
Subject headings: galaxies: clustering — galaxies: internal motions — galaxies: structure 

I. INTRODUCTION 

Comparisons between interacting galaxies and reasonably 
simple numerical models can lead to considerable understand- 
ing of the evolution of nonisolated galaxies. In particular, it has 
been shown that the outcome of ordinary binary encounters is 
coalescence: the merger of the two galaxies into a single 
dynamical system (e.g., Borne 1984, hereafter Paper I, and ref- 
erences therein; White 1978, 1979; Farouki and Shapiro 1982; 
Villumsen 1982, 1983; Negroponte and White 1983; Gerhard 
1981 ; Carlberg 1982). Paper I describes in detail one particular 
numerical simulation algorithm and some of the results 
derived from its use. The short merger times (e.g., 109 yr) found 
by other investigators were confirmed in that paper, to within a 
factor of 2. This time scale implies that many of the galaxies 
now observed in pairs will soon merge and that a considerable 
number of pairs have merged in the past (White and Sharp 
1977; Toomre 1977). NGC 7252 has been identified as an 
example of a possible merger remnant (Schweizer 1982; Borne 
and Richstone 1982,1988). 

In order to test the tidal friction and merger hypotheses, 
detailed simulations of individual binaries should be attempt- 
ed. An efficient numerical modeling scheme is required in order 
to allow a meaningful sampling of the multidimensional 
parameter space that defines the properties of the galaxies and 
their relative orbit. Naturally, the validity of these simulations 
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as representations of real binaries is found only in the context 
of the particular physical model employed. For example, our 
simulations cannot constrain the amount of dark matter that 
may be present in a massive halo around any of these galaxies. 
This is simply because tidal effects like those we see in our 
systems are observable only when the binary separation is 
nearly equal to the luminous dimensions of the galaxies. At 
such separations, the halo makes an insignificant contribution 
to the tides since most of the dark matter lies outside the 
luminosity radius of the galaxies. Within the context of our 
models therefore (i.e., on the scale of the luminous matter), we 
can derive binary galaxy masses, spatial orientations, orbits, 
and evolution. 

This paper presents the numerical model used in the com- 
panion papers (Borne and Hoessel 1988, hereafter Paper III; 
Borne 1988, hereafter Paper IV) and elsewhere (Borne and 
Hoessel 1984; Borne, Balcells, and Hoessel 1988, hereafter 
Paper V) for the dynamical study of particular pairs of inter- 
acting galaxies. Particular attention is given to (i) the improve- 
ments and modifications made to the model since Paper I and 
to (ii) the philosophy and method of matching simulations to 
observations. The multiple three-body algorithm (hereafter, 
MTBA) of Borne (1979, 1982, and Paper I) finds its most fruit- 
ful application in the search-and-fit procedure described in this 
paper (§ VIII). That is, many simulations can be run efficiently 
in the effort to find their best match to the observations of a 
particular binary. 

The main attributes of MTBA are presented as follows. 
Section II consists of both a brief explanation of the algorithm 
that was used for Paper I and a description of its most signifi- 
cant modifications for use in Papers IV and V. Section III 
describes the galaxy model and how the perturber (secondary 
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MODELS FOR INTERACTING GALAXIES 

galaxy) scales with the primary galaxy. The methods by which 
the model galaxies can be flattened and by which they can 
receive varying degrees of internal rotation are outlined in 
§§ IV and V, respectively. Section VI describes the model 
observations that can be measured on the “ sky ” of a variably 
oriented observer. Examples of the various observables (e.g., 
surface density distributions, rotation curves, and dispersion 
profiles) are included with the discussion. The free parameters 
of the problem are identified in § VII, while the procedure by 
which one begins to search that parameter space for a simula- 
tion that matches all of the observations available for a given 
pair of galaxies is outlined in § VIII. In the final section (§ IX), 
the uniqueness of the solutions is discussed in the context of a 
particular two-dimensional cut through the multidimensional 
model parameter space: the Rperi - Fperi plane. Also in § IX, 
the point is made that the success of the method depends on 
the availability of detailed kinematic measurements across the 
images of interacting galaxies, particularly at their centers. 

II. THE MULTIPLE THREE-BODY ALGORITHM (MTBA) 

a) Highlights of the Method 
Paper I describes the many features of MTBA, the most 

attractive of which are listed here. (1) The forces of interaction 
between the test particles and the centers of the two galaxies 
are explicitly included, which allows for binary orbital evolu- 
tion and the merger of the pair through energy and angular 
momentum transfer. (2) The models of the galaxies are sub- 
jected to a “ proximity relaxation ” phase, in which the phase- 
space distribution function of each galaxy (i.e., the combination 
of the mass, energy, and angular momentum distributions) is 
allowed to accommodate the proximity of the companion. (3) 
MTBA is able to reproduce both the structural properties of 
postcollision galaxies and to improve on the merger times that 
have been derived from the much less efficient W-body calcu- 
lations. (4) For a simulation involving X particles, MTBA 
requires a factor X less computing than the direct V-body 
algorithm. This last point is the one that we exploit in 
Paper IV and in subsequent papers. A large number of simula- 
tions can be investigated relatively quickly in order to identify 
the one set of parameters that best describes the physical state 
of an observed pair of interacting galaxies. 

b) The Equations of Motion 
The basic equations of motion for MTBA comprise equa- 

tions (laHlc) of Paper I. In its original form, MTBA permit- 
ted investigations of interactions between a primary “ galaxy ” 
of particles and a single point-mass perturber. A significant 
modification to those equations now allows the perturber 
(hereafter, secondary galaxy) to be represented by a physically 
realistic distribution of test particles. For the simulations 
described in Paper IV, the equations of MTBA are 

dv: m. _ = _m. m^í 0^ - mi M2 0¿2 , (1) 

M2 
dv2 dv 
dt ^ dt 

-/¿Vr<D, (2) 

dt?! 
dt 

-M, 
dv2 

dt (3) 

The first and last equations are the same as the corresponding 
equations in Paper I. Their meanings are likewise identical to 

those of that paper: each particle responds only to the global, 
unperturbed fields of M1 and M2 (eq. [1]) and global linear 
momentum conservation is maintained by requiring that 
+ M2r2 = 0 (eq. [3]). Equation (2) differs from the corre- 
sponding equation in Paper I in the way that the force on M2 
is calculated: it is derived here from the equivalent one-body 
representation of the binary system (see next section). This 
change is necessitated by the addition N2 test particles to the 
galaxy M2, where N2 = (MJMJN^ Usually, + V2 < 
2000, but as many as 1Ö4 particles have been included in a few 
simulations to test the statistical quality of the solutions. 

c) The Equivalent One-Body Problem 
As expressed in equation (2), the solution for the binary 

orbital motion is reduced to that of an equivalent one-body 
problem. In this representation, g is the reduced mass of the 
binary system, r = r2 — u1 is the relative velocity vector, r = 
11*2 — UI is the separation of the galaxy centers, and <F is the 
external potential, whose gradient is taken with respect to the 
binary separation r. Because the internal self-gravity of the two 
galaxies does not contribute to their mutual acceleration, the 
binary potential O can be represented by 

® = Z «i «Ail + E 4>i2 - ^self-gravity , (4) 1 i 
where the sums are taken over all particles i. This expression is 
approximately equivalent to 

® + Z m¡^i2 , (5) 
i e M2 i e Mi 

where the first sum is taken only over those particles compris- 
ing M2 and the second sum is taken only over those compris- 
ing M1. In going from equation (4) to equation (5), the self- 
gravity terms have been assumed to add to zero, as they ought. 
After a little algebraic manipulation, equation (2) can then be 
rewritten as 

^ dv2 m9 

dt -f- M2 
Fn- 

Mi 
M1 + M2 

F \ 2 (6) 

where 

^21 = -Ml Z ^r(t>n = -MlYJ 
mi^iÖn , (7) 

ieM2 ieM2 

F12 = + M2 £ m¡ V, <t>¡2 =-M2YJmi <t>i2 (8) 
ie Mi ie Mi 

Two distinct representations of the force between Mjl and M2 
are provided by the terms F12 and F21 is the force acting 
on M2 as determined by the sum of the external forces (from 
Mi) acting on the test particles comprising M2. F12 is the force 
acting on Mt as determined by the sum of the external forces 
(from M2) acting on the particles comprising The negative 
of F12 is thus the force of reaction back onto M2. Equation (6) 
thus represents the total force acting on M2 as the weighted 
mean of F2l and — F12, where the weights are equal to the 
fractions of the total mass of test particles that contribute to 
the calculation of each representation of the force. This calcu- 
lated mean (eq. [6]) very simply allows each particle equal 
significance in its influence on the dynamical evolution of the 
binary. Given that F12 and F2i represent the same force, albeit 
through two different sets of particles, equation (6) therefore 
provides a physically reasonable representation of the force of 
interaction between Mx and M2 and is the best possible 
expression of equation (2) for MTBA. Again, it is derived 
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directly from the equivalent one-body problem for the reduced 
mass n = M1M2/(M1 + M2) of the binary system. 

d) The Energy Integral 
A simple manipulation of equations (l)-(8) determines the 

energy integral: 

+ 'Z m^vt
2 + + M2 (j)i2) = constant, (9) 

i 

where v and i;* denote speeds, and v = \ v2 — v^. 

III. THE GALAXY MODEL 

The analytic form of the potential (fra, derived in Paper I, is 
essentially that of an isothermal sphere with an energy cutoff. 
This provides a physically realistic representation for model 
galaxies. If Mß denotes a galaxy mass, oyit central velocity 
dispersion, Rß its cutoff radius, and aß the softening parameter 
in the expression for its gravitational potential, then the follow- 
ing expressions provide the recipe for constructing galaxies of 
different scale : 

G = M1=Rl = l , (10) 

M2R2-
2 = MiRi"2 , (11) 

M2a2-
2 = M1ar

2 > (12) 

M2a2-* = Mi<Ti-\ (13) 

The expression for </>, ! can be found in equation (15) of Paper I. 
As in that paper, a value üq = 0.05 is used in the calculation of 
the potential. Therefore, a value for M2 is sufficient to define all 
of the properties of the secondary galaxy with respect to the 
primary galaxy Mv 

Equation (10) defines the dimensionless units of the model. 
Equations (11) and (12) are somewhat arbitrary, although they 
imply a unique surface brightness for all galaxies (provided 
M/L is the same for all). Equation (13) follows from the con- 
stant M/L assumption and the observed Faber-Jackson rela- 
tion (1976; Terlevich et al 1981). Equations (14) and (15) are 
based on the assumption that the initial galaxy models are 
homologous: derivable from a single scale-free model. Davies 
et al. (1983) have shown that this is not at all unreasonable for 
a major fraction of elliptical galaxies. They present relation- 
ships derived from their data that are consistent with equations 
(11) and (13). Scale-free models may even work for spiral gal- 
axies; Burstein and Rubin (1985) have demonstrated the uni- 
formity in the shapes of the mass distribution functions for an 
otherwise nonuniform sample of spirals. It appears then that 
our use of scale-free models is quite reasonable. 

IV. FLATTENING OF THE MODEL GALAXIES 

Unlike the model galaxies of Paper I, either M1 or M2 (or 
both) can be flattened by an arbitrary, though uniform, factor 
along an arbitrary minor-axis direction. Each galaxy is trans- 
formed independent of the other. For simplicity, no corre- 
sponding change in the analytic form of the potential is made 
for any of the flattened configurations, which is not unreason- 
able given the weak dependence of the potential on the flat- 

tening of the spatial density law. If e is the usual flattening 
parameter (i.e., ellipticity) for a galaxy and if u€ is the unit 
vector along the minor axis, then the position and velocity 
vectors s¿ of each particle in the initially spherical configuration 
for the given galaxy are transformed according to 

s.new = 5iOld _ ^ . sold^ (16) 

For example, an E7 galaxy is obtained from the initially spher- 
ical particle distribution by using the coordinate transform- 
ation in equation (16) with a value e = 0.7. That 
transformation is simply a multiplication by (1 — €) of the posi- 
tion and velocity coordinates along the prescribed axis in the 
initially spherical model galaxy. Positions and velocities for all 
of the test particles within the given galaxy are so transformed. 

The flattening transformation that is represented by equa- 
tion (16) results in a nonequilibrium initial state. This configu- 
ration is allowed to relax in an isolated-galaxy “ mixing phase ” 
prior to the binary “ proximity relaxation ” phase, which itself 
precedes the full binary “ interaction phase ” (see Paper I for a 
full discussion of these various phases of the simulations). As a 
consequence of mixing and relaxation, the flattened system of 
particles moves to an equilibrium configuration whose ellip- 
ticity differs slightly from the value of e that was used to con- 
struct the initial model galaxy. Our flattening algorithm 
essentially introduces a nonclassical integral of motion to the 
system of particles. By artificially suppressing the component 
of the velocity dispersion parallel to the minor axis, this confin- 
ing integral limits the extent to which particles can travel from 
the galaxy’s initial plane of symmetry. Even though the initial 
state (as transformed by eq. [16]) is not one of stable equi- 
librium, the mixed preencounter configuration is in equi- 
librium and satisfies the Jean’s theorem requirement for the 
phase-space distribution function to depend solely on the iso- 
lating integrals of motion. 

V. ROTATION IN THE MODEL GALAXIES 

If a rotating model galaxy is desired, then one of three modes 
of rotation can be selected. The three are described below. Of 
these, the last one to be presented (§ Vc) seems to work the best 
in simulating the galaxies observed for Papers III and IV. As is 
the case when flattening is introduced (see discussion at the end 
of the previous section), the initial rotation conditions place the 
galaxy in a nonequilibrium state. What is then necessary is that 
both a “ mixing ” and a “ proximity relation ” phase be applied 
to the models prior to the binary encounter, forcing the stellar 
phase-space distribution function into a stable configuration 
that is consistent with the presence of a massive companion 
galaxy. Self-consistent flattened and rotating models (e.g., 
those of Wilson 1975) are not used here since it is abundantly 
clear that elliptical galaxies are not supported (or flattened) by 
rotation (Illingworth 1981, and references therein), as those 
models assume. Clearly, a record of the initial formation condi- 
tions remains in elliptical galaxies where the degree of flat- 
tening and rotation are only weakly correlated, if at all. 
Accordingly, we take the simple approach here of avoiding 
such complicated models, even though they do provide for a 
self-consistent description of flattened galaxies. We merely 
impose some useful boundary conditions on the initial particle 
distribution (§ IV) and on the initial rotation properties (this 
section), for one (or both) of the model galaxies, and then allow 
the systems to relax before proceeding with the binary encoun- 
ter simulation. 
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When both nonzero ellipticity and rotation are desired in a 
given model galaxy, the flattening transformation (eq. [16]) is 
applied first, followed by the addition of rotation. Particle 
velocity components that are parallel to the galaxy minor axis 
are thereby constrained to be consistent with the spatial flat- 
tening (see § IV). The rotation component of the particle velo- 
cities can take one of three forms, as will now be described. 

a) Rigid Rotation 
Paper I allowed a rigid rotation to be superposed on the 

random motions of the test particles comprising Mv The 
angular rate and direction of the rotation were restricted to 
that of the binary orbit. No such restrictions exist in the 
version of MTBA described in this paper, where an arbitrary 
rigid rotation rate about any axis in either or both of the model 
galaxies is allowed. 

b) Circular Rotation 
In the circular rotation mode, each particle is assigned the 

circular velocity at its initial radius. This motion is around a 
randomly selected rotation axis that is unique to that particle. 
The rotation axes for all of the particles are constrained to 
point into the same half-space. That is, if un denotes a unit 
vector along the net rotation axis for the entire galaxy and if 
fí. = f. x Vi defines the rotation axis for a particular particle 
orbit, then 

Wq • > 0 (17) 

is required of that particle, and so on for each additional par- 
ticle in that galaxy. This yields a nonzero net galactic rotation 
about an axis parallel to un. Note that the particles are not 
constrained to follow a circular trajectory, which is strictly 
impossible for our binary gravitational potential. Particles are 
simply given a speed that is consistent with circular motion at 
their initial radial distance from the center of the galaxy. 

c) Net Rotation by Reflection of Velocities 
A reflection algorithm can also be used to generate rotation 

in the model galaxies. In this case, the initially assigned 
random motion of each particle is left intact except that the 
parity of the initial velocity vector is set by constraining equa- 
tion (17) to be satisfied for each and every particle in the 
galaxy. Even though this algorithm in no way changes the 
energy dependence/(£) of the initial particle phase-space dis- 
tribution function, the model is no longer an isotropic one, as 
was originally assumed in constructing the galaxy. Note that 
the entire form of the phase-space distribution function 
changes whenever the rigid rotation or circular rotation mode 
is selected. Even so, any complications imposed on the physical 
model by rotating the galaxies have been ignored here. (An 
independent study shouh) be undertaken to assess the signifi- 
cance and relevance of súch modifications to the phase-space 
distribution function.) Sincje the reflection formula represents, 
among the methods introduced in this section, the one tech- 
nique that is most faithful to the original physical model, it is 
both expected and found to be true that galaxies set in rotation 
by this algorithm will most resemble real elliptical galaxies (see 
Paper IV). ! 

d) Choosing à Mode of Rotation 
A rotation mode is selected for each galaxy independently of 

the other. The rotation ana minor axes of a galaxy are not 
forced to be parallel, although the two axes normally do coin- 

cide. Rotation may be either retrograde or prograde with 
respect to the relative trajectory of the two galaxies. In fact, the 
rotation may be at any angle (parallel, antiparallel, orthogonal, 
or oblique) to the binary orbital revolution. Furthermore, one 
can specify what fraction of the total number of particles in a 
given galaxy will participate in the rotation; the remainder of 
the particles will retain the random velocity distribution that is 
imposed on them by the initial model. Obviously, if one 
chooses, the “ no rotation ” option can be selected for either of 
the galaxies. 

Given the many rotation options from which to choose, a 
dynamical configuration for the particles can usually be found 
that matches the observed rotation curve in the inner regions 
of a given galaxy. It is at those small radii that the gravitational 
tides have least affected the initial rotation properties of the 
galaxy, and that is where we can hope to discern clearly the 
internal dynamical properties of the individual galaxies in an 
interacting pair. The external dynamical properties of the pair 
as a whole tangle with the internal galaxy dynamics when 
studying the observed rotation velocities in the disturbed outer 
regions of binary galaxies. Model rotation velocities at these 
large radii generally match the observed data best following a 
period of tidal interaction between the model galaxies. 

VI. MODEL OBSERVATIONS 
In order to facilitate the matching of numerical models to 

the observational data, MTBA has been set up to run inter- 
actively with extensive graphics display capabilities. An inter- 
active graphics package is used to plot projected mass and 
velocity distributions: individual particle distributions, 
“surface brightness” contour maps, rotation curves, velocity 
dispersion profiles, integrated line-of-sight velocity distribu- 
tions, and two-dimensional velocity maps. Such 
“observations” can be examined from an arbitrary viewing 
angle at any time during the numerical simulation. Examples 
of some of these are presented below. 

a) Projected Mass Distributions 
From any direction in space, an “observer” may plot the 

projected positions of the test particles or draw a surface 
density contour map. For the surface density maps, contours 
are drawn at intervals of 1 mag per square pixel. Pixels are 
square and 0.05 units wide (units defined by eq. [10]), where 
a1 = 0.05 is the softening radius for galaxy Mv Several exam- 
ples of the projected particle configuration from a particular 
integration are shown in Figure 1. The particle distribution 
shown in the upper left box corresponds with the contour map 
displayed in the upper left box of Figure 3. Each of the boxes in 
these figures is 6.0 distance units on a side, where the effective 
radius of the initial galaxy model was 0.20 units (eq. [20] of 
Paper I). For the integration displayed in Figure 1, Nx = 
N2 = 1000, and the galaxies were placed on an initially circular 
orbit of unit radius. 

At the time of observation in Figure 1, the galaxies have 
completed one-half of their first orbit. The observer for the 
distribution in the upper left box of Figure 1 is viewing the 
interaction pole-on. From this point of observation, down the 
orbital angular momentum axis, the galaxies are revolving 
counterclockwise. Note that the tidal disturbances in each 
galaxy are/o/Zowm#; there is no significant leading tidal com- 
ponent. That is, the majority of the “excited” stars occupy the 
first and third quadrants of Figure 1, with few exceptions. 
Those particles now seen in the first quadrant (i.e., following 
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Fig. 1.—Views of a simulation in which = N2 = 1000. The binary separation is 1.0 distance units, where each box is 6 units on a side (units defined by eq. 
[10]). Upper left box shows a top view of the particle distribution; the corresponding contour map appears in the upper left box of Fig. 3. Particle distribution in the 
bottom left box is that seen from the orbital plane along the line connecting the galaxy centers. An oblique view of the particle distribution and the corresponding 
surface density contour map are displayed in the upper right and lower right boxes, respectively. 

the upper galaxy) did, in fact, originate in that galaxy, and 
those following the lower galaxy originated in it. An observer 
in the orbital plane along the line connecting the galaxy centers 
would see the view reproduced in the lower left box of 
Figure 1. Note that the distribution of disturbed particles is 
distended parallel to the orbital plane, which is the usual tidal 
effect wherein the perturbing forces tend to constrain motions 
in the vertical direction while enhancing motions horizontally. 
An oblique view of the same particle configuration is portrayed 
in the upper right box of Figure 1 : the observer in this case is 
60° away from the pole (i.e., 30° above the orbital plane) and is 
at a phase 45° ahead of the lower galaxy seen in the upper left 
box. A surface density contour map for this particle distribu- 
tion is shown in the box below it. This map looks very similar 
to the surface brightness map of the galaxy K564 shown in 
Figure 7 of Paper III. If imaging data alone were available for 
a pair of galaxies like K564, then one would be satisfied with 
the excellent match demonstrated by this simulation. Unfor- 
tunately, when the rotation curves of the model galaxies are 
calculated, the so-called match is seen to be a failure (see 
below). This was found to be a very general occurrence when 
running simulations: matches to the imaging data were easy to 
obtain, and they were plentiful. Fortunately, for the purposes 
of finding unique solutions and galaxy masses, the abundant 
supply of nonunique imaging solutions was effectively pared 
down to a very restricted sample of dynamical solutions when 
velocity data were also used to constrain the set of viable simu- 
lations. 

b) Velocity Curves 
From any direction in space, an “observer” may measure 

various forms of the velocity distribution (see opening remarks 
to this section). Of most usefulness in the study of interacting 
ellipticals are the radial variations of mean line-of-sight veloc- 

ity and velocity dispersion. The free parameters are the slit 
location, width, and position angle. Typically, the slit is placed 
along the line connecting the galaxy centers, and the slit is 
centered on the system center of mass. For the models 
described here and in Paper IV, the slit length is fixed at 4.0 
distance units. Because of the small numbers of particles 
involved in the simulations, velocity curves are typically calcu- 
lated with slit widths ranging from 0.1 to 0.4 distance units 
(one-half to two galactic effective radii). This would be a ridicu- 
lously large slit to use on a real galaxy (where one has to worry 
about seeing and instrumental resolution), but such widths are 
necessary in these models to minimize the small-numbers fluc- 
tuations in the simulated velocity curves. Each particle within 
the slit boundaries is assigned to a particular radial bin (i.e., a 
column of pixels) which runs orthogonal to the long axis of the 
slit. The assignment is made independent of how far the given 
particle is above or below the central line defining the slit 
position. 

Velocity curves for the model galaxies depicted in Figure 1 
are presented in Figure 2. These are for the oblique-angle 
observer whose view of the system is shown on the right side of 
Figure 1. The rotation curve is plotted in the lower panel, with 
the corresponding velocity dispersion profile in the upper 
panel. In these figures, as in all of the simulated velocity pro- 
files shown in Paper IV, the units are those defined by equa- 
tion (10); a convenient transformation to physical units was 
given in equation (6) of Paper I. The two sets of curves in the 
lower panel of Figure 2 correspond to vr + ar and vr — ar, 
where ar

2 = or
2/Nr. Nr denotes the total number of particles in 

a radial bin contributing to a particular point on the velocity 
profile and vr and (jr denote the mean line-of-sight velocity and 
the line-of-sight velocity dispersion, respectively, at that point. 
Similarly, the two curves drawn in the upper panel of Figure 2 
correspond to or + ßr and ar — ßr, where ßr

2 = <j2/2Nr. The 
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PROJECTED RADIUS 
Fig. 2.—Long-slit velocity profiles for the “galaxies” in Fig. 1 as seen by the observer with the oblique view (right side of Fig. 1). The slit passes through the 

centers of the two galaxies. Radial variations in mean line-of-sight velocity are plotted in the lower panel. Radial variations in line-of-sight velocity dispersion are 
plotted in the upper panel. Double solid lines are plus and minus one standard deviation from the calculated velocities. Units are defined by eq. (10). 

parameters ar and /?r are the standard errors of the mean veloc- 
ity and of the velocity dispersion at a given slit position, respec- 
tively. 

At the time of observation in Figure 2, the projected separa- 
tion of the galaxies is 0.8 units, so that the centers of the 
galaxies in that figure are at projected radii -0.4 and +0.4, 
which is where one sees the minimum deviation in the two 
error curves. Note that the projected relative velocity of the 
pair is ~0.9 velocity units, roughly equal to the central project- 
ed velocity dispersions. The near correspondence of these 
numbers argues against this being a very good viewing angle 
for the pair of galaxies K564 in Paper III whose relative veloc- 
ity of 26 km s “1 is a tiny fraction of the galaxies’ velocity 
dispersions ( ~ 180 km s ~1 ). 

Figure 2 also demonstrates the effect of tidal torques on the 
model galaxies. There is a net rotation among all of the par- 
ticles, exclusive of their relative orbital motion. In addition, the 
velocity dispersion profiles are a fairly flat function of radius. 
Given that the initial model galaxies actually had dispersion 
profiles that decreased significantly with radius, the observed 
flatness is indicative of tidal heating of the particles in the outer 
parts of these galaxies. 

VII. THE FREE PARAMETERS 
The fundamental belief behind our model-fitting procedure 

is that the abundance of information carried in the data ought 
to place strong constraints on the range of acceptable values 
for a fairly large number of model parameters. Given a scale- 
free galaxy model for which an analytic form for the gravita- 
tional potential and a specific energy dependence in the 
particle phase-space distribution function are prescribed, each 
simulation will depend on three sets of parameters, to be 
described below. These are (1) the binary orbital parameters, 
(2) the internal rotation and flattening parameters, and (3) the 
angles that define the spatial orientations of all these with 

respect to the observer. The match between theory and obser- 
vation ought not and does not depend on which particular 
statistical realization of the chosen distribution function is 
selected. 

a) Observer Viewing Angle 
The location of the observer with respect to the many spatial 

parameters of the galaxy pair is usually well determined. To be 
sure, a simulation is not pursued to any length if a good 
viewing angle for the observer cannot be isolated. A good 
viewing angle is one that not only provides the correct pro- 
jected separation and relative velocity, but it also reveals the 
proper photometric distortions and the correct shapes for the 
rotation curves. Since the observed relative velocity of the 
binary is a fixed scale-free fraction of the central velocity dis- 
persions, the range of possible viewing angles is strongly 
restricted. The choice of observer orientation is even further 
restricted by the requirement that the projected appearance of 
the simulated galaxies be compatible with the observed binary. 

b) Binary Orbital Parameters 
Like the observer viewing angle, the binary orbital param- 

eters are nearly always well constrained. These are R, M2, and 
the relative velocity vector, where R is the true binary separa- 
tion and M2 is the mass ratio (M1 = 1). Another representa- 
tion of the orbit parameters would list R, M2, a, and e, where a 
is the binary semimajor axis and e is the orbital eccentricity. 
Similarly, one could specify R, M2, Rperi, and Fperi, where the 
last two quantities are the pericenter separation and pericenter 
speed, respectively. Each of these parameters is tightly con- 
strained by the data because of the strong mass and distance 
dependences of the tidal interaction terms and because the 
velocity scale is set by the internal velocity dispersion measure- 
ments. More will be said in § VIII on how these constraints 
work to bring about a reasonable match to the data. 
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Because the observer orientation and the binary orbital 
parameters are usually well determined, it is a simple matter to 
calculate total masses and true separations for the galaxies in 
the observed binary sample. From these numbers, estimates of 
binary orbital periods can be made, as can estimates of the 
expected merger timescale for the systems. The calculation of 
the latter assumes that the relevant timescales determined from 
interacting galaxy simulations are physically sound (see 
Paper I). This latter assumption is strongly supported by the 
demonstration in Paper IV (and subsequent papers) that the 
gravitational interaction hypothesis is sufficient to account for 
all of the observations of these interacting binaries. 

e) Internal Galaxy Parameters 
The internal parameters that can be selected for each model 

galaxy are the flattening, the angles defining the direction of 
the minor axis, the mode of rotation (see § V), the direction of 
the rotation axis, and the fraction of particles participating in 
the rotation. Something will be said about each of these 
parameters below. Unfortunately, their values are often only 
weakly constrained by the observations. If the galaxy has 
nonzero ellipticity and shows rotation along the slit, then 
something more can be said about the dynamical configu- 
ration for that galaxy than for a galaxy with very little rotation 
or with nearly zero ellipticity around its center. Typically, the 
internal parameters for each galaxy are constrained not only 
by the appearance of the galaxy, but also by the ability or 
inability of a given model configuration to develop, over the 
course of a simulation, bulges and tails that are similar to those 
that are seen in the picture data or to develop rotational 
properties that are similar to those seen in the long-slit spectro- 
scopic data. Only certain models will develop into a configu- 
ration that matches all these data. 

i) Flattening 
If the galaxy is intrinsically flat, but the direction of the 

observer is nearly along the minor axis, then it is difficult to 
derive the degree of flattening from the procedures described in 
this paper. In fact, the intrinsic flattening is hard to determine 
from any angle of observation. A lower limit on its value can be 
set from the observed ellipticity. Of course, this is neither an 
original suggestion nor a particularly enlightening one. The 
true spatial direction of the minor axis for a galaxy with mod- 
erate flattening is somewhat better constrained by the simula- 
tions than the degree of flattening. This is because the behavior 
and development of the isophotal twists and tails over the 
course of the numerical simulation depend on the true direc- 
tion of the minor axis relative to the line of sight. 

ii) Rotation 
The mode of rotation chosen for most of the galaxy models 

tabulated in Paper IV is that generated by the reflection algo- 
rithm (§ Vc). Of the three modes of rotation described in § V, 
this is the only one that preserves the original, physically rea- 
sonable, energy dependence of the phase-space distribution 
function. The dynamical development of tidal distortions in a 
galaxy with the circular rotation mode is incompatible with 
what is now seen in the two galaxies described in Papers III 
and IV (i.e., Karachentsev 1972 Nos. 99 and 564). Likewise, 
when the rigid rotation mode is employed, the initial galaxy 
model is not in a steady state configuration, so that the rota- 
tional velocity data late in a simulation do not fit the observa- 
tions nearly so well as they do early in the simulation. 

Both the direction of the rotation axis and the fraction of 
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particles actually participating in the rotation for a particular 
simulation will determine the shape, gradient, and peak-to- 
peak velocity range in the observed rotation curve. It is there- 
fore possible to place some restrictions on the internal dynami- 
cal parameters of the observed galaxies, provided that the 
three-dimensional velocity distribution in the model is a sens- 
ible representation of that in the real galaxy. 

iii) Velocity Dispersions 
The detailed radial variations in the line-of-sight stellar 

velocity dispersion (e.g., Figs. 4 and 8 of Paper III) are not used 
extensively in the attempt to match models to the data, except 
that the central dispersions are used to calibrate the velocity 
scale for the binary. Once calibrated, the projected relative 
velocity of the binary constrains the possible projection angles 
of the total relative velocity vector. The shapes of the velocity 
dispersion profiles depend on the velocity distribution function 
within the pre-collision galaxy, about which very little is 
known. The distribution function used in our models is a 
physically reasonable one, but it is not necessarily the correct 
one. 

VIII. THE MATCH GAME 

It is useful to describe the method by which simulations of 
interacting model galaxies are matched to a given set of obser- 
vations (e.g., see Paper IV). A few physical arguments are pre- 
sented below in order to demonstrate how a reasonable 
matching model for a specific binary can be isolated among the 
plethora of possibilities available in our multidimensional 
parameter space. 

a) The Tidal Strength 
If one attempts to simulate an observed pair of interacting 

galaxies with a model whose binary separation is too large, 
then the resulting tidal field in the simulation will be too weak 
to bring about the degree of distortion that is seen in the light 
distribution. Yet if one suggests a separation that is too small, 
then the tidal distortions in the simulation may greatly exceed 
those that are observed. In the latter case there also will be a 
crowding of the two galaxies and of their isophotes to the point 
that the picture data just cannot be matched. A reasonable 
guess can therefore be made for the value of the true separa- 
tion, with the exception of those cases where the orbital eccen- 
tricity is large (i.e., where the time derivative of the tidal field is 
not small over the course of the integration). The effects of 
varying eccentricity are discussed below. To begin the process 
of isolating a good simulation for a particular binary, one 
examines the isophotal distortions over the course of the inte- 
gration. In particular, one views the simulation only from 
viewing angles that satisfy the requirement that the projected 
separation of the galaxies (in terms of their half-mass radii) 
matches that which is observed. If the distortions observed at 
such viewing angles are too large compared to the distortions 
observed in the real data, then one would conclude that the 
true separation of the pair must significantly exceed its 
observed projected separation on the sky in order for the tidal 
distortions not to be so strong. If, on the other hand, the 
distortions observed in the simulation are too small relative to 
those in the real data, then the true separation of the pair must 
be less than that in the simulation, with the observed projected 
separation consequently being a larger fraction of the true 
separation in space. Following this line of reasoning, it is pos- 
sible to place tight restrictions (better than 10%) on the range 
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of acceptable binary separations and, consequently, on the full 
three-dimensional orientation of the pair. 

The interplay between projection and tidal effects is demon- 
strated in Figure 3 where surface density maps from three dif- 
ferent simulations are portrayed: each of these models had unit 
mass ratio, with the galaxies on initially circular orbits. The 
initial radii of those orbits were, from left to right: 1.0, 1.2, and 
1.4 model units (or five, six, and seven effective radii, 
respectively). Top views of these interactions are shown in the 
top row after each pair has completed one half of their first 
orbit. The contour map shown in the upper left box corre- 
sponds with the particle distribution displayed in the upper left 
box of Figure 1. Note the decreasing tidal effect in these pairs 
as orbit size increases. Also note that all of the pairs are 
moving counterclockwise in this figure, so that those tidal 
bulges that do appear are generally following each galaxy. Even 
though the tidal distortions of the galaxies in the central simu- 
lation are weak, that they are following is not in doubt. On the 
other hand, it is not clear that any tidal effects are evident in 
the rightmost simulation. The bottom row of maps are oblique 
views of the same models at the same times, but at the particu- 
lar observer viewing angles for which the projected (i.e., 
“observed”) separation in all three cases is 0.8 model units 
(four effective radii). The effects of the differing tidal strengths 
(i.e., orbit sizes) are still visible in the shapes of the contours in 
these oblique views: from strong distortions in the leftmost 
simulation, to weak boxlike distortions in the central model, to 
almost no asymmetry in the galaxies on the right. It should be 
possible to compare the distortions observed in a real inter- 
acting binary with sets of maps like these, from which one 
could place significant restrictions on its orbit size and on the 
orbital inclination. Applying velocity constraints to the models 
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would further limit the allowable range of orbital parameters 
and galaxy masses. 

Hoessel, Borne, and Schneider (1985) noted the boxiness of 
the surface brightness isophotes in the multiple-nucleus galaxy 
at the center of A1185 and argued that such is an indicator of 
gravitational interaction among the galaxies in that system. 
The boxiness seen in the isophotes of the bottom middle map 
of Figure 3 supports their conclusion. 

b) Time-dependent Tides 
The orbital eccentricity for an observed pair cannot be 

determined very well quantitatively through simulation. 
However, a reasonable qualitative estimate can be made. If the 
relative trajectory of a simulated pair is highly eccentric, then 
the relative velocity of the galaxies will be very large at peri- 
center. In this case, it may not be possible both to match the 
observed velocity difference and to have a good match to the 
other observables: prior to closest approach, the tidal forces 
usually have not affected either galaxy enough to match the 
observations. In contrast, after closest approach, there may be 
far too much tidal damage in the system. These arguments do 
not apply to those cases where the orbital eccentricity is mod- 
erate to small. One then must judge from the appearance of a 
particular simulation if the distortions, the magnitude of the 
projected relative velocity, and the line-of-sight velocity field of 
the real galaxies are all consistent with the relative orbit of the 
pair lying on the chosen trajectory. Clearly, these represent a 
nontrivial and somewhat subjective set of comparisons that 
must be made. The task is further complicated in that most of 
the distortions of interest are being mapped by the very few 
particles located in the outer parts of the simulated galaxies. 
This last point is not really as severe a problem as it appears 

MODELS FOR INTERACTING GALAXIES 

Fig. 3.—Surface density contour maps for the particle distributions from three simulations. Upper boxes are pole-on views of the three models whose binary orbit 
increases in size going from left to right. Lower boxes are inclined views of the galaxies shown immediately above them; the inclinations are such that the projected 
separations of the binaries across the bottom row of maps are all equal. Particle distribution corresponding to the map in the upper left box is presented in the upper 
left box of Fig. 1. Each box measures 6 units on a side. Contours are drawn at intervals of 1 mag per square pixel. A pixel is 0.05 units square. Units are defined by 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

33
0.

 . 
.3

8B
 

46 BORNE Vol. 330 

since there is in reality no particular upper limit to the number 
of test particles that can be used with a linear code like MTBA. 
In some cases, a model that matched well to the observations 
was rerun with many more test particles, thereby confirming 
the validity of the simulation as a good match to the data. 

Simulations in which the binary is in a circular orbit are 
usually among the first that we investigate. If the “photo- 
metric” distortions in one of these simulations are too small, 
then a smaller circular orbit is investigated. If the distortions 
are too large, a larger circular orbit is tested. If the actual 
shapes and twisting of the simulated isophotes differ from 
those seen in the data, then this is usually an indication that we 
need something more. Either some degree of eccentricity is 
needed in the binary trajectory or some flattening and rotation 
are needed in the model galaxies. Typically, the former possi- 
bility is examined first, and is usually sufficient to reproduce 
the observed distortions. The incentive to add rotation and 
flattening to the model galaxies primarily derives from 
attempts to match the properties observed in the unperturbed 
inner regions of the real galaxies. 

c) Projection Angles and Total Masses 
Where is all this leading us? We are hoping to constrain the 

three-dimensional orientation of a given pair of interacting 
galaxies and, therefore, to determine the mass of the pair. This 
requires us to constrain the projection factors for the relative 
velocity and separation vectors. Fortunately, these require- 
ments are easily met. The projection factor for the separation 
vector is constrained by the procedures described in the pre- 
ceding paragraphs. The projection factor for the relative veloc- 
ity vector is found by applying a different, but equally 
successful, set of constraints. Although the radial variations in 
velocity dispersion are not crucial to the problem (see 
§ VIIc[iii]), the central dispersions are very important. There is 
a cone of viewing angles along which the line-of-sight com- 
ponent of the binary relative velocity is a fixed fraction of the 
central dispersions. Similarly, there is another cone of viewing 
angles for which the projected binary separation is a fixed 
multiple of the effective radii of the galaxies. Except for the case 
of a purely linear binary trajectory, these two cones intersect at 
most along two lines of sight. (Note that the tidal distortions in 
a linear encounter of two weakly rotating galaxies are sym- 
metric about the line, and consequently, one can dismiss this 
type of orbit immediately for the asymmetric pairs of inter- 
acting binaries that are the subject of this investigation.) 
Except for a limited period of time during the simulations, the 
two cones do not intersect at all. For example, at large separa- 
tions (where the binary spends most of its life), the total relative 
velocity may be so low that either a very narrow cone of 
viewing angles or else no viewing angle will give the desired 
value of the projected velocity, and, in addition, only on 
another very narrow cone of viewing angles will the projected 
separation be a small enough fraction of the total separation to 
match the observations. For the limited time that the two 
cones do intersect, usually only one of the two lines of intersec- 
tion will correspond to a line of sight for which the distortions 
in the image of the disturbed galaxy pair have the right parity. 
More often, when the cones intersect, the distortions will not 
have the correct shape and magnitude, and the search for a 
good matching model must continue with another set of 
orbital parameters. 

An example of how the projection angles are determined in 
actual practice follows. One first determines for a particular 

simulation what orbital inclinations and phases give the 
correct projected binary separation Sproj (in units of Reff, the 
effective radius for the larger galaxy). The projected relative 
velocity vrel of the model is then calculated for one particular 
set of observer viewing angles. If the velocity scale is set too 
high by reason of our line of sight to the simulated pair being 
parallel to too much of the total relative velocity vector, then 
the model value for vTel/Gi will be larger than that observed 
(where a l is the central dispersion of the larger galaxy) and one 
must decrease the line-of-sight component of the relative veloc- 
ity. If the velocity scale is set too low by reason of our line of 
sight being parallel to too little of the relative velocity vector of 
the simulation, then vTel/ai will be too low and one must 
increase the line-of-sight velocity component. Following these 
guidelines, one can isolate the projection angles, if any are 
possible, that give the correct values of both v^/gí and 
5proj/Reff. Typically, this procedure allows the velocity projec- 
tion factor (that is, the ratio of total relative velocity to 
observed line-of-sight relative velocity) to be constrained to 
within 10% of its actual value. 

Because the projections of the relative velocity vector and of 
the separation vector for observed interacting binaries are both 
determined to better than 10%, total masses (ocSproj t;rel

2) can 
easily be estimated to within 30%. Since it is the velocity dis- 
persion data that are really responsible for setting the mass 
scale, significant uncertainties in the relative velocity measured 
for a given pair (e.g., K564 in Paper III) will not affect the mass 
calculated for the system as much as much as it will affect the 
determination of the three-dimensional orientation of the pair 
relative to the observer. But if the relative velocity is really so 
small that it nearly equals the error in its measurement, then 
we know that we must be observing the pair almost pole-on. 
Hence, the orientation is determined trivially. 

IX. UNIQUENESS OF THE SOLUTIONS 

For any binary orbit, the dynamical configuration is deter- 
mined by the mass ratio and two orbital parameters (see 
§ Vllh), where the latter may be eccentricity and semimajor 
axis, or they may be the speed and separation at closest 
approach (pericenter). To specify fully the spatial configuration 
of an observed pair, additional parameters are required: the 
current physical separation of the pair (or, equivalently, the 
orbital phase in the specified orbit) and the spatial orientation 
of that orbit. These dynamical and spatial variables are the free 
parameters that one must vary in the search for a simulation 
that best fits all of the observations. It becomes clear that the 
spatial orientation of an otherwise acceptable orbit is uniquely 
determined when one realizes that the projection of the separa- 
tion vector onto the sky and the projection of the relative 
velocity vector onto the line of sight will match their observed 
values typically for either zero or two viewing angles (see 
§ VIIIc). One must vary the orbital parameters until the 
number of such viewing angles differs from zero. Then, from 
the two possible viewing angles, one can trivially select the 
correct view since the parity of the distortions in the model 
image will match those observed for only one of the two views. 
Orbital phase (and, hence, the three-dimensional separation) is 
likewise well determined for a given orbit when one considers 
the discussion of § VHIh: the time development of the tidal 
distortions is such that a particular set of observations auto- 
matically selects the time of observation for a particular orbit 
(i.e., for a particular time dependence of the tidal potential). 

Having guaranteed the uniqueness of the spatial parameters 
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for a given orbit, one is then forced to constrain the dynamical 
parameters of the orbit. Selecting trial solutions by a random 
trial-and-error search of the corresponding parameter space 
does not guarantee the uniqueness of a working simulation; 
although one gains an intuitive belief that the solution is 
unique, more than intuition is required to demonstrate conclu- 
sively that this is so. A particular tool that has proved very 
helpful in the search for a valid orbital solution and in demon- 
strating its uniqueness is represented by the Rperi - Fperi 
diagram of Figure 4. For a given mass ratio, every possible 
orbit is completely specified by a point in this plane. The par- 
ticular coordinate values in Figure 4 correspond to a mass 
ratio of M2/M1 = 1/3. To help demonstrate the utility of this 
diagram, several lines and curves have been drawn through it; 
each of these will now be described. For a given pericenter 
separation, there is a minimum pericenter speed that corre- 
sponds to the circular orbit at that radius; a slower speed 
would allow the pair to fall closer than the pericenter separa- 
tion, an obvious contradiction. The hatch region occupying the 
entire bottom-left region of the figure is this forbidden domain. 
Circular orbits occur on the right boundary of that region. The 
curve delineated by a string of asterisks represents parabolic, 
zero-energy, encounters for which Fperi

2 oc Rper¡
_1. All points 

to the right of that curve represent unbound hyperbolic trajec- 
tories, while points between that curve and the hatch region 
represent bound elliptical trajectories. A simple separation of 
binary interactions into weak and strong collisions would dis- 
tinguish between (i) bound, slow encounters where the tidal 
perturbations are strong and of long duration, and (ii) 
unbound, fast encounters where the tides are weak and short- 
lived. A more quantitative description demands a measure of 
the tidal impulse : 

^tidal Ftidal Ai x 
R 

R 2 
-^peri 

peri 
v . r pen R ■ V • *vpen rpen 

(18) 

The first proportionality assumes that the tidal force Fti 

varies as x/d3, where x is the radius at which most of the tidal 
effects occur and d = Rperi is the separation of the galaxies at 
the moment when the tides are strongest. For collisions 
in which the galaxies interpenetrate, x » Rperi. From 
equation (18), we see that the tidal impulse per unit mass is 
inversely proportional to the orbital angular momentum per 
unit mass. Curves of constant Wtidal therefore correspond to 
curves of constant specific angular momentum where Rperi oc 
V^peri- Three such hyperbolae are shown in Figure 4 for which 
(Æperi J^eri) 1 = 3/4, 1, and 4/3. As tidal impulse weakens (i.e., 
as the product of the tidal force and its duration decreases), the 
curves of constant impulse progress toward the upper right in 
the Rperi — Fperi diagram. Our initial qualitative separation of 
collisions into strong and weak on the basis of the boundness 
of the trajectory is thus slightly modified by this quantitative 
estimate of the tidal impulse: a very strong, yet unbound, 
encounter is possible when the pericenter separation is very 
small, and conversely, a weak, yet bound, encounter is possible 
if Rperi is large enough. These qualifications are obvious. 

For our purposes (that is, matching the disturbances seen in 
our simulations to those observed at the telescope), we must 
also be concerned with the duration of pericenter passage Ai. 
Lines of constant Ai, for which Rperi oc Vperi, are drawn in 
Figure 4 as rays whose origin is the origin (not shown) of the 
Æperi — Fperi coordinate system. The three lines represent 
^Across = 2/3, 1, and 3/2, where icross = 0.42 is the internal 
stellar crossing time within our model galaxy (eq. [24] of 
Paper I). Larger values of Ai correspond to lines of increas- 
ingly steeper slope in the Rperi - Fperi diagram. To see the 
importance of pericenter passage duration, consider two cases 
with equal tidal impulse: one with a small value ofRperi (Fig. 5) 
and one with a large value (Fig. 6). For a fixed tidal impulse, 
when Rperi is very small, Fperi must be very large, and, conse- 
quently, pericenter passage is extremely fast. In this case, the 
galaxies may separate to quite a distance before the effects of 
the tides are visually evident. When they do appear, those tidal 

Fig. 4. Rperi — Vperi diagram used to describe binary orbital configurations. Lines and curves are discussed in the text. 
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Fig. 5.—Time evolution sequence of an encounter for which Rperi = 0.35, Vperi = 3.00, and M2/Mi = 1/3. Top views of the surface density distribution are spaced 
at intervals of 0.5 time units, with pericenter passage occurring in the central box of the sequence. Each view is centered on the system center of mass. Contours are 
calculated as in Fig. 3. 

effects can be spectacular. An example of this would be the 
typical ring galaxy, formed in an Rpcri ä 0 collision with a 
second galaxy : the tremendous inward acceleration of the stars 
in the target galaxy generated by the passage of a massive 
perturber through its center will become visible as a ring in the 
target mass distribution only after the companion galaxy 
has moved to a significant distance from the ring (Lynds and 
Toomre 1976; Theys and Spiegel 1977; Few and Madore 
1986). On the other hand, when Rperi is large, pericenter 
passage is very slow, and significant tidal disturbances will 
build up before the galaxies have had time to move very far 
from pericenter. 

Figures 5 and 6 demonstrate the two cases of small and large 
jRpgri by portraying time evolution sequences of a pair of 
encounters for which Rperi Vperi = 1.05 and M2/Mi = 1/3. In 
each figure, the surface density contour maps represent top 
views of the encounter at fixed time intervals (0.5 time units, 
roughly one internal crossing time), with pericenter passage 
occurring in the central box of each sequence. In Figure 5, 
Rpcri = 0.35 and Fperi = 3.00, while RpeT1 = 0.70 and Fperi = 
1.50 in Figure 6. Since each binary evolves as a result of energy 
and angular momentum transfer from the bulk orbital motion 
into the internal degrees of freedom of each galaxy, the oscu- 

lating elements of the orbits vary with time. At the time corre- 
sponding to the last frame in each sequence: Rperi = 0.33 and 
Fperi = 3.00 in Figure 5, and Rperi = 0.22 and Fperi = 2.86 in 
Figure 6. Although these pairs of numbers are similar, they 
correspond to an unbound pair in one case and to a tight 
binary in the other. In the former case, the distortions are most 
severe when the galaxies are quite separate; in the latter case, 
the distortions grow as the galaxies spiral closer together, 
leading to an eventual merger of the pair. Given the choice of 
one of these two cases as the orbital configuration for a partic- 
ular pair of galaxies, one could select the correct orbit by mea- 
suring the size and shape of the distortions relative to the 
current binary separation vector. The distortions brought on 
by a low-i^peri collision are not at all like those induced when 
Rperi is large. It is well to keep in mind however that the true 
separation and the observed separation are two different 
things, and a steep projection of a slow, distant encounter can 
look very similar to the pole-on view of the early stages of a 
close, fast encounter: both display minimal distortions. 
Usually the additional constraints imposed by detailed veloc- 
ity measurements will help distinguish between two similar- 
looking but otherwise extreme orbital configurations; it 
requires a very special viewing angle not to measure a very 
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Fig. 6.—Same as Fig. 5, except that the parameters of the initial orbit were: Rperi = 0.70 and Fperi = 1.50 

high relative speed between the two galaxies in a close, fast 
passage. Fortunately, a distant, weak encounter cannot look 
anything like a close, strong encounter, even in projection, if 
the tidal disturbances in the strong collision have already seri- 
ously affected the mass distribution. These significantly per- 
turbed systems are precisely those that we have chosen for 
study; their solutions occupy a small region of the Rpcri — Fperi 
diagram and are therefore less ambiguous than the solutions 
for the weakly disturbed systems. 

It is now easy to visualize from Figure 4 that there is a 
unique limited region in Rperi — Vperi space which contains all 
possible matching simulations for a given interacting binary. 
As described above, encounters that are nearly head-on, with 
small Æperi, tend to have distortions roughly along the line 
connecting the galaxy centers, while large impact parameter 
collisions, with larger Rperi, portray a phase lag between the 
distortions and the line of centers. In the latter case, the phase 
lag will vary with distance from the galaxy center in a manner 
dependent on the duration of pericenter passage; different 
depths in the galaxy potential well experience tidal impulses 
from different directions during a slow encounter, whereas all 
depths will sense the impulse from the same direction in a very 
fast collision (the classical impulse approximation). Accord- 
ingly, only a narrow range of values are allowed for Rperi and 

any orbit with a value outside that range will give tidal distor- 
tions that not only have the wrong orientation and shape, but 
also those distortions will be either too strong or too weak. 
The depth within the galaxy to which the tides have disturbed 
the stars also depends on the collision parameters since fast 
encounters do not allow enough time for the inner regions to 
be disturbed, except when Rperi is very small. If the inner 
regions are distorted and the overall distortions are nearly 
aligned with the companion galaxy, then the pair surely had a 
small pericenter separation. If the inner regions are distorted 
and the global distortions are not aligned in any particular 
manner, then the collision was probably a slow, long-duration, 
more distant encounter. The smallest radius at which distor- 
tions can be detected determines the strength of the tidal 
impulse: distortions at very small radii indicate a very strong 
encounter, whereas the lack of distortions even at intermediate 
radii are indicative of a very weak encounter. Since the magni- 
tude of the tidal impulse is thereby constrained by observation, 
then so is the speed of the encounter Vperi. Encounters that are 
either faster or slower than that will have a smaller or larger 
effect, respectively, on the galaxy mass distribution at a given 
radius. In brief, since the shape of the observed tidal distortions 
and their orientation relative to the binary separation vector 
restrict the value of Rperi, while the magnitude and radial varia- 
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tions of the distortions restrict the value of Kperi, it is therefore 
possible to restrict the dynamical solution for a given inter- 
acting binary to a single, unique position in Figure 4. 

How does all this work in practice? The procedure begins by 
choosing a value for the binary mass ratio. It is easiest to use 
the luminosity ratio, and that is what is normally done. The 
mass ratio computed from equation (13) with the observed 
central velocity dispersions is also used in some of the simula- 
tions. Given the mass ratio, orbits are then systematically 
studied in Rperi — Fperi space in a search for encounters that 
lead to the correct tidal perturbations: correct in size, shape, 
and orientation relative to the companion galaxy. Time of 
observation (orbital phase) and orbital inclination are selected 
by matching the line-of-sight relative velocity and the detailed 
appearance of the tidal distortions. Clearly, these various steps 
are not disjoint, but they work together towards finding the 
one unique spatial + dynamical solution. Internal galaxy 
parameters (i.e., rotation and flattening) are adjusted as needed 
to match the properties of the unperturbed inner regions. To 
play this match game successfully, a large number of binary 
models must be run and scrutinized from many different 
viewing angles at many different epochs of their evolution. This 
would not be possible without the speed and efficiency inherent 
to MTBA. 

To summarize, there is a complicated interplay among the 
photometric and spectroscopic observations of an interacting 
binary that restricts the best matching models to a unique, 
limited domain of model parameter space. Some parameters 
may easily lead to simulations that are morphologically 
correct, but which kinematically bare little resemblance to the 
spectroscopic data. This is precisely the point that deserves the 

most emphasis. There are very few restictions that can be 
placed on the solution without the application of kinematic 
data. A large volume of parameter space will lead to simula- 
tions that match only the morphological data, and there may 
even be one simulation that spells “ ALAR TOOMRE ” on the 
sky (Toomre 1974). By working with one more phase space 
dimension (i.e., the line-of-sight velocity), one can reduce con- 
siderably the volume of parameter space containing acceptable 
dynamical solutions. 

Observations of two specific interacting binaries (i.e., Kara- 
chentsev 1972, Nos. 99 and 564) are described in Paper III, 
while Paper IV presents dynamical solutions for each of these 
two pairs. The differences between the various simulations pre- 
sented for a given pair identify the probable range of accept- 
able values for the dynamical parameters as allowed by the 
observations and, hence, measure the uncertainties in the 
physical state finally specified for the pair. Subsequent papers 
in this series will present matching simulations for a number of 
other interacting pairs of elliptical galaxies. 
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