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ABSTRACT 
The Bahcall-Schmidt-Soneira Galaxy potential can be fitted accurately by a Stäckel potential. This provides 

an effective third integral that can be used in the interpretation of the kinematics of various galactic popu- 
lations. As an example we use Stäckel dynamics to analyze the observed kinematics of K giants in the Galac- 
tic halo. We assume that the stars are distributed on thin tube orbits (shell orbits). This is the Stäckel 
generalization of the circular orbit model in a spherical potential. We find that the observed line-of-sight 
velocity dispersion is reproduced for Galactic altitudes larger than 10 kpc. Application of the Stäckel formal- 
ism to the kinematics of other galactic populations should be rewarding. 
Subject headings: galaxies: The Galaxy — stars: stellar dynamics 

I. INTRODUCTION 
Various samples of halo stars exist with observed radial 

velocities (Pier 1982, 1983; Ratnatunga and Freeman 1985; 
Sommer-Larsen and Christensen 1986; Norris 1986; Sandage 
1987). The line-of-sight velocity dispersions are surprisingly 
small for stars at high altitudes (| z | > 10 kpc). They are about 
half the radial dispersion of the stars in the solar neighborhood 
and also much smaller than expected on basis of a reasonable 
assumption for the value of the in situ circular velocity (cf. 
Freeman 1987). 

White (1985) addressed this problem and showed that the 
small velocity dispersions can be understood in a natural way 
by assuming that the stars at high altitudes are distributed 
predominantly on nearly circular orbits, i.e., on orbits with 
small radial excursions. He arrived at this conclusion by using 
a spherical potential for the Galactic halo. This enabled him to 
specify mathematically convenient density components in 
dynamical equilibrium by choosing simple distribution func- 
tions. He then reproduced the observed velocity dispersions by 
a superposition of flattened components. White pointed out 
that more detailed models can be obtained by using non- 
spherical potentials. 

A first attempt in this direction was made by Levison and 
Richstone (1986). These authors used a scale-free model with a 
flat rotation curve (i.e., a logarithmic potential) and were able 
to construct components by superposition of individual stellar 
orbits via linear programming, subject to the constraint that 
the observed dispersions should be reproduced. They con- 
firmed White’s result that the important orbits are the ones 
that have relatively small radial thickness. 

Recently, Sommer-Larsen (1987) reproduced the same data 
with a simple two-component model in a spherical potential. It 
consists of a Michie-Bodenheimer-type component (Richstone 
and Tremaine 1984) and a component entirely made of stars in 
circular orbits. Thus, unlike White and Levison and Richstone, 
he was able to fit the data with spherical components only. 

The above studies reproduce the observed kinematics of the 
halo stars by models with an anisotropic velocity distribution 
and in effect assume that the distribution function of these stars 
depends on three integrals of motion. A spherical potential 
admits four isolating integrals. In addition to the energy £, the 
three components Lx, Ly, and Lz of the angular momentum 
vector L are conserved as well. For simplicity, anisotropic 

spherical models often are constructed by use of a distribution 
function F = F(E, L2). If there is a preferred axis of rotation, it 
is natural to assume that F depends on Lz also. This is the 
approach adopted by White (1985) and by Sommer-Larsen 
(1987). It has the advantage that the density components can 
be specified in analytic form. 

For axisymmetric models generally two integrals exist, the 
energy E and the component of the angular momentum paral- 
lel to the symmetry axis, Lz, say. Numerical orbit calculations 
have shown that in realistic Galactic potentials most stars have 
an effective third integral. No general expression exists for this 
extra integral. For this reason Levison and Richstone (1986) 
constructed components by numerical superposition of indi- 
vidual stellar orbits. Since the orbits indeed are constrained by 
a third integral, the resulting distribution function depends on 
it as well, although this integral is not known explicitly. The 
scale-free axisymmetric models employed by Levison and 
Richstone have the advantage that their mathematical descrip- 
tion is essentially one-dimensional. 

It is natural to ask whether we can use White’s and Sommer- 
Larsen’s analytic approach, but in an axisymmetric potential. 
This requires a set of axisymmetric potentials for which the 
third integral is exact. Such potentials were discovered by 
Stäckel in 1890, and have been applied in galactic dynamics by 
a number of authors (Kuzmin 1956; Hod 1962; van de Hulst 
1962). In this paper, we use these Stäckel potentials as a basis 
for a simple dynamical description of the Population II stars in 
our Galaxy. 

In § II we review the essentials of dynamics in axisymmetric 
Stäckel models. In § III we produce a Stäckel potential that fits 
the Bahcall-Schmidt-Soneira Galaxy model (Bahcall and 
Soneira 1980; Bahcall, Schmidt, and Soneira 1982) globally. As 
an example of the use of this fit, we consider in § IV the kine- 
matics of shell orbits—which are the generalizations of the 
circular orbits in a spherical model—and compare them with 
the observations. Implications of our results are discussed 
briefly in § V. The reader who is not interested in the theoreti- 
cal details should concentrate on §§ lla-llc and then skip to 
§ IV. 

II. AXISYMMETRIC SEPARABLE DYNAMICS 
An axisymmetric Stäckel potential admits an exact third 

integral of motion because the Hamilton-Jacobi equation 
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STARS IN GALACTIC HALO 721 

separates in prolate spheroidal coordinates. We first describe 
these coordinates, and then turn to the equations of motion 
and the resulting stellar orbits. For a detailed discussion see 
Kuzmin (1956), Hori (1962), and de Zeeuw (1985, hereafter 
Paper I). 

a) Geometry 
Define spheroidal coordinates as the triple (2, </>, v), where </> 

is the azimuthal angle in ordinary cylindrical coordinates 
[tn = (x2 + y2)112, <j>, z], and 2 and v are the two roots for t of 

T + a t +7 

where a and y are constants, and —y<v< —a<2. The coor- 
dinate surfaces are confocal spheroids (2 = A0) and hyper- 
boloids of revolution (v = v0) with the z-axis as rotation axis. 
The spheroids are prolate, and the hyperboloids have two 
sheets, k and v are elliptic coordinates in each meridional plane 
cf) = (j)09 with foci on the z-axis at z = ±A = ±(y — a)1/2. A 
point (A, v) generally corresponds to two points (m, ±z) in the 
meridional plane (see Fig. 1 below). Further properties of 
prolate spheroidal coordinates can be found in, e.g., Morse and 
Feshbach (1953). 

A choice of the focal distance determines the spheroidal 
coordinate system completely. The values of a and y are then 
determined up to an additive constant. When a = y, the spher- 
oids become spheres, and the hyperboloids all degenerate to 
their asymptotic cones. In that case equation (1) has only one 
root 2 = r2 — a, with r2 = x2 + y2 + z2. 

b) Equations of Motion 
A gravitational potential Vs is of Stäckel form in the coordi- 

nates (2, </>, v), if it can be written as 

Fs= - m-m (2) 

where/(t) is an arbitrary function (t = 2, v). The special form 
(2) causes the Hamilton-Jacobi equation to separate (Paper I, 
§ IV). This has as a consequence that three of the six equations 
of motion can be integrated, yielding three constants of the 
motion E, /2, and /3. The constant E is the energy per unit 
mass of a star, and I2 = {E2.13 is the famous third integral of 
galactic dynamics (cf. Oort 1965). Near the Galactic plane it 
reduces to the energy in the z-motion, and at large radii, where 
the potential is nearly spherical, it is approximately equal to 
Í(L2- L2). 

The remaining equations of motion are three first-order dif- 
ferential equations. They can be written as 

T — <7 1 
4 (t + a)(i + y) 

t-<x|_ T + a T + y J 

where (t, <t) = (A. v) or vice versa, and 

V = (ro<£)2 =-2I2=^T 

(3a) 

(3b) 

The velocities vx, and vv are the components of the velocity 
vector in the local Cartesian coordinate system. 

c) Orbits 
The general orbits in an oblate axisymmetric Stäckel poten- 

tial are all short axis tubes1 (Hori 1962; Paper I, § VIb). In the 
meridional plane such an orbit fills the area defined by (Fig. 1) 

— y < v < v0 , k)^ < k < k2 , (4) 

where v0, ¿x and k2 are the turning points of the orbit, defined 
as the values of v and k for which vv = 0 and vx = 0, respec- 
tively. It is possible to express quite generally the integrals of 
motion H, /2, and /3, as functions of the turning points (cf. de 
Zeeuw 1988, hereafter Paper II). We can therefore equally well 
use the turning points as the integrals of the motion. As is 
evident from Figure 1, the turning points offer intuitive insight 
into the dynamics. 

A short axis tube orbit has a definite sense of rotation 
around the z-axis, and librates in k and v. The periods TA, T0, 
and Tv of the 2, </>, and v oscillations can be calculated relatively 
easily, due to the separation of the Hamilton-Jacobi equation. 
They are discussed in extenso in § VIII of Paper I. 

In this paper we concentrate on the special short axis tubes 
that have no thickness in the k coordinate, so that ^ = 22. We 
will refer to these infinitesimally thin short axis tubes as shell 
orbits (Bishop 1987; Paper II). Motion in a shell orbit can be 
regarded as motion in an elliptic orbit in a plane whose normal 
is precessing around the z-axis on a cone with fixed top angle 
(see Fig. 2). The precession period Tp is given by 

where ij/ denotes the position angle in the orbital plane, and 
is the period in ij/. In this definition, the precession period is 
positive if the plane of the orbit precesses in the sense opposite 
to that of the orbital motion. It is easily seen that such an orbit 
will eventually cover the whole shell area, unless there happens 
to be a resonance between the rotation and precession rates. It 
follows that a perturbation (in the star density, for example), 
when applied at some particular time, will not remain confined 
to the plane of the orbit, but will eventually be found with finite 
probability over the whole shell area due to the precession of 
the plane of the orbit. This spreading will occur on a time scale 
that is of the order of the precession time Tp. In the spherical 
limit there is a 1:1 resonance between the rotation and precess- 
ion periods, so that every shell orbit breaks up in a continuum 
of circular orbits. 

We emphasize that Stäckel potentials, though clearly 
special, offer important bonuses which compensate for the 
restrictions on the mathematical form of the potential : 

1. Every orbit has three explicit integrals of motion. 
Numerical orbit calculations in more realistic galaxy potentials 
show that only a small fraction of the stars are on stochastic 
trajectories, and that nearly all orbits are short axis tubes 
(Ollongren 1962; Martinet and Mayer, 1975). 

2. Stäckel potentials can have arbitrary flattening and 
describe models with a large variety of radial density profiles 
(de Zeeuw, Peletier, and Franx 1986). Any spherical potential 
can be obtained as a limiting case of equation (2). 

3. It is possible to calculate density components in a Stäckel 
potential in analytic form, by assumption of specific forms 

1 In the original nomenclature due to Ollongren (1962), an orbit of this kind 
was referred to as a box orbit. That name is now reserved for one of the four 
main orbit families in a triaxial galaxy (Schwarzschild 1979). 
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Fig. 1.—The region in the meridional plane occupied by a short axis tube orbit (shaded area). The black squares indicate the position of the foci of the spheroidal 
coordinates. 

F(E, 129 13) for the distribution function, just as was done by 
White (1985) for the spherical case (Dejonghe and de Zeeuw 
1988, hereafter DZ). 

d) Kinematical Properties 
The velocity ellipsoids for equilibrium components in 

Stäckel potentials are everywhere aligned with the spheroidal 
coordinate system (À, </>, v) (Eddington 1915). The values of the 
dispersions <7^, and ov in the velocities v¿, v#, and vv can be 
calculated by taking moments of the distribution function, or 
by direct solution of the equations of stellar hydrodynamics 
(see DZ). However, in general a given mass density does not 
uniquely specify a distribution function that depends on three 
integrals. Hence the equations of stellar hydrodynamics have 
no unique solution for ax and <7V, given p and Vs. 

From the studies of White (1985), Levison and Richstone 
(1986), and Sommer-Larsen (1987), we know that the com- 
ponents required for the description of the halo stars of interest 

must correspond to superpositions of short axis tubes with a 
rather small radial epicyclic motion. For this reason we con- 
sider the case of the infinitesimally thin short axis tubes, i.e., the 
shell orbits. In this case the stellar hydrodynamical equations 
have a unique solution (see Paper II) : 

P<7V
2 = :—I—: (¿ - <r)p(A, <r)R(0, K X)d<r , |v + a| Jv 

(v/y = 2(À + a)R(v, -a, X, X) - ov
2 . (6) 

* X — v 

Here R(t19 t2, t3, t4) is the negative of the third-order divided 
difference of (t + a)/(t), with/(r) defined in equation (2), i.e., 

R(ti, 35T4) — X 
(t + a)/(t) 

1 (*i 
1 <j, k, l, <4- 

Tj)(T, - TltXti - T|) 
(7) 

i±j±k*l 
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STARS IN GALACTIC HALO 723 No. 2, 1988 

Properties and special values of the R-function are discussed in 
Paper II. 

The distribution function for a density built of shell orbits 
only can be written as a one-dimensional quadrature. It is 
positive, and hence physical, for homogeneous or centrally 
concentrated densities (Bishop 1987; Paper II). Since our 
density components will have this property, there is no imme- 
diate need to calculate shell orbit distribution functions explic- 
itly, especially since equation (6) gives the dispersions directly. 

The expression for the maximum mean streaming is 
obtained by calculating the mean of v# over the distribution 
function associated with the given p (Paper II), assuming that 
all stars rotate in the same sense : 

71 A — V 

*m £ [(;. - , (8) 

where E(k) is the complete elliptic integral of the second kind 
with modulus 

» 2 = (V - g)R(v, g, K 
(v + a)R(v, — a, 2, 2) ’ 

Thus, for a given density in an oblate axisymmetric Stäckel 
potential, the kinematical properties of the shell orbit model 
can be calculated by simple one-dimensional calculations. 

We note that <1;^) as given in equation (8) is distinct from 
the circular velocity in the equatorial plane, i.e., the rotation 
curve. The circular orbits in the equatorial plane have turning 
points v0 = — y and = À2 = 20. By use of the equations of 
motion it follows that the circular velocity i;c(m) is given by 

vc
2(w) = 2(20 + cc)R( — y, -a, 20, 20) 

_ 2(20 + a)[/(2o) -f(-y) - (20 + y)/^0)] 

(^0 + y)2 

20 + a = m2 . (10) 

III. GLOBAL FIT 

In order to apply the preceding formalism to the dynamics 
of the Galaxy, we need to approximate the Galactic potential 
by a Stäckel potential. Since we deal with the determination of 
kinematical quantities for a component in dynamical equi- 
librium in a given potential, we need to consider, explicitly or 
implicitly, the distribution function F(E, /2, /3) for that com- 
ponent. Since none of the three integrals contains derivatives of 
the potential, the error in any kinematical quantity due to 
inaccurate fitting, or limited knowledge of the potential, will be 
of the order of the error in the fit to the potential. Any quantity 
that contains derivatives of the potential, such as the rotation 
curve, can be subject to large errors (see § Illb). 

We remark that, if we were to determine the evolution of a 
(nonequilibrium) configuration in the same potential, it follows 
from the collisionless Boltzmann equation that the deviations 
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724 DEJONGHE AND DE ZEEUW Vol. 329 

in the partial derivatives of the potential (i.e., the forces) are the 
dominant sources of the errors, which, again, could be substan- 
tial. 

a) Method 
Consider a potential V(m, z). We wish to approximate V by 

a Stäckel potential Vs of the form (2). Thus, we need to deter- 
mine a prolate spheroidal coordinate system (2, </>, v) and the 
functions/(/l) and/(v) in such a way that expression (2) fits V 
globally as close as possible. It is clear that a procedure for 
doing this should involve some sort of averaging, and should 
give the correct answer if V happens to be exactly of Stäckel 
form. De Zeeuw and Lynden-Bell (1985) describe such a 
method for triaxial Stäckel models. Their procedure simplifies 
considerably in the oblate limit (see also de Zeeuw 1984). 

First pick a prolate spheroidal coordinate system (2, </>, v) by 
choosing the value of Á = (y — a)1/2 (see § Ha). Transform the 
given potential V(w, z) to F(2, v) by use of the relations 

^ _ (A + «Xv + «) _2 _ (¿ + y)(v + r) 
a - y ’ y — a ' ' 

Then calculate the auxiliary function #(2, v) by 

*(2, v) = —(A - v)F(/l, v) . (12) 

If V happens to be of Stäckel form in the chosen coordinates, 
then x(/l, v) =/(2) —/(v). In that case we can find f(X) and/(v) 
by averaging x over v and over 2, respectively. In the more 
general case we do exactly the same, and we define the averages 

<X, '9 = ^ xtt, v)N(v)dv , 

<j, v> = ^ rxa, v)A(w, 

i rv+ 

* = XñJ J, *9, v)A(À)N(v)dÀdv, (13) 

where A(2) and N(v) are weighting functions that have to be 
chosen such that the integrals 

A 
=f: 

A(À)dÀ, N = N(v)dv , (14) 

are finite. The values of v _, v +, 2 _, and À + determine the area 
in the meridional plane in which the potential V is fitted. A 
global fit is obtained by choosing v_ = —y, v+=/l_ = —a 
and À+ = oo. 

With these definitions, we calculate/(A) and/(v) from 

fW = ix, ^> - 2Z , /(v) = JX- <X, v> . (15) 
This gives the functions/(A) and /(v) that define a Stäckel 
potential Vs that fits V in an average sense in the chosen 
prolate spheroidal coordinates (2, </>, v). In order to improve 
the fit, one may repeat this process for different coordinate 
systems, i.e., for different values of y — a. We note that the 
constant jx has been included to ensure that f(X) =/(v) at the 
foci, where 2 = v = — a, so that 1^ is well-defined there. 

If V happens to be of Stäckel form in the chosen coordinates, 
then equation (15) gives the desired result. If V equals Vs in 
some other prolate spheroidal coordinate system, then, by 
repetition of the procedure, one will eventually find a coordi- 
nate system in which the fit is exact. The choice of the weigh- 
ting functions A(2) and N(v) is unimportant if F = 1^. For the 

general case, the weighting functions may be chosen to put 
emphasis on the fitting where it is most important for the 
problem at hand. A good guess for the position of the foci can 
be made in a number of ways. These are discussed by de Zeeuw 
and Lynden-Bell (1985). 

We note that by decreasing the v-extent of the region of 
fitting, it is possible to obtain a fit to the given potential close 
to the equatorial plane that is arbitrarily accurate. Fitting of a 
Stäckel potential in the neighborhood of a single point can be 
done by the above technique also. A more direct method is 
described by van de Hulst (1962) (see also de Zeeuw 1984). 

Finally, the above equations follow from the variational 
principle that minimizes (x - Xs)2, and in that sense gives the 
best overall fit. This means, however, that (F — I^)2 is weighted 
with (2 — fi)2A(X)N(v), which vanishes at the foci. This low 
weight close to the foci can lead to a poor fit there, so it may be 
necessary to modify the weighting functions near the foci in 
order to ensure a smooth potential. 

b) Application to a Galaxy Model 
The prescriptions of the previous paragraph are relatively 

easy to implement numerically, once one decides upon the 
following : 

1. A potential—Wq choose the Bahcall-Schmidt-Soneira 
(1982) potential, in an implementation by D. Gilden. For com- 
parison we also consider the Caldwell-Ostriker (1981) poten- 
tial. Both versions of the Galactic potential were kindly made 
available to us by L. Aguilar. 

2. Weight functions.—We take the following rational func- 
tions for N(v) and A(2): 

N(v) = (v + rMv + al“ 
(y - a)Cv 

„ (16) 

(} (¿ + by* 

where b, d, cA, and cv are parameters. The resulting integrals 
(14) are convergent as long as cA > d + 1 > 0, h > a, and cv > 
-1. These parameters should be chosen according to the 
region of interest. A negative value of cv, or d, assigns more 
weight to the disk or the foci, respectively. Also, adding weight 
to the disk worsens the fit around the foci. The parameters b 
and cx are included in expressions (16) for the sake of gener- 
ality. Their precise values, if within the above bounds, are rela- 
tively unimportant. We adopt h = 0 and cx = 5. 

3. Region of fit.—This is the region in the (m, z) plane where 
the goodness of fit is judged. We have performed fits for two 
regions, the first one for the whole meridional plane out to 
about 30 kpc (“global” fit). The second one is in a region 
limited by two ellipses of constant À and a hyperbola of con- 
stant v, roughly embedded in a rectangle with 3 < m < 30 kpc 
and I z I < 60 kpc (“ local ” fit). 

The fitting procedure has been set up so as to find the best 
fitting A, which defines the prolate spheroidal coordinate 
system (see § lia), for given weight function parameters. The 
goodness of fit depends only marginally on the particular 
weight function, at least for reasonable choices of the param- 
eters cv and d (i.e., not too far from zero and according to the 
region of interest). Of course, A does depend on these param- 
eters, since they determine the distribution of weights in the 
(m, z)-plane. The goodness of fit (minimax) has been calculated 
in each of the two regions mentioned above. The (absolute) 
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errors were normalized with the dynamic range of the potential 
in the fitting region. 

For the global fit we use cv = d = 0, and we find a best value 
of A equal to 0.88 kpc. The error in the fit nowhere exceeds 
±3%, with the largest deviation occurring in the center, and a 
typical value of 1.5%. The local fit has cv = —0.5 and d — 0. 
We find a value of A equal to 0.93 kpc, and an error of ±2% 
over the whole region. 

The function/(t) is obtained numerically, but is monotoni- 
cally increasing and smooth enough to be approximated by a 
simple interpolating function. We write 

ln/(t)= ¿ 
i = 0 

with 

2 In t — In Am — In ( —y) 
í_ In Am — In (—y) 

and Ai and Àm constants. For fixed A we are still free to choose 
the value of y. We use this freedom to adopt a value of y for 
which the function In /(t) becomes approximately linear. We 
take y = —10” 6 and k= 11 and list the values of the constants 
At and for the global fit in Table 1. 

In Figure 3 we compare the rotation curve calculated for the 
global fit, as given by equation (10), with that obtained from 
the exact Bahcall-Schmidt-Soneira potential. The typical dif- 
ferences are well within the observational errors. We conclude 
that the global Stäckel fit is excellent, better even than we 
would have expected from the good fit to the potential itself. 
This good representation of the Galactic rotation curve is espe- 
cially gratifying, since our procedure does not fit any deriv- 
atives of the potential. We expect that the corresponding 
density distribution, which depends on the second derivative of 
/(t), may differ considerably from the actual density distribu- 
tion of the Galaxy, especially in the central regions. 

(17) 

(18) 

TABLE 1 
Coefficients in Representation of /(t) 

Coefficient Global Fit 

.. 
A0 . 
Ai • 
A2 . 
a3 . 
¿4 • 
A5 . 
A6 ■ 
a7 . 
A8 . 
A9 . 
^10 
A,, 

901.7700 
9.866244 
8.850006 

-4.267299 
-3.921225 
11.48199 
24.24413 

-19.05341 
-50.02188 

14.83199 
44.59103 

-4.135184 
-15.03169 

It should be noted that one can use equation (10) to deter- 
mine/^) directly from the observed rotation curve, for each 
choice of a and y. This is equivalent to fitting in the equatorial 
plane only (cf. § Ilia), and additional information is needed to 
specify/(v). Early examples of an approach along these lines 
were given by Wayman (1959) and Hori (1962), both of whom 
fitted a Stäckel potential to the Schmidt (1956) model of the 
Galaxy. 

For the Caldwell and Ostriker (1981) potential, we find a 
different function /(t), but very similar values for A with errors 
of the same magnitude. In what follows we shall therefore 
consider only the Bahcall-Schmidt-Soneira potential. 

IV. A SIMPLE MODEL 

We now employ the Stäckel fit to describe the kinematics of 
the Population II K giants at high Galactic altitude. Our 
analysis is intended as an illustration of the use of Stäckel 
dynamics, and we restrict ourselves to data obtained by Ratna- 

0 5 10 15 20 25 30 
xu (kpc) 

Fig. 3.—Rotation curve corresponding to the global fit described in the text. The black squares are the rotational velocities given by the exact Bahcall-Schmidt- 
Soneira potential. 
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726 DEJONGHE AND DE ZEEUW Vol. 329 

tunga and Freeman (1985, hereafter RF). In addition, we con- 
sider only shell orbit models, already discussed in § II. They are 
attractive for their simplicity, both conceptually and analyti- 
cally. 

We simplify equations (6) and (8) even further by assuming 
that the mass density can be factorized: p(2, v) = pA(2)pv(v). 
This has the advantage that then none of the kinematical 
quantities depends on pA, just as is the case for a component 
built with spherical orbits only. The confocal spheroids of con- 
stant 2 rapidly become nearly spherical as À increases, and 
therefore pv(v) is related to the flattening of the component. For 
simplicity, we also ignore any v-dependence. The kinematical 
quantities now depend only on the potential, through the R- 
function. These simplifications imply that the shell orbit com- 
ponent is almost spherical. According to the studies of White 
(1985) and Sommer-Larsen (1987) this should give an adequate 
representation of the data. 

For construction of a more realistic model one can choose pv 
such that it corresponds to a population that is somewhat 
concentrated toward the Galactic plane, and redo the calcu- 
lations of the kinematical properties. However, in this case it is 
probably better to lift the requirement that p(2, v) factors. 

Figure 4 shows the RF data in their SA 141 field, at / = 240 
and b — — 85. The data indicate a line-of-sight velocity disper- 
sion of the order of 60 km s-1 at a position of 15-20 kpc 
above the plane, with a rather substantial uncertainty of a few 
tens of km s~ \ probably due to the small number statistics. As 
pointed out in the above, if the distribution of K giants at that 
altitude were isotropic, we would expect a dispersion of the 
order of J^/31/2 « 120 km s-1, with Vc the local circular veloc- 
ity. The dashed curve is the mean line-of-sight velocity vlos as 

calculated for the shell model, assuming that all stars move in 
the direction of Galactic rotation. The outer curves are 
± ö'iosj f°r the case of no net rotation (thick curves) and for the 
case of maximum streaming (thin curves). They are only drawn 
for locations with | z | > 5 kpc, since we do not expect shell 
orbit models to be valid in regions of low galactic altitude. 
Clearly the data are compatible with a model in which the stars 
are moving on shell orbits. The small observed dispersion is 
due to the fact that the line-of-sight is almost aligned with the 
2-direction, which has no dispersion in this case. This result is 
not surprising, since Sommer-Larsen (1987) was able to repro- 
duce the observed velocity dispersion in this field with stars on 
circular orbits in a simple spherical potential. 

Figure 5 shows the SA 127 field surveyed by RF, at / = 270 
and b = 38. The thick curves again show <i;0> ± (jlos for the 
case of no net rotation. Here the agreement between the 
observed velocities and the shell model is clearly less satisfac- 
tory than in the high-altitude field of Figure 4. The alos predict- 
ed by the model is much smaller than is observed. This is to be 
expected, since a 2 component must be present at lower galac- 
tic altitudes, and it is not taken into account. It may indicate 
that the K giant component is flattened, since then the radial 
component becomes more important towards the disk. This is 
in agreement with the analysis of White (1985) and Levison 
and Richstone (1986). 

We have seen in § lie that shell orbits can be considered as 
slowly precessing elliptic orbits. From equation (5) it follows 
that at a galactocentric radius of 15 kpc the precession period 
of the orbital plane, and hence the time scale for the spreading 
of stars within the shell, is of the order of 3 x 109 yr, which is 
about 8 times larger than the orbital period at this radius. At 

Fig. 4—Data for RF’s SA 141 field. Abscissa is distance from the Sun; ordinate is the line-of-sight velocity dispersion. The dashed curve is the mean velocity, 
assuming maximum streaming in the direction of Galactic rotation. The thin curves show the 1 <r variations in the case of maximum streaming. The thick curves are 
analogous, but for no net streaming. 
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d (kpc) 

Fig. 5.—Same as Fig. 4, but for RF’s SA 127 field. The thick curves show <i;^) ± <t1os for the case of no net rotation. The dashed curves give the mean streaming for 
retrograde (upper) and direct (lower) motion with respect to Galactic rotation. The thin curves give the 1 a variations. 

5 kpc the precession period is of the order of 4 x 108 years 
(three times the orbital period). 

Statler (1988) has shown that dynamical friction on a small 
companion galaxy tends to deposit stars preferentially on thin 
tube orbits. If indeed repeated infall has caused the presence of 
K giants at high galactic altitude, then the precession times 
indicate that these stars should be seen in clumps. In this 
respect, it is interesting to note that the distribution of velo- 
cities in Figure 5 shows a tendency to be bimodal at large z. 
The lower dashed curve gives the mean streaming velocity for 
stars on shell orbits that all move in the direction of Galactic 
rotation, and the lower thin curves show the 1 <r dispersion. 
The upper curves are similar, but for retrograde stars exclu- 
sively. This gives a somewhat better representation of the data 
than does the model with equal numbers of stars going in both 
directions. We remark that dumpiness in the halo population 
has been suspected by other authors as well (Norris 1986; 
Freeman 1987). 

V. CONCLUDING REMARKS 

The main result of this study is that the Galactic potential 
can be represented fairly accurately by a potential that is of 
Stäckel form. This implies that many, although by no means 
all, properties of the stellar orbits in the Galaxy can be derived 
by a study of the best-fitting Stäckel model. Since three exact 
integrals of motion are known for a Stäckel potential, the 
dynamics is accessible by analytic means, and models with 
truly anisotropic velocity distributions can be constructed. 
Furthermore, since the potential is described by a function of 
one variable only, many of the required calculations can be 
done in an efficient and transparent way. 

We have obtained a global fit to the Bahcall-Schmidt- 
Soneira potential with an error not worse than 3%. If one is 
interested in the potential in a smaller region, e.g., near the 
disk, then a local fit can be made with even higher accuracy. 
The fit is least satisfactory in the central regions and should not 
be used there, especially since the Galactic bulge may well be 
nonaxisymmetric. 

As a simple example, we have discussed the dynamics of the 
Population II stars at high Galactic altitude. Use of the special 
shell orbits allowed us to derive kinematic properties in a 
straightforward manner. The available data are consistent with 
the K giants at high Galactic altitude being predominantly on 
tube orbits that have small radial excursions. 

The analysis presented in § IV can be extended easily to 
include more realistic density components. DZ show that a 
variety of simple choices for the distribution function F(E, /2, 
J3) give rise to smooth density components for which the corre- 
sponding velocity dispersions can be given explicitly also. Pre- 
sumably, such components can be used to fit the kinematics of 
other Galactic populations with a known density distribution 
as well. Candidates are the various halo samples that have 
been obtained recently (e.g., Norris 1986; Sandage 1987; 
Gilmore and Wyse 1987), and also the OH/IR stars in the 
bulge and the disk, for which radial velocities are now being 
measured (Habing 1987). 

In some cases it may be more convenient to use the equa- 
tions of stellar hydrodynamics in order to derive velocity dis- 
persions directly from the density distribution. For 
axisymmetric Stäckel models, the general solution of these 
equations is available (see DZ). The disadvantage of this 
approach is that additional information is needed to specify 
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the dispersions uniquely. Also, it is not always guaranteed that 
the resulting dispersions correspond to a physical, i.e., non- 
negative, distribution function. 

We note that, although the magnitude of the velocity disper- 
sions must be calculated by one of the methods just indicated, 
the orientation of the velocity ellipsoid is known. As already 
mentioned in § lid, Eddington (1915) showed that in a Stäckel 
model the principal axes of the velocity ellipsoid are every- 
where aligned with the coordinates in which the equations of 
motion separate. The fact that a Stäckel model can be fitted to 
the Galactic potential therefore suggests that in a first approx- 
imation the principal axes of the velocity ellipsoids of Galactic 
populations are aligned with the corresponding prolate spher- 
oidal coordinates. In the halo these coordinates are very 
closely approximated by spherical coordinates, so that here 
one principal axis points radially, another one points tangen- 
tially to the pole, and the third lies in the rotation direction. 
The latter may also be the direction of the major axis of the 
velocity ellipsoid. 

The distribution of mass in our Galaxy is fairly well known, 
and accurate starcount models have been constructed (Bahcall 
1986). Inclusion of kinematic data in the models is the obvious 
next step. The results presented here indicate that this can be 
done in an efficient and physically consistent way by use of a 
Stäckel potential that fits the Galactic potential. Such a model 
for the Galaxy may well be adequate for a number of purposes 
and should be a good guide for the interpretation of kinematic 
observations and for the construction of more detailed numeri- 
cal models. 
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