THE ASTROPHYSICAL JOURNAL, **329**:187–207, 1988 June 1 © 1988. The American Astronomical Society. All rights reserved. Printed in U.S.A.

DEEP CCD PHOTOMETRY IN GLOBULAR CLUSTERS. VII. M30

HARVEY B. RICHER¹ AND GREGORY G. FAHLMAN¹ Department of Geophysics and Astronomy, University of British Columbia

AND

DON A. VANDENBERG Department of Physics and Astronomy, University of Victoria Received 1987 September 2; accepted 1987 November 17

ABSTRACT

UBV CCD photometry obtained at CFHT is discussed for the globular cluster M30 (NGC 7099, C2137-234). A single field was observed centered about 3'.4 from the cluster center (about 21 core radii). The data extend from the giant branch down to $M_V \approx 8$. The color-magnitude diagram is presented as well as the luminosity function of the cluster. The main findings of this study are as follows.

1. Even though we observed fairly close in to the cluster center, no blue stragglers nor any evidence for a binary star sequence is seen in the cluster color-magnitude diagram. Any chemical inhomogeneity among the cluster stars is limited to 0.20 dex in [M/H] while the gradient between fields at 21 and 65 core radii (the latter field observed by Bolte) cannot exceed one-half this value.

2. The cluster reddening is observed to be significantly higher than that adopted in most current papers dealing with M30, $E(B-V) = 0.068 \pm 0.035$. A fit of local subdwarfs to the unevolved part of the M30 main sequence yields an apparent distance modulus of 14.85. This distance produces a rather luminous horizontal branch ($M_V = 0.35$).

3. An intercomparison of the color-magnitude diagrams of three very metal poor clusters (M15, M30, and M68) clearly shows that within the errors of the derived reddenings and distances of these clusters, there is no evidence for any age difference between them. Using a set of oxygen-enhanced isochrones, the age of M30 itself is found to be about 14 Gyr.

4. The luminosity function of M30 was determined to $M_V = 8$. Comparison of our luminosity function with one derived by Bolte at 65 core radii shows clear evidence of mass segregation in the low-mass stars, presumably through dynamical relaxation. If the mass function of the cluster is represented by a power law, then its observed slope in the 21 core radii field is ~0.0. The value measured by Bolte at 65 core radii is 1.6. These two results should differ only due to the effects of mass segregation operating on a global mass function. Mass segregation corrections, determined from multimass King-Mitchie models by Pryor, Smith, and McClure, seem to be too small to explain these different slopes.

Subject headings: clusters: globular — photometry — stars: evolution

I. INTRODUCTION AND OBSERVATIONS

There are a number of observed properties of M30 that immediately suggest that the cluster is one deserving extensive study. Integrated spectra revealed that the cluster center possessed unusually strong Balmer lines of hydrogen (Zinn and West 1984). Margon and Downes (1983) discovered a cataclysmic variable member of the cluster; one of only a few confirmed such objects in globulars. There is a central brightness cusp in M30 (King 1986) suggesting that it has a collapsed core. In the compilation of cluster properties by Webbink (1985), M30 is one of the most metal poor objects listed with [M/H] = -2.19.

Several photometric studies of this cluster exist. Dickens (1972) carried out photoelectric UBV photometry of the giant and horizontal branches and derived a reddening value of E(B-V) = 0.06 for the cluster. Alcaino and Liller (1980) presented photographic photometry of the cluster that did reach below the turnoff. A CCD study of the cluster has been reported by Bolte (1987a). This contribution produced a beautiful

¹ Visiting Astronomer, Canada-France-Hawaii Telescope. CFHT is operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique of France, and the University of Hawaii. and tightly defined color-magnitude diagram and placed stringent limits on any metallicity variation among the stars in a given field. However, according to our results presented in § III, Bolte has underestimated the cluster reddening which has led to too small an apparent distance modulus and too large an age for the system.

Our data were obtained at CFHT in 1984 June and in 1986 August. The earlier frames were secured with the single-density RCA CCD system at the prime focus under nonphotometric conditions. This detector at CFHT provides pixels of 0".42 on a side at the prime focus. The seeing produced images with a full width at half-maximum (FWHM) near 0".9. Two exposures in each of B and V were obtained (each exposure lasting 900 s) and those in the same color were averaged together to produce the final frame. The M30 field was centered near star No. 89 from the list of Dickens (1972). Figure 1 displays the final V frame of M30 with the secondary standards marked. The 1986 August data, obtained with the double-density RCA CCD system at CFHT (0".21 pixels), were secured mainly to calibrate the earlier data, but a short U exposure was added in order that the cluster reddening could be determined. The M30 data were calibrated using standards taken from Landolt (1983), the standards covering the range in spectral type from hot white

FIG. 1.—The V CCD frame of M30. The field is located about 3'.4 due west of the cluster center, with star No. 89 of Dickens (1972) roughly in the middle of the frame. The frame shown is an average of two 900 s exposures, and the objects marked are the secondary standards set up in the field (see Table 1). Pixel (0, 0) is located in the southwest corner and the X pixels increase to the east, while the Y pixels increase to the north.

TABLE 1		
CONDARY STANDA	DDC DI	M20

SECONDART ST		11120	
X, Y	V	B-V	U-B
12, 237	18.622	0.409	-0.153
24, 206	16.475	0.644	-0.061
33, 115	19.237	0.429	· · · · ·
78, 140	18.516	0.450	-0.159
105, 65	19.643	0.341	
147. 7	18.198	0.442	-0.211
184. 73	19.728	0.330	
184, 129	17.956	0.547	-0.129
204. 85	19.334	0.380	
215, 108	17.828	0.575	-0.117

dwarfs to K main-sequence stars. The Landolt standards were used to set up a group of secondary standards on our frames, and the photometry of these stars is listed in Table 1. The data were reduced using standard procedures; preprocessing was done using the routines in IRAF and the analysis using DAOPHOT (Stetson 1987).

II. THE COLOR-MAGNITUDE DIAGRAM

The color-magnitude diagram (CMD) which we obtained for M30 is shown in Figure 2. All stars present on both the *B* and *V* frames that are within 1 pixel of each other (after registering the frames) and that have an error within 2.5 σ of the median error for their magnitude are included in the figure. This unbiased selection means that the stellar density along the cluster sequences represents the true luminosity function of the cluster. In total, there are 1485 stars in Figure 2. All the photometry entering into this diagram is listed in Table 2.

The turnoff of the cluster occurs at $V \approx 18.6$ and $(B-V) \approx 0.41$, values identical to that derived by Bolte (1987*a*). No blue stragglers are seen in the CMD even though our field is fairly close in to the cluster center. Also, no evidence of an approximately equal mass binary sequence is seen in the diagram. Such a sequence would make its presence known by a grouping of stars paralleling that of the main sequence, and separated from it by 0.75 mag. The cluster horizontal branch is well defined and characteristic of that of a metal-poor cluster. That is, most of the stars are concentrated to the blue side of the instability strip. The very steep giant branch and the extremely blue color of the turnoff are other indicators that the cluster is very metal poor. The metallicity estimate in the recent compilation of Webbink (1985) is [M/H] = -2.19.

The CMD fiducial sequence was derived by averaging the V magnitudes and (B-V) colors in 0.2 mag wide bins in V and then drawing a smooth curve through the mean values obtained. The resultant smoothed main-sequence fiducial is listed in Table 3. We can use this fiducial sequence to estimate the chemical inhomogeneity among the stars in M30. Bolte (1987a) carried this analysis out for his fields in M30 which are located about 3 times as far as ours from the cluster center. He

FIG. 2.—The V, (B-V) color magnitude diagram of M30. There are 1485 stars in this diagram, and they represent all stars that are present on both frames and possess an error within 2.5 σ of the median error for their magnitude.

TABLE 2

PHOTOMETRY OF M30 STARS

x	Y	v	(B-V)	X	Y	v	(B-V)	x	Y	V	(B-V)
$78.26 \\ 211.96 \\ 108.81 \\ 177.57 \\ 315.48$	344.47 420.39 172.73 202.23 309.46	$\begin{array}{c} 14.828 \\ 14.832 \\ 14.894 \\ 15.056 \\ 15.153 \end{array}$	$\begin{array}{c} 0.697 \\ 0.680 \\ 0.786 \\ 0.504 \\ 0.409 \end{array}$	$186.33 \\ 141.73 \\ 290.64 \\ 252.24 \\ 125.28$	385.09 350.45 204.83 153.67 40.74	$18.215 \\18.219 \\18.227 \\18.242 \\18.243$	$\begin{array}{c} 0.435\\ 0.430\\ 0.460\\ 0.431\\ 0.410\\ \end{array}$	$5.97 \\181.10 \\136.60 \\113.73 \\261.62$	408.66 464.61 415.38 221.67 106.40	$18.742 \\18.759 \\18.772 \\18.776 \\18.784$	$\begin{array}{c} 0.429 \\ 0.414 \\ 0.397 \\ 0.397 \\ 0.409 \end{array}$
$213.51 \\ 138.39 \\ 172.16 \\ 171.81 \\ 29.34$	$\begin{array}{r} 450.86\\92.35\\151.50\\273.23\\126.59\end{array}$	$\begin{array}{c} 15.269 \\ 15.353 \\ 15.393 \\ 15.475 \\ 15.553 \end{array}$	$\begin{array}{c} 0.187 \\ 0.119 \\ 0.069 \\ 0.044 \\ 0.038 \end{array}$	$\begin{array}{r} 145.79 \\ 128.64 \\ 292.99 \\ 219.04 \\ 276.42 \end{array}$	6. 84 390. 22 107. 5 6 446. 0 7 334. 38	$\begin{array}{c} 18.251 \\ 18.255 \\ 18.265 \\ 18.272 \\ 18.311 \end{array}$	$\begin{array}{c} 0.409 \\ 0.404 \\ 0.431 \\ 0.398 \\ 0.439 \end{array}$	$\begin{array}{r} 264.14 \\ 266.77 \\ 249.03 \\ 38.46 \\ 254.85 \end{array}$	$284.61 \\ 405.11 \\ 380.31 \\ 18.19 \\ 193.77$	$\begin{array}{c} 18.784 \\ 18.795 \\ 18.800 \\ 18.812 \\ 18.818 \end{array}$	$\begin{array}{c} 0.386 \\ 0.406 \\ 0.431 \\ 0.411 \\ 0.405 \end{array}$
$300.91 \\ 277.00 \\ 312.31 \\ 185.81 \\ 215.31$	$335.43 \\ 151.43 \\ 405.37 \\ 194.48 \\ 405.99$	$\begin{array}{c} 15.570 \\ 15.598 \\ 15.630 \\ 15.640 \\ 15.701 \end{array}$	$\begin{array}{c} 0.720 \\ 0.045 \\ 0.014 \\ 0.706 \\ 0.684 \end{array}$	$281.65 \\ 25.60 \\ 169.09 \\ 284.63 \\ 14.80$	379.21 438.15 491.18 402.93 480.57	$\begin{array}{c} 18.313 \\ 18.323 \\ 18.324 \\ 18.325 \\ 18.350 \end{array}$	$\begin{array}{c} 0.405 \\ 0.494 \\ 0.421 \\ 0.374 \\ 0.462 \end{array}$	$\begin{array}{c} 220.91 \\ 10.97 \\ 133.15 \\ 216.74 \\ 190.59 \end{array}$	374.46 454.50 451.07 364.39 441.81	$\begin{array}{c} 18.822 \\ 18.824 \\ 18.836 \\ 18.842 \\ 18.843 \end{array}$	$\begin{array}{c} 0.379 \\ 0.429 \\ 0.398 \\ 0.448 \\ 0.411 \end{array}$
$\begin{array}{c} 202.67 \\ 283.09 \\ 125.92 \\ 208.04 \\ 149.77 \end{array}$	$266.05 \\ 299.16 \\ 44.56 \\ 336.87 \\ 492.50$	$\begin{array}{c} 15.729 \\ 15.768 \\ 15.863 \\ 15.889 \\ 15.947 \end{array}$	$\begin{array}{c} -0.012\\ 0.718\\ 0.702\\ -0.056\\ 0.705\end{array}$	$\begin{array}{r} 162.61 \\ 149.81 \\ 199.31 \\ 72.57 \\ 229.82 \end{array}$	430.18 255.72 282.25 354.47 341.40	$\begin{array}{c} 18.352 \\ 18.353 \\ 18.364 \\ 18.369 \\ 18.373 \end{array}$	$\begin{array}{c} 0.400 \\ 0.417 \\ 0.397 \\ 0.421 \\ 0.453 \end{array}$	$\begin{array}{c} 290.72 \\ 242.19 \\ 214.57 \\ 263.98 \\ 226.51 \end{array}$	$\begin{array}{r} 447.14\\ 48.44\\ 437.59\\ 400.99\\ 467.02 \end{array}$	$18.846 \\ 18.850 \\ 18.851 \\ 18.855 \\ 18.855 \\ 18.859 \\ 1$	$\begin{array}{c} 0.453 \\ 0.385 \\ 0.430 \\ 0.410 \\ 0.423 \end{array}$
$219.56 \\ 171.89 \\ 170.53 \\ 211.82 \\ 95.00$	$\begin{array}{r} 336.21\\ 347.12\\ 429.45\\ 141.26\\ 269.45\end{array}$	$\begin{array}{c} 16.045\\ 16.086\\ 16.130\\ 16.181\\ 16.492 \end{array}$	$\begin{array}{c} -0.076 \\ 0.659 \\ 0.672 \\ 0.677 \\ 0.581 \end{array}$	$\begin{array}{r} 87.15 \\ 207.34 \\ 279.59 \\ 96.89 \\ 228.94 \end{array}$	$\begin{array}{r} 243.62 \\ 466.66 \\ 453.55 \\ 271.26 \\ 351.65 \end{array}$	$\begin{array}{c} 18.382 \\ 18.383 \\ 18.391 \\ 18.407 \\ 18.408 \end{array}$	$\begin{array}{c} 0.418 \\ 0.407 \\ 0.442 \\ 0.385 \\ 0.424 \end{array}$	$\begin{array}{c} 245.46 \\ 198.59 \\ 273.09 \\ 192.07 \\ 146.44 \end{array}$	474.41 253.41 327.36 230.90 308.07	$\begin{array}{c} 18.862 \\ 18.866 \\ 18.867 \\ 18.871 \\ 18.885 \end{array}$	$\begin{array}{c} 0.436 \\ 0.425 \\ 0.423 \\ 0.397 \\ 0.398 \end{array}$
$\begin{array}{c} 23.94 \\ 207.52 \\ 114.90 \\ 183.75 \\ 298.71 \end{array}$	$\begin{array}{c} 205.84 \\ 474.94 \\ 451.39 \\ 282.25 \\ 231.61 \end{array}$	$\begin{array}{c} 16.505 \\ 16.580 \\ 16.670 \\ 16.767 \\ 16.777 \end{array}$	$\begin{array}{c} 0.646 \\ 0.655 \\ 0.649 \\ 0.616 \\ 0.656 \end{array}$	$70.21 \\ 224.21 \\ 228.92 \\ 224.21 \\ 173.79$	$316.86 \\ 267.67 \\ 382.55 \\ 179.16 \\ 472.37$	$\begin{array}{c} 18.420 \\ 18.421 \\ 18.426 \\ 18.427 \\ 18.427 \\ 18.427 \end{array}$	$\begin{array}{c} 0.409 \\ 0.373 \\ 0.409 \\ 0.416 \\ 0.436 \end{array}$	$\begin{array}{c} 219.55 \\ 191.78 \\ 309.62 \\ 228.25 \\ 258.12 \end{array}$	$\begin{array}{r} 298.09 \\ 172.92 \\ 428.65 \\ 226.62 \\ 479.58 \end{array}$	$\begin{array}{c} 18.887 \\ 18.895 \\ 18.895 \\ 18.896 \\ 18.902 \end{array}$	$\begin{array}{c} 0.391 \\ 0.414 \\ 0.409 \\ 0.437 \\ 0.468 \end{array}$
$\begin{array}{r} 35.80 \\ 294.46 \\ 196.97 \\ 292.43 \\ 293.52 \end{array}$	$\begin{array}{r} 450.08\\ 284.95\\ 134.26\\ 466.35\\ 265.67\end{array}$	$\begin{array}{c} 16.858 \\ 16.923 \\ 16.941 \\ 17.012 \\ 17.096 \end{array}$	$\begin{array}{c} 0.653 \\ 0.653 \\ 0.653 \\ 0.656 \\ 1.502 \end{array}$	$\begin{array}{r} 268.43 \\ 96.70 \\ 310.52 \\ 227.24 \\ 181.29 \end{array}$	$\begin{array}{r} 433.32\\ 281.15\\ 381.68\\ 241.63\\ 314.68\end{array}$	$\begin{array}{c} 18.452 \\ 18.459 \\ 18.463 \\ 18.473 \\ 18.479 \end{array}$	$\begin{array}{c} 0.318 \\ 0.385 \\ 0.447 \\ 0.399 \\ 0.396 \end{array}$	$\begin{array}{r} 244.57\\ 258.92\\ 283.49\\ 284.69\\ 244.62\end{array}$	$\begin{array}{c} 298.54 \\ 485.54 \\ 155.41 \\ 199.37 \\ 396.47 \end{array}$	$\begin{array}{c} 18.906 \\ 18.915 \\ 18.917 \\ 18.920 \\ 18.930 \end{array}$	$\begin{array}{c} 0.421 \\ 0.497 \\ 0.406 \\ 0.409 \\ 0.496 \end{array}$
$\begin{array}{c} 222.63 \\ 287.94 \\ 107.60 \\ 310.58 \\ 233.25 \end{array}$	$\begin{array}{r} 6.89 \\ 487.06 \\ 226.87 \\ 376.43 \\ 242.17 \end{array}$	$\begin{array}{c} 17.146 \\ 17.155 \\ 17.211 \\ 17.256 \\ 17.293 \end{array}$	$\begin{array}{c} 0.529 \\ 0.794 \\ 0.617 \\ 0.686 \\ 0.631 \end{array}$	$\begin{array}{c} 200.16\\ 295.28\\ 160.01\\ 193.92\\ 257.03 \end{array}$	$\begin{array}{r} 63.64\\ 390.18\\ 431.37\\ 341.70\\ 306.81 \end{array}$	$\begin{array}{c} 18.494 \\ 18.496 \\ 18.514 \\ 18.519 \\ 18.522 \end{array}$	$\begin{array}{c} 0.399 \\ 0.419 \\ 0.390 \\ 0.379 \\ 0.431 \end{array}$	$311.24 \\ 250.99 \\ 73.44 \\ 287.00 \\ 151.74$	48.15 376.01 191.13 464.23 379.81	$\begin{array}{c} 18.935 \\ 18.942 \\ 18.944 \\ 18.948 \\ 18.959 \end{array}$	$\begin{array}{c} 0.385 \\ 0.484 \\ 0.421 \\ 0.431 \\ 0.396 \end{array}$
$\begin{array}{c} 284.93\\ 258.21\\ 143.70\\ 102.47\\ 134.04 \end{array}$	$\begin{array}{c} 291.32 \\ 370.75 \\ 254.75 \\ 240.91 \\ 456.54 \end{array}$	$\begin{array}{c} 17.478 \\ 17.506 \\ 17.585 \\ 17.615 \\ 17.653 \end{array}$	$\begin{array}{c} 0.627 \\ 0.608 \\ 0.595 \\ 1.268 \\ 0.596 \end{array}$	$\begin{array}{c} 103.23 \\ 130.07 \\ 297.07 \\ 77.75 \\ 300.13 \end{array}$	439.34 185.76 374.17 140.03 439.04	$\begin{array}{c} 18.527 \\ 18.533 \\ 18.544 \\ 18.555 \\ 18.560 \end{array}$	$\begin{array}{c} 0.434 \\ 0.410 \\ 0.431 \\ 0.403 \\ 0.450 \end{array}$	$304.11 \\ 167.94 \\ 82.58 \\ 150.98 \\ 296.82$	327.65 338.17 454.25 239.47 346.16	$\begin{array}{c} 18.965 \\ 18.988 \\ 19.009 \\ 19.020 \\ 19.021 \end{array}$	$\begin{array}{c} 0.407 \\ 0.390 \\ 0.431 \\ 0.398 \\ 0.440 \end{array}$
$\begin{array}{r} 82.08\\ 15.17\\ 161.97\\ 215.46\\ 284.11\end{array}$	$394.53 \\ 472.21 \\ 345.81 \\ 107.52 \\ 412.07$	$\begin{array}{c} 17.665 \\ 17.783 \\ 17.808 \\ 17.829 \\ 17.953 \end{array}$	$\begin{array}{c} 0.561 \\ 0.604 \\ 0.649 \\ 0.564 \\ 0.543 \end{array}$	$191.65 \\ 300.77 \\ 286.18 \\ 154.88 \\ 285.75$	$347.28 \\ 356.91 \\ 318.70 \\ 263.32 \\ 461.79$	$\begin{array}{c} 18.576 \\ 18.577 \\ 18.579 \\ 18.586 \\ 18.594 \end{array}$	$\begin{array}{c} 0.368 \\ 0.439 \\ 0.423 \\ 0.384 \\ 0.418 \end{array}$	$\begin{array}{r} 33.62 \\ 169.85 \\ 264.11 \\ 230.83 \\ 310.53 \end{array}$	$\begin{array}{r} 180.74 \\ 436.46 \\ 303.56 \\ 409.02 \\ 488.58 \end{array}$	$\begin{array}{c} 19.022 \\ 19.033 \\ 19.052 \\ 19.068 \\ 19.070 \end{array}$	$\begin{array}{c} 0.418 \\ 0.418 \\ 0.390 \\ 0.430 \\ 0.474 \end{array}$
$184.03 \\182.36 \\145.23 \\132.92 \\267.10$	$\begin{array}{r} 129.33 \\ 439.52 \\ 173.41 \\ 464.36 \\ 206.39 \end{array}$	$\begin{array}{c} 17.956 \\ 17.965 \\ 17.984 \\ 18.037 \\ 18.075 \end{array}$	$\begin{array}{c} 0.529 \\ 0.521 \\ 0.499 \\ 0.485 \\ 0.766 \end{array}$	$159.54 \\ 11.65 \\ 308.93 \\ 6.96 \\ 120.80$	333.53 236.63 139.75 354.33 164.11	$\begin{array}{c} 18.598 \\ 18.602 \\ 18.614 \\ 18.615 \\ 18.662 \end{array}$	$\begin{array}{c} 0.473 \\ 0.418 \\ 0.380 \\ 0.380 \\ 0.425 \end{array}$	$\begin{array}{r} 42.28\\ 205.73\\ 234.08\\ 105.99\\ 202.60\end{array}$	$377.06 \\ 460.77 \\ 441.14 \\ 431.99 \\ 137.73$	$\begin{array}{c} 19.071 \\ 19.072 \\ 19.073 \\ 19.076 \\ 19.085 \end{array}$	$\begin{array}{c} 0.416 \\ 0.479 \\ 0.457 \\ 0.338 \\ 0.381 \end{array}$
$\begin{array}{c} 218.73 \\ 255.32 \\ 159.13 \\ 245.33 \\ 158.25 \end{array}$	$\begin{array}{r} 272.78 \\ 448.88 \\ 219.12 \\ 435.32 \\ 162.00 \end{array}$	$\begin{array}{c} 18.082 \\ 18.084 \\ 18.102 \\ 18.121 \\ 18.133 \end{array}$	$\begin{array}{c} 0.465 \\ 0.496 \\ 0.462 \\ 0.478 \\ 0.423 \end{array}$	$\begin{array}{c} 177.76\\ 297.06\\ 229.37\\ 253.56\\ 242.25\end{array}$	262.11 302.29 415.66 399.87 385.26	$18.678 \\ 18.679 \\ 18.696 \\ 18.698 \\ 18.708 \\$	$\begin{array}{c} 0.367 \\ 0.406 \\ 0.414 \\ 0.394 \\ 0.419 \end{array}$	$\begin{array}{c} 162.97 \\ 19.77 \\ 104.65 \\ 34.35 \\ 139.61 \end{array}$	401.56 10.16 467.96 403.86 461.61	$19.089 \\ 19.090 \\ 19.092 \\ 19.093 \\ 19.094$	$\begin{array}{c} 0.410 \\ 0.419 \\ 0.417 \\ 0.448 \\ 0.400 \end{array}$
$\begin{array}{c} 232.84 \\ 193.93 \\ 267.60 \\ 223.77 \\ 131.53 \end{array}$	$\begin{array}{r} 468.77\\ 279.94\\ 465.41\\ 484.23\\ 380.74 \end{array}$	$18.146 \\ 18.171 \\ 18.180 \\ 18.196 \\ 18.206$	$\begin{array}{c} 0.473 \\ 0.403 \\ 0.500 \\ 0.474 \\ 0.429 \end{array}$	$\begin{array}{r} 227.38 \\ 90.02 \\ 267.80 \\ 266.74 \\ 300.01 \end{array}$	366.34 400.44 385.00 333.34 145.80	$\begin{array}{c} 18.712 \\ 18.722 \\ 18.725 \\ 18.727 \\ 18.727 \\ 18.732 \end{array}$	$\begin{array}{c} 0.396 \\ 0.405 \\ 0.406 \\ 0.406 \\ 0.392 \end{array}$	$\begin{array}{r} 209.74 \\ 291.65 \\ 212.50 \\ 52.73 \\ 152.84 \end{array}$	$\begin{array}{r} 247.32 \\ 230.13 \\ 234.98 \\ 489.06 \\ 303.31 \end{array}$	$19.094 \\ 19.104 \\ 19.104 \\ 19.109 \\ 19.109 \\ 19.110$	$\begin{array}{c} 0.412 \\ 0.398 \\ 0.329 \\ 0.447 \\ 0.484 \end{array}$

37R												
918	d.				TA	ABLE 2—	Continued	*				
32	X	Y	V	(B-V)	X	Y	v	(B-V)	X	Y	v	(B-V)
1988ApJ.	$121.82 \\188.31 \\282.07 \\14.00 \\174.72$	$304.56 \\ 354.31 \\ 390.32 \\ 154.31 \\ 358.20$	$19.110 \\19.114 \\19.119 \\19.123 \\19.127$	$\begin{array}{c} 0.424 \\ 0.414 \\ 0.500 \\ 0.412 \\ 0.407 \end{array}$	$106.36 \\ 181.45 \\ 315.99 \\ 214.06 \\ 135.71$	$217.04 \\ 9.28 \\ 93.59 \\ 14.30 \\ 243.67$	$19.396 \\19.402 \\19.404 \\19.411 \\19.411 \\19.411$	$\begin{array}{c} 0.437 \\ 0.410 \\ 0.469 \\ 0.435 \\ 0.447 \end{array}$	$79.83 \\ 294.47 \\ 57.75 \\ 293.51 \\ 70.87$	$330.52 \\ 279.53 \\ 191.73 \\ 25.74 \\ 89.26$	$19.651 \\ 19.656 \\ 19.657 \\ 19.661 \\ 19.665$	$\begin{array}{c} 0.400\\ 0.511\\ 0.430\\ 0.468\\ 0.482\end{array}$
	$\begin{array}{c} 194.57\\ 312.51\\ 39.79\\ 277.39\\ 230.98\end{array}$	$\begin{array}{r} 411.80\\ 462.49\\ 327.34\\ 413.94\\ 31.76\end{array}$	$\begin{array}{c} 19.130 \\ 19.132 \\ 19.138 \\ 19.141 \\ 19.142 \end{array}$	$\begin{array}{c} 0.416 \\ 0.419 \\ 0.405 \\ 0.397 \\ 0.381 \end{array}$	$\begin{array}{r} 226.03 \\ 159.14 \\ 14.75 \\ 177.83 \\ 124.15 \end{array}$	$105.73 \\137.39 \\28.22 \\424.09 \\446.63$	$19.415 \\ 19.421 \\ 19.422 \\ 19.423 \\ 19.425$	$\begin{array}{c} 0.452 \\ 0.464 \\ 0.456 \\ 0.603 \\ 0.440 \end{array}$	$189.54 \\ 253.46 \\ 30.42 \\ 31.70 \\ 207.16$	$300.48 \\ 237.86 \\ 488.51 \\ 299.74 \\ 440.74$	$19.668 \\ 19.675 \\ 19.686 \\ 19.688 \\ 19.689 \\ 19.689$	$\begin{array}{c} 0.437 \\ 0.539 \\ 0.515 \\ 0.455 \\ 0.453 \end{array}$
	$282.82 \\ 59.49 \\ 304.93 \\ 3.95 \\ 300.92$	$361.65 \\ 101.33 \\ 458.70 \\ 437.35 \\ 449.16$	$\begin{array}{c} 19.142 \\ 19.168 \\ 19.171 \\ 19.177 \\ 19.177 \\ 19.179 \end{array}$	$\begin{array}{c} 0.431 \\ 0.418 \\ 0.547 \\ 0.429 \\ 0.452 \end{array}$	$\begin{array}{c} 181.82 \\ 168.71 \\ 312.58 \\ 166.36 \\ 134.45 \end{array}$	$\begin{array}{c} 187.91 \\ 191.11 \\ 265.83 \\ 438.23 \\ 478.32 \end{array}$	$\begin{array}{c} 19.426 \\ 19.429 \\ 19.435 \\ 19.438 \\ 19.438 \\ 19.443 \end{array}$	$\begin{array}{c} 0.430 \\ 0.429 \\ 0.479 \\ 0.456 \\ 0.423 \end{array}$	$\begin{array}{r} 248.23\\ 303.50\\ 36.74\\ 254.90\\ 249.78\end{array}$	$\begin{array}{r} 181.96 \\ 98.93 \\ 174.61 \\ 492.10 \\ 73.64 \end{array}$	$\begin{array}{c} 19.692 \\ 19.692 \\ 19.694 \\ 19.696 \\ 19.698 \end{array}$	$\begin{array}{c} 0.371 \\ 0.423 \\ 0.465 \\ 0.431 \\ 0.487 \end{array}$
	$118.24 \\97.80 \\198.20 \\32.99 \\218.82$	$\begin{array}{r} 429.90\\93.54\\263.35\\114.84\\362.64\end{array}$	$\begin{array}{c} 19.179 \\ 19.186 \\ 19.187 \\ 19.191 \\ 19.192 \end{array}$	$\begin{array}{c} 0.457 \\ 0.409 \\ 0.346 \\ 0.423 \\ 0.410 \end{array}$	$\begin{array}{r} 253.16 \\ 266.91 \\ 119.55 \\ 15.44 \\ 188.36 \end{array}$	$\begin{array}{r} 146.64 \\ 274.33 \\ 443.88 \\ 358.82 \\ 468.84 \end{array}$	$\begin{array}{c} 19.445 \\ 19.453 \\ 19.461 \\ 19.472 \\ 19.475 \end{array}$	$\begin{array}{c} 0.472 \\ 0.450 \\ 0.423 \\ 0.439 \\ 0.604 \end{array}$	$\begin{array}{r} 164.70\\ 232.23\\ 280.75\\ 279.81\\ 52.15\end{array}$	$\begin{array}{r} 311.40\\ 304.16\\ 357.50\\ 284.34\\ 266.24 \end{array}$	19.699 19.703 19.704 19.705 19.706	$\begin{array}{c} 0.503 \\ 0.503 \\ 0.444 \\ 0.455 \\ 0.461 \end{array}$
	$\begin{array}{c} 27.55 \\ 138.02 \\ 88.84 \\ 302.33 \\ 146.01 \end{array}$	$\begin{array}{r} 277.70 \\ 24.16 \\ 207.55 \\ 195.96 \\ 134.41 \end{array}$	$19.193 \\ 19.198 \\ 19.198 \\ 19.200 \\ 19.217 \\$	$\begin{array}{c} 0.432 \\ 0.437 \\ 0.406 \\ 0.481 \\ 0.416 \end{array}$	$\begin{array}{c} 126.02 \\ 242.73 \\ 277.98 \\ 296.96 \\ 283.52 \end{array}$	$\begin{array}{r} 184.17\\ 437.17\\ 327.48\\ 20.95\\ 217.15\end{array}$	$19.478 \\ 19.484 \\ 19.486 \\ 19.492 \\ 19.497$	$\begin{array}{c} 0.452 \\ 0.380 \\ 0.484 \\ 0.397 \\ 0.452 \end{array}$	$\begin{array}{r} 233.83 \\ 89.05 \\ 202.19 \\ 256.33 \\ 66.13 \end{array}$	$\begin{array}{r} 481.97\\ 286.15\\ 431.18\\ 368.27\\ 456.56\end{array}$	19.706 19.710 19.712 19.717 19.717	$\begin{array}{c} 0.412 \\ 0.453 \\ 0.409 \\ 0.457 \\ 0.475 \end{array}$
	$\begin{array}{c} 18.24 \\ 268.64 \\ 264.26 \\ 310.01 \\ 253.06 \end{array}$	$\begin{array}{c} 283.16\\ 294.62\\ 405.70\\ 464.54\\ 371.00 \end{array}$	$19.217 \\19.217 \\19.220 \\19.222 \\19.230$	$\begin{array}{c} 0.436 \\ 0.409 \\ 0.387 \\ 0.378 \\ 0.453 \end{array}$	$\begin{array}{r} 72.32 \\ 253.09 \\ 119.23 \\ 162.83 \\ 138.69 \end{array}$	$\begin{array}{c} 204.03\\ 224.55\\ 222.31\\ 365.75\\ 474.84 \end{array}$	$19.499 \\19.508 \\19.509 \\19.510 \\19.521$	$\begin{array}{c} 0.446 \\ 0.434 \\ 0.406 \\ 0.446 \\ 0.510 \end{array}$	$\begin{array}{c} 296.33\\ 302.70\\ 218.82\\ 268.15\\ 183.73 \end{array}$	$369.54 \\ 297.61 \\ 486.25 \\ 444.10 \\ 73.33$	$19.725 \\19.725 \\19.730 \\19.731 \\19.739$	$\begin{array}{c} 0.431 \\ 0.549 \\ 0.447 \\ 0.568 \\ 0.472 \end{array}$
	$\begin{array}{c} 189.82 \\ 215.00 \\ 157.24 \\ 208.94 \\ 110.71 \end{array}$	$362.96 \\ 173.53 \\ 314.03 \\ 218.33 \\ 368.09$	$19.232 \\ 19.237 \\ 19.238 \\ 19.240 \\ 19.243$	$\begin{array}{c} 0.400 \\ 0.436 \\ 0.404 \\ 0.418 \\ 0.326 \end{array}$	$156.50 \\ 180.05 \\ 111.77 \\ 12.07 \\ 294.20$	$\begin{array}{r} 184.23\\ 429.64\\ 221.24\\ 301.07\\ 183.55 \end{array}$	$19.521 \\ 19.522 \\ 19.523 \\ 19.525 \\ 19.525 \\ 19.525$	$\begin{array}{c} 0.444 \\ 0.556 \\ 0.406 \\ 0.462 \\ 0.443 \end{array}$	$\begin{array}{c} 112.35\\ 223.25\\ 283.49\\ 299.31\\ 255.96\end{array}$	$\begin{array}{r} 23.28\\ 444.85\\ 375.65\\ 123.04\\ 195.56\end{array}$	19.743 19.743 19.752 19.752 19.757	$\begin{array}{c} 0.449 \\ 1.549 \\ 0.473 \\ 1.557 \\ 0.447 \end{array}$
	$280.89 \\ 287.51 \\ 173.52 \\ 81.60 \\ 305.86$	$312.49 \\ 454.64 \\ 459.46 \\ 291.99 \\ 365.36$	$19.245 \\ 19.258 \\ 19.261 \\ 19.266 \\ 19.274$	$\begin{array}{c} 0.474 \\ 0.485 \\ 0.439 \\ 0.411 \\ 0.423 \end{array}$	$\begin{array}{c} 267.24\\ 231.79\\ 158.16\\ 53.58\\ 304.25\end{array}$	$\begin{array}{r} 456.27\\ 365.21\\ 398.06\\ 233.40\\ 472.54 \end{array}$	$19.531 \\ 19.531 \\ 19.533 \\ 19.541 \\ 19.547 \\ 19.547 \\$	$\begin{array}{c} 0.486 \\ 0.359 \\ 0.449 \\ 0.453 \\ 0.459 \end{array}$	$\begin{array}{r} 41.49 \\ 276.57 \\ 89.58 \\ 239.89 \\ 248.47 \end{array}$	$364.56 \\ 130.21 \\ 336.01 \\ 294.70 \\ 174.15$	$19.758 \\ 19.759 \\ 19.761 \\ 19.770 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 19.780 \\ 10.780 \\ 1$	$\begin{array}{c} 0.453 \\ 0.500 \\ 0.462 \\ 0.466 \\ 0.449 \end{array}$
	$\begin{array}{c} 203.93 \\ 159.88 \\ 221.12 \\ 300.80 \\ 292.90 \end{array}$	$\begin{array}{r} 84.60\\ 157.32\\ 484.82\\ 296.38\\ 457.10\end{array}$	$19.298 \\19.300 \\19.301 \\19.308 \\19.315$	$\begin{array}{c} 0.437 \\ 0.392 \\ 0.378 \\ 0.373 \\ 0.505 \end{array}$	58.67 135.53 239.78 230.06 232.21	$189.75 \\ 307.44 \\ 361.13 \\ 63.58 \\ 404.66$	$19.548 \\ 19.551 \\ 19.558 \\ 19.560 \\ 19.560 \\ 19.560 \\$	$\begin{array}{c} 0.452 \\ 0.436 \\ 0.424 \\ 0.434 \\ 0.446 \end{array}$	$\begin{array}{c} 13.32 \\ 310.98 \\ 64.97 \\ 296.59 \\ 301.23 \end{array}$	$113.71 \\ 366.71 \\ 42.46 \\ 258.63 \\ 454.65$	$19.785 \\ 19.787 \\ 19.789 \\ 19.789 \\ 19.789 \\ 19.799 \\ 19.799 \\$	$\begin{array}{c} 0.484 \\ 0.477 \\ 0.442 \\ 0.462 \\ 0.558 \end{array}$
	$\begin{array}{c} 225.61 \\ 203.63 \\ 100.17 \\ 218.20 \\ 173.30 \end{array}$	$\begin{array}{r} 86.52\\ 95.07\\ 331.44\\ 142.24\\ 140.50\end{array}$	$19.319 \\ 19.322 \\ 19.328 \\ 19.331 \\ 19.335$	$\begin{array}{c} 0.379 \\ 1.406 \\ 0.455 \\ 0.452 \\ 0.399 \end{array}$	$237.66 \\ 300.72 \\ 152.89 \\ 9.65 \\ 21.95$	$\begin{array}{r} 147.49\\ 371.01\\ 425.20\\ 395.26\\ 80.59 \end{array}$	$19.561 \\ 19.564 \\ 19.565 \\ 19.576 \\ 19.587 \\ 19.587 \\$	$\begin{array}{c} 0.444 \\ 0.457 \\ 0.446 \\ 0.461 \\ 0.479 \end{array}$	$\begin{array}{c} 285.11 \\ 314.79 \\ 273.31 \\ 309.83 \\ 277.61 \end{array}$	$\begin{array}{r} 109.22\\ 392.98\\ 354.63\\ 296.94\\ 12.67\end{array}$	$19.805 \\ 19.806 \\ 19.808 \\ 19.809 \\ 19.810$	$\begin{array}{c} 0.403 \\ 0.583 \\ 0.486 \\ 0.504 \\ 0.416 \end{array}$
	$\begin{array}{c} 140.00\\ 262.05\\ 260.04\\ 303.69\\ 150.80 \end{array}$	$335.74 \\ 79.26 \\ 438.66 \\ 425.87 \\ 356.84$	$\begin{array}{r} 19.336 \\ 19.340 \\ 19.344 \\ 19.348 \\ 19.348 \\ 19.348 \end{array}$	$\begin{array}{c} 0.416 \\ 0.435 \\ 0.473 \\ 0.393 \\ 0.399 \end{array}$	$\begin{array}{r} 98.48 \\ 263.48 \\ 105.05 \\ 218.57 \\ 123.38 \end{array}$	$\begin{array}{r} 457.97\\ 396.68\\ 64.89\\ 434.25\\ 399.66\end{array}$	$19.595 \\19.595 \\19.596 \\19.596 \\19.596 \\19.599$	$\begin{array}{c} 0.469 \\ 0.491 \\ 0.446 \\ 0.477 \\ 0.489 \end{array}$	$71.43 \\ 303.24 \\ 163.28 \\ 296.22 \\ 295.12$	$\begin{array}{r} 485.37\\ 384.13\\ 70.41\\ 213.36\\ 241.84\end{array}$	19.810 19.814 19.819 19.821 19.822	$\begin{array}{c} 0.525 \\ 0.595 \\ 0.477 \\ 0.456 \\ 0.631 \end{array}$
	$\begin{array}{c} 266.72\\ 300.96\\ 63.01\\ 313.13\\ 217.35 \end{array}$	$176.58 \\ 200.87 \\ 338.43 \\ 337.30 \\ 368.76$	$\begin{array}{c} 19.358 \\ 19.364 \\ 19.369 \\ 19.376 \\ 19.380 \end{array}$	$\begin{array}{c} 0.442 \\ 0.586 \\ 0.374 \\ 0.435 \\ 0.407 \end{array}$	$219.55 \\ 30.11 \\ 275.57 \\ 33.06 \\ 310.70$	$\begin{array}{c} 211.50\\ 311.90\\ 378.20\\ 436.68\\ 394.35 \end{array}$	$19.606 \\ 19.624 \\ 19.627 \\ 19.628 \\ 19.629$	$\begin{array}{c} 0.487 \\ 0.450 \\ 0.431 \\ 0.481 \\ 0.560 \end{array}$	$\begin{array}{r} 274.34 \\ 175.86 \\ 261.52 \\ 141.08 \\ 45.18 \end{array}$	$\begin{array}{r} 360.92\\ 304.07\\ 233.36\\ 404.19\\ 327.43 \end{array}$	$19.823 \\ 19.823 \\ 19.832 \\ 19.834 \\ 19.835$	$\begin{array}{c} 0.465 \\ 0.466 \\ 0.440 \\ 0.630 \\ 0.405 \end{array}$
	$\begin{array}{r} 243.20\\ 83.34\\ 181.10\\ 128.43\\ 197.45\end{array}$	$\begin{array}{r} 84.01\\ 307.58\\ 54.43\\ 276.43\\ 469.38\end{array}$	19.384 19.387 19.389 19.391 19.396	$\begin{array}{c} 0.412 \\ 0.400 \\ 0.469 \\ 0.460 \\ 0.448 \end{array}$	$\begin{array}{r} 134.67 \\ 69.23 \\ 187.60 \\ 55.61 \\ 52.25 \end{array}$	$176.88 \\ 392.51 \\ 235.39 \\ 212.60 \\ 212.07$	$19.640 \\ 19.643 \\ 19.645 \\ 19.651 \\ 19.651$	$\begin{array}{c} 0.460 \\ 0.452 \\ 0.466 \\ 0.462 \\ 0.592 \end{array}$	$\begin{array}{r} 151.72 \\ 58.44 \\ 260.84 \\ 169.18 \\ 263.08 \end{array}$	309.09 435.62 412.08 480.57 423.80	19.837 19.842 19.844 19.849 19.849	$\begin{array}{c} 0.439 \\ 0.472 \\ 0.503 \\ 0.556 \\ 0.536 \end{array}$

37R												
TABLE 2—Continued										7- 		
32	x	Y	v	(B-V)	X	Y	v	(B-V)	X	Y	v	(B-V)
1988ApJ.	$185.60 \\ 207.53 \\ 136.91 \\ 272.38 \\ 172.20$	$\begin{array}{r} 184.87\\ 484.91\\ 449.58\\ 315.54\\ 416.51\end{array}$	$\begin{array}{c} 19.852 \\ 19.855 \\ 19.860 \\ 19.863 \\ 19.867 \end{array}$	$\begin{array}{c} 0.561 \\ 0.617 \\ 0.474 \\ 0.621 \\ 0.496 \end{array}$	$\begin{array}{r} 17.72\\ 243.95\\ 291.89\\ 309.81\\ 188.02 \end{array}$	397.03 161.85 436.08 300.02 452.12	$\begin{array}{c} 20.066 \\ 20.066 \\ 20.069 \\ 20.069 \\ 20.072 \end{array}$	$\begin{array}{c} 0.490 \\ 0.515 \\ 0.561 \\ 0.471 \\ 0.593 \end{array}$	$\begin{array}{c} 252.42 \\ 255.22 \\ 166.88 \\ 66.84 \\ 224.97 \end{array}$	307.89 480.39 134.03 348.52 62.35	$\begin{array}{c} 20.262\\ 20.264\\ 20.264\\ 20.268\\ 20.268\\ 20.271 \end{array}$	$\begin{array}{c} 0.552 \\ 0.469 \\ 0.539 \\ 0.482 \\ 0.547 \end{array}$
	$78.72 \\ 218.56 \\ 102.31 \\ 286.73 \\ 297.13$	$\begin{array}{r} 440.45\\ 304.47\\ 340.13\\ 271.18\\ 457.93\end{array}$	$19.868 \\ 19.870 \\ 19.870 \\ 19.873 \\ 19.873 \\ 19.877$	$\begin{array}{c} 0.489 \\ 0.474 \\ 0.418 \\ 0.517 \\ 0.593 \end{array}$	$\begin{array}{r} 241.66 \\ 130.49 \\ 98.90 \\ 304.35 \\ 220.47 \end{array}$	$\begin{array}{r} 404.74\\ 260.77\\ 286.40\\ 420.16\\ 414.79\end{array}$	$\begin{array}{c} 20.073 \\ 20.076 \\ 20.082 \\ 20.083 \\ 20.085 \end{array}$	$\begin{array}{c} 0.442 \\ 0.465 \\ 0.543 \\ 0.427 \\ 0.453 \end{array}$	$224.78 \\ 284.26 \\ 127.61 \\ 82.10 \\ 272.29$	205.91 408.60 187.95 391.04 375.80	$\begin{array}{c} 20.273 \\ 20.274 \\ 20.277 \\ 20.281 \\ 20.285 \end{array}$	$\begin{array}{c} 0.536 \\ 0.509 \\ 0.516 \\ 0.504 \\ 0.566 \end{array}$
	$\begin{array}{c} 288.49 \\ 189.74 \\ 187.31 \\ 125.71 \\ 274.83 \end{array}$	$\begin{array}{r} 478.91 \\ 253.84 \\ 295.83 \\ 432.90 \\ 369.77 \end{array}$	$19.878 \\ 19.883 \\ 19.889 \\ 19.894 \\ 19.901$	$\begin{array}{c} 0.549 \\ 0.477 \\ 0.552 \\ 0.442 \\ 0.653 \end{array}$	$\begin{array}{r} 195.78\\ 278.34\\ 97.02\\ 250.88\\ 269.29 \end{array}$	$\begin{array}{r} 254.32 \\ 484.15 \\ 96.94 \\ 421.19 \\ 374.09 \end{array}$	$\begin{array}{c} 20.089 \\ 20.090 \\ 20.091 \\ 20.097 \\ 20.102 \end{array}$	$\begin{array}{c} 0.422 \\ 0.577 \\ 0.459 \\ 0.407 \\ 0.484 \end{array}$	$\begin{array}{r} 45.07 \\ 62.64 \\ 290.05 \\ 250.14 \\ 162.59 \end{array}$	173.03 452.33 373.02 387.66 186.89	20.286 20.287 20.289 20.291 20.302	$\begin{array}{c} 0.621 \\ 0.496 \\ 0.638 \\ 0.570 \\ 0.518 \end{array}$
	$146.35 \\ 194.98 \\ 79.92 \\ 264.54 \\ 299.85$	$\begin{array}{r} 465.93\\ 325.22\\ 327.70\\ 420.33\\ 259.47 \end{array}$	$19.905 \\ 19.908 \\ 19.914 \\ 19.920 \\ 19.921$	$\begin{array}{c} 0.567 \\ 0.459 \\ 0.446 \\ 0.537 \\ 0.499 \end{array}$	$215.09 \\ 291.48 \\ 222.59 \\ 98.33 \\ 69.80$	$\begin{array}{c} 194.77 \\ 426.17 \\ 355.50 \\ 239.17 \\ 284.61 \end{array}$	$\begin{array}{c} 20.116 \\ 20.119 \\ 20.119 \\ 20.125 \\ 20.125 \\ 20.128 \end{array}$	$\begin{array}{c} 0.502 \\ 0.478 \\ 0.586 \\ 0.590 \\ 0.410 \end{array}$	$135.10 \\ 210.72 \\ 21.00 \\ 201.96 \\ 287.03$	472 .39 223 .79 328 .55 400 .95 219 .31	20.303 20.307 20.309 20.321 20.322	$\begin{array}{c} 0.577 \\ 0.567 \\ 0.527 \\ 0.509 \\ 0.622 \end{array}$
	$\begin{array}{r} 253.86\\82.08\\263.70\\107.04\\3.00\end{array}$	$\begin{array}{r} 477.41\\ 247.33\\ 108.56\\ 310.70\\ 8.81\end{array}$	$19.926 \\ 19.928 \\ 19.930 \\ 19.930 \\ 19.930 \\ 19.934$	$\begin{array}{c} 0.552 \\ 0.509 \\ 0.485 \\ 0.435 \\ 0.511 \end{array}$	$\begin{array}{c} 160.65\\ 248.60\\ 308.43\\ 271.78\\ 222.72 \end{array}$	$\begin{array}{r} 428.37\\ 58.07\\ 207.76\\ 294.00\\ 437.92 \end{array}$	$\begin{array}{c} 20.131 \\ 20.132 \\ 20.134 \\ 20.135 \\ 20.135 \\ 20.139 \end{array}$	$\begin{array}{c} 0.628 \\ 0.595 \\ 0.487 \\ 0.521 \\ 0.543 \end{array}$	$\begin{array}{r} 160.19 \\ 173.57 \\ 283.35 \\ 261.18 \\ 63.40 \end{array}$	313.90 246.35 434.37 351.19 317.19	20.323 20.324 20.331 20.333 20.333	$\begin{array}{c} 0.573 \\ 0.505 \\ 0.729 \\ 0.449 \\ 0.539 \end{array}$
	$\begin{array}{c} 121.14\\ 211.42\\ 187.03\\ 276.96\\ 70.45 \end{array}$	352.70 229.38 177.06 384.43 276.99	$19.940 \\ 19.940 \\ 19.940 \\ 19.941 \\ 19.947$	$\begin{array}{c} 0.462 \\ 0.481 \\ 0.492 \\ 0.440 \\ 0.500 \end{array}$	$\begin{array}{r} 148.38\\ 234.70\\ 244.08\\ 27.48\\ 298.09 \end{array}$	$\begin{array}{r} 292.34 \\ 428.20 \\ 456.63 \\ 321.29 \\ 364.35 \end{array}$	$\begin{array}{c} 20.150 \\ 20.150 \\ 20.152 \\ 20.153 \\ 20.163 \end{array}$	$\begin{array}{c} 0.471 \\ 0.555 \\ 0.512 \\ 0.522 \\ 0.564 \end{array}$	$\begin{array}{c} 215.50 \\ 107.81 \\ 33.81 \\ 314.40 \\ 119.77 \end{array}$	296.50 263.29 416.91 208.83 312.46	$\begin{array}{c} 20.339 \\ 20.341 \\ 20.341 \\ 20.349 \\ 20.353 \end{array}$	$\begin{array}{c} 0.530 \\ 0.434 \\ 0.530 \\ 0.586 \\ 0.521 \end{array}$
	$\begin{array}{r} 256.47\\ 306.59\\ 34.53\\ 205.67\\ 284.86 \end{array}$	$\begin{array}{r} 455.33\\ 479.23\\ 454.69\\ 483.61\\ 351.06\end{array}$	$\begin{array}{c} 19.951 \\ 19.958 \\ 19.959 \\ 19.961 \\ 19.962 \end{array}$	$\begin{array}{c} 0.382 \\ 0.475 \\ 0.489 \\ 0.640 \\ 0.558 \end{array}$	$\begin{array}{r} 48.45\\241.88\\253.91\\270.39\\291.72\end{array}$	$\begin{array}{c} 159.68 \\ 290.90 \\ 331.58 \\ 131.03 \\ 322.19 \end{array}$	$\begin{array}{c} 20.170 \\ 20.177 \\ 20.181 \\ 20.188 \\ 20.189 \end{array}$	$\begin{array}{c} 0.541 \\ 0.539 \\ 0.521 \\ 0.548 \\ 0.603 \end{array}$	$\begin{array}{c} 181.07\\ 304.16\\ 286.74\\ 197.35\\ 245.32 \end{array}$	$\begin{array}{c} \textbf{216.82} \\ \textbf{449.66} \\ \textbf{142.77} \\ \textbf{457.88} \\ \textbf{262.29} \end{array}$	$\begin{array}{c} 20.361 \\ 20.366 \\ 20.368 \\ 20.381 \\ 20.383 \end{array}$	$\begin{array}{c} 0.461 \\ 0.500 \\ 0.461 \\ 0.442 \\ 0.539 \end{array}$
	$172.27 \\ 243.17 \\ 198.88 \\ 84.51 \\ 141.32$	$372.65 \\ 239.12 \\ 156.43 \\ 466.28 \\ 231.87$	$19.964 \\ 19.964 \\ 19.967 \\ 19.972 \\ 19.976$	$\begin{array}{c} 0.514 \\ 0.494 \\ 0.468 \\ 0.514 \\ 0.491 \end{array}$	$\begin{array}{c} 122.01 \\ 133.42 \\ 217.96 \\ 196.27 \\ 126.39 \end{array}$	$\begin{array}{r} 423.82\\ 223.45\\ 385.60\\ 362.53\\ 179.91 \end{array}$	20.191 20.193 20.195 20.197 20.197	$\begin{array}{c} 0.534 \\ 0.529 \\ 0.540 \\ 0.487 \\ 0.547 \end{array}$	$\begin{array}{c} 259.49 \\ 279.65 \\ 96.78 \\ 232.63 \\ 311.58 \end{array}$	216.90 272.08 429.60 458.06 486.25	20.389 20.394 20.398 20.398 20.398 20.399	$\begin{array}{c} 0.536 \\ 0.442 \\ 0.541 \\ 0.640 \\ 0.698 \end{array}$
	$\begin{array}{c} 140.16\\ 245.87\\ 310.10\\ 164.35\\ 184.52 \end{array}$	$\begin{array}{r} 339.38 \\ 151.47 \\ 438.44 \\ 436.44 \\ 485.41 \end{array}$	$19.981 \\ 19.985 \\ 19.986 \\ 19.987 \\ 19.994$	$\begin{array}{c} 0.457 \\ 0.468 \\ 0.537 \\ 0.464 \\ 0.528 \end{array}$	$\begin{array}{r} 229.70 \\ 70.74 \\ 240.29 \\ 246.96 \\ 109.68 \end{array}$	$355.72 \\ 371.82 \\ 358.47 \\ 227.97 \\ 162.36$	$\begin{array}{c} 20.198 \\ 20.201 \\ 20.203 \\ 20.204 \\ 20.204 \end{array}$	$\begin{array}{c} 0.566 \\ 0.537 \\ 0.565 \\ 0.494 \\ 0.961 \end{array}$	$\begin{array}{c} 226.75 \\ 89.48 \\ 180.65 \\ 291.44 \\ 240.56 \end{array}$	$\begin{array}{r} 165.23\\ 301.50\\ 166.52\\ 253.00\\ 369.50 \end{array}$	$\begin{array}{c} 20.400\\ 20.402\\ 20.405\\ 20.408\\ 20.408\\ 20.408\end{array}$	$\begin{array}{c} 0.521 \\ 0.522 \\ 0.580 \\ 0.567 \\ 0.789 \end{array}$
	$76.70 \\ 201.10 \\ 220.74 \\ 278.81 \\ 241.83$	$\begin{array}{r} 426.14\\ 367.39\\ 469.05\\ 382.92\\ 457.83\end{array}$	$19.996 \\ 19.997 \\ 20.000 \\ 20.002 \\ 20.010$	$\begin{array}{c} 0.486 \\ 0.497 \\ 0.527 \\ 0.410 \\ 0.530 \end{array}$	$\begin{array}{r} 145.89 \\ 199.75 \\ 239.46 \\ 203.10 \\ 268.98 \end{array}$	$\begin{array}{r} 400.44\\ 291.04\\ 203.80\\ 448.07\\ 301.17\end{array}$	$\begin{array}{c} 20.212 \\ 20.212 \\ 20.230 \\ 20.231 \\ 20.236 \end{array}$	$\begin{array}{c} 0.512 \\ 0.505 \\ 0.543 \\ 0.554 \\ 0.535 \end{array}$	$\begin{array}{c} 144.11\\ 288.00\\ 148.51\\ 276.25\\ 278.72 \end{array}$	$\begin{array}{r} 329.69\\ 397.07\\ 44.03\\ 183.74\\ 464.48\end{array}$	$\begin{array}{c} 20.409 \\ 20.409 \\ 20.410 \\ 20.412 \\ 20.412 \\ 20.412 \end{array}$	$\begin{array}{c} 0.515 \\ 0.537 \\ 0.507 \\ 0.558 \\ 0.550 \end{array}$
	$\begin{array}{c} 212.25\\ 207.26\\ 94.59\\ 158.23\\ 300.60\end{array}$	$371.06 \\ 433.49 \\ 88.97 \\ 250.00 \\ 348.97$	$\begin{array}{c} 20.013\\ 20.021\\ 20.022\\ 20.022\\ 20.022\\ 20.024 \end{array}$	$\begin{array}{c} 0.471 \\ 0.444 \\ 0.474 \\ 0.462 \\ 0.545 \end{array}$	$\begin{array}{r} 202.22\\ 47.50\\ 291.53\\ 151.31\\ 146.36\end{array}$	$\begin{array}{c} 122.55 \\ 105.46 \\ 387.16 \\ 394.86 \\ 420.02 \end{array}$	$\begin{array}{c} 20.237 \\ 20.238 \\ 20.243 \\ 20.244 \\ 20.245 \end{array}$	$\begin{array}{c} 0.465 \\ 0.527 \\ 0.548 \\ 0.605 \\ 0.545 \end{array}$	$\begin{array}{r} 20.38\\ 290.62\\ 253.05\\ 259.78\\ 19.31\end{array}$	$\begin{array}{r} \textbf{344.14}\\ \textbf{398.82}\\ \textbf{11.76}\\ \textbf{257.78}\\ \textbf{100.16} \end{array}$	$\begin{array}{c} 20.420 \\ 20.420 \\ 20.420 \\ 20.421 \\ 20.421 \\ 20.421 \end{array}$	$\begin{array}{c} 0.553 \\ 0.503 \\ 0.552 \\ 0.560 \\ 0.512 \end{array}$
	$\begin{array}{c} 242.86 \\ 103.71 \\ 302.27 \\ 261.55 \\ 274.98 \end{array}$	$195.43 \\ 400.66 \\ 436.00 \\ 16.97 \\ 402.62$	$\begin{array}{c} 20.029\\ 20.036\\ 20.043\\ 20.047\\ 20.048\end{array}$	$\begin{array}{c} 0.656 \\ 0.561 \\ 0.574 \\ 0.527 \\ 0.540 \end{array}$	$225.66 \\ 27.44 \\ 19.35 \\ 12.94 \\ 220.48$	$\begin{array}{r} 248.34 \\ 444.18 \\ 439.90 \\ 223.17 \\ 142.68 \end{array}$	$\begin{array}{c} 20.245\\ 20.248\\ 20.248\\ 20.250\\ 20.250\\ 20.250\end{array}$	$\begin{array}{c} 0.504 \\ 0.477 \\ 0.492 \\ 0.482 \\ 0.556 \end{array}$	$\begin{array}{c} 150.63\\ 315.02\\ 23.56\\ 110.59\\ 76.50 \end{array}$	$111.53 \\ 190.85 \\ 484.40 \\ 77.73 \\ 295.94$	$\begin{array}{c} 20.423\\ 20.423\\ 20.424\\ 20.424\\ 20.428\\ 20.428\end{array}$	$\begin{array}{c} 0.655 \\ 0.541 \\ 0.537 \\ 0.527 \\ 0.564 \end{array}$
	$76.48 \\ 179.15 \\ 299.02 \\ 242.23 \\ 202.49$	$\begin{array}{r} 244.69\\ 251.00\\ 91.48\\ 234.44\\ 346.09 \end{array}$	$\begin{array}{c} 20.048\\ 20.057\\ 20.057\\ 20.060\\ 20.063\end{array}$	$\begin{array}{c} 0.460 \\ 0.486 \\ 0.459 \\ 0.515 \\ 0.455 \end{array}$	$194.07 \\ 148.96 \\ 231.96 \\ 126.82 \\ 36.98$	$\begin{array}{r} 275.56\\ 397.20\\ 265.39\\ 426.78\\ 334.96\end{array}$	$\begin{array}{c} 20.251 \\ 20.251 \\ 20.253 \\ 20.257 \\ 20.260 \end{array}$	$\begin{array}{c} 0.530 \\ 0.479 \\ 0.502 \\ 0.486 \\ 0.515 \end{array}$	$\begin{array}{c} 294.67 \\ 161.67 \\ 182.57 \\ 309.93 \\ 248.83 \end{array}$	$373.48 \\ 36.51 \\ 139.91 \\ 418.38 \\ 41.98$	$\begin{array}{c} 20.429 \\ 20.432 \\ 20.432 \\ 20.436 \\ 20.436 \\ 20.440 \end{array}$	$\begin{array}{c} 0.422 \\ 0.131 \\ 0.524 \\ 0.578 \\ 0.462 \end{array}$

87R												
16	-				T	ABLE 2-	-Continued					
32	X	Y	v	(B-V)	X	Y	V	(B-V)	X	Y	v	(B-V)
1988ApJ.	$246.13 \\ 301.16 \\ 54.39 \\ 312.19 \\ 259.43$	$\begin{array}{r} 333.38\\ 236.90\\ 219.46\\ 470.21\\ 399.99 \end{array}$	$\begin{array}{c} 20.441 \\ 20.441 \\ 20.442 \\ 20.442 \\ 20.442 \\ 20.442 \end{array}$	$\begin{array}{c} 0.503 \\ 0.656 \\ 0.558 \\ 0.471 \\ 0.664 \end{array}$	185.77 184.31 107.12 289.43 275.48	410.59 471.30 413.42 456.22 460.76	20.582 20.585 20.588 20.589 20.599	$\begin{array}{c} 0.721 \\ 0.589 \\ 0.515 \\ 0.696 \\ 0.798 \end{array}$	262.12 163.90 122.74 239.35 298.25	35. 12 361. 36 389. 92 299. 77 27. 91	20.691 20.699 20.699 20.702 20.702 20.703	$\begin{array}{c} 0.580 \\ 0.630 \\ 0.529 \\ 0.566 \\ 0.573 \end{array}$
	$\begin{array}{c} 154.20 \\ 188.46 \\ 300.24 \\ 139.97 \\ 278.11 \end{array}$	$\begin{array}{r} 348.76 \\ 48.16 \\ 308.05 \\ 413.53 \\ 417.98 \end{array}$	$\begin{array}{c} 20.445 \\ 20.446 \\ 20.446 \\ 20.447 \\ 20.450 \end{array}$	$\begin{array}{c} 0.541 \\ 0.658 \\ 0.641 \\ 0.517 \\ 0.498 \end{array}$	193.01 8.35 112.44 286.88 287.33	416.83 182.83 378.85 431.42 386.78	20.595 20.597 20.598 20.600 20.601	$\begin{array}{c} 0.555 \\ 0.634 \\ 0.556 \\ 0.672 \\ 0.540 \end{array}$	299.18 253.68 31.88 115.00 106.82	130.77 471.26 233.52 471.19 49.76	20.707 20.709 20.709 20.712 20.716	$\begin{array}{c} 0.521 \\ 0.592 \\ 0.570 \\ 0.541 \\ 0.593 \end{array}$
	$307.63 \\ 278.88 \\ 144.92 \\ 131.07 \\ 298.05$	$\begin{array}{r} 237.27\\ 239.60\\ 149.01\\ 108.11\\ 257.11\end{array}$	$\begin{array}{c} 20.456 \\ 20.456 \\ 20.456 \\ 20.459 \\ 20.459 \\ 20.459 \end{array}$	$\begin{array}{c} 0.611 \\ 0.523 \\ 0.553 \\ 0.487 \\ 0.648 \end{array}$	$\begin{array}{r} 290.86\\ 311.31\\ 122.51\\ 17.30\\ 305.06 \end{array}$	85.47 134.64 435.25 264.75 289.66	20.606 20.607 20.607 20.608 20.610	$\begin{array}{c} 0.473 \\ 0.537 \\ 0.673 \\ 0.521 \\ 0.846 \end{array}$	130.90 250.40 181.45 271.37 40.02	492.53 448.38 458.95 487.28 193.77	20.720 20.722 20.724 20.725 20.725	$\begin{array}{c} 0.676 \\ 0.617 \\ 0.537 \\ 0.656 \\ 0.621 \end{array}$
	$\begin{array}{r} 63.51 \\ 192.04 \\ 85.06 \\ 241.09 \\ 191.55 \end{array}$	401.42 434.90 363.49 310.60 396.80	$\begin{array}{c} 20.462 \\ 20.463 \\ 20.467 \\ 20.469 \\ 20.471 \end{array}$	$\begin{array}{c} 0.529 \\ 0.749 \\ 0.548 \\ 0.489 \\ 0.575 \end{array}$	234.36 116.85 80.90 274.31 199.40	459.59 422.19 443.26 322.86 371.63	20.610 20.611 20.612 20.614 20.619	0.676 0.670 0.578 0.617 0.759	79.70 168.63 263.60 50.79 266.25	198.25 303.15 385.02 15.86 56.53	$\begin{array}{c} 20.731 \\ 20.731 \\ 20.732 \\ 20.733 \\ 20.736 \end{array}$	$\begin{array}{c} 0.497 \\ 0.661 \\ 0.447 \\ 0.574 \\ 0.464 \end{array}$
	$\begin{array}{c} 105.50 \\ 152.17 \\ 137.91 \\ 287.15 \\ 253.30 \end{array}$	$300.58 \\ 411.87 \\ 238.76 \\ 394.87 \\ 266.56$	$\begin{array}{c} 20.475 \\ 20.478 \\ 20.479 \\ 20.480 \\ 20.481 \end{array}$	$\begin{array}{c} 0.587 \\ 0.554 \\ 0.560 \\ 0.663 \\ 0.679 \end{array}$	$195.61 \\ 56.17 \\ 280.46 \\ 118.95 \\ 142.99$	111.30 365.78 393.22 297.88 289.41	$\begin{array}{c} 20.620\\ 20.621\\ 20.621\\ 20.623\\ 20.623\\ 20.625\end{array}$	$\begin{array}{c} 0.651 \\ 0.592 \\ 0.482 \\ 0.699 \\ 0.677 \end{array}$	55.76 308.01 178.93 309.09 97.10	286.33 122.08 323.21 368.53 223.00	20.737 20.737 20.738 20.738 20.738 20.744	$\begin{array}{c} 0.622 \\ 0.791 \\ 0.575 \\ 0.547 \\ 0.610 \end{array}$
	$290.82 \\ 161.06 \\ 304.55 \\ 9.39 \\ 254.48$	$\begin{array}{r} 403.38\\ 225.40\\ 223.70\\ 266.38\\ 388.22 \end{array}$	$\begin{array}{c} 20.482 \\ 20.492 \\ 20.495 \\ 20.500 \\ 20.503 \end{array}$	$\begin{array}{c} 0.617 \\ 0.634 \\ 0.622 \\ 0.562 \\ 0.511 \end{array}$	81.81 250.24 4.57 89.80 177.35	325.27 365.62 273.85 193.15 178.52	20.627 20.629 20.630 20.631 20.632	$\begin{array}{c} 0.573 \\ 0.597 \\ 0.653 \\ 0.571 \\ 0.604 \end{array}$	$\begin{array}{r} 205.28 \\ 105.61 \\ 242.68 \\ 126.98 \\ 144.67 \end{array}$	434.33 447.65 311.86 464.34 201.83	20.748 20.749 20.751 20.752 20.753	$\begin{array}{c} 0.571 \\ 1.407 \\ 0.802 \\ 0.444 \\ 0.584 \end{array}$
	$57.02 \\ 21.97 \\ 181.08 \\ 60.20 \\ 102.65$	$\begin{array}{r} 479.65\\ 53.87\\ 264.88\\ 372.68\\ 115.76\end{array}$	$\begin{array}{c} 20.514 \\ 20.515 \\ 20.517 \\ 20.518 \\ 20.521 \end{array}$	$\begin{array}{c} 0.498 \\ 0.600 \\ 0.606 \\ 0.558 \\ 0.583 \end{array}$	120.31 151.09 247.54 118.92 151.10	69.86 302.19 244.72 492.94 330.41	$\begin{array}{c} 20.633 \\ 20.633 \\ 20.636 \\ 20.638 \\ 20.638 \\ 20.638 \end{array}$	$\begin{array}{c} 0.610 \\ 0.286 \\ 0.584 \\ 0.539 \\ 0.554 \end{array}$	40.86 306.22 179.69 249.48 275.73	452.05 321.00 415.85 457.35 490.23	$\begin{array}{c} 20.754 \\ 20.755 \\ 20.762 \\ 20.763 \\ 20.765 \end{array}$	$\begin{array}{c} 0.575 \\ 0.602 \\ 0.659 \\ 0.852 \\ 0.765 \end{array}$
	$\begin{array}{c} 228.21 \\ 165.70 \\ 291.96 \\ 130.67 \\ 84.40 \end{array}$	$\begin{array}{r} 264.36 \\ 88.26 \\ 479.64 \\ 410.92 \\ 136.01 \end{array}$	$\begin{array}{c} 20.528 \\ 20.530 \\ 20.533 \\ 20.534 \\ 20.535 \end{array}$	$\begin{array}{c} 0.509 \\ 0.492 \\ 0.611 \\ 0.672 \\ 0.590 \end{array}$	281.09 185.57 182.55 133.23 133.10	$183.04 \\ 402.09 \\ 32.98 \\ 491.05 \\ 249.96$	$\begin{array}{c} 20.638\\ 20.644\\ 20.646\\ 20.648\\ 20.648\\ 20.648\end{array}$	$\begin{array}{c} 0.602 \\ 0.631 \\ 0.595 \\ 0.688 \\ 0.739 \end{array}$	288.30 157.45 117.85 38.78 113.23	196. 05 447. 0 9 319.75 303.19 375.78	$\begin{array}{c} 20.765 \\ 20.766 \\ 20.774 \\ 20.775 \\ 20.776 \end{array}$	$\begin{array}{c} 0.556 \\ 0.710 \\ 0.584 \\ 0.610 \\ 0.570 \end{array}$
	$\begin{array}{c} 263.64 \\ 189.54 \\ 202.33 \\ 200.38 \\ 288.42 \end{array}$	$\begin{array}{r} 490.36 \\ 160.18 \\ 166.55 \\ 238.44 \\ 381.21 \end{array}$	$\begin{array}{c} 20.535 \\ 20.536 \\ 20.540 \\ 20.541 \\ 20.541 \\ 20.541 \end{array}$	$\begin{array}{c} 1.029 \\ 0.562 \\ 0.810 \\ 0.505 \\ 0.627 \end{array}$	35.63 280.81 199.02 141.33 304.15	312.63 479.27 355.05 355.82 360.40	$\begin{array}{c} 20.651 \\ 20.654 \\ 20.656 \\ 20.657 \\ 20.657 \\ 20.657 \end{array}$	$\begin{array}{c} 0.593 \\ 0.579 \\ 0.583 \\ 0.562 \\ 0.801 \end{array}$	171.68 91.76 310.53 258.00 275.94	252.67 397.13 39.33 82.52 205.96	$\begin{array}{c} 20.778 \\ 20.782 \\ 20.783 \\ 20.784 \\ 20.787 \end{array}$	$\begin{array}{c} 0.545 \\ 0.645 \\ 0.548 \\ 0.409 \\ 0.554 \end{array}$
	$173.12 \\ 33.42 \\ 235.40 \\ 258.78 \\ 173.63$	$\begin{array}{r} 312.97 \\ 456.25 \\ 159.25 \\ 481.72 \\ 412.76 \end{array}$	$\begin{array}{c} 20.544 \\ 20.547 \\ 20.549 \\ 20.550 \\ 20.564 \end{array}$	$\begin{array}{c} 0.479 \\ 0.560 \\ 0.577 \\ 0.615 \\ 0.578 \end{array}$	$\begin{array}{r} 263.61 \\ 152.59 \\ 17.37 \\ 209.70 \\ 254.55 \end{array}$	$391.10 \\ 429.30 \\ 354.73 \\ 294.72 \\ 200.87$	$\begin{array}{c} 20.657 \\ 20.659 \\ 20.662 \\ 20.662 \\ 20.662 \\ 20.665 \end{array}$	$\begin{array}{c} 0.589 \\ 0.728 \\ 0.614 \\ 1.094 \\ 0.600 \end{array}$	121.90 271.56 282.50 218.31 269.67	$\begin{array}{r} 258.07 \\ 448.75 \\ 186.59 \\ 217.66 \\ 471.30 \end{array}$	20.789 20.790 20.791 20.796 20.796	$\begin{array}{c} 0.627 \\ 0.376 \\ 0.631 \\ 0.611 \\ 0.530 \end{array}$
	$272.46 \\ 143.45 \\ 48.87 \\ 273.64 \\ 263.33$	$\begin{array}{c} 199.81 \\ 277.50 \\ 195.33 \\ 120.44 \\ 377.00 \end{array}$	$\begin{array}{c} 20.565 \\ 20.565 \\ 20.565 \\ 20.567 \\ 20.567 \\ 20.567 \end{array}$	$\begin{array}{c} 0.645 \\ 0.628 \\ 0.523 \\ 0.558 \\ 0.555 \end{array}$	$\begin{array}{c} 257.85\\ 251.69\\ 279.10\\ 190.46\\ 265.63\end{array}$	407.88 458.41 275.23 323.02 316.14	$\begin{array}{c} 20.665 \\ 20.666 \\ 20.670 \\ 20.671 \\ 20.675 \end{array}$	$\begin{array}{c} 0.628 \\ 0.591 \\ 0.542 \\ 0.602 \\ 0.606 \end{array}$	39.42 126.90 13.21 297.35 20.93	25.77 208.42 447.54 238.08 357.27	20.806 20.807 20.807 20.808 20.811	$\begin{array}{c} 0.567 \\ 0.621 \\ 0.656 \\ 0.536 \\ 0.624 \end{array}$
	$\begin{array}{c} 253.68 \\ 167.15 \\ 205.96 \\ 282.27 \\ 263.35 \end{array}$	$\begin{array}{r} 247.27\\ 357.77\\ 250.69\\ 462.12\\ 30.25\end{array}$	$\begin{array}{c} 20.568 \\ 20.569 \\ 20.571 \\ 20.571 \\ 20.571 \\ 20.571 \end{array}$	$\begin{array}{c} 0.722 \\ 0.524 \\ 0.578 \\ 0.479 \\ 0.536 \end{array}$	$\begin{array}{r} 174.07 \\ 47.35 \\ 158.27 \\ 293.81 \\ 230.34 \end{array}$	$\begin{array}{r} 41.97\\ 278.70\\ 297.28\\ 236.48\\ 477.83\end{array}$	$\begin{array}{c} 20.677 \\ 20.679 \\ 20.681 \\ 20.685 \\ 20.688 \end{array}$	$\begin{array}{c} 0.655 \\ 0.535 \\ 0.570 \\ 0.911 \\ 0.827 \end{array}$	$\begin{array}{r} 99.62 \\ 283.27 \\ 201.44 \\ 257.41 \\ 222.52 \end{array}$	284.08 466.37 343.26 460.82 375.99	20.817 20.819 20.820 20.822 20.823	$\begin{array}{c} 0.553 \\ 0.553 \\ 0.693 \\ 0.466 \\ 0.348 \end{array}$
	$\begin{array}{r} 131.79\\ 220.55\\ 170.31\\ 83.59\\ 16.83\end{array}$	$\begin{array}{r} 426.33 \\ 169.89 \\ 451.49 \\ 99.74 \\ 407.07 \end{array}$	$\begin{array}{c} 20.578 \\ 20.578 \\ 20.578 \\ 20.579 \\ 20.580 \end{array}$	$\begin{array}{c} 0.521 \\ 0.571 \\ 0.523 \\ 0.681 \\ 0.592 \end{array}$	$\begin{array}{r} 212.40 \\ 44.35 \\ 282.64 \\ 145.82 \\ 141.37 \end{array}$	$309.19 \\ 472.12 \\ 80.88 \\ 436.40 \\ 400.64$	20.688 20.688 20.689 20.689 20.699 20.690	$\begin{array}{c} 0.593 \\ 0.620 \\ 1.284 \\ 0.655 \\ 0.636 \end{array}$	$\begin{array}{c} 167.51 \\ 182.74 \\ 197.82 \\ 107.87 \\ 24.10 \end{array}$	471.28 299.36 304.33 396.06 377.08	20.824 20.827 20.831 20.832 20.835	$\begin{array}{c} 0.611 \\ 0.600 \\ 0.731 \\ 1.100 \\ 0.674 \end{array}$

87R												
[6]				8	TA	BLE 2—	Continued			-		
3	X	Y	V	(B-V)	X	Y	V	(B-V)	X	Y	v	(B-V)
1988ApJ.	$\begin{array}{r} 157.90 \\ 209.89 \\ 241.84 \\ 61.33 \\ 284.90 \end{array}$	$\begin{array}{r} 491.36\\ 361.22\\ 98.38\\ 60.84\\ 192.73\end{array}$	20.842 20.846 20.847 20.849 20.849	0.656 0.685 0.708 0.633 0.590	$306.48 \\ 180.12 \\ 71.73 \\ 198.55 \\ 221.27$	$\begin{array}{r} 69.85\\ 245.11\\ 412.10\\ 401.01\\ 379.83\end{array}$	$\begin{array}{c} 21.013 \\ 21.015 \\ 21.016 \\ 21.017 \\ 21.019 \end{array}$	0.807 0.966 0.622 0.653 0.646	$\begin{array}{c} 250.62 \\ 290.35 \\ 245.51 \\ 209.47 \\ 199.18 \end{array}$	$156.04 \\ 189.91 \\ 370.07 \\ 60.36 \\ 412.99$	$\begin{array}{c} 21.156 \\ 21.157 \\ 21.158 \\ 21.160 \\ 21.161 \end{array}$	$\begin{array}{c} 0.677 \\ 0.763 \\ 0.884 \\ 0.939 \\ 0.597 \end{array}$
	$\begin{array}{c} 256.68 \\ 260.11 \\ 295.59 \\ 299.54 \\ 260.04 \end{array}$	444.77 295.33 492.52 417.18 260.91	$\begin{array}{c} 20.849 \\ 20.849 \\ 20.852 \\ 20.852 \\ 20.852 \\ 20.857 \end{array}$	$\begin{array}{c} 0.950 \\ 0.672 \\ 0.590 \\ 0.609 \\ 0.564 \end{array}$	78.86 110.58 61.63 69.46 291.76	473.86 156.47 463.24 416.90 383.06	$\begin{array}{c} 21.020\\ 21.022\\ 21.025\\ 21.028\\ 21.028\\ 21.029 \end{array}$	$\begin{array}{c} 0.579 \\ 0.676 \\ 0.824 \\ 1.461 \\ 0.728 \end{array}$	$308.87 \\ 159.96 \\ 309.17 \\ 198.72 \\ 252.53$	$\begin{array}{r} 247.52\\ 39.75\\ 233.85\\ 191.53\\ 319.99 \end{array}$	$\begin{array}{c} 21.164 \\ 21.166 \\ 21.168 \\ 21.168 \\ 21.168 \\ 21.173 \end{array}$	$\begin{array}{c} 0.817 \\ 0.679 \\ 0.853 \\ 0.643 \\ 0.674 \end{array}$
	$\begin{array}{c} 205.20 \\ 233.11 \\ 254.21 \\ 167.58 \\ 225.98 \end{array}$	$\begin{array}{r} 62.12 \\ 171.22 \\ 180.67 \\ 368.73 \\ 90.74 \end{array}$	$\begin{array}{c} 20.859 \\ 20.860 \\ 20.865 \\ 20.867 \\ 20.869 \end{array}$	$\begin{array}{c} 0.688 \\ 0.611 \\ 0.635 \\ 0.581 \\ 0.490 \end{array}$	$199.37 \\136.38 \\144.75 \\234.53 \\296.31$	$\begin{array}{r} 428.67 \\ 423.57 \\ 110.87 \\ 12.89 \\ 424.79 \end{array}$	$\begin{array}{c} 21.030\\ 21.032\\ 21.041\\ 21.042\\ 21.045\end{array}$	$\begin{array}{c} 0.494 \\ 0.587 \\ 0.615 \\ 0.655 \\ 0.574 \end{array}$	$\begin{array}{r} 95.20 \\ 64.58 \\ 298.41 \\ 95.65 \\ 118.52 \end{array}$	$\begin{array}{r} 98.51\\324.95\\396.51\\177.64\\427.83\end{array}$	$\begin{array}{c} 21.174 \\ 21.176 \\ 21.179 \\ 21.180 \\ 21.187 \end{array}$	$\begin{array}{c} 0.851 \\ 0.620 \\ 0.866 \\ 0.778 \\ 0.492 \end{array}$
	$\begin{array}{c} 268.49\\ 262.22\\ 172.35\\ 221.56\\ 229.28 \end{array}$	$\begin{array}{c} 111.01 \\ 463.42 \\ 462.30 \\ 304.99 \\ 249.07 \end{array}$	$\begin{array}{c} 20.871 \\ 20.871 \\ 20.875 \\ 20.875 \\ 20.878 \\ 20.881 \end{array}$	$\begin{array}{c} 0.753 \\ 0.340 \\ 0.771 \\ 0.628 \\ 0.886 \end{array}$	$\begin{array}{c} 165.94 \\ 216.51 \\ 116.25 \\ 109.50 \\ 229.40 \end{array}$	$\begin{array}{r} 413.95\\315.37\\271.65\\364.82\\284.11\end{array}$	$\begin{array}{c} 21.045 \\ 21.047 \\ 21.048 \\ 21.049 \\ 21.049 \\ 21.049 \end{array}$	$\begin{array}{c} 0.721 \\ 0.473 \\ 0.645 \\ 0.661 \\ 0.610 \end{array}$	$\begin{array}{r} 161.93\\ 251.21\\ 171.97\\ 297.04\\ 35.65\end{array}$	139.96 189.01 398.28 292.98 283.74	$\begin{array}{c} 21.194 \\ 21.194 \\ 21.195 \\ 21.199 \\ 21.202 \end{array}$	$\begin{array}{c} 0.622 \\ 0.461 \\ 0.723 \\ 0.322 \\ 0.629 \end{array}$
	$\begin{array}{r} 149.19\\ 279.09\\ 99.57\\ 170.77\\ 135.06 \end{array}$	$\begin{array}{r} 232.70\\ 421.40\\ 475.94\\ 360.66\\ 373.84 \end{array}$	$\begin{array}{c} 20.881 \\ 20.888 \\ 20.895 \\ 20.895 \\ 20.895 \\ 20.897 \end{array}$	$\begin{array}{c} 0.611 \\ 0.430 \\ 0.671 \\ 0.635 \\ 0.660 \end{array}$	$\begin{array}{c} 299.14 \\ 142.25 \\ 244.50 \\ 265.21 \\ 219.30 \end{array}$	$\begin{array}{r} 456.91 \\ 307.93 \\ 228.26 \\ 439.08 \\ 437.36 \end{array}$	$\begin{array}{c} 21.050 \\ 21.055 \\ 21.056 \\ 21.056 \\ 21.061 \end{array}$	$\begin{array}{c} 0.622 \\ 0.629 \\ 0.499 \\ 0.917 \\ 0.465 \end{array}$	$\begin{array}{r} 147.85\\ 55.53\\ 309.25\\ 220.90\\ 290.55\end{array}$	$7.92 \\ 375.84 \\ 132.26 \\ 244.22 \\ 474.33 \\$	$\begin{array}{c} 21.203 \\ 21.205 \\ 21.213 \\ 21.214 \\ 21.216 \end{array}$	$\begin{array}{c} 0.833 \\ 0.660 \\ 0.774 \\ 0.780 \\ 0.844 \end{array}$
	$223.00 \\ 20.13 \\ 138.62 \\ 44.61 \\ 17.87$	465.36 484.78 431.11 240.60 474.87	20.897 20.903 20.903 20.906 20.913	$\begin{array}{c} 0.529 \\ 0.715 \\ 0.740 \\ 0.696 \\ 0.597 \end{array}$	180.98 132.44 200.07 193.52 290.71	$\begin{array}{r} 174.84\\ 356.27\\ 255.85\\ 414.66\\ 278.32 \end{array}$	$\begin{array}{c} 21.063\\ 21.070\\ 21.071\\ 21.073\\ 21.073\\ 21.079\end{array}$	$1.122 \\ 0.591 \\ 0.485 \\ 0.751 \\ 0.571$	$\begin{array}{c} 227.61 \\ 216.32 \\ 48.11 \\ 194.11 \\ 78.04 \end{array}$	$38.75 \\ 232.53 \\ 485.78 \\ 399.52 \\ 165.69$	$\begin{array}{c} 21.217\\ 21.218\\ 21.219\\ 21.221\\ 21.221\\ 21.223\end{array}$	$\begin{array}{c} 0.677 \\ 0.710 \\ 0.873 \\ 1.022 \\ 0.660 \end{array}$
	285.76 215.71 208.37 180.98 160.95	$\begin{array}{r} 27.43\\ 300.04\\ 319.01\\ 372.87\\ 236.41 \end{array}$	$\begin{array}{c} 20.915 \\ 20.919 \\ 20.923 \\ 20.925 \\ 20.925 \\ 20.925 \end{array}$	0.676 0.500 0.672 0.853 0.604	$\begin{array}{c} 239.21 \\ 169.75 \\ 288.32 \\ 63.75 \\ 276.32 \end{array}$	155.05 238.99 468.99 273.48 390.07	$\begin{array}{c} 21.081 \\ 21.083 \\ 21.084 \\ 21.092 \\ 21.094 \end{array}$	0.785 0.666 0.708 0.693 0.549	259.54 231.39 295.24 88.01 249.36	$\begin{array}{r} 421.12 \\ 165.67 \\ 126.07 \\ 434.62 \\ 64.40 \end{array}$	$\begin{array}{c} 21.227 \\ 21.236 \\ 21.237 \\ 21.238 \\ 21.243 \end{array}$	$\begin{array}{c} 0.752 \\ 0.627 \\ 0.710 \\ 0.686 \\ 0.929 \end{array}$
	$108.20 \\ 271.20 \\ 49.90 \\ 86.26 \\ 64.76$	401.09 173.42 388.69 493.43 281.28	$\begin{array}{c} 20.928 \\ 20.929 \\ 20.931 \\ 20.941 \\ 20.945 \end{array}$	0.746 0.865 0.629 0.996 0.562	$\begin{array}{c} 113.56\\ 251.80\\ 232.00\\ 194.58\\ 79.93 \end{array}$	368.13 403.53 299.37 370.78 80.54	$\begin{array}{c} 21.094 \\ 21.095 \\ 21.096 \\ 21.097 \\ 21.099 \end{array}$	$\begin{array}{c} 0.674 \\ 0.655 \\ 0.702 \\ 0.681 \\ 0.827 \end{array}$	$283.84 \\ 4.11 \\ 209.83 \\ 60.64 \\ 235.77$	$\begin{array}{r} 22.39 \\ 243.83 \\ 18.53 \\ 242.01 \\ 153.88 \end{array}$	$\begin{array}{c} 21.244\\ 21.244\\ 21.245\\ 21.245\\ 21.246\\ 21.246\end{array}$	$\begin{array}{c} 0.883 \\ 0.736 \\ 0.651 \\ 0.516 \\ 0.676 \end{array}$
	$256.14 \\ 118.81 \\ 226.22 \\ 19.23 \\ 255.00$	37.08 236.01 360.41 249.59 291.88	$\begin{array}{c} 20.948\\ 20.950\\ 20.952\\ 20.953\\ 20.953\\ 20.959\end{array}$	0.288 0.711 0.628 0.609 0.752	$\begin{array}{r} 251.55 \\ 133.35 \\ 245.50 \\ 257.57 \\ 161.48 \end{array}$	95.13 377.54 405.74 327.63 99.83	$\begin{array}{c} 21.100 \\ 21.102 \\ 21.102 \\ 21.103 \\ 21.103 \\ 21.103 \end{array}$	$\begin{array}{c} 0.615 \\ 0.681 \\ 0.410 \\ 0.701 \\ 0.804 \end{array}$	139.50 20.24 186.88 107.79 257.81	442.59 215.86 467.51 446.86 412.89	$\begin{array}{c} 21.247\\ 21.250\\ 21.252\\ 21.253\\ 21.253\\ 21.256\end{array}$	$\begin{array}{c} 0.826 \\ 1.301 \\ 0.720 \\ 0.891 \\ 0.681 \end{array}$
	$215.10 \\ 164.71 \\ 164.57 \\ 59.20 \\ 244.73$	52.34 142.38 329.32 272.97 307.72	$\begin{array}{c} 20.959 \\ -20.960 \\ 20.961 \\ 20.969 \\ 20.971 \end{array}$	0.555 0.525 0.558 0.642 0.878	$\begin{array}{c} 107.08\\ 314.54\\ 269.05\\ 256.14\\ 170.99 \end{array}$	$\begin{array}{r} 470.03\\119.15\\447.07\\352.08\\22.62\end{array}$	$\begin{array}{c} 21.106 \\ 21.110 \\ 21.111 \\ 21.116 \\ 21.120 \end{array}$	0.684 0.635 0.469 0.920 0.773	$\begin{array}{r} 274.98 \\ 77.94 \\ 46.24 \\ 153.84 \\ 46.47 \end{array}$	244.13 391.41 352.16 404.34 416.73	$\begin{array}{c} 21.256 \\ 21.257 \\ 21.259 \\ 21.260 \\ 21.263 \end{array}$	$\begin{array}{c} 0.692 \\ 0.664 \\ 0.640 \\ 0.575 \\ 0.459 \end{array}$
	$\begin{array}{c} 105.86 \\ 126.40 \\ 239.32 \\ 257.14 \\ 120.13 \end{array}$	380.42 309.05 169.05 427.14 378.33	$\begin{array}{c} 20.978 \\ 20.979 \\ 20.981 \\ 20.981 \\ 20.985 \end{array}$	0.524 0.727 0.630 0.568 0.584	132.77 55.73 293.64 119.00 194.22	$\begin{array}{r} 22.92 \\ 461.48 \\ 157.51 \\ 489.13 \\ 300.16 \end{array}$	$\begin{array}{c} 21.122\\ 21.126\\ 21.132\\ 21.141\\ 21.141\\ 21.141 \end{array}$	0.836 0.666 0.758 0.537 0.766	$106.09 \\ 222.51 \\ 128.95 \\ 93.71 \\ 155.02$	396.61 283.99 445.76 208.74 398.98	$\begin{array}{c} 21.264 \\ 21.267 \\ 21.267 \\ 21.271 \\ 21.271 \\ 21.272 \end{array}$	$\begin{array}{c} 0.160 \\ 0.728 \\ 0.726 \\ 0.659 \\ 0.554 \end{array}$
	274.33 179.73 131.85 148.74 203.02	$\begin{array}{r} 171.03 \\ 422.61 \\ 188.44 \\ 335.66 \\ 369.48 \end{array}$	$\begin{array}{c} 20.987 \\ 20.992 \\ 20.993 \\ 20.995 \\ 20.996 \end{array}$	$\begin{array}{c} 0.602 \\ 0.683 \\ 0.741 \\ 0.654 \\ 0.599 \end{array}$	54.37 107.08 67.96 313.91 152.61	$346.82 \\ 421.13 \\ 275.49 \\ 241.60 \\ 8.79$	$\begin{array}{c} 21.142 \\ 21.142 \\ 21.143 \\ 21.143 \\ 21.149 \\ 21.151 \end{array}$	0.565 1.150 0.714 0.758 0.676	$\begin{array}{c} 178.53\\ 306.94\\ 254.11\\ 104.20\\ 197.95 \end{array}$	$171.33 \\ 12.25 \\ 187.03 \\ 19.73 \\ 454.18$	$\begin{array}{c} 21.273 \\ 21.274 \\ 21.275 \\ 21.283 \\ 21.284 \end{array}$	$\begin{array}{c} 0.600 \\ 0.527 \\ 0.537 \\ 0.692 \\ 0.636 \end{array}$
	$313.69 \\ 289.31 \\ 25.06 \\ 13.65 \\ 278.31$	342.35 286.84 242.49 430.48 257.37	$\begin{array}{c} 20.998 \\ 20.999 \\ 21.002 \\ 21.011 \\ 21.012 \end{array}$	0.530 1.054 0.634 0.606 0.636	$\begin{array}{r} 260.23\\99.81\\243.85\\48.66\\113.46\end{array}$	$\begin{array}{r} 286.91 \\ 447.63 \\ 424.30 \\ 303.31 \\ 185.16 \end{array}$	$\begin{array}{c} 21.152 \\ 21.154 \\ 21.154 \\ 21.155 \\ 21.155 \\ 21.155 \end{array}$	$\begin{array}{c} 0.422 \\ 0.692 \\ 0.688 \\ 0.641 \\ 0.705 \end{array}$	$\begin{array}{r} 289.06 \\ 278.93 \\ 244.20 \\ 66.79 \\ 29.26 \end{array}$	353.34 282.19 342.75 202.98 172.21	21.289 21.296 21.297 21.304 21.306	0.386 0.663 0.747 0.654 0.720

87R												
91					TA	ABLE 2-	Continued					4
32	х	Y	v	(B-V)	X	Y	v	(B-V)	X	Y	v	(B-V)
1988ApJ.	$\begin{array}{c} 261.66\\ 295.58\\ 253.99\\ 303.22\\ 263.34 \end{array}$	$\begin{array}{r} 457.73\\ 474.04\\ 305.78\\ 57.64\\ 315.82 \end{array}$	$\begin{array}{c} 21.307 \\ 21.309 \\ 21.311 \\ 21.313 \\ 21.319 \end{array}$	0.472 1.233 0.407 0.630 0.785	$168.58 \\ 253.74 \\ 147.69 \\ 87.08 \\ 120.44$	$\begin{array}{r} 14.62 \\ 294.37 \\ 119.65 \\ 228.74 \\ 419.32 \end{array}$	21.426 21.426 21.428 21.433 21.433	$\begin{array}{c} 0.792 \\ 0.760 \\ 0.683 \\ 0.801 \\ 0.600 \end{array}$	$153.56 \\ 73.14 \\ 292.54 \\ 175.93 \\ 119.24$	436.78 271.80 320.33 111.51 255.81	$\begin{array}{c} 21.567 \\ 21.568 \\ 21.572 \\ 21.574 \\ 21.574 \\ 21.575 \end{array}$	0.654 0.972 0.534 0.842 0.864
	$\begin{array}{r} 76.36\\ 213.88\\ 228.26\\ 245.06\\ 195.80\end{array}$	$\begin{array}{r} 415.80\\ 191.46\\ 292.39\\ 419.21\\ 288.48\end{array}$	$\begin{array}{c} 21.319 \\ 21.319 \\ 21.320 \\ 21.327 \\ 21.328 \end{array}$	$\begin{array}{c} 0.659 \\ 0.590 \\ 0.736 \\ 0.765 \\ 0.600 \end{array}$	$\begin{array}{r} 189.99\\ 82.03\\ 21.77\\ 115.66\\ 281.61\end{array}$	$54.64 \\ 30.49 \\ 2.98 \\ 459.97 \\ 323.02$	21.435 21.441 21.444 21.444 21.444	$\begin{array}{c} 0.531 \\ 0.666 \\ 0.709 \\ 0.702 \\ 0.972 \end{array}$	$\begin{array}{r} 248.35\\ 303.21\\ 129.82\\ 298.39\\ 182.84 \end{array}$	252.40 477.73 52.12 171.32 231.88	$\begin{array}{c} 21.576 \\ 21.576 \\ 21.577 \\ 21.580 \\ 21.580 \\ 21.580 \end{array}$	0.668 0.753 0.658 0.983 0.785
	$\begin{array}{c} 255.90\\ 37.41\\ 155.46\\ 204.01\\ 243.55 \end{array}$	$\begin{array}{r} 297.87 \\ 439.21 \\ 36.87 \\ 350.76 \\ 281.23 \end{array}$	$\begin{array}{c} 21.333\\ 21.334\\ 21.334\\ 21.337\\ 21.337\\ 21.340 \end{array}$	$1.267 \\ 0.683 \\ 0.584 \\ 0.628 \\ 0.753$	$\begin{array}{r} 241.34 \\ 256.49 \\ 16.42 \\ 196.14 \\ 201.07 \end{array}$	$\begin{array}{r} 427.64 \\ 238.65 \\ 90.12 \\ 165.46 \\ 183.46 \end{array}$	$\begin{array}{c} 21.449 \\ 21.451 \\ 21.452 \\ 21.456 \\ 21.456 \end{array}$	$\begin{array}{c} 0.696 \\ 0.701 \\ 0.734 \\ 0.819 \\ 0.466 \end{array}$	$308.33 \\ 184.43 \\ 169.39 \\ 254.79 \\ 160.01$	260.96 86.07 79.07 463.65 300.26	$\begin{array}{c} 21.581 \\ 21.587 \\ 21.587 \\ 21.589 \\ 21.589 \\ 21.590 \end{array}$	0.742 0.628 0.840 0.356 0.834
	$180.89 \\ 268.42 \\ 168.85 \\ 89.80 \\ 300.00$	488.01 187.43 11.44 97.14 254.31	$\begin{array}{c} 21.341 \\ 21.341 \\ 21.344 \\ 21.346 \\ 21.346 \\ 21.346 \end{array}$	$\begin{array}{c} 1.060 \\ 0.914 \\ 0.807 \\ 0.620 \\ 0.824 \end{array}$	$\begin{array}{r} 63.48 \\ 144.21 \\ 99.27 \\ 314.72 \\ 205.72 \end{array}$	$\begin{array}{r} 56.39\\ 317.27\\ 136.46\\ 274.65\\ 52.06\end{array}$	$\begin{array}{c} 21.457 \\ 21.458 \\ 21.459 \\ 21.463 \\ 21.464 \end{array}$	$\begin{array}{c} 0.703 \\ 0.698 \\ 0.695 \\ 0.584 \\ 0.067 \end{array}$	$111.50 \\ 257.25 \\ 126.74 \\ 114.36 \\ 4.32$	310.78 262.63 361.52 236.71 210.22	$\begin{array}{c} 21.597 \\ 21.598 \\ 21.601 \\ 21.604 \\ 21.610 \end{array}$	0.676 0.966 0.664 0.699 0.864
	$\begin{array}{r} 250.29\\ 294.47\\ 41.93\\ 278.46\\ 314.71 \end{array}$	$\begin{array}{r} 312.93\\ 138.96\\ 441.49\\ 64.23\\ 257.51 \end{array}$	$\begin{array}{c} 21.351 \\ 21.355 \\ 21.356 \\ 21.359 \\ 21.361 \end{array}$	$\begin{array}{c} 0.429 \\ 1.025 \\ 0.681 \\ 0.660 \\ 0.578 \end{array}$	$\begin{array}{r} 205.37\\ 30.65\\ 195.71\\ 155.84\\ 187.83 \end{array}$	$373.93 \\ 52.92 \\ 295.21 \\ 372.49 \\ 444.35$	21.465 21.467 21.470 21.471 21.478	$\begin{array}{c} 0.841 \\ 0.614 \\ 0.761 \\ 0.695 \\ 0.859 \end{array}$	$\begin{array}{r} 172.54 \\ 164.10 \\ 75.21 \\ 313.05 \\ 188.75 \end{array}$	439.21 319.79 487.51 13.44 95.14	$\begin{array}{c} 21.617\\ 21.618\\ 21.620\\ 21.620\\ 21.628\end{array}$	1.071 0.867 0.595 0.404 0.914
	$150.68 \\ 180.49 \\ 109.39 \\ 242.79 \\ 215.30$	$\begin{array}{r} 210.06 \\ 410.39 \\ 40.92 \\ 274.78 \\ 275.65 \end{array}$	$\begin{array}{c} 21.363\\ 21.369\\ 21.370\\ 21.370\\ 21.371\\ \end{array}$	$\begin{array}{c} 0.814 \\ 0.734 \\ 0.515 \\ 0.721 \\ 0.749 \end{array}$	$\begin{array}{r} 64.62 \\ 100.07 \\ 9.72 \\ 225.23 \\ 182.92 \end{array}$	$\begin{array}{r} 128.57 \\ 461.51 \\ 480.32 \\ 232.77 \\ 162.76 \end{array}$	21.479 21.480 21.480 21.483 21.483	$\begin{array}{c} 0.745 \\ 0.745 \\ 0.811 \\ 0.656 \\ 0.909 \end{array}$	310.68 187.84 256.43 13.02 23.63	182.19 476.96 183.60 191.04 368.10	$\begin{array}{c} 21.630 \\ 21.633 \\ 21.635 \\ 21.638 \\ 21.642 \end{array}$	0.790 0.807 0.799 0.879 0.932
	$\begin{array}{r} 130.02\\ 226.36\\ 281.46\\ 264.14\\ 70.88 \end{array}$	$\begin{array}{r} 394.52 \\ 425.66 \\ 258.73 \\ 413.70 \\ 16.17 \end{array}$	$\begin{array}{c} 21.373 \\ 21.375 \\ 21.375 \\ 21.375 \\ 21.375 \\ 21.377 \end{array}$	0.832 0.976 0.829 0.953 0.655	$\begin{array}{c} 57.20\\ 15.87\\ 218.23\\ 276.95\\ 198.60\end{array}$	$360.89 \\ 349.24 \\ 188.18 \\ 446.09 \\ 210.70$	21.490 21.491 21.491 21.497 21.499	$\begin{array}{c} 0.951 \\ 0.815 \\ 0.733 \\ 0.265 \\ 0.833 \end{array}$	$\begin{array}{r} 301.23 \\ 248.80 \\ 290.38 \\ 144.51 \\ 226.67 \end{array}$	$323.10 \\ 199.87 \\ 378.89 \\ 3.08 \\ 59.50$	$\begin{array}{c} 21.643\\ 21.645\\ 21.646\\ 21.648\\ 21.651 \end{array}$	$\begin{array}{c} 0.751 \\ 0.469 \\ 0.938 \\ 0.955 \\ 0.561 \end{array}$
	$\begin{array}{c} 222.73 \\ 162.32 \\ 290.96 \\ 90.30 \\ 167.35 \end{array}$	$\begin{array}{r} 241.71 \\ 233.71 \\ 307.94 \\ 52.84 \\ 366.87 \end{array}$	$\begin{array}{c} 21.381 \\ 21.382 \\ 21.382 \\ 21.383 \\ 21.384 \end{array}$	$\begin{array}{c} 0.592 \\ 0.720 \\ 0.777 \\ 0.648 \\ 0.695 \end{array}$	$\begin{array}{r} 25.45\\ 56.19\\ 204.52\\ 255.20\\ 310.12 \end{array}$	$327.50 \\ 257.18 \\ 390.66 \\ 410.56 \\ 24.59$	21.499 21.499 21.500 21.501 21.502	$\begin{array}{c} 0.851 \\ 0.785 \\ 0.782 \\ 0.663 \\ 0.754 \end{array}$	$\begin{array}{r} 268.80\\ 212.45\\ 289.52\\ 306.67\\ 288.71 \end{array}$	99.85 385.55 114.85 203.72 111.96	$\begin{array}{c} 21.657 \\ 21.659 \\ 21.661 \\ 21.662 \\ 21.662 \\ 21.662 \end{array}$	0.778 0.406 0.549 0.578 0.829
	$144.56 \\ 244.50 \\ 266.34 \\ 43.64 \\ 114.17$	$\begin{array}{c} 189.14 \\ 388.14 \\ 361.74 \\ 177.72 \\ 214.99 \end{array}$	$\begin{array}{c} 21.385\\ 21.388\\ 21.389\\ 21.392\\ 21.392\\ 21.392\end{array}$	$\begin{array}{c} 0.890 \\ 0.807 \\ 0.828 \\ 0.689 \\ 0.610 \end{array}$	$\begin{array}{r} 239.34 \\ 63.61 \\ 301.68 \\ 160.14 \\ 132.96 \end{array}$	$\begin{array}{r} 15.71 \\ 448.52 \\ 313.07 \\ 403.01 \\ 352.31 \end{array}$	$\begin{array}{c} 21.504 \\ 21.507 \\ 21.508 \\ 21.509 \\ 21.511 \end{array}$	$\begin{array}{c} 0.758 \\ 0.679 \\ 0.668 \\ 0.543 \\ 0.859 \end{array}$	$\begin{array}{r} 86.72 \\ 60.86 \\ 58.03 \\ 118.73 \\ 220.60 \end{array}$	234.28 432.42 94.61 303.11 317.86	$\begin{array}{c} 21.662 \\ 21.669 \\ 21.673 \\ 21.674 \\ 21.675 \end{array}$	$\begin{array}{c} 0.318 \\ 0.761 \\ 0.858 \\ 0.411 \\ 0.517 \end{array}$
	$305.98 \\ 179.03 \\ 55.56 \\ 150.25 \\ 233.60$	$\begin{array}{r} 233.65\\94.24\\307.46\\217.07\\465.75\end{array}$	$\begin{array}{c} 21.393 \\ 21.394 \\ 21.396 \\ 21.397 \\ 21.398 \end{array}$	0.819 0.869 0.799 0.773 0.860	$\begin{array}{r} 22.04 \\ 275.88 \\ 279.58 \\ 195.03 \\ 147.87 \end{array}$	$\begin{array}{r} 441.96 \\ 438.25 \\ 486.46 \\ 327.87 \\ 314.61 \end{array}$	$\begin{array}{c} 21.517 \\ 21.521 \\ 21.521 \\ 21.522 \\ 21.522 \\ 21.522 \end{array}$	$\begin{array}{c} 0.851 \\ 0.782 \\ 0.945 \\ 0.801 \\ 0.645 \end{array}$	$\begin{array}{r} 239.39 \\ 127.69 \\ 145.56 \\ 307.88 \\ 73.30 \end{array}$	$\begin{array}{r} 279.41\\ 373.67\\ 443.66\\ 161.14\\ 456.77\end{array}$	$\begin{array}{c} 21.682 \\ 21.686 \\ 21.687 \\ 21.689 \\ 21.690 \end{array}$	0.766 0.797 0.753 0.542 0.746
	$127.20 \\ 307.34 \\ 115.05 \\ 29.24 \\ 117.00$	$\begin{array}{r} 436.26 \\ 470.48 \\ 80.31 \\ 251.40 \\ 410.44 \end{array}$	$\begin{array}{c} 21.399 \\ 21.399 \\ 21.401 \\ 21.403 \\ 21.407 \end{array}$	0.813 0.515 0.630 0.674 0.837	$\begin{array}{r} 26.10 \\ 245.37 \\ 261.82 \\ 246.24 \\ 230.55 \end{array}$	$\begin{array}{r} 264.15\\ 283.40\\ 339.68\\ 352.63\\ 214.48 \end{array}$	21.524 21.525 21.525 21.532 21.534	$\begin{array}{c} 0.829 \\ 0.748 \\ 0.834 \\ 0.827 \\ 1.386 \end{array}$	$111.68 \\ 160.81 \\ 299.67 \\ 145.42 \\ 99.86$	332.47 451.97 242.68 352.41 384.56	$\begin{array}{c} 21.698 \\ 21.699 \\ 21.703 \\ 21.716 \\ 21.716 \\ 21.716 \end{array}$	0.913 0.597 0.615 0.826 0.751
	$\begin{array}{r} 284.89\\ 167.75\\ 156.21\\ 224.89\\ 290.99 \end{array}$	$\begin{array}{c} 172.51\\ 315.73\\ 404.72\\ 229.69\\ 31.27\end{array}$	$\begin{array}{c} 21.408\\ 21.409\\ 21.409\\ 21.409\\ 21.409\\ 21.410\end{array}$	0.763 0.764 0.727 0.666 0.797	145.86 233.77 174.94 277.29 230.93	$\begin{array}{r} 105.63 \\ 21.53 \\ 367.20 \\ 456.57 \\ 472.22 \end{array}$	$\begin{array}{c} 21.541 \\ 21.542 \\ 21.547 \\ 21.554 \\ 21.554 \\ 21.554 \end{array}$	$\begin{array}{c} 0.785 \\ 0.656 \\ 1.016 \\ 0.789 \\ 0.938 \end{array}$	$196.20 \\ 149.26 \\ 82.59 \\ 246.75 \\ 266.51$	$\begin{array}{r} 231.58\\ 245.04\\ 285.62\\ 414.85\\ 265.41 \end{array}$	$\begin{array}{c} 21.717\\ 21.719\\ 21.725\\ 21.728\\ 21.728\\ 21.729\end{array}$	$\begin{array}{c} 0.979 \\ 0.534 \\ 0.836 \\ 0.541 \\ 0.485 \end{array}$
	$185.97 \\ 144.25 \\ 25.00 \\ 201.84 \\ 80.93$	$\begin{array}{c} 298.01 \\ 395.35 \\ 239.81 \\ 290.04 \\ 471.00 \end{array}$	$\begin{array}{c} 21.411 \\ 21.418 \\ 21.425 \\ 21.426 \\ 21.426 \\ 21.426 \end{array}$	$\begin{array}{c} 0.666 \\ 0.824 \\ 0.617 \\ 0.561 \\ 0.801 \end{array}$	$292.08 \\ 249.65 \\ 18.33 \\ 186.36 \\ 292.15$	$7.27 \\ 230.95 \\ 461.85 \\ 98.92 \\ 405.81$	21.555 21.557 21.559 21.560 21.561	$\begin{array}{c} 0.664 \\ 0.690 \\ 0.735 \\ 0.876 \\ 1.076 \end{array}$	79.89 223.05 303.66 140.93 252.60	90.77 276.33 67.58 432.00 348.03	$\begin{array}{c} 21.729 \\ 21.731 \\ 21.734 \\ 21.745 \\ 21.746 \end{array}$	$\begin{array}{c} 0.621 \\ 0.932 \\ 1.147 \\ 1.050 \\ 0.667 \end{array}$

87R												
16		*		*	Т	ABLE 2—	Continued			× X		
32	X	Y	V	(B-V)	X	Y	v	(B-V)	Х	Y	v	(B-V)
1988ApJ.	84.76 264.25 217.37 288.29 2.86	$\begin{array}{r} 105.51 \\ 179.19 \\ 122.60 \\ 273.98 \\ 113.58 \end{array}$	$\begin{array}{c} 21.752 \\ 21.754 \\ 21.754 \\ 21.754 \\ 21.754 \\ 21.757 \end{array}$	0.842 0.537 0.784 0.624 0.779	$\begin{array}{c} 312.65\\ 279.14\\ 130.63\\ 230.22\\ 24.63\end{array}$	$\begin{array}{r} 479.02 \\ 469.18 \\ 60.02 \\ 322.63 \\ 400.16 \end{array}$	$\begin{array}{c} 21.920 \\ 21.925 \\ 21.927 \\ 21.931 \\ 21.932 \end{array}$	0.218 1.348 0.767 0.816 0.635	112.79 57.65 198.49 166.08 110.25	159.59 331.66 293.72 383.17 67.85	$\begin{array}{r} 22.057 \\ 22.058 \\ 22.064 \\ 22.066 \\ 22.068 \end{array}$	$\begin{array}{c} 0.378 \\ 1.093 \\ 0.892 \\ 1.003 \\ 0.917 \end{array}$
	$\begin{array}{r} 274.55\\ 283.76\\ 259.50\\ 219.39\\ 233.08 \end{array}$	$365.14 \\ 480.65 \\ 343.17 \\ 281.92 \\ 62.64$	$\begin{array}{c} 21.758 \\ 21.763 \\ 21.770 \\ 21.770 \\ 21.770 \\ 21.772 \end{array}$	0.660 1.040 1.140 1.031 0.741	$\begin{array}{r} 44.57\\ 37.84\\ 151.51\\ 286.33\\ 294.41\end{array}$	$\begin{array}{c} 299.11 \\ 332.12 \\ 131.82 \\ 254.10 \\ 161.84 \end{array}$	$\begin{array}{c} 21.941 \\ 21.948 \\ 21.949 \\ 21.949 \\ 21.954 \end{array}$	$\begin{array}{c} 0.740 \\ 1.207 \\ 0.978 \\ 1.068 \\ 0.556 \end{array}$	192.70 92.39 124.61 300.16 45.52	487.92 450.04 339.37 401.96 62.17	$\begin{array}{c} 22.071 \\ 22.073 \\ 22.085 \\ 22.086 \\ 22.088 \end{array}$	$\begin{array}{c} 0.839 \\ 0.798 \\ 0.772 \\ 0.922 \\ 0.769 \end{array}$
	$\begin{array}{r} 138.29 \\ 183.92 \\ 251.54 \\ 224.00 \\ 88.38 \end{array}$	$194.80 \\ 293.73 \\ 236.92 \\ 106.99 \\ 170.08$	$\begin{array}{c} 21.781 \\ 21.788 \\ 21.791 \\ 21.794 \\ 21.796 \end{array}$	0.751 0.948 0.316 0.201 0.705	$\begin{array}{c} 135.33\\ 297.96\\ 117.13\\ 256.74\\ 293.47\end{array}$	408.92 490.58 418.48 405.23 166.49	$\begin{array}{c} 21.956 \\ 21.956 \\ 21.956 \\ 21.956 \\ 21.956 \\ 21.957 \end{array}$	$\begin{array}{c} 0.705 \\ 1.089 \\ 1.051 \\ 0.969 \\ 0.655 \end{array}$	154.66 227.63 270.93 188.42 229.53	$302.37 \\ 481.57 \\ 245.78 \\ 492.33 \\ 372.18$	22.089 22.094 22.096 22.097 22.102	$\begin{array}{c} 0.340 \\ 1.021 \\ 0.674 \\ 1.120 \\ 1.357 \end{array}$
	$\begin{array}{c} 219.85 \\ 199.27 \\ 168.50 \\ 300.05 \\ 305.51 \end{array}$	$\begin{array}{c} 254.18\\ 395.54\\ 218.67\\ 117.17\\ 242.17\end{array}$	$\begin{array}{c} 21.798 \\ 21.800 \\ 21.809 \\ 21.817 \\ 21.818 \end{array}$	0.882 0.584 0.670 1.079 1.070	$59.20 \\ 212.30 \\ 230.37 \\ 54.62 \\ 59.96$	$\begin{array}{r} 243.30\\ 221.24\\ 77.25\\ 247.84\\ 477.05\end{array}$	$\begin{array}{c} 21.957 \\ 21.958 \\ 21.958 \\ 21.967 \\ 21.967 \\ 21.967 \end{array}$	$1.260 \\ 0.628 \\ 0.889 \\ 0.731 \\ 0.877$	117.53 112.20 113.59 297.45 82.35	$333.95 \\ 315.52 \\ 331.70 \\ 487.68 \\ 437.52$	$\begin{array}{c} 22.102 \\ 22.110 \\ 22.114 \\ 22.114 \\ 22.126 \end{array}$	$\begin{array}{c} 0.586 \\ 0.623 \\ 0.655 \\ 0.780 \\ 0.878 \end{array}$
	$\begin{array}{r} 314.29\\ 262.89\\ 66.92\\ 189.45\\ 134.57\end{array}$	$\begin{array}{r} 289.49 \\ 478.12 \\ 366.23 \\ 422.48 \\ 421.99 \end{array}$	$\begin{array}{c} 21.819\\ 21.821\\ 21.822\\ 21.823\\ 21.823\\ 21.824 \end{array}$	0.387 0.767 0.747 0.761 0.617	$\begin{array}{r} 200.03\\ 276.43\\ 52.17\\ 205.23\\ 189.74 \end{array}$	$\begin{array}{c} 120.83\\ 194.61\\ 392.26\\ 275.84\\ 70.93 \end{array}$	$\begin{array}{c} 21.968\\ 21.969\\ 21.969\\ 21.974\\ 21.974\\ 21.975\end{array}$	$\begin{array}{c} 0.761 \\ 0.699 \\ 0.764 \\ 0.677 \\ 0.839 \end{array}$	$\begin{array}{r} 292.74 \\ 49.13 \\ 122.81 \\ 54.22 \\ 117.80 \end{array}$	$\begin{array}{c} 181.31 \\ 207.16 \\ 419.48 \\ 443.78 \\ 62.61 \end{array}$	$\begin{array}{c} 22.129\\ 22.129\\ 22.131\\ 22.131\\ 22.131\\ 22.136\\ \end{array}$	$1.145 \\ 0.672 \\ 1.344 \\ 1.089 \\ 0.927$
	$\begin{array}{r} 109.19\\ 226.29\\ 254.97\\ 228.65\\ 242.33 \end{array}$	$\begin{array}{r} 207.68\\ 220.44\\ 322.88\\ 443.11\\ 417.00 \end{array}$	$\begin{array}{c} 21.824\\ 21.825\\ 21.826\\ 21.831\\ 21.831\\ 21.831 \end{array}$	$\begin{array}{c} 0.869 \\ 0.755 \\ 1.041 \\ 1.442 \\ 0.297 \end{array}$	$280.57 \\ 257.29 \\ 85.35 \\ 107.86 \\ 297.67$	$\begin{array}{r} 435.09 \\ 77.12 \\ 189.71 \\ 253.60 \\ 206.60 \end{array}$	$\begin{array}{c} 21.975\\ 21.980\\ 21.982\\ 21.983\\ 21.983\\ 21.986\end{array}$	$\begin{array}{c} 0.443 \\ 0.137 \\ 0.751 \\ 0.702 \\ 0.842 \end{array}$	$\begin{array}{r} 67.13 \\ 53.84 \\ 293.79 \\ 265.42 \\ 57.73 \end{array}$	$211.96 \\ 245.72 \\ 128.95 \\ 84.10 \\ 137.90$	$\begin{array}{r} 22.138\\ 22.140\\ 22.142\\ 22.145\\ 22.145\\ 22.147\end{array}$	$\begin{array}{c} 0.792 \\ 1.195 \\ 0.869 \\ 0.680 \\ 0.925 \end{array}$
	$243.88 \\ 176.51 \\ 165.84 \\ 197.69 \\ 85.27$	$36.68 \\ 328.58 \\ 327.92 \\ 111.89 \\ 215.34$	$\begin{array}{c} 21.833\\ 21.835\\ 21.836\\ 21.836\\ 21.837\\ 21.837\end{array}$	0.747 0.618 0.735 0.754 0.871	$190.68 \\ 250.44 \\ 184.59 \\ 118.65 \\ 143.26$	$\begin{array}{r} 80.68\\ 242.41\\ 404.45\\ 362.31\\ 383.48\end{array}$	$\begin{array}{c} 21.992 \\ 21.995 \\ 21.998 \\ 22.001 \\ 22.002 \end{array}$	$\begin{array}{c} 1.234 \\ 0.953 \\ 0.914 \\ 1.131 \\ 0.640 \end{array}$	$\begin{array}{r} 84.30 \\ 151.27 \\ 270.00 \\ 60.98 \\ 266.26 \end{array}$	$\begin{array}{r} 450.31 \\ 188.76 \\ 240.15 \\ 172.37 \\ 226.45 \end{array}$	$\begin{array}{r} 22.147 \\ 22.152 \\ 22.156 \\ 22.156 \\ 22.160 \end{array}$	$\begin{array}{c} 0.961 \\ 0.886 \\ 1.280 \\ 0.774 \\ 1.022 \end{array}$
	$\begin{array}{r} 22.47 \\ 174.53 \\ 139.58 \\ 15.98 \\ 310.37 \end{array}$	$210.61 \\93.42 \\29.05 \\414.49 \\124.02$	$\begin{array}{c} 21.842 \\ 21.842 \\ 21.844 \\ 21.844 \\ 21.848 \end{array}$	$\begin{array}{c} 0.926 \\ 0.819 \\ 0.854 \\ 1.047 \\ 1.196 \end{array}$	$\begin{array}{r} 68.80 \\ 283.28 \\ 286.38 \\ 284.65 \\ 139.79 \end{array}$	$75.46 \\106.34 \\57.19 \\177.37 \\295.34$	$\begin{array}{c} 22.005\\ 22.005\\ 22.007\\ 22.009\\ 22.009\\ 22.009\end{array}$	$1.094 \\ 0.799 \\ 0.984 \\ 0.738 \\ 0.834$	52.67 265.03 285.38 182.28 218.92	$175.45 \\79.80 \\53.52 \\257.99 \\184.01$	$\begin{array}{r} 22.163 \\ 22.164 \\ 22.165 \\ 22.168 \\ 22.169 \end{array}$	$\begin{array}{c} 0.940 \\ 0.449 \\ 1.114 \\ 1.023 \\ 1.116 \end{array}$
	$\begin{array}{c} 11.79 \\ 116.09 \\ 225.62 \\ 294.56 \\ 178.75 \end{array}$	$\begin{array}{r} 90.36\\ 336.95\\ 117.71\\ 143.35\\ 380.14 \end{array}$	$\begin{array}{c} 21.851 \\ 21.856 \\ 21.856 \\ 21.859 \\ 21.860 \end{array}$	0.404 0.877 0.539 0.575 0.670	$\begin{array}{r} 80.65\\ 286.57\\ 36.84\\ 256.89\\ 177.80\end{array}$	$\begin{array}{r} 289.39\\ 214.59\\ 171.46\\ 233.13\\ 235.80 \end{array}$	$\begin{array}{c} 22.009 \\ 22.012 \\ 22.015 \\ 22.018 \\ 22.018 \\ 22.018 \end{array}$	$\begin{array}{c} 0.573 \\ 0.797 \\ 0.801 \\ 0.646 \\ 0.398 \end{array}$	303.77 244.03 194.79 154.20 72.59	$304.31 \\ 469.69 \\ 407.60 \\ 267.51 \\ 426.57$	$\begin{array}{c} 22.172 \\ 22.178 \\ 22.186 \\ 22.186 \\ 22.193 \end{array}$	$\begin{array}{c} 0.950 \\ 0.681 \\ 1.023 \\ 0.703 \\ 0.938 \end{array}$
	$\begin{array}{c} 258.34 \\ 224.99 \\ 294.23 \\ 117.42 \\ 278.18 \end{array}$	$\begin{array}{r} 203.76 \\ 54.10 \\ 187.42 \\ 227.79 \\ 363.96 \end{array}$	$\begin{array}{c} 21.865\\ 21.867\\ 21.872\\ 21.876\\ 21.879\end{array}$	$\begin{array}{c} 0.684 \\ 0.459 \\ 0.864 \\ 0.814 \\ 0.660 \end{array}$	$282.67 \\ 119.79 \\ 77.17 \\ 8.37 \\ 55.00$	$50.56 \\ 140.19 \\ 401.58 \\ 73.42 \\ 178.40$	$\begin{array}{c} 22.027\\ 22.029\\ 22.031\\ 22.032\\ 22.032\\ 22.032\end{array}$	$\begin{array}{c} 0.878 \\ 0.713 \\ 0.776 \\ 1.178 \\ 0.997 \end{array}$	$\begin{array}{r} 46.49 \\ 161.62 \\ 245.21 \\ 156.10 \\ 252.15 \end{array}$	$\begin{array}{r} 165.98 \\ 384.97 \\ 399.18 \\ 469.48 \\ 183.99 \end{array}$	$\begin{array}{c} 22.199\\ 22.206\\ 22.216\\ 22.219\\ 22.220\\ \end{array}$	$\begin{array}{c} 1.077 \\ 0.976 \\ 0.975 \\ 1.629 \\ 0.879 \end{array}$
	$\begin{array}{c} 277.61 \\ 129.98 \\ 243.57 \\ 309.81 \\ 313.50 \end{array}$	$\begin{array}{c} 168.24 \\ 228.43 \\ 191.74 \\ 27.70 \\ 99.93 \end{array}$	$\begin{array}{c} 21.879 \\ 21.881 \\ 21.885 \\ 21.889 \\ 21.895 \end{array}$	0.460 0.772 1.468 0.529 0.870	$\begin{array}{r} 65.63 \\ 213.85 \\ 289.04 \\ 104.83 \\ 42.66 \end{array}$	$\begin{array}{r} 94.41\\ 305.76\\ 320.59\\ 270.88\\ 294.74 \end{array}$	22.033 22.033 22.035 22.037 22.038	$\begin{array}{c} 0.984 \\ 0.586 \\ 0.482 \\ 1.047 \\ 0.993 \end{array}$	$151.95 \\ 305.41 \\ 183.10 \\ 14.85 \\ 159.42$	$\begin{array}{c} 118.09\\ 384.75\\ 409.36\\ 215.86\\ 455.56\end{array}$	$\begin{array}{c} 22.230\\ 22.231\\ 22.231\\ 22.233\\ 22.233\\ 22.234\end{array}$	$\begin{array}{c} 0.816 \\ 0.537 \\ 0.780 \\ 0.628 \\ 0.845 \end{array}$
	$297.83 \\ 245.15 \\ 9.72 \\ 52.36 \\ 149.55$	$360.51 \\ 382.12 \\ 340.36 \\ 352.31 \\ 346.02$	$\begin{array}{c} 21.897 \\ 21.898 \\ 21.899 \\ 21.901 \\ 21.902 \end{array}$	$\begin{array}{c} 1.060\\ 0.729\\ 1.045\\ 0.823\\ 0.820\end{array}$	$\begin{array}{r} 91.07 \\ 67.89 \\ 201.08 \\ 69.18 \\ 280.26 \end{array}$	$372.77 \\ 47.96 \\ 158.44 \\ 94.66 \\ 208.65$	$\begin{array}{c} 22.038\\ 22.039\\ 22.040\\ 22.041\\ 22.044 \end{array}$	$\begin{array}{c} 1.003 \\ 0.939 \\ 0.780 \\ 0.851 \\ 0.636 \end{array}$	55.85 307.66 163.34 266.90 22.70	$\begin{array}{r} 440.56\\ 294.94\\ 262.67\\ 339.16\\ 423.54 \end{array}$	$\begin{array}{c} 22.245\\ 22.248\\ 22.249\\ 22.252\\ 22.253\end{array}$	$\begin{array}{c} 0.797 \\ 1.413 \\ 0.580 \\ 0.828 \\ 1.031 \end{array}$
	$\begin{array}{r} 129.39 \\ 66.80 \\ 308.61 \\ 252.11 \\ 138.63 \end{array}$	424.69 423.53 187.10 428.57 140.75	$\begin{array}{c} 21.903 \\ 21.906 \\ 21.907 \\ 21.914 \\ 21.916 \end{array}$	0.686 0.817 0.925 0.444 0.435	$\begin{array}{r} 98.42 \\ 58.24 \\ 258.15 \\ 234.45 \\ 17.15 \end{array}$	$\begin{array}{r} 247.31 \\ 445.89 \\ 462.59 \\ 253.03 \\ 248.43 \end{array}$	$\begin{array}{c} 22.049 \\ 22.053 \\ 22.055 \\ 22.056 \\ 22.057 \end{array}$	$\begin{array}{c} 1.253 \\ 1.026 \\ 0.150 \\ 0.738 \\ 1.013 \end{array}$	$\begin{array}{r} 91.43\\ 221.81\\ 186.63\\ 229.13\\ 237.28\end{array}$	$\begin{array}{r} 437.86\\323.37\\361.06\\298.51\\122.52\end{array}$	$\begin{array}{c} 22.256\\ 22.262\\ 22.263\\ 22.264\\ 22.272\end{array}$	$\begin{array}{c} 0.739 \\ 0.301 \\ 0.664 \\ 1.179 \\ 1.019 \end{array}$

DEEP CCD PHOTOMETRY. VII.

TABLE 2-Continued V (B-V) Х Υ v (B-V) Х Y Х Y V (B-V) $\begin{array}{c} 22.274\\ 22.276\\ 22.279\\ 22.283\\ 22.283\\ 22.283\end{array}$ $269.76 \\ 292.60 \\ 111.53 \\ 96.57$ $192.53 \\ 149.95$ $\begin{array}{r} \mathbf{22.566} \\ \mathbf{22.571} \\ \mathbf{22.574} \\ \mathbf{22.574} \end{array}$ 0.587 22.387 303.39 193.06 $1.050 \\ 0.550 \\ 0.952$ 1.116 222.19 199.64 22.39422.39622.39622.399 $77.62 \\ 32.37 \\ 122.55$ 59.25 243.46 207.87 433.39 $0.553 \\ 0.947$ 0 666 $315.50 \\ 111.13 \\ 112.43$ 158.98384.370.930 64.63211.28 107.70 0.486 $22.581 \\ 22.583$ 0.695 $1.016 \\ 1.127$ 388 89 0.777 56.05 277.23 22.402 0.799 234.21161.64 22.589 22.592 22.595 22.595 22.596 22.602 $\begin{array}{r} 22.403 \\ 22.404 \\ 22.404 \\ 22.404 \\ 22.405 \end{array}$ $\begin{array}{c} 0.357 \\ 0.897 \\ 0.810 \\ 0.786 \end{array}$ $\begin{array}{r} 94.66 \\ 178.71 \\ 22.43 \\ 287.29 \\ 17.59 \end{array}$ $\begin{array}{r} 471.34 \\ 77.90 \\ 248.01 \\ 328.40 \end{array}$ $224.68 \\ 76.68 \\ 227.17 \\ 66.13 \\ 0.000 \\ 0.$ 1.417 26.09 246.72 $\begin{array}{r} 5.44\\ 235.59\end{array}$ 22.285 1.425 1.0541.0650.591 $\begin{array}{c} 20.03\\ 218.40\\ 171.41\\ 403.59\\ 270.75\end{array}$ $0.486 \\ 0.784 \\ 1.028$ $244.38 \\ 203.27$ $\frac{22.287}{22.287}$ $249.43 \\ 347.93$ 244.52 22.291 0.745 22.409 1.106 488.34 $\bar{2}\bar{2}.297$ 268.81168.61 377.160.919 $\begin{array}{r} \textbf{22.606} \\ \textbf{22.611} \\ \textbf{22.617} \\ \textbf{22.628} \\ \textbf{22.629} \end{array}$ $\begin{array}{c} 22.297 \\ 22.304 \\ 22.306 \\ 22.313 \\ 22.317 \end{array}$ $\begin{array}{c} 222.53 \\ 118.56 \\ 234.42 \\ 230.75 \\ \end{array}$ $\begin{array}{c} 0.718 \\ 0.558 \\ 0.860 \end{array}$ $172.21 \\ 175.71 \\ 189.32$ 0.011 $\begin{array}{r} 48.11 \\ 108.73 \\ 244.44 \\ 194.79 \\ 33.47 \end{array}$ $1.274 \\ 1.139 \\ 0.780 \\ 0.54$ 222.91 270.95 22 410 $\begin{array}{c} 285.71\\ 485.12 \end{array}$ 218.60205.33159.09 $\begin{array}{r} 22.410\\ 22.413\\ 22.415\\ 22.421\\ 22.425\end{array}$ 388.84 377.50 1.0360.889 23.06 $51.97 \\ 62.25$ 33.04 425.15 1.0900.951 357.74 $0.548 \\ 0.828$ 0.978 355.85 229.13 180.89 0.583 $\begin{array}{c} 22.430 \\ 22.430 \\ 22.439 \\ 22.439 \\ 22.439 \\ 22.441 \end{array}$ $\begin{array}{r} 159.22 \\ 324.59 \\ 454.29 \\ 310.23 \\ \end{array}$ $0.867 \\ 0.933$ $181.36 \\ 214.09 \\ 5.53 \\ 48.06$ $\begin{array}{r} \mathbf{22.629} \\ \mathbf{22.658} \\ \mathbf{22.661} \\ \mathbf{22.661} \end{array}$ 0.416 -0.131 1.369 $22.318 \\ 22.319 \\ 22.320 \\ 2$ $\substack{129.57\\27.50\\246.73}$ $342.40 \\ 400.70$ 0.663 255.61 456.40 $\frac{184.22}{320.67}$ $0.622 \\ 0.901$ $58.51 \\ 138.66$ 206.07242.6980.830.837 $1.284 \\ 1.806$ 64.15 138.84 $363.85 \\ 423.03$ $\begin{array}{c}
 \overline{22.323} \\
 22.326
 \end{array}$ $1.222 \\ 1.120$ $183.66 \\ 110.07$ 22.690 0.335 264.69 193.67 $\begin{array}{r} \textbf{22.711} \\ \textbf{22.712} \\ \textbf{22.722} \\ \textbf{22.722} \\ \textbf{22.740} \\ \textbf{22.753} \end{array}$ 0.479 $360.51 \\ 347.70 \\ 271.14 \\ 456.57 \\ 360.57 \\ 360.57 \\ 360.57 \\ 360.57 \\ 360.57 \\ 360.57 \\ 360.57 \\ 360.51 \\ 3$ $0.895 \\ 0.477 \\ 0.885 \\ 0.382$ $0.753 \\ 0.724 \\ 0.929$ $\begin{array}{r} 446.40 \\ 132.98 \\ 205.08 \end{array}$ $\begin{array}{r} 182.05\\ 256.89\\ 311.92\\ 123.43 \end{array}$ $\begin{array}{r} 22.446 \\ 22.453 \\ 22.457 \end{array}$ 148.89 22.333 208.66 280.41 305.28263.18307.770.621 22.33522.34422.347 $147.61 \\ 260.83$ $223.09 \\ 193.29$ $0.265 \\ 1.071$ $\begin{array}{r}
 22.461 \\
 22.461
 \end{array}$ $1.213 \\ 0.833$ 91.52 222.33 198.56 311.81 197.03 244.31 0.830 84.19 130.16 22.348 1.394388.87 $\begin{array}{r} 22.757 \\ 22.759 \\ 22.769 \\ 22.780 \end{array}$ $105.64 \\ 229.48 \\ 165.58 \\ 5.73 \\ 131.15$ $\begin{array}{r} 22.463 \\ 22.467 \\ 22.467 \\ 22.467 \\ 22.468 \end{array}$ $\begin{array}{c} 0.566 \\ 1.135 \\ 0.727 \\ 1.171 \end{array}$ $\begin{array}{c} 22.351 \\ 22.353 \\ 22.355 \\ 22.356 \end{array}$ 215.66319.58335.44 $204.33 \\ 156.95 \\ 317.03$ $1.141 \\ 1.399 \\ 0.884$ $133.61 \\ 69.32 \\ 59.03$ 98.26 255.85 0.552 $\begin{array}{c} 0.951 \\ 0.525 \\ 0.748 \end{array}$ 271.07217.7789.63 321.79 126.39 279.49 $\begin{array}{r}144.44\\476.02\end{array}$ $0.545 \\ 0.591$ 31 11 484.1122.845 1.310 22.357100.59 478.00 22.468 1.195 82.31 368.21 $\begin{array}{c} 22.468\\ 22.483\\ 22.487\\ 22.487\\ 22.488\\ 22.488\end{array}$ $309.63 \\ 266.53 \\ 228.54 \\ 161.20 \\ 305.48$ $\begin{array}{r} 22.884\\ 22.899\\ 22.910\\ 22.915 \end{array}$ $\begin{array}{r} 437.74\\ 429.70\\ 310.23\\ 172.07\\ 297.81 \end{array}$ $0.983 \\ 0.777 \\ 1.018 \\ 0.001 \\ 0.00$ $107.71 \\ 219.87 \\ 492.14 \\ 170.000 \\ 100.000$ 0.535 76.73 22.360 1.013 206.02 179.90 0.976 123.4313.0324.00115.57 $22.361 \\ 22.362$ $1.176 \\ 0.668$ $157.33 \\ 231.85$ $142.60 \\ 257.02$ $1.175 \\ 0.172$ 22.36422.366 $358.56 \\ 299.64$ 1.028 0.851 $1.144 \\ 1.071$ 199.66 170 96 151.43 22.981 0.634 132.45 $\begin{array}{c} 110.54 \\ 416.54 \\ 249.80 \\ 275.51 \end{array}$ 456.54 290.61 342.82 0.434 $22.988 \\ 22.989$ $130.53 \\ 118.11 \\ 297.47$ $194.11 \\ 397.02 \\ 37.26 \\$ $\begin{array}{r} 22.368 \\ 22.373 \\ 22.375 \\ 22.375 \\ 22.377 \end{array}$ $47.05 \\ 175.17$ 0.73958.77 $0.540 \\ 0.891$ 22 497 22.49722.49822.54022.548311.25247.48 184.14 0.804 $1.620 \\ 0.917$ 23.026 0.942 0.998 54.40 22.03 1.061 302.44 $\frac{23.028}{23.138}$ 0.548 69.34 385.630.494 119.40 60.34 22.382 1.172 317.96 $\bar{2}\bar{2}.5\bar{6}\bar{2}$ 0.879 164.65 24.59 94.54 183.01 222.16 22.383 0.749 198.04 67.38 22.566 1.219

TABLE 3

329..187R

198,8ApJ

M30 MAIN-SEQUENCE FIDUCIAL

V	B-V
17.2	0.624
17.4	0.612
17.6	0.600
17.8	0.572
18.0	0.506
18.2	0.437
18.4	0.413
18.6	0.410
18.8	0.413
19.0	0.418
19.2	0.424
19.4	0.437
19.6	0.455
19.8	0.474
20.0	0.494
20.2	0.519
20.4	0.542
20.6	0.572
20.8	0.609
21.0	0.643
21.2	0.685
21.4	0.725
21.6	0.766
21.8	0.805
22.0	0.840
22.2	0.875
22.4	0.913

was able to conclude that any metallicity variation among the main-sequence stars was limited to [M/H] < 0.20. We are unlikely to be able to set as stringent a limit with our data as the crowding is much more severe in our case. Since any metallicity inhomogeneity that does exist might be expected to be more pronounced in the inner regions of the cluster, we examine below the width of the main sequence in our field. The procedure is as follows. (1) Assume that the entire width of the main sequence is due to measurement error and chemical inhomogeneity for elements heavier than helium. This means that we exclude the possibility that binaries contribute to the spread in (B - V) at a given value of V. (2) Calculate the dispersion in (B-V) around the main-sequence fiducial in bins 0.2 mag wide in $V(\sigma_{obs})$. This represents the observed width of the cluster main sequence. (3) Calculate the expected dispersion in (B-V) from the errors in the photometry as returned by DAOPHOT (σ_{exp}). Since there is some evidence that DAOPHOT somewhat underestimates the true errors (Bolte 1987a), particularly for faint stars, this procedure results in an eventual overestimate of the intrinsic width of the cluster main sequence. Hence, in reality, we will be calculating only an upper limit to the true chemical inhomogeneity of the cluster. (4) Calculate the true width σ_{int} of the main sequence, defined as $\sigma_{obs} - \sigma_{exp}$. This procedure yields the results listed in Table 4. This true width (actually an upper limit) can then be compared with models to estimate $\Delta[M/H]$.

TABLE 4 Intrinsic Width of M30 Main Sequence

$V(\pm 0.1)$	σ_{exp}	$\sigma_{ m obs}$	σ_{int}
18.1	0.014	0.031	0.028
18.3	0.013	0.017	0.011
18.5	0.015	0.019	0.012
18.7	0.014	0.015	0.005
18.9	0.024	0.019	
19.1	0.017	0.021	0.012
19.3	0.016	0.029	0.024
19.5	0.023	0.019	
19.7	0.023	0.036	0.028
19.9	0.024	0.036	0.027
20.1	0.028	0.046	0.036
20.3	0.032	0.030	
20.5	0.036	0.051	0.036
20.7	0.034	0.062	0.052
20.9	0.045	0.059	0.038
21.1	0.051	0.070	0.048
21.3	0.054	0.101	0.085
21.5	0.059	0.095	0.074
21.7	0.068	0.106	0.081
21.9	0.078	0.071	
22.1	0.085	0.073	
22.3	0.096	0.059	••••

In the region of the cluster turnoff $(M_V = 4.0)$, the Vanden-Berg and Bell (1985) models predict that for metal-poor stars $\Delta(B-V)/\Delta[M/H] = 0.047$ magnitudes per dex while it is 0.030 near $M_V = 5.5$. These estimates assume that ΔY is zero. Using our turnoff values from Table 4 ($V \approx 18.6$) yields $\Delta[M/H] = 0.2$, while the fainter photometry results in the much less sensitive value $\Delta[M/H] = 1.2$. Both of these are upper limits to the true inhomogeneity for the reasons discussed above. Using only the result for stars near the turnoff, we can conclude that any chemical inhomogeneity in the cluster must be small, that it is not inconsistent with zero, and that there is no evidence that the regions closer to the center are any more inhomogeneous than those farther out (see Bolte 1987*a*).

We can also set a very stringent limit on any chemical abundance gradient in the cluster between 21 core radii (our field) and 65 core radii (Bolte's fields) by examining in detail the locations of the CMD fiducials in the two regions. In this discussion we assume that the absolute calibration of the photometry in both cases is "perfect," that is, there are no systematic sources of error in either data set. A comparison between the fiducials derived by Bolte and us is given in Figure 3 where the open circles are Bolte's data and the closed are ours. The two fiducials are in remarkably good agreement from the turnoff region through V = 21.5. Fainter than this our data tend to lie to the blue of Bolte's. Over the range V = 18.3through 21.0 our sequence lies, on average, 0.004 mag redder

FIG. 3.—Fiducial sequences in M30 from a field at 21 core radii (closed circles, this paper), and one at 65 core radii (open circles, data from Bolte [1987a])

© American Astronomical Society • Provided by the NASA Astrophysics Data System

than that of Bolte's. Of course, all of this is easily attributable to a slight difference in the zero-point calibrations of the two data sets. However, if we assume that it establishes an upper limit to the metallicity difference between the two fields, we formally derive that the inner region is at most 0.09 dex more metal-rich than the outer one.

III. FUNDAMENTAL CLUSTER PARAMETERS

a) Metal Abundance

One of the fundamental parameters for M30 that our data set does not allow us to determine is the cluster metal abundance. The reason for this is that our U frames [from which we could determine $\delta(U-B)_{0.6}$ and hence an abundance estimate] were taken during the course of another program and are not deep enough to reach main-sequence stars with small errors. These frames will be used only to determine the cluster reddening from the horizontal branch stars. The metal abundance of M30 is, however, not controversial. Zinn and West (1984) have recently derived a value of [M/H] = -2.13, while an earlier result based on ΔS measurements of two cluster RR Lyraes yielded -1.96 (Butler 1975). The recent compilation of globular cluster properties by Webbink (1985) records a value of -2.19. In our comparisons below with theoretical stellar models we will hence use those on the VandenBerg and Bell grid (1985) with [M/H] = -2.25 and an enhanced oxygen abundance (VandenBerg 1988a) which seems to be required by the observations (Pilachowski, Sneden, and Wallerstein 1983).

b) Reddening

The M30 reddening has not been well established by previous studies. Zinn (1980) derives E(B-V) = 0.01, while Dickens (1972) suggests 0.06. Alcaino and Liller (1980) obtain 0.02 and Webbink (1985), relying mainly on the Dickens value, tabulates E(B-V) = 0.06 for M30. Our observations in U, B, and V are precise enough for stars brighter than the turnoff so that we can use the blue horizontal branch stars to obtain the reddening. The observations for these stars are listed in Table 5. If we place these stars in a color-color diagram and use the Population I fiducial found in Johnson (1966), we derive a redding for the M30 horizontal branch stars of $E(B-V) = 0.068 \pm 0.035$, in good agreement with the early value of Dickens, but in considerable disagreement with most other determinations. In the ensuing discussion we will adopt the value derived here, keeping in mind that all subsequently determined properties of M30 strongly depend on its reddening.

c) Distance

To determine the distance to M30, we adopt the procedure that we have been following in this series of papers, namely

 TABLE 5

 Photometry of Horizontal Branch Stars

<i>X</i> , <i>Y</i>	V	B-V	U-B
138, 92	15.353	0.119	0.030
172, 152	15.393	0.069	-0.028
172, 273	15.475	0.044	-0.050
29, 127	15.553	0.038	-0.030
277, 151	15.598	0.045	-0.112
203, 266	15.729	-0.012	-0.170
208, 337	15.889	-0.056	-0.183
220, 336	16.045	-0.076	-0.339

fitting a sequence of local subdwarfs to the observed mainsequence cluster fiducial The subdwarfs we will use are the same ones which we discussed earlier (Fahlman, Richer, and VandenBerg 1985), though HD 140283 has been dropped from the sample since Magain (1985) has recently shown that this star is actually a subgiant. For the remaining six stars, we have adopted the revised parallax data and Lutz-Kelker statistical corrections given by Lutz, Hanson, and van Altena (1987). After adjusting the observed colors of the subdwarfs to take into account the metallicity difference between an individual subdwarf and M30 and applying the reddening of 0.068 in (B-V), the subdwarfs were fitted to the M30 fiducial by minimizing the differences in a least squares sense. This resulted in an apparent distance modulus to M30 of $(m-M)_V = 14.85$ ± 0.15 . This best fit of the subdwarfs to the M30 CMD is illustrated in Figure 4. The distance modulus that we derive here is larger than Bolte's value by 0.2 mag. The major reason for this is our higher reddening. He adopted E(B-V) = 0.02, 0.05 less than the result which we obtained. Our derived apparent distance modulus, together with the apparent magnitude of the horizontal branch (V = 15.20, Dickens 1972; Gratton 1985; Buonanno, Corsi, and Fusi Pecci 1987) leads to an absolute magnitude for the horizontal branch of $M_V = 0.35$, somewhat on the bright side.

d) Helium Abundance

The cluster helium abundance cannot be directly determined from our data. However, recent reviews (Yang et al. 1984; Boesgaard and Steigman 1985) suggest a primordial value for Y near 0.23, and this should set a lower limit to the initial globular cluster helium content. In addition, the study of numerous metal-poor emission-line galaxies (e.g., Kunth 1986) suggests Y = 0.24 for the primordial helium value. The best method of determining Y in globular clusters, the so-called Rmethod, yields a mean value of 0.23 ± 0.02 (Buzzoni et al. 1983). Using this method, Dickens showed that M30 may have a higher helium abundance than most other clusters. In fact, if we apply the Buzzoni et al. relation between Y and R, and use Dickens's determination of R for M30, a value for Y near 0.27 is derived. Some further evidence that M30 may be somewhat helium-rich can be found in \S IVb where we compare the observed location of the M30 horizontal branch with zero-age horizontal branch models containing different helium abundances. In the comparisons between theory and observation discussed below, however, the models will always have Y = 0.24, but the possibility of enhanced helium should be kept in mind.

IV. THE AGE OF M30

a) Age Comparison with Other Metal-Poor Clusters

An important aspect of the age question which can be examined without recourse to stellar models is whether or not there are significant cluster-to-cluster variations in age among the globulars having similar metallicities. This is an important question which bears on the collapse time of the Galaxy and the formation time scale of the cluster system. In a recent study of the available photometric data for 26 globular clusters, Gratton (1985) has suggested that those systems in the inner halo of the Galaxy, having galactocentric distances $R_g < 15$ kpc, are probably coeval, but that the age spread (in a given metallicity regime) could be as large as 3 Gyr. He also found that the outer halo clusters tend to be younger by up to 5 Gyr,

FIG. 4.—Best fit of local subdwarfs (*filled circles*) to the M30 CMD (*dotted curve*). The colors of the subdwarfs were adjusted so that they effectively have the same [M/H] as M30. The subdwarfs were then reddened by 0.068 mag in (B-V) and fitted to the M30 fiducial by minimizing the square of the residuals in the vertical direction only. The derived distance modulus is $(m-M)_V = 14.85 \pm 0.15$. The error bars on the subdwarfs represent the 1 σ uncertainties of the stellar parallaxes.

though it now appears likely that problems with the data have led to his excessively young age estimates for the most distant globulars (see VandenBerg 1988b).

Since new CCD observations presently exist for M15 (Fahlman, Richer, and VandenBerg 1985), and for M68 (McClure et al. 1987)-two clusters whose metal abundances on the Zinn and West (1984) scale are within $\Delta[M/$ H] = ± 0.04 dex of that given for M30—an intercomparison of the CMDs for these three systems should be particularly instructive. To carry out this comparison we plot in an M_V – $(B-V)_0$ diagram the fiducial sequences for each cluster. The apparent distance moduli for all three clusters were determined strictly empirically by fitting the revised subdwarf sequnce to the respective lower main-sequence fiducials. This yields distance moduli of 15.29, 14.85, and 15.20 for M15, M30, and M68. The reddenings of M15 and M30 were also determined empirically from their respective color-color diagrams and the adopted values here are 0.11 and 0.068. The reddening of M68 was taken to be 0.07 (McClure et al. 1987). Figure 5 contains the comparison plot of these three fiducials. In general, the agreement between all these three clusters is remarkably good.

As can be seen in Figure 5, the M30 locus at the turnoff lies about 0.01 mag to the blue of that of M68, while that for M15 lies redward of M68's by about the same amount. This makes the M30 turnoff appear bluer and somewhat brighter than that of M68, and makes M15's somewhat redder and fainter. Thus, at first sight, one might be tempted to conclude from this that

M30 is somewhat younger than M68, while M15 is somewhat older. However, it should be kept in mind that the reddenings of M15 and M30 are uncertain by about ± 0.04 so that the small differences, noted are well within the errors. In fact, if we arbitrarily reduce the reddening of M30 by 0.016 mag to 0.052 (well within the errors), then the M68 and M30 fiducials will overlay each other perfectly! Further, the differences seen near the turnoffs can equally well be explained as minor errors in the assigned distance moduli, particularly as the sense of the differences seen near the turnoffs are reflected in the differences seen at the horizontal branches. For example, relative to M68, if the M30 distance modulus were decreased by 0.15 mag and that for M15 increased by about the same amount, then both the main sequences and horizontal branches of all three clusters would overlap almost perfectly. These changes are all within the 1 σ errors of the distances to these clusters.

If we decide, however, to accept Figure 5 at face value, then either M30 is more metal-poor than M68 or it is younger, while either M15 is more metal-rich than M68 or it is older. We can set limits to these differences by using the models of VandenBerg and Bell (1985) differentially. Assuming first that M15, M30, and M68 all have the same age, and attributing the color differences entirely to a metallicity effect, then, as we discussed in § II, $\Delta(B-V)/\Delta[M/H] = 0.047$ mag per dex for stars near the turnoff. The 0.01 mag color difference between M30 and M68 then implies that M30 is more metal-poor than M68 by about 0.21 dex, while M15 is more metal-rich by the

FIG. 5.—Comparison of the color magnitude diagrams of three metal-poor clusters: M15 [continuous line, $(m-M)_V = 15.29$, E(B-V) = 0.11]; M30 [open circles, $(m-M)_V = 14.85$, E(B-V) = 0.068]; and M68 [closed circles, $(m-M)_V = 15.20$, E(B-V) = 0.07].

same amount. Alternately, if the apparent bluer and brighter turnoff of M30 relative to M68 is caused solely by a younger age, then the models predict that this age difference is about 2 Gyr, while, similarly, M15 would be about 2 Gyr older than M68.

Another parameter which reflects on the ages of these systems is the magnitude difference between the horizontal branch and the turnoff (Sandage 1982). It is somewhat difficult to define precisely this quantity because of the vertical morphology of the turnoff region and the upward slope of the horizontal branch. These effects introduce an uncertainty of about ± 0.2 mag in this quantity which translates to an uncertainty in the age of ± 3 Gyr. These magnitude differences are 3.3, 3.4, and 3.5 respectively for M15, M30, and M68. Within the errors, there is no evidence that the magnitude differences between the horizontal branches and the turnoffs for these clusters are different.

To summarize then, a comparison of the fiducial sequences of M15, M30, and M68 indicates that, to within the errors, the clusters can certainly have identical metallicities and ages. If we interpret the slight color differences as a metallicity variation only, then M30 is about 0.21 dex more metal-poor than M68, while M15 is more metal-rich than M68 by this same amount. If we view the slight differences in their main sequence fiducials as an age spread, then M30 is about 2 Gyr younger than M68, while M15 is 2 Gyr older. These numbers can be taken as a good indication of the real uncertainty in the *relative* ages of metal-poor clusters.

b) Isochrone Fits to the M30 CMD

In order to estimate the absolute age of M30, it is necessary to compare the data with the most appropriate set of theoretical isochrones that is presently available. The procedure that we have used throughout the present series of papers will also be employed here. That is, the various free parameters which have an impact on the fit will be determined empirically prior to making the comparison with the theory so that the selection of the particular isochrone that is implied by the data is constrained as much as possible.

For the cluster reddening we adopt 0.068 (see § III). As shown in Figure 4, the distance from the subdwarf fit that is consistent with this reddening corresponds to $(m-M)_V =$ 14.85. We adopt Y = 0.24 and [M/H] = -2.13 for M30 (see § III). Finally, theoretical calculations (e.g. Rood 1981; VandenBerg 1985) have demonstrated that predicted turn-off luminosities and temperatures (and hence inferred ages) depend sensitively on the oxygen abundance, which probably does not scale with the iron content. While the oxygen abundance in M30 is not presently known, analysis of metal-poor field stars (see the review by Sneden 1985) lead us to expect that the cluster [O/Fe] value is likely somewhere in the range from +0.5 to +1.0. Based on the latest observations (Gratton

and Ortolani 1986) and models of galactic chemical evolution (Matteucci 1986), there may be some preference for $0.5 \le [O/Fe] \le 0.7$.

The set of isochrones which comes closest to satisfying the above constraints on chemical composition is that for Y = 0.24, [M/H] = -2.25, and [O/Fe] = 0.5, which was computed by VandenBerg (1985). In all respects, other than the differences in assumed abundances, these models are identical to those presented by VandenBerg and Bell (1985). That is, they were computed using the same evolutionary code and employed the same transformation relations to pass from the theoretical to the observational plane. Figure 6 illustrates that these isochrones provide a very fine fit to the M30 CMD. Note that, in order for them to reproduce the observed lower main sequence, the theoretical curves had to be shifted to the red by the indicated 0.03 mag. Why such a correction is necessary (here, and in almost all other studies which have used the VandenBerg-Bell generation of isochrones) has yet to be satisfactorily explained, but presumably the discrepancy is indicating a problem with the model colors or temperatures. Work to resolve the source of this color shift, such as comparing complementary observations at infrared wavelengths (for instance) with the relevant isochrones, should be given high priority.

This matter aside, it is clear that the detailed shape of the observed locus is reproduced to high accuracy by the models for an age close to 14 Gyr. What is particularly encouraging is that the derived distance is such that near consistency is also achieved between the predicted and the observed location of the zero-age horizontal branch (ZAHB) which thereby argues in favor of the interpretation of the data which we have found. The fact that the observed locus of the horizontal branch lies somewhat brighter than the ZAHB is to be expected as recent horizontal branch evolutionary models (Lee, Demarque, and Zinn 1987) predict that in metal-poor clusters HB stars just to the red of the RR Lyrae gap should be populated by evolved stars which are above the ZAHB at that color.

During the preparation of this paper, we became aware of the parallel study of M30 by Bolte (1987a) who also used oxygen-enhanced isochrones in his analysis but found an age of 17 Gyr which seems inconsistent with Figure 6. However, Bolte adopted E(B-V) = 0.02 mag, and therefore, on the basis of the subdwarfs, derived a much shorter distance modulus $[(m-M)_{V} = 14.65]$ than that which we obtained. As a result, a high age was the natural outcome of the isochrone fit in his case. Bolte made no use of the fit to the horizontal branch in his comparison with the theory. If he had chosen to include the observed horizontal branch and the theoretical ZAHB models discussed in McClure et al. (1987) in his fits, he would have discovered that a distance modulus as small as 14.65 places the theoretical ZAHB somewhat above the observed horizontal branch. This contradiction provides a fairly strong argument that the cluster distance modulus must

FIG. 6.—An overlay (not a fit) of the VandenBerg (1985) oxygen-enhanced isochrones onto the M30 CMD. The isochrones were reddened by 0.068 mag in (B - V) and shifted so that they represent a cluster with an apparent V distance modulus of 14.85 mag.

203

be at least somewhat larger than $(m-M)_V = 14.65$ mag. However, we have shown that Bolte's photometry agrees with ours. Had he interpreted his data in the same way as us, he would have gotten the same result that we obtained.

Figure 7 illustrates the effects on the models and hence on the interpretation of the M30 observations of changing, on the one hand, the adopted [O/Fe] ratio, and on the other, the assumed helium content. The effects of varying the oxygen abundance have already been discussed in some detail by VandenBerg (1985), but it is useful to emphasize the main points. First the predicted location of the turnoff depends sensitively on the oxygen content in the sense that the higher the [O/Fe] ratio, the younger the age corresponding to a given turn-off luminosity. In the example shown, it is clear that the 14 Gyr isochrone for [O/Fe] = 0.0 is too bright while that for [O/Fe] = 0.0Fe] = 1.0 is too faint in comparison with the data. Consequently, had we assumed a lower or a higher value of [O/Fe], we would have obtained a larger or smaller age, respectively, by about 1.5-2 Gyr for a change in [O/Fe] of 0.5 dex. This assumes, of course, that the apparent distance modulus is fixed

at a value of 14.85. The second important ramification of enhanced oxygen is that high [O/Fe] causes the red end of a computed ZAHB to be shifted to lower luminosity and effective temperature (Castellani and Tornambé 1977). While the present M30 observations cannot discriminate between the three theoretical loci (the two reddest stars could well be entering their asymptotic giant branch phase of evolution), a larger data sample might well offer some potential in this regard. Note that the blue end of the ZAHB is not affected by variations in [O/Fe] so that distances based on fits of models to the distribution of stars with $(B-V)_0$'s ≤ 0.2 will be independent of this uncertainty. However, the luminosities of RR Lyrae stars, which have redder colours by about 0.1 mag or so, will be a function of their oxygen content. Hence the magnitude difference between metal-poor and metal-rich RR Lyraes will clearly depend on how [O/Fe] scales with [Fe/H].

The right hand panel of Figure 7 shows that the effects of varying Y are less important at the turnoff than at the horizontal branch. In fact, if the distance which we have derived for M30 is accurate, the cluster helium content as measured from

FIG. 7.—The effect on the interpretation of the M30 observations of changing the [O/Fe] ratio in the models (left-hand panel), and the helium content (right-hand panel)

© American Astronomical Society • Provided by the NASA Astrophysics Data System

the main-sequence stars is constrained to a value which is close to Y = 0.24. A helium abundance as high as Y = 0.30 is clearly ruled out since the observed location of the mean horizontal branch is fainter than the computed ZAHB (a contradiction), while the theoretical ZAHB for Y = 0.20 is much too faint for the assumed distance. Indeed, the models at both the horizontal branch and the turnoff suggest that the initial cluster helium content is probably somewhere in the range $0.23 \le Y \le 0.27$.

Hesser *et al.* (1987) have recently completed a study of 47 Tuc and have found, using a set of oxygen-enhanced models, an age close to 14 Gyr. In view of the present findings for a similar age for the metal-poor globular clusters (here we include the results also for M15 and M68), it appears that if there is an age-metallicity relation among the globulars, it must be moderately small; the entire range not exceeding about 4 Gyr.

The temptation to use these new cluster ages to constrain the age of the universe and the Hubble constant H is, of course, irresistible. If we take 14 Gyr as the age of the universe and adopt $\Omega = 1.0$ and $\Lambda = 0$, the Hubble constant must then be 48 km s⁻¹ Mpc⁻¹.

V. THE LUMINOSITY FUNCTION OF M30

The luminosity function (LF) of M30 is of interest for several reasons. First, being a metal-poor system, we can investigate whether the slope of its mass function is as steep as would be expected from the result of McClure et al. (1986). Second, the cluster has a collapsed core (King 1986) and thus can be considered to be dynamically quite evolved. For this reason it is important to compare our resulting LF (observed at 21 core radii) with that derived by Bolte (1987b) at a distance of ~ 65 core radii from the cluster center in order to investigate whether there is any evidence of dynamical relaxation. The signature of dynamical relaxation will be LFs that vary systematically with distance from the cluster center. The function closer to the cluster center will be flatter because the low-mass stars are preferentially driven outward as the cluster relaxes toward an equilibrium state. Bolte (1987b) showed that the mass spectral index x, defined by assuming that the differential mass distribution is $\Phi(m) \propto m^{-(1+x)} dm$, where $\Phi(m)$ is the number of stars with masses in the range m to m + dm, of M30 at 65 core radii is $x \approx 1.6$, in apparent reasonable agreement with the metallicity-x correlation found by McClure *et al.* (1986).

Since our V frames are deeper than those in B, we adopt the following procedure in deriving the cluster LF. (1) All stars present on the V frames at a level of at least 3.5 σ above the sky are included in the counts. After establishing this list of objects, every one was visually inspected on our image display system to ensure that it was stellar and not caused by bad pixels. The faint galaxy contribution to our counts (which extend only to V = 23) is negligible (Koo 1986). (2) Corrections for incompleteness were determined by adding stars of known magnitude into the frames and then rereducing them again in the normal manner. (3) The field star contribution was evaluated from published theoretical models of star counts in our Galaxy (Bahcall and Soneira 1980). No blank fields near M30 were obtained, but this is not a serious restriction as the field contamination is small. Table 6 contains the derived M30 LF. In this listing column (3) is the actual number of stars counted on the frame, column (5) the incompleteness and background corrected counts, and column (6) the logarithm of column (5).

Figure 8 illustrates a comparison of the observed LF of M30

TABLE 6 M30 Luminosity Function

V (1)					
	% Complete (2)	Number Counted (3)	Field (4)	N(V) (5)	log N(V) (6)
14–15	100	8	0.3	7.7	0.89
15–16	100	19	0.5	18.5	1.27
16–17	100	13	0.8	12.2	1.09
17–18	100	33	1.2	31.8	1.50
18–19	100	171	1.9	169.1	2.23
19–20	88	346	3.0	390.0	2.59
20–21	80	533	3.9	662.4	2.82
21–22	73	554	4.9	753.0	2.88
22–23	34	280	6.1	806.7	2.91

with various theoretical loci that have been generated from the isochrone which best reproduces the cluster CMD (see Fig. 6), namely, that for an age of 14 Gyr. Error bars are included for each point, these errors including the uncertainty in the incompleteness corrections. It is apparent that, for the adopted distance modulus, the observations are very well represented by the theoretical LF for a mass spectral index of x = 0. Although additional comparisons were performed for different choices of age, distance, and composition, the result shown is insensitive to moderate changes in these parameters (e.g., varying the distance modulus by up to ± 0.2 mag had no effect on the value of x, in this sense the result seen in Fig. 8 is quite robust). All such comparisons indicated that the mass spectrum in the field surveyed in M30 must be very flat, with a value of x near zero. This apparently contrasts markedly with the case of M15 which is observed to have a steep mass function as indicated in Figure 8. However, the M15 data were secured at 95 core radii from the cluster center. The implication of this will be considered further below.

As pointed out above, Bolte (1987b) found that $x \approx 1.6$ for his field in M30 located at 65 core radii, while we find x = 0 at 21 core radii. This is clear evidence for mass segregation in this cluster. We can use the multimass King-Mitchie models of Pryor, Smith, and McClure (1986) to investigate what these values imply for the global value of x. These authors investigated the effect of mass segregation acting on a global mass function in a globular cluster. The tidal and core radii of M30 (Webbink 1985) imply that the concentration parameter c(defined as the logarithm of the ratio of these two quantities) is about 2.3. (Although the core radius of M30 is not well defined by the King-Mitchie models as it has a central luminosity cusp [King 1986], we will nevertheless use the value for the core radius given by Webbink [1985] in the following discussion. The value quoted by Webbink is the best-fitting King-Mitchie value.) Pryor et al. provide models for clusters with c = 2.2, which should be a good approximation to M30. Figure 9 illustrates these models for this value of c. In this diagram, the abscissa is the apparent (i.e., observed) mass function slope and the ordinate is radial position in the cluster (in units of the core radius). The continuous curves plot the observed mass function exponents against radius for clusters with true mass function slopes of 0.0, 0.67, 1.35, and 2.0. The closed circle plotted in this diagram is our data point discussed above, while the open circle is Bolte's (1987b) value. A realistic error of ± 0.3 in x is indicated for each point.

The models of Pryor *et al.* seem to imply that the global mass function slope inferred from our inner point is about 0.0, while that derived from Bolte's value at 45 core radii is about

FIG. 8.—Comparison of our observed luminosity function of M30 (closed circles) with theoretical loci generated from the isochrone which best matches the cluster CMD. The error bars indicated include errors in the incompleteness corrections. Curves for mass function exponents, x, equal to -1.0, 0.0, 1.0, and 2.0 are shown. Data for M15 (which has a similar metal abundance) are also indicated. The M15 data were secured at 95 core radii from the cluster center. The large distance modulus used for M15 (0.2 mag larger than that indicated by the subdwarfs) is to force M15 to have the same age as M30 so that a single set of theoretical LF's could be placed in this diagram. This has no major effect on the resulting value of x, the mass spectral index.

FIG. 9.—The effect of mass segregation on the global slope of the cluster mass function. The curves shown, taken from Pryor *et al.*, are for a cluster with c = 2.2 and x, the slope of the global power-law mass function, equal to 0.0, 0.67, 1.35, and 2.0. The Y axis is the *observed* slope, while the X axis is radial distance in units of the core radius. The closed circle is for M30 (this paper, 21 core radii), while the open circle is Bolte's M30 result (1987a, 65 core radii). The closed triangle is for M15 (Fahlman, Richer, and VandenBerg 1985, 95 core radii).

© American Astronomical Society • Provided by the NASA Astrophysics Data System

1.0. These two values are, at best, only marginally consistent with each other if our error of ± 0.3 for each point is realistic. Pryor et al. give numerous reasons in their paper why their multimass King-Mitchie models probably overestimate the corrections for mass segregation. However, the data discussed above suggest that the corrections may, in fact, be too small! This situation means that it is not possible for us to determine with any precision the global mass spectral index for M30. This is a very different situation from that which we encountered in our study of the luminosity function in M5 (Richer and Fahlman 1987). Here, good consistency was obtained for the global value of x in three fields at 8, 21, and 58 core radii. The concentration parameter for M5 is only slightly smaller than that for M30 and is equal to 1.9. Whether unusual clusters like M30 (collapsed core therefore very dynamically evolved, perhaps steep global mass spectral index) are just not well modeled by the King-Mitchie models discussed by Pryor et al., or whether it is simply a problem with some of the assumptions involved in these models (e.g., a mass cutoff at 0.2 M_{\odot}), is not clear.

In this context, it is of interest to reexamine the existing data for the similar cluster M15. Both it and M30 are metal-poor, have collapsed cores, and are expected to have steep mass spectral indices from the result of McClure et al. (1986). Our new fit to the M15 data (taken from Fahlman, Richer, and VandenBerg) is shown in Figure 8 and implies that the observed mass function exponent has a value of x somewhere in the range of $1.5 \le x \le 2.0$, smaller than the original estimate of McClure et al. (1986), but consistent with a revised value given by McClure et al. (1988). Again, using the Pryor et al. models for c = 2.2 (a good approximation for M15 also), we can put in Figure 9 the data point for M15 plotted as a filled triangle. We see that, within the framework of the Pryor et al. models, a fair estimate of the global value of the mass function slope is $x \approx 0.9$, similar to that derived for the outer field in M30. Evidently a study of fields closer to the center of M15 would be very valuable here in order to investigate if a trend similar to that seen in M30 is found.

The main conclusion to be drawn from this discussion of the M30 LF is that the corrections for mass segregation in at least some extreme clusters (e.g. M15, M30) are not yet very well understood. Since it is precisely these clusters which tie down the low metallicity end of the x-metallicity relation found by McClure et al. (1986), the relationship found in that paper should be exposed to the widest possible tests including LFs of other very metal poor systems without collapsed cores. An excellent example in this category is NGC 5053 which is as metal-poor as M15 and M30 but is also one of the loosest clusters known with c = 0.75. The models of Pryor *et al.* predict that the dynamical corrections to the observed LF should be negligible. We are currently analyzing deep CCD data for this cluster. On the positive side, the results obtained here should be capable of providing useful constraints on dynamical models of post-core-collapse clusters.

VI. SUMMARY

New UBV CCD photometry in a single field of the globular cluster M30 was obtained at CFHT under conditions of good seeing (0".9). The data were used to obtain the color magnitude diagram of the cluster, its luminosity function, and to derive as many fundamental cluster parameters as the data allowed. The results which we obtained are as follows.

1. No blue stragglers, nor any evidence of a binary sequence is seen in the data even though the field in which we observed is only 3'.4 (21 core radii) from the cluster center. The mainsequence cluster stars were found to be highly chemically homogeneous, with an upper limit of about 0.20 dex to any spread in metal abundance.

2. The CMD fiducial sequences of three metal-poor clusters were intercompared with the aim of detecting any age differences among them. Within the errors in the cluster reddenings and distances there is no evidence for an age spread among these three clusters. If the small differences seen are interpreted as an age spread at constant metal abundance, then the three clusters have a total spread in ages of at most 4 Gyr. Alternatively, if these clusters have the same age, then the total metal abundance variation among them is 0.42 dex with M30 the most metal poor system of the three.

3. The age which we derive for M30 itself is 14 Gyr. The reduction in age here to 14 Gyr from the previous values of 16-18 Gyr for other globulars is due primarily to the assumption of enhanced helium (over the usually assumed value of Y = 0.20) and of enhanced oxygen. This difference in age should not be interpreted as simply the scatter in the determinations. Since the models are believed to be representative of cluster stars in so far as their abundances are concerned, and since there is excellent overall consistency of synthetic and observed CMDs (from $0 \le M_V \le 8$), we believe that a reasonable uncertainty in our age estimate is ± 2 Gyr. That is, it is possible, but not probable, that M30 is either younger than 12 Gyr or older than 16 Gyr.

4. The cluster luminosity function was measured, and the slope of the assumed power law mass function was found to be very flat with $x \approx 0.0$. The existing models of Pryor *et al.* for mass segregation corrections yield a global value of the slope of the mass function based on our inner field and one measured by Bolte about 3 times as far from the center that are not consistent. The observations seem to indicate that the mass segregation corrections implied by these models is too small, whereas Pryor et al. make a strong case for the opposite conclusion.

The authors are indebted to CFHT for the assignment of telescope time in support of their globular cluster research program. This research is supported by grants from the Natural Sciences and Engineering Research Council of Canada.

REFERENCES

Alcaino, G., and Liller, W. 1980, A.J., 85, 1330.

Buzzoni, A., Fusi Pecci, F., Buonanno, R., and Corsi, C. E. 1983, Astr. Ap., 128, 94. Castellani, V., and Tornambé, A. 1977, Astr. Ap., 61, 427. Dickens, R. J. 1972, M.N.R.A.S., 157, 299. Fahlman, G. G., Richer, H. B., and VandenBerg, D. A. 1985, Ap. J. Suppl., 58,

Gratton, R. G. 1985, Astr. Ap., 147, 169. Gratton, R. G., and Ortolani, S. 1986, Astr. Ap., 169, 210.

- Hesser, J. E., Harris, W. E., VandenBerg, D. A., Allwright, J. W. B., Shott, P., and Stetson, P. B. 1987, *Pub. A.S.P.*, in press.
 Johnson, H. L. 1966, *Ann. Rev. Astr. Ap.*, 4, 193.
 King, I. 1986, in *IAU Symposium 113, Dynamics of Star Clusters*, ed. J. Goodman and P. Hut (Dordrecht: Reidel), p. 1.
 Koo, D. C. 1986, *Ap. J.*, 311, 651.
 Kunth, D., 1986, *Pub. A.S.P.*, 98, 984.
 Landolt A. L. 1983, *A L* 69, 429.

- Kunth, D., 1986, Pub. A.S.P., 98, 984.
 Landolt, A. U. 1983, A.J., 88, 439.
 Lee, Y-W., Demarque, P., and Zinn, R. 1987, in The Second Conference on Faint Blue Stars, ed. A. G. D. Philip, D. S. Hayes, and J. Liebert (Schenectady: L. Davis Press), in press.
 Lutz, T. E., Hanson, R. B., and van Altena, W. F. 1987, Bull. AAS, 19, 675.
 Lutz, T. E., and Kelker, D. H. 1973, Pub. A.S.P., 85, 573.
 Magain, P. 1985, Astr. Ap., 146, 95.
 Margon, B., and Downes, R. A. 1983, Ap. J. (Letters), 274, L31.
 Matteucci, F. 1986, Pub. A.S.P., 98, 973.
 McClure, R. D., Stetson, P. B., Hesser, J. E., Smith, G. H., Harris, W. E., and VandenBerg, D. A. 1988, in IAU Symposium 126, Globular Cluster Systems

- VandenBerg, D. A. 1988, in *IAU Symposium 126*, Globular Cluster Systems in Galaxies, ed. J. Grindlay and A. G. D. Philip (Dordrecht: Reidel), in press. McClure, R. D., VandenBerg, D. A., Bell, R. A., Hesser, J. E., and Stetson, P. B.
- 1987, A.J., 93, 1144.
 McClure, R. D., VandenBerg, D. A., Smith, G. H., Fahlman, G. G., Richer, H. B., Hesser, J. E., Harris, W. E., Stetson, P. B., and Bell, R. A. 1986, Ap. J. (Letters), 307, L49.

- Pilachowski, C. A., Sneden, C., and Wallerstein, G. 1983, *Ap. J. Suppl.*, **52**, 241. Pryor, C., Smith, G. H., and McClure, R. D. 1986, *A.J.*, **92**, 1358. Richer, H. B., and Fahlman, G. G. 1987, *Ap. J.*, **316**, 189.
- Rood, R. T. 1981, in Physical Processes in Red Giants, ed. I. Iben Jr. and A. Renzini (Dordrecht: Reidel), p. 51.
- Sandage, A. 1982, Ap. J., 252, 553.
 Sneden, C. 1985, in Production and Distribution of C, N, O Elements, ed. I. J. Danziger, F. Matteucci, and K. Kjär (Garching European Southern Observatory), p. 1. Stetson, P. B. 1987, Pub. A.S.P., 99, 191.
- VandenBerg, D. A. 1985, Production and Distribution of C, N, O Elements, ed. I. J. Danziger, F. Matteucci, and K. Kjär (Garching: European Southern Observatory), p. 73

- Yang, J., Turner, M. S., Steigman, G., Schramm, K. A., and Olive, K. A. 1984, *Ap. J.*, **281**, 493.
- Zinn, R. 1980, Ap. J. Suppl., **42**, 19. Zinn, R., and West, M. J. 1984, Ap. J. Suppl., **55**, 45.

GREGORY G. FAHLMAN and HARVEY B. RICHER: Department of Geophysics and Astronomy, University of British Columbia, No. 129-2219 Main Mall, Vancouver, B.C. V6T 1W5, Canada

DON A. VANDENBERG: Department of Physics, University of Victoria, P.O. Box 1700, Victoria, B.C. V8W 2Y2, Canada