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ABSTRACT 
The general theory is developed of winds whose energy flux increases along the flow trajectories, but with- 

out momentum deposition. It is found, under rather general conditions, that the sonic point occurs where 
E/(A31*) is a maximum, where A is the cross-sectional area of a streamline bundle, and E is the specific energy. 
The results are used to derive general expressions for the critical external flux needed to excite a wind from a 
gravitationally bound object. The mass flux is derived taking into account the self-shielding by the wind 
against the external flux. The analysis is applied in a somewhat modified form to the Cyg X-3 system where 
the external energy flux is assumed to be cosmic rays from the compact object and where bremsstrahlung 
losses in wind are included. The observed rapid period change is shown to be expected if the compact object 
is putting out 1038 erg s_1 or more. The wind is automatically on the order of a radiation length thick and is 
therefore an efficient converter of cosmic rays to gamma rays, as required by reported ultra-high-energy 
gamma-ray observations. The possibility is raised that close companions can be completely vaporized by 
compact objects. 
Subject headings: shock waves — stars: binaries — stars: winds 

I. INTRODUCTION 

Transonic winds from astrophysical objects are typically driven by energy derived from the central object. In the case of the solar 
wind, energy from the convection zone is deposited into the corona and conducted further downstream (Parker 1958). Energy 
addition to the solar wind above the coronal base may lead to more than one critical point (Holzer 1977) and is needed to produce 
high-speed streams with reasonable mass flux and coronal base pressure (Leer and Holzer 1980). 

However, in some instances winds can be stimulated from without; e.g., evaporative flows from clouds embedded in a hot gas 
(Cowie and McKee 1977, Balbus and McKee 1982), comet comae, fusion pellets, and winds from companion stars to accreting 
neutron stars (e.g., Arons 1973, Basko and Sunyaev 1973, McCray and Hatchett 1975, Basko et al 1977). The orbital period change 
P/P ~ 10-6 yr (Mason and Sanford 1979; Eisner et al. 1980) of the Cyg X-3 system, whose total mass is ~ 3 M0, suggests that mass 
is being lost from the companion more rapidly than would be typical of a ~ 1 M0 star. A natural conclusion is that the mass loss is 
stimulated by the compact object. The hypothesis that the millisecond pulsar was spun up by accretion and the absence of orbital 
modulation suggests the possibility that the companion star was almost entirely dissolved by the luminosity of the neutron star in its 
accretion phase. 

If the energy driving the wind comes from without, and is absorbed by the wind material during the outflow and converted to 
heat, then, in the absence of cooling, the specific energy of the flow increases along the flow. This same result can be achieved in 
other ways, e.g., combustion in a jet or rocket engine, or possibly magnetic field dissipation in a coronal hole. In the analysis, we will 
be as general as possible; we let the specific energy of the flow E(r) be a free function throughout much of the analysis with the 
understanding that it increases with distance r along the flow trajectory. 

We show in § II that the sonic point is generally within the region of significant energy deposition or at its boundary. In § III, we 
assume the energy is deposited into a thin layer and show that the jump conditions across the layer imply that the fluid jumps to a 
Mach number of 1 just downstream of the deposition layer, as implied by the results of § II, if the deposited energy per unit area 
exceeds some critical amount. We use this result to a general estimate of the incident flux needed to excite a wind from a stellar 
surface in terms of the star’s mass and the penetration grammage of the incident flux. 

In § IV, we calculate the expected mass flux from the star bombarded by a “ supercritical ” energy flux, and compare the results to 
the measured P/P of Cyg X-3. The rate of mass loss is established by the ability of the outflow to shield the surface from the 
bombarding radiation, and shielding is included self-consistently in the analysis. Because we include shielding, we obtain a much 
lower value for m than previous estimates (Stecker, Harding, and Barnard 1985). 

II. THE WIND EQUATION 
We now investigate the outflows in which the specific energy increases with radius. Suppose for simplicity that the flow is 

approximately radial. In a steady state, the conservation of mass, energy flow, and the equation of motion give the following 
complete set of equations for u(r), P(r), and p(r) (fluid velocity, pressure, and mass density) : 

puA(r) = C! , (1) 

P 

P 
179 

(2) 
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du dP Gmp 
pw — + — H — = 0 . 

dr dr r (3) 

Here A(r) is the cross-sectional area of a given streamline at radius r and E(r) is the total energy per unit mass of the outflowing 
fluid which varies with r because of energy deposition of cosmic rays, i.e., dE/dr > 0. 

By taking d/dr = (d/dA)(dA/dr) to euqation (2), using equation (1) to eliminate p, and combining equation (3) to eliminate dP/dr, 
we have the following equation. 

1 /du2 1 u2\ dA d f E \ dA 
uA\dA + 2 Ay dr + dA \il4/ dr 

- Gm 
dr \uArJ 2 uAr2 (4) 

Here we assume that y = 5/3 because we want to investigate whether the wind could be stimulated without the assistance of heat 
conductivity. 

The first and second terms on the left-hand side of equation (4) can be written, respectively, as 

1 / 1 d(u2y/A)\ dA 1 d(u2y/Ä) 
uA x^Ja dA ) dr uA212 dr 

and 

d{u2^/Ä) 1 
“ 2 tt3X3/2 

The right-hand side of equation (4) can be written as 

1 d f E 
dr ' mA1/4 dr \A3/4 

1 Gm T3 iJÄ _ djA\ _ J_ d(u2JÄ)l 
uA312 r |_2 \ r dr ) 2u2 dr J ' 

So equation (4) becomes 

dr 

Given the assumption y = 5/3, the energy equation gives 

1 

d(u\/Ä) + 3Gm(VÄ_d^/Ä)=_A5l4£f_E 
2r \ r dr J 

A5'4 

dr \/l34 (5) 

1-2?|£ + 
Gm 3 
r J 4 

where M is the Mach number defined by M2 = u2p/yP. We then have 

l_\d(u\fÄ) 
M2 ï11 dr 

1 M2 

+ñr)=~A^í{^)’ 

m 
3Gm ÍyJ~A dy/Ä\ 
2r dr I 

(6) 

(7) 

Further simplification is possible if gravity is negligible or in the case of spherical flow A = r2. In these cases,/(r) = 0. Equation (6) 
becomes 

dj^jA) 
d(E/A3/4-)1 

A 5/4 

(8) 3 1 - 1/M2 * 
Assuming d[w2(A)1/2] increases with radius, which is the case here, equation (8) implies that E/A31* reaches its maximum when 

M2 = 1. No increase in E/A31* can happen beyond that point. We conclude that the stellar flow will reach the sonic point at the 
point where E/A31* is a maximum, then it will become supersonic. In general, the initial conditions are adjusted so that M2 = 1 is 
attained at the maximum value of E/A31*. In a one-dimensional flow with A = constant, M2 = 1 where E reaches its final 
(maximum) value. 

In § IV, we will use this result in a one-dimensional model as a boundary condition at the point beyond which E is constant. 

III. CRITICAL POWER FOR WIND EXCITATION 
We now calculate the change in the flow quantities under the effect of energy deposition of cosmic rays when they hit the 

atmosphere of the star. For simplicity, we make the approximation that the energy flux F of the cosmic rays is deposited in the form 
of a ¿-function at r = R. The steady state, spherically symmetric radial fluid equations, for general y, are then 

^ jr (pur2) = mfô(r - R), 

? Jr (Ï 
y P 

y -1 p 

Gm 
r 

= Fô(r - R), 

(9) 

(10) 
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du dP Gmp 
pw — + — + 2 = e <5(r — R) . dr dr 

(11) 

If the mass flux and momentum flux of the cosmic rays can be neglected, i.e., mf & 0, e & 0, then the above equations can be 
further written in the following form by taking the integral of r from R — A to R + A with A -► 0 : 

puR2 = C1 , 

yR2 FR2 

(y-l)C1
(P2M2-Pl“l)- C! ’ 

C1(m2 - «i) + R2(P2 -Pi) = 0, 

(12) 

(13) 

(14) 

where u1, P, and u2, P2 are the flow velocity and pressure before and after energy deposition. C, is the rate of mass flow, which is 
constant in this case. Note that gravity does not affect the jump conditions. 

We can solve equations (12)-(14) for the flow quantities after energy deposition in terms of the flow quantities before the energy 
deposition: 

A f yR2Pl 1 , /f yR2?, 
iuLïTTïjc; - mJ * VLïFHjs; -—J 

2(y - l)FR2 

(7 + 1)^ 

AP = P2-P1= -flAu. 

Equations (15) and (16) can be simplified in terms of M2 : 

Aw 

AP = 

7 + 1 IWi 

■ 1)K2 l\Ml 

1 
Ml 

2(7 2 - 1)FP2~| 

J’ 

c 

(7 + 
1 ± J__iV 2{y2- - 1)FP2~| 

i“î J 

(15) 

(16) 

(17) 

(18) 

Here M\ = u\ pJyP^ = «i CJyPx R2 is the Mach number for the flow before energy deposition. The upper sign is the solution for 
Mj > 1 and the lower sign for Ml < 1, subject to the limiting condition that if F = 0, Au = AP = 0. We now choose the lower sign 
since we are interested in the case Ml < l. 

There exists a critical power £(’CIit of the cosmic rays, for which the square-root term in equation (18) vanishes, given by 

</> = F • R2 = ^ crit 1 crit ^ 
çM (J t

X2 

2(72 - 1) \M2i 
such that 

w2 = Wi + Aw = 

P2 = Pi + AP = 

y+l\Ml+y 

C1 Ui 
y(y + 1)R2 \M2 

1 
+ 7 

(19) 

(20) 

(21) 

When & > J^fcrit, the Mach number after energy deposition, M2, is always exactly unity, regardless of by how large a margin & 
actually exceeds if crit : 

U2 ^1 u2
2p2 

yP i yP2R
2 

= i. (22) 

According to the arguments in § II, ifcrit is the necessary flux needed to excite a sonic transition, and equation (19) gives the 
critical power of cosmic rays needed for wind excitation. We can estimate it in terms of the star’s parameters by the following 
arguments. Assume that the wind starts from a nearly static atmosphere so the <0. Then 

Cl 
C.ul 1 P?R4 

2(72 - 1) Ml 2(72 - 1) C. 

The quantity P^ must be at least the hydrostatic pressure r¡g, where /; is the penetration depth J pdr ~ p2R of cosmic rays. Then 

u, 1 

(23) 

whence 

Cl =(P2^)(“2^)~^ 

- Pj R2 

r,R 

y+lMl 

r,2gR3 

7+1 Ci 7+I Ci 
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and 

Therefore 

~ >/R-1/2(Gm)3/2 (for }> = §), 

~ 5 x lO35^2R1“1
1/2(m/M0)3/2 ergs s_1 . (24) 

Here t]2 and R¡ ¡ mean that we use tj ~ 102 g cm-2, R ~ 1011 cm in the numerical estimate of -Sfcri,. 
The following alternative way of estimating i?crit yields essentially the same result as equation (24). For y = 5/3 the total energy 

has to be positive in order to have the wind solution (e.g., Holzer and Axford 1970). The energy equation u2/2 + yP/(y - l)p - Gm/ 
r = E(r), with £ > 0 at R + A demands that 

•^cri. ^ Gm 
C1 

> R ' 

The critical condition that when = ^crit, Mj = 1 implies 

Using equation (20) to estimate u2 in the manner done above, and still assuming <0 and 

Equations (25)-{21) give 

r¡gR 
8 C 

rjg, we have 

&CTit ~rjR-ll2(Gm)3/2 , 

which yields the same estimate for if crit as the first argument. 

(25) 

(26) 

(27) 

IV. CALCULATION OF ih FOR BINARY X-RAY SYSTEMS 
Here we seek to include the shielding of the cosmic rays from the surface by the evaporated material above. It is this self- 

regulating effect that establishes the rate of mass loss. We study this with a one-dimensional model. We will determine, within this 
simple geometric model, the integration constants of the flow given the parameters of the cosmic-ray flux and its interaction with the 
outflowing matter. For simplicity, we neglect gravity, which is valid when if > ifcrit. We will find that if for Cyg X-3 may be 
somewhat, but not necessarily much, greater than ifcrit, in fact, but our estimates should be valid to within a factor of unity. In a 
one-dimensional flow, 

Assume the energy deposition is of the form 

pu = Ci , 

P + pu2 = P + C^u = P0 , 

+ 
y 

y 
-1 

(28) 

(29) 

(30) 

Here /(r) is the cosmic-ray energy flux at position 
penetrating the stellar atmosphere, i.e., 

dE r ^ P -j- =/(r) — dr aCY 
(31) 

r and is assumed, for simplicity, to undergo exponential attenuation when 

f(r) = Fe-^, 

where 
(32) 

<33> 

and er is the grammage which gives t = 1. Since we consider the shielding of the cosmic rays from the surface of the star, the 
simplified picture is that the cosmic rays start to interact with the outflowing matter from the companion star at r = Æo and get to 
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the surface of the star r = r0. Therefore t(R0) = 0 and F is the energy flux of cosmic rays at R0 where the penetration starts. From 
equation (33) dx/dr = - p/a. This leads equation (31) to dE/dr = -(F/CJ exp [-i(r)](dT/dr). Therefore, E{r) can be written as 

+ constant. (34) 

We assume that at large depth, t -► oo, the flow begins with zero energy, hence the constant in equation (34) is taken to vanish. 
Eliminating u and P from equations (28)-(30), one obtains 

C D - I/o- $rR0 P dr' =___ (35) 

where 

C = 

D = 

7 PqÇi 
y — 1 F ’ 

r + i c? 
2(y - 1) F ' 

The differential form of equation (35) is 

l-pdr = dlog(^-y2 

Equation (38) can be integrated to get p(r; C1, P0) as a function of r and the parameters C, and P0 : 

r0) = - + 
P 

2y Pq 
7 + 1 C[ 

log 
7 + 1 Ci l\ 

27 Po p) ’ 

(36) 

(37) 

(38) 

(39) 

where r0 is the position where u = 0, p = oo, which we associate with the surface of the star. 
In § II, we have shown that E/A31* reaches its maximum when M2 = 1. In our one-dimensional model here, where we take 

A = constant; this implies a boundary condition that M2 = 1 at R0, because E attains its maximum at this point and remains 
constant beyond. We can thus determine Cj, P0 as well as the mass-loss rate of the stellar flow from the above equations by 
imposing the following two boundary conditions at R0 : 

Condition (a).—M2 = l,then 

2 7Pm y(P0 - Ci Um)Um 
Pm Cl 

whence 

y_Po _ (y + i)Çî 
Um (y + lKV pm yp0 

where wm, Pm, pm are the flow quantities at r = R0. 
Condition (b).—t = 0,C1E = F, then from equation (35) 

(40a) 

which yields 

7+1 
Cl U2 

2(7-1) 1 m 7-1 

From equations (40), we have 

also, equation (39) can be written as 

Pm PÍ 

7 r, . T* r, yPo , (7 — !) P<)Um + F = 0 , um = : T-or±-   

7 - 1 V (7-1) 

(7 + l)Ci - (7 + l)Ci V \7 - 1 
^0 -4 

7 + 1 

2(7 - 1) 
CiF. 

- (r - r0) = - + — log (l - \ , 
a P Pm \ 2pJ 

1 2 0.6 
at r = i?0 , - (F0 - r0) = — (1 - log 2) = — 

Pm Pm 

(40b) 

(40c) 

(41) 

(42) 

(43) 
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One can thus determine from these equations how the parameters C1 and P0 depend on the rate of energy deposition of the 
cosmic rays: 

C¡ = 
0.72(y - 1)ct2F 

(T + l)(Ko - '"o)2 ’ 

3 _ 2.4(y + l)(y - 1)2<tF2 
p3 _ ro — 

y3(R0 - r0) 
One can also estimate the mass-loss rate of the stellar flow : from equation (43), 

0.6(7 Go 
Pm = -¡r = 0.6 X 10 9 —g cm" 

^0 ro ^11 
and from equations (28), (30) and (34), subject to the boundary condition (b), 

r2(y-l)Fl1/3 8 j^/8
3 

u-> ~ , — = 1.3 x 108 - , 
L r + i pJ Rl'M13 

cm s 

whence 

(44) 

(45) 

(46) 

(47) 

™ ~ PmUm(R0 - ro)2 = 7.8 X \Q2°£e\'¿g S 1 , 
i.e., 

m/m = 1.2 x 10“5J^3/
8
3^f/

1
3(72/3(Mo/m) yr_1 . (48) 

In estimating um, we use F ~ J?/n(R0 — r0)2. (The factor of tc here is a crude approximation.) All the above estimates are in units 
of if38, R1U g2, which are defined as if/(1038 ergs s-1), ^/(lO11 cm), (j/(102 g cm-2), respectively. The above calculation assumes 
that bremsstrahlung cooling is negligible. However, we find that if (72 > 1, both the bremsstrahlung cooling time scale and the 
photon diffusion time are shorter than the hydrodynamic time scale. In this case, the energy of the cosmic rays is essentially 
transferred to radiation which then leaks out of the star. The wind, if it exists, is driven by radiation pressure. The equation of 
motion in one dimension is now 

where as before (eqs. [32] and [33]), 

and 

du 
nipU — = 

dr 
/(rK 

c 

f(r) = Fe~x{r) 

(49) 

1 f*° 
T(r) = -J pdrf . 

In the right-hand side of equation (49), gt is the Thomson cross section,/(r) denotes the outward radiant energy flux through radius 
r, which is equated with the inward cosmic-ray flux. Since the case is radiation dominated, the gas pressure can be neglected. Also 
note that gravity is now neglected as in the previous case. 

Together with equation of continuity (28), the mass-loss rate m can be calculated as follows. Taking d/dr on both sides of equation 
(49) and using dx/dr = —p¡G = — CJgu, we have 

d f du\ C1 du 
dr V dr) g dr ' 

This can be integrated twice using the boundary conditions that, at r = r0, (1) the force of radiation exerted on the gas m„udu/ 
dr = 0 and (2) u = 0. This yields 

u = — (r- r0) 
G (50) 

and 

At r = R0, i = 0, equation (49) becomes 

du 
dr Ro 

Fgt 

rripC 

(51) 

(52) 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

32
8.

 .
17

9E
 

No. 1, 1988 ENERGIZED WINDS 185 

From equation (50), equation (52) is then 

Therefore, 

hence, 

CiV F(jt 
— (Ro-r0) = --z a ) mPc 

C _ r a2Faj I1' 
1 -r0)J 

in ~ pu(R0 - r0)2 = C1(i?0 - r0)2 = a 
1/2 

(R0 - i-o)3'2 . 

Expressed in terms of Eddington luminosity, 

(53) 

(54) 

JS?Edd = Gmmp 4nc = 1.26 x 1038(m/Mo) ergs s 1 , (55) 
O’ j 

and with 

n(R0 - r0)2 ’ 

l <£ \1/2 

m = o( 4Gm —— (K0 - i-o)1'2 

\ Edd/ 

i.e., 

m/m = 1.15 x lO-s^Rl^/^Ÿ^m/Mv)-112 yr"1 . (57) 

Thus, for super-Eddington dragging, we obtain a value for m similar to its value when radiative cooling is negligible. 
The physical reason that m is insensitive to the physics of the outflow is that, given the negative feedback due to shielding, the 

thickness of the wind tends to be of the order of the cosmic-ray penetration depth. 
To summarize, we have shown that under geometric simplifications, m is of > 10“5 M0 yr“1, if £F38 > 1. This value should be 

compared to the observations of P/P for the Cyg X-3 system (Mason and Sanford 1979, Eisner et al 1980) which typically indicate 
m/m < 3 x 10-6yr-1. The predicted m, though much smaller than previous estimates, is still somewhat larger than the observations 
imply. This could be attributed to the gross geometric simplification we have made. Actually, because the star is irradiated only from 
one side at a time, horizontal pressure gradients must develop, and most of the deposited energy could be dissipated in winds that 
blow across the surface of the star and do not cause efficient mass loss. 

For Cyg X-3 type parameters, with <72 ^ 
we find that any wind is driven by radiation pressure, hence if must be greater than 

ifEdd (since the luminosity is thermalized to ~ 105 K, resonant atomic absorption may decrease the effective ifEdd)- The thermal 
radiation may account for the modulated IR flux observed from Cyg X-3, but we do not attempt a detailed fit here. 

However, hard X-rays and possibly soft y-rays are also emitted by the compact object. Their penetration depth is only ~ 1 g 
cm-2. This would excite a much hotter, more tenuous wind, according to equations (46) and (47), and bremsstrahlung losses may 
not entirely kill such a wind. Further discussion of this possibility is deferred to a later paper (Ruderman et al 1988). 

V. CONCLUSIONS AND DISCUSSION 

We have shown that spherical energized wind becomes transonic where £/r3/2 is a maximum. In simple models, in which E 
increases over very little change in r, we used this result to establish a boundary condition of M2 = 1, where £ is a maximum. Within 
these geometrically simplified models, we calculated the critical energy power if crit needed to excite a hydrodynamic wind from the 
surface of a gravitationally bound object, and the mass flux that would be excited as a function of if when if > ifcrit. We find that, 
because of shielding effects, the estimate of m is insensitive to physical conditions of the wind and most sensitive to penetrating 
power of the energy carrier. 

Cyg X-3 (and perhaps other similar sources) can be understood to be distinct among binary X-ray sources in that its (reportedly) 
high cosmic-ray luminosity combined with its unusually short orbital radius yields an energy flux at the companion’s surface that is 
sufficient to excite a dense wind. This implies winds which, because excited from outside the stellar surface, are thick enough to 
marginally permit the carrier to penetrate to the surface. Thus, a wind excited by cosmic rays will be thicker than one excited by 
X-rays, i.e., it will be several radiation lengths thick and will automatically serve as an efficient converter. 

The star, given the thickness of the wind, could be much smaller than the X-ray light curve suggests. Indeed, the inferred rapid 
mass loss from the system is predicted by the theoretical considerations presented here, and the companion star is expected to be 
dissolved over time. An interesting question is whether the companion will eventually dissolve completely via the bootstrap process 
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of wind-fed accretion powering cosmic rays (or X-rays) that drive the wind. This question is discussed at greater length elsewhere 
(Ruderman et al 1988). 
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