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ABSTRACT 
We consider the timing problem of the neutrino-dominated cosmological scenario, i.e., the inferred young 

age for the large-scale structure versus the observationally indicated older age of galaxies and quasars. It can 
be resolved by “ antibiasing ” of galaxy formation. By applying a variety of alternative prescriptions for galaxy 
formation to A-body simulations of the neutrino scenario, we find that the clustering of galaxies could be 
suppressed relative to the neutrinos to an extent that eliminates the timing problem. It requires that galaxies 
form preferentially in the flat “sheets” relative to the denser “filaments” and compact clusters. This could 
emerge either from differences in the efficiency of galaxy formation itself or from feedback influence from a 
first generation of objects (e.g., quasars) which suppresses the formation of incipient galaxies locally. We 
present various illustrative examples in order to quantify the requirements from such antibiasing mechanisms 
and discuss their physical plausibility. Other aspects of the neutrino cosmology are discussed in view of the 
proposed antibiasing, concluding that we see no fatal flaw in this picture. 
Subject headings: cosmology — galaxies: clustering — galaxies: formation — neutrinos 

I. INTRODUCTION 

The claimed “ detection ” of mass mv ~ 30 eV for the elec- 
tron neutrino (Lyubimov et al 1980) triggered theoretical 
work on its cosmoiogical implications (e.g., Bond, Efstathiou, 
and Silk 1980) which led to the neutrino-pancake scenario. Its 
advantages were noticed immediately : (i) it can accommodate 
a critical density, Q = 1, while a baryonic universe is limited to 

< O.O6/1_ 2 by primordial nucleosynthesis constraints (Yang 
et al 1984) and thus requires fine tuning of the initial condi- 
tions ; (ii) it is consistent with the observed upper limits on the 
anisotropies of the microwave background, which pose a diffi- 
culty for a baryonic universe with “ adiabatic ” fluctuations (see 
Kaiser and Silk 1987); (iii) it has a natural scale of Àx ~ 40 Mpc 
(depending on the neutrino mass) which can explain the gross 
features of the large-scale structure. As a modification of the 
old ZePdovich “pancake” scenario (Zel’dovich 1970; Sunyaev 
and ZePdovich 1972), it predicts a large-scale “cellular” struc- 
ture of flat “sheets,” elongated “filaments” and compact 
“ knots ” surrounding big regions of low densities, in qualitat- 
ive agreement with the observational indications for a similar 
pattern of superclusters, rich clusters, and “ voids ” in the dis- 
tribution of galaxies (e.g., Oort 1983 ; Einasto et al 1984). 

Since these initial successes, the neutrino model has lost 
popularity; first, because it has been realized that the claimed 
detection of neutrino mass was premature, but mostly because 
numerical simulations have shown that the scenario suffers 
from a timing/scaling difficulty (Klypin and Shandarin 1983; 
White, Frenk, and Davis 1983; Centrella and Melott 1983; 
Dekel and Aarseth 1984). The simulated neutrino two-point 
correlation function, £v(r), steepens in time as the pancakes 
develop and reaches the logarithmic slope of y = 1.8, which is 
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the slope observed for the galaxy-galaxy correlation function, 
Çg(r) (e.g., Davis and Peebles 1983), soon after the formation of 
the first pancakes. If this time in the simulations is identified 
with the present epoch, then the pancakes, and therefore the 
first galaxies, must have formed at z < 2 (see Fig. 1 for the 
evolution of ^v; the first pancakes form at a ~ 3). This is 
incompatible with the indications that galaxies started forming 
before z = 3, based on the existence of quasars at z > 3, the 
actual detection of a galaxy at z = 3.2 (Djorgovski et al 1985), 
the old ages deduced for globular clusters (Renzini 1986, and 
references therein), and the evolutionary models of galaxies 
(Wyse 1985, and references therein). 

If the galaxies indeed form only in the collapsed super- 
structures, with a similar efficiency in each of them, they would 
be even more clustered than the neutrinos—at any given time 
Çg(r) is at least as steep and with a higher amplitude than £v(r) 
(see Fig. 2 below; also White, Frenk, and Davis 1983). This 
makes the discrepancy even more severe by introducing a 
scaling problem: the galaxy clustering length, r0, defined by 
£g(r = r0) = 1, is at that time in the simulations already greater 
than 5(Q/z2)-1, whereas the one observed for galaxies is only 
r0 ^ 5/i_1 Mpc; these values could agree only if ilh> 1 (h is 
the Hubble constant in units of 100 km s-1 Mpc-1), which is 
unlikely. 

Two recent developments, observational and theoretical, 
have revived interest in the neutrino scenario and made it 
worthwhile to search for ways to overcome the above diffi- 
culty. First, it is debatable whether certain observed features of 
the large-scale structure are easily reproducible by the cold 
dark matter (CDM) cosmology which is so successful in 
explaining galaxies (e.g., Blumenthal et al 1984; Dekel and 
Silk 1986; Davis et al 1985). Among these, one can list the 
possible indications for large streaming velocities on very large 
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pIG i—Time evolution of the two-point correlation function for the neutrinos, averaged over the three simulations. Each curve corresponds to a different time 
denoted by the corresponding expansion factor. One standard deviation of our ensemble of simulations is represented by the error bars on the right, for two different 
times. 

r [h-2 Mpc] 

Fig. 2—The two-point correlation function for the galaxies selected by the criterion > 1 (the trivial bias), averaged over the three simulations, in comparison 
with the neutrino correlation function (dotted lines). The curves corresponding to the different times are shifted horizontally by one decade relative to each other. 
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36 BRAUN, DEKEL, 

scales (Collins, Joseph, and Robertson 1986; Burstein et al. 
1986; for theoretical discussion, see Blumenthal, Dekel, and 
Primack 1988; Bond 1986), the existence of ~100/i-1 Mpc 
elongated superclusters of galaxies (e.g., Giovanelli, Haynes, 
and Chincarini 1986), never seen in CDM realizations, and 
huge regions void of bright galaxies (e.g., Kirshner et al 1981; 
de Lapparent, Geller, and Huchra 1986; but see White et al 
1987), and in particular the excess clustering of rich clusters 
(e.g., Bahcall and Soneira 1983; Batuski and Burns 1985; Tully 
1986; see, e.g., Barnes et al 1985; Blumenthal, Dekel, and 
Primack 1988; White et al 1987). 

Second, motivated in large by the desire to reconcile the 
observations with Q = 1, the idea that the spatial distribution 
of galaxies does not necessarily follow the underlying mass 
distribution has become an acceptable option (Dekel and Rees 
1987, and references therein). While studying possible physical 
mechanisms that could affect the efficiency of galaxy formation 
as a function of position, time, or both, it became evident that 
such biased galaxy formation could occur in many ways. In 
particular, it would be naive to assume that the biasing in the 
neutrino scenario is only the “trivial” one, in which the gal- 
axies form with a uniform probability in all the collapsed 
regions. It is possible that the present population of galaxies is 
less clustered than what is predicted by the trivial bias, and 
perhaps even less clustered than the neutrinos themselves. If, 
for example, galaxy formation is somehow more efficient in the 
flat sheets than in the denser filaments and knots, the result is 
an antibias which would ease the constraint on the neutrino 
scenario (see Shapiro 1984; Shandarin 1987). In particular, the 
slope of the galaxy correlation function is a sensitive function 
of the global dimensionality of the superclusters (e.g., Dekel 
and Aarseth 1984), so a biasing away from the rich clusters and 
filaments might be helpful. 

It is possible that the flat geometry of the sheets provide 
preferential conditions for galaxy formation. Alternatively, the 
bias might be due to feedback from a first generation of objects 
(e.g., quasars) which affect the formation of further galaxies. 
Such a feedback could, in principle, either help or suppress 
galaxy formation, and it could be effective either locally or at a 
distance. In order to ease the constraint on the neutrino sce- 
nario it must suppress galaxy formation locally in the regions of 
highest density. 

Xhe aim of this paper is to test possible antibiasing mecha- 
nisms which may help the neutrino scenario. Motivated by 
physical considerations, we assume various simple criteria for 
galaxy formation or for its suppression, or for both, and simu- 
late the resultant evolution of the galaxy distribution using 
TV-body simulations of the neutrino scenario. The goal is to 
estimate the properties required from successful antibiasing 
mechanisms, and to learn how sensitive they might be to the 
choice of parameters, in order to be able to evaluate the plausi- 
bility of such mechanisms. 

In § II (and in the Appendix) we describe our simulations of 
the neutrino scenario and analyze the clustering of galaxies 
which form according to simple local geometrical and time 
criteria. In § III we discuss and simulate biasing scenarios 
where galaxy formation is suppressed by feedback influence 
from earlier objects. In §IV we consider other aspects of the 
neutrino cosmology, and in § V we conclude and discuss our 
results. 

II. NEUTRINOS AND AUTONOMOUS BIASING 
a) The Neutrino Simulations 

We first ran an ensemble of three conventional neutrino 
simulations in a flat Einstein-de Sitter universe. For the initial 
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neutrino spectrum of fluctuations we adopted (Bond and 
Szalay 1983) 

l^l2 = y4k”10"2(fc//Cv)1-5 , (1) 

where A is the time-dependent amplitude and n = 1, assuming 
a primordial scale-invariant spectrum (Zel’dovich 1972). The 
characteristic wavenumber, kv = 2nßx, corresponds to the 
free-streaming damping length 

Av ä 41(mv/30 eV)“1 Mpc % ^(Q/i2)-1 Mpc . (2) 

To construct the initial conditions, N ä 8000 equal-mass par- 
ticles were initially distributed uniformly inside a sphere of 
radius 2.5AV, at the points of a cubic grid, so as to suppress 
initially any undesired small-scale noise. Then the position of 
each particle and its velocity were perturbed by a super- 
position of small-amplitude plane waves, assuming random 
phases and wavevectors and normally distributed amplitudes, 
which provide a random Gaussian realization of the spectrum 
of equation (1). The detailed procedure is described in the 
Appendix. The evolution of the system was followed in the 
linear regime by the approximation of Zel’dovich (1970; see eq. 
[A2]), until a stage where the rms density contrast on an arbi- 
trary scale, Àu = 8/z-1 Mpc, reached a value of fr æ 0.15. Then 
the cosmological expansion factor a was set equal to 1, and the 
iV-body simulation started. The softened equations of motion 
were integrated directly using the comoving code developed 
by Aarseth (1984), with a softening parameter € = 
0.0752v ö -1 (as measured in comoving units). 

The timing problem of the neutrino scenario is apparent in 
Figure 1 which displays the familiar time evolution of the neu- 
trinos pair correlation function, ^v(r), calculated as in Dekel 
and Aarseth (1984) and averaged over our ensemble of simula- 
tions. The logarithmic slope of ^v(r), which steepens in time, 
matches the observed slope of the galaxy pair correlation, 
y = 1.8, at an expansion factor a between 5.9 and 7.8, and it 
becomes steeper at later times. If this epoch is considered to be 
the present epoch, the collapse of the first galaxies, which 
occurs at a & 2.5 (see below), would correspond to a redshift 
z < 2, which is too recent to explain the early galaxies and 
quasars. 

b) Biased Galaxy Formation 
It would be wrong to assume that the spatial distribution of 

galaxies traces the underlying neutrino mass distribution; the 
gas dissipates into the centers of the potential wells created by 
the gravitating neutrinos, and the efficiency of galaxy forma- 
tion is probably different from place to place. It would be 
reasonable to assume though that this efficiency is, even if 
indirectly, a function of the local density of the neutrinos. Then 
we can apply rough but plausible criteria for galaxy formation 
based on the simulated neutrino distribution, without actually 
simulating the complex gasdynamic processes associated with 
the gas collapse and fragmentation. 

We use the initial conditions and the ZePdovich approx- 
imation to obtain criteria for identifying a simulated particle 
with a luminous galaxy. The half comoving spacing between 
the points in the simulations is ~ 1.3(Q/i2)-1 Mpc, chosen to be 
comparable to the comoving radius of a normal galactic halo. 
This choice guarantees that by searching for galaxies at the 
positions of the simulated particles we do not miss any big 
galaxy, and, on the other hand, each galaxy is typically rep- 
resented by only one particle. The local number density of 
bright galaxies is on the order of ~0.01/i3 Mpc-3, so we expect 
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~ 1400/1“3 bright galaxies in the volume of each of our simula- 
tions. 

For each given biasing scenario we reproduce the evolution 
of the spatial distribution of galaxies by applying the assumed 
criteria for galaxy formation to the AT-body simulations and 
then check consistency with the observational constraints. We 
identify independently two stages in the simulation with two 
corresponding cosmological times: the present epoch, a0, and 
the epoch a* characteristic of the onset of quasar formation. 
The present epoch is determined by the requirement that the 
logarithmic slope of the galaxy two-point correlation function, 
at least near Çg ~ 1, be —1.8. The quasars are assumed to be 
associated with the young galaxies, so a* is chosen as the epoch 
when the first galaxies form (see the detailed procedure below). 
The crucial constraint comes from comparing 1 + z* = a0/a* 
with z > 3. (A certain quasar density evolution is obtained 
from such a procedure for given criteria for galaxy formation 
and an assumed lifetime for a quasar; one can alternatively 
choose a* to be the time when the number of quasar reaches a 
maximum, which is to be identified observationally with z ~ 2.) 

c) The Trivial Bias 
According to the ZeFdovich (1970) approximation, the local 

density at an Eulerian position, 

r(q, t) = a(i)[_q - b(t)}¡i{q)] , (3) 

which is a function of the Lagrangian position q and the time f, 
is given by 

P = P (4) 

where p is the mean density and h{t) oc i2/3 is the linear fluctua- 
tion growth rate if Q = 1. After the deformation tensor 
is diagonalized locally (the tensor is symmetric under the 
assumption of no rotation), with eigenvalues ^{q) defined such 
that k1 > 22 > 23, the density can be written as 

p = p(l - bXJ-'il - bX2)-\\ - bl,)-1 . (5) 

Consider a point which is a local positive maximum of Xy. the 
density there increases as b(t) grows, approaching infinity at 
some critical time in which bXj = 1. This corresponds to a 
collapse along the local principal axis j. In the case of neutrinos 
one expects this collapse to be coherent over the characteristic 
scale Xv and therefore to produce superstructures on that scale. 
The formation epoch is determined by bX1 = 1. 

The classical pancake picture (Sunyaev and ZeFdovich 1972) 
suggests that galaxies form only in the collapsed (~2V) regions; 
the collapse into a singular plane produces shock waves that 
overtake an ever larger fraction of the collapsing gas and thus 
enable the radiative cooling of the infalling gas that accumu- 
lates behind them. This introduces a “ trivial ” bias in the for- 
mation of galaxies; only that matter which is shock heated and 
condensed will be able to fragment gravitationally to form 
galaxies. To approximate this biasing we use the criterion 
h/li > 1 as a necessary and sufficient condition, assuming that 
galaxies form whenever and wherever a collapse to a singu- 
larity occurs at least along one direction. 

Alternatively, in some cases we appeal to a three- 
dimensional density criterion and require that Ô = Sp/p in 
equatiori*(5) exceeds the critical value öc = 61. The latter is the 
value one obtains from a spherical “ top hat ” model, 

9 (6- sin 6)2 

2 (1 — cos Q)3 (6) 

at the conformal time 6 = 37r/2 which corresponds to collapse 
to one-half the radius at turnaround. This provides only a 
rough estimate because the actual collapse is not spherically 
symmetric. We use this procedure only to simulate a time lag 
in feedback biasing (see below). 

The two-point correlation functions of the galaxies selected 
by the criterion bX1 > 1, ^(r), are shown in Figure 2 in com- 
parison with ¿v(r). At a = 5.9 the logarithmic slope of ^ is 
roughly -1.8, like the observed one, and at later times ^ 
becomes steeper (and even steeper than £v), so a « 5.9 must be 
regarded as the present epoch a0. The dotted lines in Figure 3 
describe the growth of the number of galaxies in these trivial 
bias scenarios. The first quasars form at a* « 2.5, i.e., at z* æ 
1.4. This low value is in a clear conflict with the presence of 
galaxies and quasars at z > 3. Thus, the trivial bias makes the 
problem worse. A bias of the opposite sign is required. The 
spatial distribution of galaxies in a slice cut from this model is 
presented in Figure 4a. Large voids are seen between the well- 
defined elongated pancakes. 

d) Geometrical Biasing 
The geometry of the structures, at least near the critical 

formation epoch, is determined by the ratios of the eigenvalues. 
Flat sheets will be formed where X1^> X2, elongated filaments 
where ^ ~ 22 ^3 (at the intersections of sheets), and 
compact clusters where ~ 22 ~ X3 (at the knots where fila- 
ments intersect). Associated streaming velocities will then carry 
material along the sheets toward the filaments and along the 
filaments toward the knots on time scales which are deter- 
mined by the same ratios of the eigenvalues. The density in the 
flat sheets is lower than the density in the filaments and the 
knots, as can be seen in the projections of Figure 4. 

The efficiency of galaxy formation may be strongly affected 
by the geometry of the large-scale structure in which the gal- 
axies form. In the standard dissipative pancake picture the gas 
is heated by falling into the pancakes, and it later cools and 
fragments after crossing the planar shock wave (Sunyaev and 
Zel’dovich 1972; Shapiro, Struck-Marcell, and Melott 1983; 
Shapiro and Struck-Marcell 1985; Bond et al. 1984). However, 
the shock’s pattern in the filament and knot is more compli- 
cated ; the gas may be heated several times by different shocks 
coming from different directions, and the result might be differ- 
ent. There are also feedback processes (§ III below) which may 
work differently in the sheets and in the filaments and knots. 

To mimic a general difference between the fragmentation 
efficiency in the different geometries, we use the criterion 
bX1 > 1 as a necessary condition, but allow galaxies to form 
only where 

¿2ßi < ri , (7) 
where rj is an arbitrary tunable parameter smaller than unity. 
This is equivalent to limiting galaxy formation to the sheetlike 
pancakes, rather than the filaments or knots. 

In Figure 5 we show ^ for galaxies selected with rj = 0.2. 
Based on the slope of the latest time which can be identified 
with the present epoch is a0 % 11.5. From Figure 3, a* « 2.5, 
so z* > 3 as required. The number density of Abell clusters is 
also appropriate (see Table 1). Hence this geometrical pancake 
bias is successful at relieving the timing difficulties of the 
unbiased neutrino model. 

e) Temporal Biasing 
A similar effect could, in principle, be achieved if the effi- 

ciency of galaxy formation changes as a simple function of time 
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a(t) 
Fig. 3. The evolution of the number of galaxies (dotted line) selected by bAl > 1. The galaxies are divided into galaxies in sheets (patterned line) with/UMi < 0.2, 

and galaxies in filaments and clusters (dashed line) with À2/Ài > 0.2. 

rather than as a function of position. As can be seen in 
Figure 3, cluster points > 0.2) tend to collapse before 
filament points, which tend to collapse before the points in 
sheets (i2Ai < 0.2). Hence, if galaxies are somehow prevented 
from being formed before a certain epoch (when b = bmin), they 
preferentially occur in the lower density sheets and therefore 
display reduced clustering. The corresponding criteria for 

galaxy formation would be 

b*i ^ 1 and b > bmin . (8) 
However, we find that even with a delay in the epoch of galaxy 
formation until after amin = 6, we can only push the present 
epoch to a ~ 11.5. If a* = amin, one has z* ~ 1, which does not 
help solving the timing problem. The temporal biasing may 

TABLE 1 
Number of Rich Clusters (a = 11.5), ñohs(h = 0.75) = 2.5E - 6 

Scenario 

Neutrinos 

Trivial bias 

Geometrical bias . 

Feedback bias 
R non-comov = 0.4 
hÀl > 1 

Feedback bias . 
KmaX = 0.1,ic< 
hÂl > 1   

Feedback bias . 

hÀ, 

Number of 
Particles n(h = 0.75) vtot(h 

1 km s x) 

> 1 

7984 
8051 
8012 
4242 
4756 
4420 
1512 
1653 
1653 
1879 
2089 
2004 
1198 
1330 
1297 
1146 
1183 
1144 

73 

40 

14 

18 

7 
7 
6 

13 
14 
9 
2 
3 
2 
2 
1 

3 
5 
2 
1 
3 

8.6 E-6 
8.6 E-6 
7.3 E-6 
16 E-6 
17 E-6 
11 E-6 

2.4 E-6 
3.6 E-6 
2-4 E-6 
2.4 E-6 
1.2 E-6 

3.6 E-6 
6.1 E-6 
2.4 E-6 
1.2 E-6 
3.6 E-6 

2152 
1892 
1352 
2098 
1767 
1572 
1989 
1466 
1504 
1829 
1681 

2080 
1291 
822 

2124 
2044 
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Fig. 4.—Projections of the distribution of galaxies in a slice of thickness 2.5/lv = 32.5h 2 Mpc, cut from one simulation at a = 11.5. The galaxies result from the 
following schemes: (a) neutrinos, (b) trivial bias {bÀl > 1), (c) geometrical bias, (d) feedback case a, {e) feedback case b, (/) feedback case c. 

F [h-2 Mpc] 
Fig. 5.—The two-point correlation function for galaxies according to the geometrical bias, À2/Àl < 0.2 
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work only if a first generation of quasars, at a* « 2.5 (z = 4), 
inhibited the formation of all other galaxies until amin&6 
(z = 1). 

III. FEEDBACK EFFECTS 

a) Physical Processes 
The formation of bright galaxies could be suppressed if 

enough energy or momentum from earlier sources (e.g., 
quasars) is fed in an appropriate form into the protogalactic 
gas. It would be worth summarizing here the physical feedback 
mechanisms while pointing to the ones that might be especially 
relevant to the neutrino scenario (for more general and 
detailed discussion see Rees 1985; Dekel and Rees 1987; Braun 
and Dekel 1987). The relevant features are the range of influ- 
ence and its time dependence. Unlike the requirements from 
biasing in the cold dark matter picture, there is no need in the 
case of neutrinos to appeal to very energetic mechanisms that 
would affect the formation of galaxies at large distances, 
because the large-scale structure is already built-in, reflecting 
the neutrino coherence length 2V. The required negative bias 
should be rather local, within the clustering comoving length of 
~5/i-1 Mpc. A negative influence at larger distances might 
neutralize the effect and should therefore be avoided. Most 
important for a local effect is a time lag between the time when 
the sources are turned on and the latest epoch when incipient 
galaxies could still be quenched. On the other hand, the local 
effect should not be too effective, so that some rich clusters still 
form. 

The major relevant issues are the form of the energy emitted 
from the sources, the coupling to the gas, and the actual sup- 
pression mechanism. 

The suppression could eventually arise from inhibiting the 
condensation of the gas in the dark matter potential wells at an 
early stage or by affecting the IMF such that the resultant 
galaxy is fainter. The condensation could be inhibited by 
increasing the internal energy density of the gas above the 
virial energy of the potential well—either by heating the gas or 
by exerting pressure through trapped momentum carriers 
(photons or nonthermal particles). An alternative way of inhi- 
biting the condensation of the gas is by generating a drift 
velocity larger than the escape velocity relative to the dark 
matter due to a pressure gradient, which could result from slow 
diffusion to large distances. Most extravagant in energy could 
be blast waves that push the gas rapidly over large distances. 
After the source dies, the suppression might continue for a 
while; thermal pressure decays on a cooling time scale and 
bulk velocities decay as a-1 due to the expansion of the uni- 
verse. 

The required energy per baryon in order to suppress the 
condensation of a protogalaxy of baryonic mass Mb in an 
£2=1 universe is 

160(1 4-z)/z2/3l 
Mh 

1011 Mr, 

2/3 
( 
Ul 

-2/3 
1 eV. (9) 

This kind of energy, even taking into account an efficiency 
factor of ~10-3 in the coupling of the energy to the gas, is 
consistent with the observed upper limits on the backgrounds 
of radiation or cosmic rays (Rees 1985). 

If the sources are quasars or active galaxies, the relevant 
energy could be carried away by UV radiation, by fast par- 
ticles, or by blast waves. 

The coupling of UV photons to the gas could neither be 

achieved by Thomson scattering off electrons because the uni- 
verse is optically thin for such scattering at late epochs, nor by 
photoionization which could not heat the gas much above 
~ 104 K because any energy excess would be shared among 
several atoms (Rees 1985). (Compton-heated hard X-rays are 
excluded because of upper limits on the X-ray background.) 
The most promising process is thus scattering off Lyman lines, 
which could trap the pressure exerting photons in regions rich 
with neutral hydrogen. Neutral hydrogen might be available 
either before the universe got ionized (z > 3?), or in regions 
that could maintain a temperature < 104 K. The former would 
provide negative temporal biasing which we found to be not 
very satisfactory (§ He), but regions of the latter kind arise 
naturally inside Zel’dovich pancakes because of cooling behind 
shocks. 

Trapped Lya radiation can provide significant radiation 
pressure in highly photoionized regions if they maintain a low 
temperature of < 104 K such that collisional ionization is not 
important. The high rate of recombination to the excited 
energy levels of hydrogen would provide a high density of line 
photons which could be trapped inside a protogalaxy for a 
long enough time and thus exert a significant pressure. The 
ionization front produced by the ionizing radiation from the 
quasar propagates toward its maximum extent—the Ström- 
gren radius. The radiation pressure is maximal at this radius, 
and it is enough to prevent gas condensation in potential wells 
in the local neighborhood of the quasar, provided that the 
density is high enough. The maximum radius of suppression is 

R^O.SMpcß^T«13^2, (10) 

and the minimal number density is 

ncrit = 25 x KT4 cm"3 Q;in6T^ , (11) 

where Q56 is the number of ionizing photons emitted per 
second in units of 1056 (which corresponds to 
L ~ 1046 ergs s~ ^ 7^ is the gas temperature in units of 104 K, 
and TV4. is the virial temperature characterizing the potential 
well in which the gas condensation is to be suppressed. The 
mean cosmological density at z ~ 3 is only ~ 10~4 cm-3, but 
in pancakes the density is typically a few tens times the mean, 
and the temperature remains cool at ~104 K. Thus, a sup- 
pression of ~108 Mq subgalactic objects, which are the 
typical fragments in a pancake (Shandarin, Doroshkevich, and 
ZePdovich 1983, and references therein), is possible within a 
sphere of radius ~1 Mpc. This corresponds to a radius of 
~4 Mpc today—comparable to the galaxy clustering length 
(see a detailed calculation by Braun and Dekel 1987). 

The diffusion of Lya photons could provide pressure gra- 
dients and drift velocities, but this is not necessarily a local 
effect. 

The UV radiation could affect the IMF by photodissociating 
the H2 molecules, thus drastically reducing the cooling effi- 
ciency and bias the IMF toward bigger stars. This could lead 
to the disruption of the protogalaxies via supernovae (Silk 
1985). Since the UV flux drops with the distance squared, this 
would also tend to cause a local antibias. 

The coupling of fast particles to the gas is via collisions with 
the electrons and is controlled by the unknown magnetic field 
structure. Relatively slow particles (i; < 0.1c) would slow down 
effectively in a Hubble time and heat the gas. Relativistic ions 
(v > 0.1c), if coupled to the gas with a mean free path much 
smaller than a protogalaxy, would exert pressure effectively, 
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but they may propagate to distances larger than the clustering 
length thus neutralizing the antibiasing effect. The IMF might 
be biased toward faint stars because of metal enrichment due 
to fast particles (Couchman and Rees 1986). 

b) The Suppression Radius 
A rough way to estimate the radius of the sphere around the 

quasar inside which suppression is possible is by considering 
the available energy. We assume that each quasar emits its 
energy in a constant rate, L= 1046L46 ergs s_1, during its 
lifetime t, starting at i*. The total energy output from the 
quasar until time t is 

E(t) = 6.3 x 1062L46(—ergs . (12) 

Assuming that the output energy is equally shared among the 
surrounding baryons with an efficiency factor /, feeding e eV 
per baryon, the affected sphere has a radius 

,i3) 

As long as the quasar is active, the feedback radius is increas- 
ing in time in comoving coordinates, reaching a maximum 
value when t — = t. 

If the gas inside this sphere is heated, the suppression would 
continue until the gas could cool. At the relevant temperature 
of ~ 104 K the gas is partially ionized and the cooling is radi- 
ative, mainly via recombination of H and He and via Lya line 
cooling. The cooling time is given by 

3kT 
MT)nb 

1.5 x 1011 

100 eV 
2(1 + z)~3 yr , (14) 

where we have approximated the cooling rate by 

A(T) « 10-24T1/2 ergs s"1 cm3 , (15) 

which is a reasonable approximation when the contribution 
from heavy elements is negligible. We have also assumed in 
equation (14) that the density in a protogalaxy is —5.5 times 
the background density (as at a maximum expansion in a “ top 
hat” model). With e « 100 eV per baryon, and Qb « 0.1, we 
get ¿cooi ~ 3fc_2(2 x 109 yr) at z = 3 and a value 43 times larger 
today. 

If the suppression of galaxy formation is due to radiative 
pressure from a quasar of constant luminosity, where the pres- 
sure is roughly inversely proportional to the square of the 
distance from the quasar, it determines a critical radius, fixed in 
time, inside which the suppression is effective. This radius is 
decreasing in comoving coordinates as a “1. 

c) Feedback Simulations and Results 
We assume the quasars to be identified with young galaxies, 

and we find them in the simulations by applying the same 
selection criteria that were used to find galaxies. The feedback 
influence which suppresses the formation of galaxies also sup- 
presses the formation of more quasars, which eventually 
weaken the feedback, so there is a competition between 
opposite effects; the optimal parameters are to be determined 
by the simulations. 

We first try a simple model in which the radius of influence 
around each quasar is fixed in time. The optimal radius is a 
compromise between the need for strong suppression within 
clusters and the worry from affecting distant regions thus neu- 
tralizing the antibiasing. A fixed radius of influence decays as 
a"1 in comoving coordinates, so the feedback effect weakens in 
time. In practice we decide at the end of each small time inter- 
val whether a particle should turn into a galaxy (or a quasar) 
by checking whether bÀx > 1 (or <5 > 61) and making sure that 
it is not located inside an active range of influence of another 
quasar. The fixed radius is chosen to be — 5^_1 Mpc (in co- 
moving units normalized to the present) at a* = 2.5, the onset 

r [h-2 Mpc] 

Fig. 6.—The two-point correlation function for galaxies according to a feedback bias with a fixed radius of influence 
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r [h-2 Mpc] 
Fig. 7. The two-point correlation function for galaxies (<5 > 61) according to a feedback bias with a time lag: protogalaxies are not affected if they have turned 

around (<5 > 4.5) by the time the feedback influence turned on at their position. 

of galaxy (quasar) formation. The cooling time is assumed to 
be negligible. The slope of the resultant correlation function, as 
shown in Figure 6, admits a0 » 11.5-13.9. 

Next we introduce a significant time lag by assuming that a 
protogalaxy which starts feeling a feedback influence only after 
it had turned around (3 > 4.5) is immune from the suppression 
effect. In this case, as shown in Figure 7, the suppression 
becomes less effective, as expected. 

Finally we tried growing suppression radii, taking cooling 
into account. Figure 8 displays three cases with t = 6 x 108 yr. 
In case a (Fig. Sa) the suppression radius was (in comoving 
coordinates) 

m = 
Í* < Í < Í* + T + tcool , 
later , 

(16a) 

and icool ~ t0/2. In case b (Fig. Sb) we assumed 

m = < 

Rn 

Rrr 

* - i*y/3 

T / 
t* < t < t* + X , 

t* + ? 

-2/3 
later , 

(16b) 

and in case c (Fig. 8c) 

R(t) = 
Rn 

Rrr 

t-tA1'3 

í* < í < Í* + T , 

later , 

(16c) 

r [h-2 Mpc] 

Fig. 8a 
Fig. 8.—The two-point correlation function of galaxies according to a feedback bias in the cases a, b, and c (see text) 
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F [h~2 Mpc] 

Fig. 8c 

with icool chosen for each protogalaxy at random in the range 
(2-4) x 109 yr. For the feedback to be effective, the maximum 
comoving radius Rmax must be on the order of the galaxy 
correlation length. We choose Rmax ^ 3h~1 Mpc, in agreement 
with the estimates of the previous sections, but we find the 
results not to be very sensitive to the exact value of Rmax. 

Figure 4 displays the projected distribution of galaxies in 
these scenarios, in comparison with that of the neutrinos and 
the galaxies of the trivial bias. The antibiased nature of these 
models is apparent where the compact clusters and dense fila- 
ments, which are seen in the neutrinos and trivial-bias models, 
are smeared out significantly. 

All the models of Figure 8 give a0 ä 11.5, and in Figures 8a 
and 8b even a0 ä 13.9 is acceptable. The evolution of the 
number of objects in case b is shown in Figure 9. All the above 
scenarios display a growing quasar number density between 
a zz 2.5 and a ^ 4, a flat maximum, and a slowly decreasing 
density later on. With a0 & 12 this is qualitatively consistent 

with the indicated flat maximum in the quasar density near 
z < 3 (e.g., Schmidt, Schneider, and Gunn 1986). The lack of a 
well-defined maximum, together with the large observational 
uncertainties, prevents a quantitative comparison between the 
predicted and observed quasar density evolution, apart from 
requiring that the onset of quasar formation occurred at 
z - 3-4. 

IV. OTHER ASPECTS OF THE NEUTRINO SCENARIO 

a) Rich Clusters 
The observed rich clusters, both as associations of galaxies 

and as X-ray sources, could provide further constraints on the 
cosmological scenario and on the bias mechanism. To find 
clusters in the simulations, either in the neutrino distribution 
or in the distribution of galaxies, we use an algorithm which 
assigns all the neighboring particles which are separated by 
less than a critical separation, d, to a given cluster (e.g., Dekel, 
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a(t) 
Fig. 9.—Evolution of the number of galaxies and quasars for feedback bias, case b. Notations is as in Fig. 3 

West, and Aarseth 1984). This procedure selects clusters with a 
characteristic overdensity n/ñ - (d/d)~3, where d is the mean 
separation between neighbors. To match roughly the Abell 
(1958) criteria for clusters of richness R> 1 we use a separation 
parameter which corresponds to n/ñ ~ 200 and require that 
the minimum number of galaxies associated with the cluster be 

where Ng is the total number of galaxies in the simulation 
sphere of radius R = 2.5ÀV = 32.5/z“2 Mpc, and RA = 1.5/T1 

Mpc. 
In Table 1 we list, for the neutrinos and for each of the bias 

scenarios, the resultant number density of clusters for h = 0.75. 
This is to be compared with the estimated number density of 
Abell clusters of richness >1, nA » 5 x 10_6(/i_1 Mpc)-3 

(Bahcall and Soneira 1983). The rich clusters in the neutrino 

distribution are too frequent, and even more so for the galaxies 
when they are selected according to the trivial bias. The anti- 
biasing mechanisms, as expected, reduce the number density of 
clusters; with the biasing parameters chosen above to cure the 
timing problem, we find the resultant number density of clus- 
ters to be in the appropriate range of values. 

We also list in Table 1 the three-dimensional velocity disper- 
sion of all the members of the richest cluster in each simulation. 
These velocities are found to be quite insensitive to the biasing. 

It is interesting to note that the antibiasing procedures 
which were tried here do not erase the richest clusters ; in most 
cases the richest neutrino clusters still show up as the richest 
clusters of galaxies (with lower overdensities and richnesses). 

In order to find out more about the depth of the potential 
well associated with the neutrino clusters, we measure and list 
in Table 2 for the two richest clusters in each simulation the 
central three-dimensional velocity dispersion, vc, the maximum 
circular velocity, [GM(Æmax)/Æmax]

1/2, and the radius at which 

TABLE 2 
Properties of Rich Clusters 

F GM(R)T/2 

"to. Vc L R jmax Rmax Mlot Rlot (h 1 km s-1) (/i_1 km s-1) (fc-^kms“1) (/T2 Mpc) (h~A MQ) (/T2 Mpc) 

2152  2195 2011 1.22 1.3 E15 2.03 
1892  2061 1865 0.73 0.85 El5 1.83 
1352  1463 1380 0.3 0.44 El5 1.51 
1846  1881 1711 0.99 1.03 E15 2.48 
1807  2001 1708 0.73 0.8 E15 1.83 
1252  1267 1289 0.88 0.4 E15 1.48 
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this value is obtained, Rmax. We also list the total mass, Mtot, 
and the maximum extent, Rtot, of the clusters. The one- 
dimensional velocity dispersions are in the range 1000- 
1500/r 1 km s_1, and the total masses are on the order of 
1015/i_4Mo. For/iÄ 1 these values are compatible with the 
ones observed in the richest clusters, but if /z « 0.5 they are in 
excess of the observed values. 

Based on the depth they estimated for the cluster potential 
well, White, Davis, and Frenk (1984) argued that the neutrino 
clusters would show up as excessive X-ray sources. Our results, 
which were found to be insensitive to the parameters used to 
find the clusters, indicate that the neutrino potential wells are 
not necessarily excessively deep—the conclusion depends 
strongly on the exact value of h. Moreover, the gas might be 
prevented from falling into the cluster cores and producing 
X-ray sources (e.g., Bond et al. 1984; Shapiro 1984). For 
example, the gas could be heated by shocks before falling into 
the cluster centers and rise into higher adiabats, or it could be 
subject to radiation pressure or other feedback effects similar 
to the ones discussed above as possible sources for the anti- 
biasing in the formation of galaxies. Thus, we do not share the 
conclusion of White, Davis, and Frenk (1984) that the neutrino 
clusters cannot be reconciled with observations. 

b) The Mean Mass Density 
Given the spatial distribution of galaxies and their velocities 

in the simulations, one can mimic the observational procedure 
of estimating D based on the assumption that the clustering 
properties of the galaxies is similar to that of the mass. For 
example, the cosmic virial theorem relates the rms peculiar pair 

velocity z;12 at a given separation r to the correlation function 
at this separation by (Peebles 1980, p. 280) 

6nGpc Qr2Ç(r)QJ 

(y — 1)(2 — y)(4 — y) ’ 
(18) 

where the two-point correlation function is assumed to be a 
power law, £(r) = (r/r0) “y, J is a certain function of ^(r), and the 
three-point correlation function is assumed to be related to the 
two-point functions via a proportionality constant Q. For 
y = 1.8 one has J = 3.7, and for a rough estimate we adopt the 
observed value Q = 1.29. Figure 10 shows the rms three- 
dimensional pair velocity of the galaxies in the simulations as a 
function of separation for some of our models. For separations 
in the range 3-7h~2 Mpc about the correlation length, this 
procedure yields consistent (r-independent) values of Q in the 
range 0.1-0.2. The pair velocities on these scales are in rough 
agreement (within a factor of 2) with the observations (Davis 
and Peebles 1983) and the simulations of Frenk, White, and 
Davis (1983). The comparison with observation is rough 
because we do not actually mimic the observational procedure 
of measuring velocities along the line of sight. 

The alternative cosmic energy equation (Peebles 1980, 
p. 278) avoids using the poorly known three-point correlation 
function. It relates the rms peculiar velocity to the two-point 
correlation function, which is assumed to be a self-similar 
power law truncated at rmax, by 

2 _ l6nGpc Qry
0 r

2
mJ 

(7 + n)(2-y) ’ 
(19) 

Fig. 10.—The rms pair velocity for the neutrinos and galaxies in several bias models (feedback bias cases a and b, and the trivial bias), for one of the simulations, 
as a function of the pair separation. 
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where n relates to y by y = (9 + 3n)/5 + n). In our models we 
measure (v2}1/2 ~ 800/î“1 km s-1. For rmax » 5h~2 Mpc we 
then obtain values of Q < 0.5. This estimate of Q depends on 
the assumption of self-similarity which is not strictly valid here 
but can be regarded as an approximation at late times. The 
resultant value depends on the arbitrary assumed value for the 
cutoff rmax and is sensitive to the value assumed for y. There- 
fore, this estimate should be regarded as a very rough estimate 
only. 

Thus, the observational procedure, when applied to the anti- 
biased distribution of galaxies in the neutrino scenario, severe- 
ly underestimates the value of Q, which equals unity in our 
simulations by construction. This effect is qualitatively similar 
to the effect in the biased CDM scenario, even though the 
galaxies are less clustered than the neutrinos on small scales. It 
results from the fact that the rms galaxy velocities are smaller 
than the rms neutrino velocities, while in CDM it is a result of 
the higher galaxy-galaxy correlation function. 

c) Streaming Motion 
Another important constraint on the theory is the observed 

streaming motion on large scales (Dressier et al. 1987); the 
reported velocity is V = 600 ± 100 km s “1 averaged over a 
sphere of radius ~60/i -1 Mpc (the effective radius is actually 
smaller by a factor of ~2; see Kaiser 1987), which is uncom- 
fortably large in comparison with the predicted velocities 
either in the standard biased cold dark matter scenario or in 
the unbiased (or the trivially biased) neutrino scenario. The 
biasing scheme has an important effect on the predicted 
streaming velocity because the predicted velocity depends on 
the normalization of the density fluctuations, which is observa- 
tionally constrained by the present distribution of galaxies— 
not that of the matter. 

Linear analysis is appropriate for a crude estimate of the 
velocity on a scale of few tens of megaparsecs. The mean- 
square mass fluctuation and bulk velocity over spheres of 
radius R inside some large volume Vu are related to the power 
spectrum via (e.g., Peebles 1980) 

/ 0M\2 V f00 

UT)räiji4'‘ldkk2<l6‘f}w,m’ (20) 

and 

= 4*KH0)2 ôk\
2}W2(kR), (21) 

where we have assumed Q = 1, and where W(kR) is a window 
function which is the Fourier transform of the window func- 
tion in position space; for a “top hat” window of radius R in 
position space the window in k-space is (Peebles 1980) 
W(kR) = 3/(kR)3[sin (kR) - kR cos (/cR)]. 

The normalization could be determined by the rms fluctua- 
tion of the number of galaxies, which is observed to be 
ÔN/N = 1 over spheres of radius 8/i-1 Mpc (Davis and 
Peebles 1983). Defining a biasing factor h by ÔN/N = bSM/M 
at 8fc-1 Mpc, the predicted velocity then scales as K oc h_1. 
The normalization could be determined alternatively by com- 
paring the logarithmic slope of the simulated correlation func- 
tion to the observed y = 1.8. The biasing factor could then be 
defined as the ratio between the expansion factor a at the time 
when the logarithmic slope of <^v is 1.8 and the present a when 
the slope of ^ reaches this value. For the neutrino spectrum of 
fluctuations, with no bias (b = 1), we find by evaluating the 

AND SHAPIRO Vol. 328 

velocity integral for R = 50/z-1 Mpc a streaming velocity of 
165h~2 km s-1. In the successful antibiased simulations 
described above we find the bias factor (defined either way) to 
be typically h æ 0.5. The predicted rms streaming velocity is 
therefore V « 330h~2 km s-1. This value is in pleasant rough 
agreement with the observed result. 

V. DISCUSSION AND CONCLUSIONS 

We have tried to find out whether a physically plausible 
antibiasing mechanism can solve the timing problem of the 
neutrino scenario, by applying various simple biasing schemes 
to AT-body simulations. The conclusion certainly relies on the 
way we identify the present epoch in the simulations based on 
matching the evolution of the population of quasars with the 
observations. We either assign the redshift z = 4 to the time 
when the first galaxy-size object collapses in the simulations, 
or, alternatively, identify the time when the number of quasars 
is at its maximum value with the appropriate redshift 2-3. 
Although this procedure involves certain uncertainties, we 
believe that they could not affect our conclusions in a qualita- 
tive way. 

We have found that although only certain mechanisms, 
where the physical parameters are confined to a certain range 
of values, can suppress the clustering of galaxies enough to 
make it consistent with the observed galaxy-galaxy correlation 
function, the range of possibilities is still fairly large. A bias 
which depends only on the cosmic time requires a very late 
epoch for the onset of galaxy formation (z ~ 1) which might be 
incompatible with observations. The desired antibias can 
result from differences in the efficiency of galaxy formation due 
to the different geometries of the parent superclusters, but the 
physical motivation suggested for such a bias has not been 
worked out in any detail yet. The negative feedback influence 
needed for reproducing the desired antibias is found to be quite 
modest energetically, and we have demonstrated that it could 
be plausibly provided by quasars. The resultant distribution of 
galaxies is similar to the observed distribution. 

Our conclusion is, therefore, that the timing/scaling problem 
should not be regarded as a critical difficulty of the neutrino 
scenario. This, in view of the promising properties of this sce- 
nario in forming superclusters and voids on large scales, 
should open up our minds to reconsidering the neutrino sce- 
nario as a viable cosmological model. 

At this stage it is worthwhile to summarize the other open 
questions and apparent difficulties faced by the neutrino sce- 
nario : 

1. Massive neutrinos have not been detected in the labor- 
atory. The first claimed measurement of 35 eV for the electron 
neutrino (Lyubimov et al. 1980) has not been confirmed by 
similar experiments or by other experiments, and the upper 
limits seem to get tighter. The neutrinos detected on earth from 
the supernova 1987A in the Large Magellanic Cloud provide 
an upper limit of about mv < 10 eV (e.g., Bahcall and Glashow 
1987), but this estimate depends on very uncertain assump- 
tions. For example, an alternative analysis of these data sug- 
gests two types of neutrinos, with masses of 22 eV and 4 eV 
(Cowsik 1987). A mass on the order of 10 eV for at least one 
type of neutrinos is certainly not ruled out by experiment. (In 
the case of /i or t neutrinos the current upper limits are much 
higher [250 keV and 70 MeV, respectively; Harari 1987], and 
the prospects for lowering the limits to the cosmologically rele- 
vant ~ 10 eV level are slim.) 

2. There are indications that dwarf galaxies also have dark 
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halos (e.g., Aaronson 1987; Freeman 1984). If massive neu- 
trinos are packed in such configurations they must have 
masses in excess of ~ 500 eV in order not to have their present 
phase-space density be lower than at the early universe, in 
violation of the Liouville theorem (Tremaine and Gunn 1979). 
On the other hand, if the neutrinos provide a substantial frac- 
tion, Qv, of the critical cosmological density, the sum of the 
masses of the various neutrino species must be 

X mVi ~ 100Qv/z2 eV . (22) 
i 

With the observed constraint Qh2 < 1 there is a conflict. If 
dwarf galaxies indeed have massive halos, which is yet to be 
confirmed, it would be therefore hard to see how they could 
possibly be made of neutrinos, but it is still possible (although 
not very elegant) that ~ 30 eV neutrinos do dominate the mass 
in the universe on large scales, while the dwarf halos are made 
of another kind of dark matter. 

3. As we saw in § IV, the neutrinos accumulate in compact 
clusters which are deep potential wells. If the intergalactic gas 
is heated to the virial temperature of these wells, it would make 
X-ray sources which might be brighter than the sources 
observed by Einstein (White, Davis, and Frenk 1984). We have 
found that the potential wells are not excessively deep if /i « 1, 
and recall that the gas could be prevented from falling into the 
cluster cores thus avoiding making excessive X-ray sources. 
Alternatively, the problem could be solved if the baryons con- 

47 

tribute only Qb < 0.025, or if the initial fluctuation spectrum is 
very steep (n ~ 4; see White, Davis, and Frenk 1984). 

4. There is no evidence for any correlation between galaxies 
and their parent pancakes, in apparent contrast to what is 
naively expected in the neutrino picture where the galaxies are 
assumed to be the daughters of pancakes (e.g., no relative 
alignments; see Dekel 1985). But the formation of galaxies via 
cooling and fragmentation in pancakes is not well understood 
in detail yet (Shapiro, Struck-Marcell, and Melott 1983), which 
leaves the scenario at the present stage with an unsatisfactory 
predictive power concerning the properties of galaxies. This 
calls for further theoretical study but it does not provide a clear 
evidence against the neutrino scenario. 

In conclusion, one may like or dislike the neutrino- 
dominated picture of the universe, but, contrary to a current 
popular trend, we see no fatal flaw in this picture. In the 
absence of an elegant “ theory of everything ” in cosmology, the 
neutrino scenario and, in particular, the formation of galaxies 
in pancakes still deserve a thorough consideration. 
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BIASED GALAXY FORMATION 

APPENDIX 

REALIZATION OF GAUSSIAN FLUCTUATIONS 

We want to represent a random-phase realization of a given power spectrum of small density fluctuations, 

P(k) = <\S(k)\2)]kl=k, (Al) 

in a range kmin < k < /cmax, by appropriately distributing N particles in an arbitrary given volume V (e.g., a unit sphere), without 
necessarily requiring periodic boundary conditions. The particles are first distributed uniformly inside the volume, at the points of a 
comoving cubic grid denoted by q. According to the Zel’dovich (1970) approximation, at a time t, the comoving position of each 
particle is displaced by 

-a(t)b(t)\lf(q) , (A2) 

where a(t) is the universal expansion factor and b(t) is the linear growth rate; a(t) oc b(t) oc t2/3 in a matter-dominated Einstein-de 
Sitter universe. To represent adiabatic fluctuations, each particle is assigned a corresponding peculiar velocity relative to the Hubble 
flow of 

— a(t)b(t)}¡/(q), 

representing only the growing modes. 
The spatial perturbation ij/lq) is taken to be the superposition of Nk small-amplitude plane waves, 

P T/2 

^(?) = Z sin (*i • ? + </>() Tï —I 

The corresponding density fluctuation is 

which, in the linear approximation, is simply 

0(q) = 1 / det [v Ht) 
dij/ 
dq, 

3 #,• Nk 

%) = b(t) Z = b(t) X cos (k¡ q + 
j=l GClj i=l •(4 

1/2 

(A3) 

(A4) 

(A5) 

(A6) 

The amplitudes P}'2 are chosen at random from a Gaussian distribution in which the variance is the power spectrum, P(k). The 
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phases </>,- are chosen uniformly at random in the interval (0, 2n). The directions of the wavevectors, kh are chosen uniformly at 
random. Their amplitudes, kh are chosen at random within (kmin, /cmax) such that the number density of waves is w(k). In practice, we 
select the k values via a function u(k) which satisfies 

w(k)d3k = Nk 

“(fcmax) - «(kmin) 
du(k). (A7) 

The values of u(k) are chosen uniformly at random in the interval u(kmin) < u(k) < w(7cmax), and the corresponding wavenumbers k are 
used in the superposition. 

The weight function w(k) could, in principle, be arbitrary. For example, the choice w(/c) = constant, corresponding to u(k) = k3, 
would give a uniform coverage of the three-dimensional /c-space. This choice is equivalent to the use of a cubic grid in /c-space, which 
is forced when periodic boundary conditions are imposed and Fourier transforms are calculated (Efstathiou et al 1985). But then 
the representation of the spectrum for small fc’s is poor, and the representation of the spectrum for large /c’s is wasteful. A much more 
“uniform” representation of the spectrum over the whole range (/cmin, /cmax) is achieved with an equal number of waves per 
logarithmic interval in k, i.e., 

u(k) = \n k , (A8) 
which corresponds to 

w(k) = 
4rc(ln /cmax - In fcmin) 

fe“3. (A9) 

We find that the distribution of Ô over 8000 grid points inside a unit sphere, as calculated by equation (A5) with h <0 and 
Nk ~ 1000 per each decade of /c, indeed approximates a normal distribution very well. It is not due only to the fact that the 
amplitudes were chosen from a Gaussian distribution; the random phases and the large number of waves in every small In k interval 
tend to generate a Gaussian distribution based on the central limit theorem. 

The desired fluctuations are represented well down to a comoving wavelength corresponding to twice the initial grid separation 
(the Nyquist wavelength), 

¿„in = 2K/kmax = 2(V/N)113 . (A10) 

The above procedure was tested by Fourier transforming 3(q) back to /c-space (using standard FFT) and calculating the power 
spectrum from it. The result is shown in Figure 11 where the dashed line is the result of the Zel’dovich approximation, and the solid 
line is the theoretical spectrum. The approximation has proved to be very good. 

Fig. 11.—Comparison between the theoretical power spectrum of the neutrino fluctuations of eq. (1) (solid line) and the resultant power spectrum of one 
realization generated as described in the appendix (i/ashed/m^). 
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In order to normalize the spectrum at the starting time of the simulations, we use the linear approximation to write the mean 
square mass fluctuation averaged over spheres of radius R as 

<(<5Ai/A/)2>R = P(k)WR(k)d3k, (All) 

where WR(k) is the Fourier transform of the window in position space, chosen here to be a “ top hat ” of radius R. (The factor -j is due 
to the fact that we use sines rather than exponents in the Fourier analysis.) P(k) and b(t) are normalized such that on a certain scale, 

((ôM/M)2yRu = b2(t). (A12) 

Today, for example, the observed distribution of galaxies indicate b(t0) = 1 at Ru = 8/i 1 Mpc (if galaxies trace mass). One should 
choose b at the starting time such that the fluctuations are still linear on the relevant scales, but not much before the onset of 
nonlinearity for economical reasons. 
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