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ABSTRACT 
We present a detailed calculation of the growth of linear density perturbations induced by a loop of cosmic 

string in a universe presently dominated by light massive neutrinos. The constant pulling of the cosmic string 
overcomes free-streaming damping so that cosmological structure develops in a “bottom-up” fashion different 
from hot dark matter scenarios without cosmic strings. We develop an accurate semi-analytic method for 
evolving the spherical perturbation around a loop through the collapse stage. Applying this method we show 
that halos with flat rotation curves form with circular rotation speed of ~50 km s_1 or greater. The Tremaine 
and Gunn phase-space constraint limits the compactness of the neutrino halos so that this scenario cannot 
explain dwarf spheroidals with compact dark halos. We estimate the galaxy luminosity function from the loop 
size distribution by applying the Faber-Jackson relation to the calculated rotation speeds and find good agree- 
ment with a Schechter function of slope a = 1.4. For the Turok and Brandenberger loop distribution, the fit 
requires Qh2 « 1, one neutrino flavor of mass æ 100 qY/c1, and a string mass parameter G/i/c2 « 4 x 10-6. 
Subject headings: cosmology — galaxies: formation — galaxies: internal motions — galaxies: structure — 

neutrinos 

I. INTRODUCTION 

Attention has focused recently on the idea that cosmic 
strings produced in the early universe may seed the formation 
of galaxies. Cosmic strings are massive, linear, topologically 
stable defects in a scalar quantum (Higgs) field which acquired 
a nonzero expectation value throughout most of space during 
a phase transition. Under some conditions the phase transition 
may not go to completion everywhere, leaving defects inside 
which the Higgs field vanishes. Cosmic strings may thus be 
thought of as tubes of “ false vacuum ” ; they are analogous to 
magnetic flux tubes trapped in Type II superconductors. A 
review of their properties has been given by Vilenkin (1985). 

The mass and tension of cosmic strings gravitationally 
perturb the ordinary matter and radiation filling the universe. 
These perturbations may grow to form the present structure in 
the universe (Zel’dovich 1980; Vilenkin 1981). Cosmic strings 
are hypothetical objects which, even if created in the early 
universe, may, like magnetic monopoles, have been diluted to 
negligible density by inflation (Guth 1981). Since present par- 
ticle physics models are unable to decide whether cosmic 
strings were formed in and survived the early universe in 
appreciable numbers, it is important to consider their astro- 
physical consequences. It is amazing that cosmic strings, unlike 
their point-like and two-dimensional relatives, magnetic 
monopoles and domain walls, are not catastrophic to the evol- 
ution of structure in the universe. 

Cosmic strings, like magnetic flux tubes, have no ends. Most 
of the string produced in a phase transition is initially in the 
form of infinite strings (Kibble 1976; Vachaspati and Vilenkin 
1984), but as the universe expands the strings oscillate and 
cross themselves, breaking off closed loops (Albrecht and 
Turok 1985). Loops are more important than infinite strings 
for the subsequent seeding of structure. Turok (1985), consider- 
ing a model in which galaxies form around small loops and 
clusters of galaxies form around large loops, showed that the 
clustering of large loops produced by the evolution of the 
string network in the early universe matches the clustering of 

Abell clusters as determined by the two-point correlation func- 
tion (Bahcall and Soneira 1983). This discovery spurred several 
groups to consider galaxy formation by accretion of cold dark 
matter onto small loops (Sato 1986; Stebbins 1986; Turok and 
Brandenberger 1986). These analytic calculations showed that 
cosmic strings with a mass per unit length « (1 — 2) x 
10~6 c2G_1, a reasonable value for strings produced in the 
Grand Unified phase transition, can plausibly form galaxies 
and clusters of the correct mass and abundance. 

More recent work has considered the formation of large- 
scale structure by cosmic strings. Shellard et al. (1987), 
Brandenberger et al. (1987), and Bertschinger (1988) showed 
that, unless ¡x is several times larger than the value needed to 
make galaxies with cold dark matter, cosmic strings are 
unlikely to generate large-scale streaming velocities as large as 
that reported by Dressier et a/. (1987). They noted that hot 
dark matter (e.g., massive neutrinos) might yield better agree- 
ment since a larger g would be required to form galaxies. 
Melott and Scherrer (1987), performing AT-body simulations 
with cold dark matter, concluded that cosmic strings lead to an 
excessively steep correlation function. This conclusion could 
change if the dark matter is hot since growth is then suppressed 
on small scales by free-streaming damping. 

In the successful standard model for galaxy formation 
without cosmic strings (see Blumenthal et al. 1984 for a review), 
the dark matter is postulated to be made up of some kind of 
cold, collisionless particle. Light massive neutrinos or other 
hot dark matter particles are unsatisfactory because the large 
thermal velocities of the particles erase galaxy-scale primordial 
density perturbations (Bond and Szalay 1983). Cosmic strings, 
by continually pulling on the matter, may ease this problem of 
free-streaming damping. 

In this paper we consider the linear and nonlinear evolution 
of cosmic string-induced perturbations in a universe presently 
dominated by hot dark matter. For definiteness we take the 
dark matter to be made of one flavor of massive neutrino, e.g., 
vt, with the other flavors being much lighter. To account for 

23 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
8 

. .
 .

23
B

 

24 BERTSCHINGER AND WATTS Vol. 328 

free-streaming damping it is necessary to employ a treatment 
based on the neutrino phase space distribution. We do not use 
full general relativity but rather follow the pioneering work of 
Gilbert (1966) in solving the nonrelativistic Vlasov equation. 
Of course, some relativistic effects are important and so we 
include the gravitational effect of radiation and also account 
for the isocurvature suppression of perturbation growth 
outside the horizon of a string loop (Traschen, Turok, and 
Brandenberger 1986). The linear perturbation theory of hot 
dark matter and cosmic strings is presented in § II. Approx- 
imate treatments of this problem have been given by Vilenkin 
and Shafi (1983) and Sato (1986) (see also Schramm and Vitto- 
rio 1985); a treatment similar to ours has been presented 
recently by Brandenberger, Kaiser, and Turok (1987). 

Linear perturbation theory shows that free-streaming 
damping retards, but does not eliminate, the growth of density 
perturbations close to the cosmic string loop. Of course, the 
real test of the model is whether nonlinear collapse will 
produce galaxies of the correct abundance and properties. The 
infall onto loops is, to a good approximation, spherically sym- 
metric (neglecting the peculiar motions of loops; see Bert- 
schinger 1987) and can be described accurately using a 
nonlinear “turnaround” model (Gunn and Gott 1972; Gunn 
1977; Hoffman and Shaham 1985; Hoffman 1987). In this 
model the Zel’dovich (1970) approximation is used to evolve 
the density perturbation until Lagrangian shells stop expand- 
ing. Each shell is assumed then to collapse and virialize. In 
most treatments of this sort the shells are assumed to remain 
(on average) at about half of their turnaround radius, but in the 
present case the matter falling in later drags the preceding 
shells further in. We introduce an approximate model based on 
adiabatic invariants to account for this, and we show in § III 
that the method produces nonlinear density profiles accurate 
to within 10% for the spherical similarity solutions of Fillmore 
and Goldreich (1984) and Bertschinger (1985). 

In § IV we apply the spherical nonlinear model to the col- 
lapse of hot dark matter onto cosmic strings. Because the 
linear density profiles are shallower than <5 oc r~2, the nonlin- 
ear collapse produces flat rotation curves (Hoffman and 
Shaham 1985). The results are encouraging, so we consider 
limitations imposed by the Tremaine and Gunn (1979) phase- 
space constraint, loop decay, baryonic infall, and loop motion. 
Using a simple model we then calculate the galaxy luminosity 
function. 

We present our conclusions and suggest further theoretical 
and observational tests in § V. 

It has been suggested recently that cosmic strings may, in 
some particle physics models, be superconducting (Witten 
1985) and may form galaxies through electromagnetic inter- 
actions (Ostriker, Thompson, and Witten 1986). In this paper 
we assume that the strings are* not superconducting or, if they 
are, that they carry negligible currents. 

II. LINEAR PERTURBATION THEORY 

In this section we derive an integral equation for the growth 
of small density perturbations in a collisionless gas of massive 
neutrinos. This equation is then solved numerically to provide 
initial conditions for the nonlinear collapse calculations pre- 
sented in § IV. 

a) Assumptions and Derivations of the Integral Equation 
We assume that there exist two flavors (e.g., ve, v^) of neu- 

trinos which are light enough (with mass <1 eV/c2) to be 
relativistic throughout the radiation-dominated era. A third 

flavor (e.g., vT) has mass m = 96.8 Q/i2eV/c2, sufficient to close 
the universe (Q = p/pcrit = 1) for a microwave background 
temperature of 2.7 K and Hubble constant H0 — lOO/i km s-1 

Mpc-1 (Davis et al 1981). We neglect the baryonic contribu- 
tion to the density. 

We consider the growth of dark matter perturbations 
around a single loop of string, which we treat as a stationary 
point of mass Ms. We use nonrelativstic Newtonian mechanics, 
modified for the gravitation of radiation and the suppression of 
growth outside the horizon of the loop. The latter effect arises 
because the energy density perturbations of cosmic strings are 
compensated by an underdensity in radiation on scales outside 
the causal horizon (Traschen et al 1986). A nonrelativistic 
treatment of the massive neutrinos is justified because the neu- 
trinos become nonrelativistic in the radiation-dominated era 
before significant perturbation growth occurs. 

The massive neutrino velocity distribution function /(r, v, t) 
satisfies the Vlasov equation 

(i) 

where the gravitational potential (f) solves the Poisson equa- 
tion 

V2</> = 47rG[pm + 2pr + Ms<5>)]. (2) 

The gravitating mass includes the massive neutrinos, with 
mass density pm = m ¡ d3vf radiation consisting of the micro- 
wave background and the relativistic neutrinos, and the cosmic 
string. Because the radiation Jeans length is approximately the 
horizon distance, radiation perturbations do not grow signifi- 
cantly within the horizon; outside the horizon they simply 
cancel the string perturbation. Radiation energy density per- 
turbations are therefore neglected. 

It is convenient to transform to comoving coordinates and a 
new time variable : 

where the expansion factor a(t) is normalized to unity at the 
present time and a satisfies the Friedmann equation (à/a)2 = 
(Sn/3)Gpb(pb c2 is the total background energy density, includ- 
ing matter and radiation). With the two flavors of relativistic 
neutrinos the universe became matter-dominated at a redshift 
1 + 7 = a^1 = 2.887 x 104/z2. Defining the length scale 
req = 3cHölalq = 11.76/i~2 Mpc, we integrate the Friedmann 
equation and the equation defining s(t) to obtain 

a(t) _ + 6) 

aeq 9 ’ 

2 aeqc 

ct + 9) 
27 

In 

where Ç is the dimensionless conformal time : 

(4) 

Substituting equations (2) and (3) into the Vlasov equation 
(1) yields 

f+u-f+al4nGp0 ^ ^ 0(req £ 
ds dx 

x)er ^0- 
(6) 
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The Heaviside function 0(reqÇ — x) is introduced to suppress 
growth outside the causal horizon x = req The present 
matter density p0 equals, by assumption, the critical density 
3Hl/(8nG). The mean neutrino comoving displacement ÿ is 
defined so that the density perturbation (not necessarily small) 
is 

-Vx-tfr = £^-l . (7) 

Po 

This comoving displacement is similar to the Lagrangian dis- 
placement field used in the treatment of cold dark matter 
(Bertschinger 1987). In the latter case the trajectory of a par- 
ticle is r(x, t) = a(t)(x 4- ^), where x is interpreted as a Lagrang- 
ian coordinate. For small displacements the Lagrangian 
treatment is equivalent to the Eulerian treatment used here. In 
the present case the trajectory a(x + ^ applies not to individ- 
ual neutrinos but rather to the average of many neutrinos in a 
small volume. 

To solve equation (6), the distribution function is first linear- 
ized,/ = f0(u) + /i(x, w, s), with l/i I f0. The unperturbed dis- 
tribution function is a nonequilibrium Fermi-Dirac 
distribution (Weinberg 1972) 

fo = 2 [r (euluo + I)' (8) 

where hP is Planck’s constant, u0 = kB Tv0/(mc) = 0.514/i-2 km 
s-1, and Tv0 = 2.7(4/ll)1/3 K. The factor of 2 accounts for 
left-handed neutrinos and antineutrinos; the argument of the 
exponential is proportional to the neutrino momentum 
because the neutrinos decoupled while relativistic. 

Fourier transforming equation (6) yields 

dJl 
ds 

+ i(k - if)/! + i4n 
Ga dfo 
k du 

+ M 
[- 

! 
m d^ufi 

sin (kr^J) 
= 0, (9) 

where 

4 
fi(k, u, s) 

Integrating equation (9) gives 

/i = 

d3xe ,k ' Xj\(x, u, s). 

■A GÔf° 
l4nH~du 

ds'a'e -i(k • w)(s-s'). 
Í 

d3uf1 

+ M. 
[- 

sin (kr^’) 
krcq <f 

(10) 

Equation (10) may be simplified by integrating over velocity. 
Integrating by parts and using equations (4) yields 

m = dÇ In 1 + 6/^' 
1 +6/£ 

F[_kxf^’, Ç)] 

X áÁZ) + 1 - 
sin (/creq ^) 

_* 
(11) 

The Fourier transformed density perturbation is ôk = (m/Ms) J 
(Pufi ; a factor of Ms/p0 has been absorbed into the definition 
of ôk so that equation (11) is correct for any mass Ms. The 
function F(x) is the Fourier transform of the Fermi-Dirac dis- 
tribution, normalized so that F(0) = 1. It may be defined by the 

series expansion 

F(X) - 3C(3) Z ( ir + i (n3 + xr 
(12) 

where Ç(3) « 1.202 is the Riemann ( function. For large 
argument F has the asymptotic expansion 
3C(3)F(x) « x"4(l + x“2 + 3x“4 + 18x"6 + • • •). The neu- 
trino free-streaming distance xfs is the comoving distance a 
neutrino with comoving velocity u0 travel^ between conformal 
times and <^ : 

Xfs(?, £) = «'•e. In 
/I + 6/£'\ 
U+6/^’ 

3 kB rv0(l + zeq) 
2 me2 

= 0.07433 . (13) 

The smallness of the coefficient a demonstrates that treating 
the massive neutrinos as nonrelativistic throughout the period 
of significant perturbation growth is a good approximation. 

b) Numerical Solution of the Integral Equation 
Equation (11) is a Volterra integral equation of the second 

kind and may be solved using the trapezoidal rule. The equa- 
tion couples the present value of ôk with all past values and 
thus requires an iterative solution. We used In £ as the integra- 
tion variable and chose a step size Á In ^ = 0.03 starting at 
£ = 10-4. Successive refining of A In ^ indicated that our 
results are accurate to better than 0.1%. 

Figure 1 shows our results for the linear growth of several 
Fourier components of the density perturbation. There are 
several features to note. First, all waves grow rapidly for 
kreqÇ < 1, when the wavelength is smaller than the horizon 
size. Although it appears that there is growth outside the 
horizon, in fact, there is no growth in physical space for x > 
req £. Long waves grow because part of the wave is within the 
horizon. Once waves come entirely within the horizon, they 
suffer from neutrino free-streaming damping as long as 
kxf s(Ç,co) > 1. This results in the slight oscillations of the 
waves entering the horizon and their depressed growth evident 
in Figure 1 for high wavenumbers. Finally, once the free- 
streaming distance grows to exceed the wavelength, the waves 
grow in proportion to the expansion factor, or ôkcc Ç2 in the 
matter dominated era (^ > 1). 

The most interesting result shown by Figure 1 is that free- 
streaming damping only retards, but never reverses, the growth 
of string-induced perturbations. This is in marked contrast to 
the evolution of primordial matter perturbations without 
cosmic strings to drive growth (Bond and Szalay 1983), where 
neutrino free-streaming damping effectively erases structure on 
scales smaller than superclusters of galaxies. In that scenario 
galaxy formation proceeds in a “top-down” manner from 
pancake fragmentation (Doroshkevich et al 1980); the 
resulting large-scale structure distribution does not resemble 
the real universe (White, Frenk, and Davis 1983). For this 
reason neutrinos have fallen into disfavor as a dark matter 
candidate, despite their being the only proposed candidate 
known to exist. As Figure 1 suggests and later results will 
confirm, light massive neutrinos can be resurrected to form 
galaxies in a “ bottom-up ” scenario with cosmic strings. 

Figure 2 shows ôk plotted against comoving wavenumber at 
several times. The sluggish growth in the presence of free- 
streaming damping produces the /c-4 behavior evident for 
kxfs > 1 (kreq > 50£ for £ > 1); without the cosmic string ök 
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log f 
Fig. 1.—The growth of several Fourier components of the spherical hot dark matter density perturbation around a cosmic string. The abcissa £ is dimensionless 

conformal time; the universe becomes matter-dominated at £ æ 1. The curves are labeled in increasing order of comoving wavenumber: kreq = 0.398, 1.59, 6.31, 25.1, 
100,398, and 1590. Free-streaming damping retards the growth of curves 4-7. 

O 

o 1 2 

log kreq 

4 

Fig. 2.—The Fourier transform of the density perturbation vs. comoving wavenumber, at conformal times £ — 0.031, 0.173, 0.770, 3.42, 15.2, 67.5, and 300. 
Free-streaming damping creates a power-law suppression at large/c. 
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GALAXY FORMATION WITH COSMIC STRINGS 27 

would vanish exponentially for kxfs > 1. The maximum of ôk 

occurs at the horizon scale (or the horizon at ieq, for Ç > 1); for 
smaller k, ôk oc k2. For ôk < 1 the growth is driven primarily by 
the cosmic string so that the perturbation profile changes as 
new shells come within the horizon. Also, growth is inhibited 
by the dominance of radiation (Mészáros 1974) for £ < 1. For 
ôk > 1 the matter perturbation is large enough for gravita- 
tional instability to take over (see eq. [11]), so that the profile 
retains the same shape (for kxfs < 1) in the linear regime. 
Between the peak and xj^ the density perturbation decreases 
(roughly as k~2) because smaller wavelengths experience a 
smaller period of uninhibited growth after their size exceeds 
Xfs- 

Figure 3 graphs the density perturbation in physical space, 
obtained by Fourier transforming ôk. The perturbation is nor- 
malized to a cosmic string mass Ms = p0

req — 4.513 x 1014 

M0 ; for different masses ô should be multiplied by MJ(p0 r^). 
Of course, the results are valid only for ô 1. The results also 
break down for £ < a = 0.07433, when the neutrinos are rela- 
tivistic. Between the time the neutrinos become nonrelativistic 
and the time the perturbations become nonlinear the results 
should be accurate. 

As is evident from Figure 3 for £ < 1, the density pertur- 
bation vanishes outside the causal horizon x/req = £. The 
radius of the perturbation expands with the horizon until 
£ æ 1, after which time the density perturbation becomes self- 
gravitating and retains the same shape outside the region 
affected by free-streaming damping. Beyond x = 0.52req = 
6Ah-2 Mpc the density perturbation changes sign. This sign 
change seems to violate one’s intuition that the cosmic string 
should cause the density perturbation to grow everywhere, but 
it has a simple explanation. The cosmic string decelerates close 
mass shells more than distant mass shells, so that there can be 

an actual thinning out of shells, hence a negative density per- 
turbation. All shells within the horizon are, in fact, decelerated 
by the cosmic string. 

Free-streaming damping causes the density perturbation to 
be uniform inside approximately 0.05x/s. Note that despite 
damping, the density perturbation grows in the center. Pre- 
sumably this occurs because the cosmic string traps slow- 
moving neutrinos even as faster ones stream away. We would 
thus expect a different velocity distribution close to the accret- 
ing mass, although we have not verified this by integrating 
equation (10). Outside the core the linear density profile varies 
as x ”, with n ä 1.25 to 1. 

Simple arguments explain the form of the perturbation 
growth in the matter-dominated era. For x> xfs& 6otrcJ£, 
the fractional mass perturbation due to the cosmic string is 
3Ms/(47rp0 x3). This perturbation grows with the expansion 
factor oc£2 once xfs becomes smaller than x. Thus, very 
roughly, we have the density perturbation (with dependence on 
Ms restored) growing as 

Pod, 
Ms 

X 1 
(14) 

The numerical coefficients have been chosen to give rough 
agreement with Figure 3 (to within about a factor of 2) for 
£ > 10. We see that free-streaming damping naturally pro- 
duces an x _ 1 density profile. 

Vilenkin and Shafi (1983) gave a rough derivation of the 
power spectrum of fluctuations in a universe dominated by hot 
dark matter with cosmic string seeds, but their results are not 

log x/req 

Fig. 3.—Perturbed density profile vs. comoving distance from the loop, at the same times as indicated in Fig. 2. The decreasing free-streaming distance is evident 
in the rise of the central density with time. 
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directly comparable with those obtained here because they 
considered a distribution of loops rather than a single loop. 
However, we have in essence applied their scaling arguments 
to a single loop in the heuristic discussion presented above and 
we expect a distribution of our loop perturbation solutions to 
yield a power spectrum qualitatively similar to theirs. 

III. NONLINEAR COLLAPSE: SPHERICAL INFALL MODEL 

In this section we present a method for evolving the dark 
matter linear perturbations computed in § II through the 
epoch of collapse and galaxy formation. The method we 
develop may be useful in other scenarios so we give a full 
presentation before applying it in § IV to cosmic strings and 
hot dark matter. One way of studying nonlinear collapse is to 
use an AT-body code, either spherical or three-dimensional. 
Instead, we have chosen to follow a semi-analytic method 
based on spherical infall (Gunn and Gott 1972; Gunn 1977; 
Hoffman and Shaham 1985). Hoffman (1987) has shown that 
this method yields galaxy rotation curves which agree well 
with the results of AT-body codes. We present our own com- 
parison with exact nonlinear results below. We first review the 
method and then present a more sophisticated treatment 
which yields excellent agreement with exact calculations. 

We assume that free-streaming damping is unimportant by 
the time nonlinear collapse begins, so that we may treat the 
dark matter as being effectively cold. We also neglect the 
orbital angular momentum of the neutrinos. These approx- 
imations are poor in the cores of the bound objects, where the 
neutrinos also become mildly degenerate; we will estimate 
below where the cold spherical results break down. Given a 
cold collisionless system, we may use the Lagrangian descrip- 
tion pioneered by Zel’dovich (1970) to extend the linear pertur- 
bation theory into the initial nonlinear regime. Considering x 
now as a Lagrangian coordinate, the trajectory of a mass shell 
is r = a(x + ij/), where Vx • i/f = —S in the linear regime. We 
extend this trajectory until the shell ceases expanding, 
dr/dt = 0 at i = ita. In the matter-dominated era the turn- 
around time tta is then given as a function of x or, equivalently, 
Xta = 4t,a), through 

'Xta 1 
x2 dx <5(x, t) = - x,3

a. (15) 
Jo ¿ 

The Zel’dovich approximation thus predicts turnaround 
occurs when the mean density perturbation implied by linear 
theory is 1.5. The turnaround radius is predicted to be rta(i) = 
^a(t)xtSL(t); the exact result is larger by a factor (3n/ 
4)-8/9(12)1/3 = 1.069. The Zel’dovich method works satisfacto- 
rily for following shells up to the point of turnaround. 

The conventional wisdom is that, after a shell turns around, 
it collapses approximately a factor of 2 in radius to achieve 
virial equilibrium (Gunn 1977). The particles orbit about the 
center of the bound object, but since they spend most of the 
time near apoapse (the maximum orbital radius), the mass 
profile may be computed approximately by freezing the shells 
at a radius ^rta after turnaround. This yields the virialized mass 
profile implicitly through 

4tü 1 
M = -jPoxl, r = - axta. (16) 

(Hoffman actually used the exact turnaround radius.) 
However, for d In xtJd In i > ^ or d In 0/d In x > —2, equation 
(16) predicts rising rotation curves while AT-body simulations 
show nearly flat rotation curves (Frenk et al 1985). Hoffman 
and Shaham (1985) noted that this flattening was to be 
expected from the results of Fillmore and Goldreich (1984), 
who obtained analytic similarity solutions for collisionless 
infall. Unfortunately, no simple modification of equation (16) 
can give the virialized mass distribution for d In ô/d In x > — 2, 
since shells falling in later drag in shells which fell in earlier so 
that the inner mass profile is not static. Since the linear density 
profiles found in § II have d In 0/d ln x ä — 1, similar to cold 
dark matter without cosmic strings, a more complicated 
dynamical model is required here. 

To improve the simple turnaround model we present a 
method based on the adiabatic invariance of the action as the 
mass grows by secondary infall. Basically we extend the 
asymptotic analysis of Fillmore and Goldreich (1984) out to 
the turnaround radius. The method is similar to that used by 
Gunn (1977) except that we allow the halo to shrink indefi- 
nitely if required by infall. For a particle executing radial orbits 
in a mass distribution M ccry which varies slowly in time com- 
pared to the orbital period, the action is (Fillmore and Gold- 
reich 1984). 

s=4 ÍXS=4,2GM-r-,1'i HXr)1'1 - "7> 

where Ma is the mass interior to the apoapse radius ra. Neglect- 
ing the small changes in the integral involving y, we conclude 
that Ma ra is an adiabatic invariant. This is also true for circular 
orbits, where the angular momentum is conserved. 

To find the mass profile, we compute how Mfl+changes for a 
given particle as a result of secondary infall. The invariance of 
Mara then gives us the mass profile Ma(ra). We make the 
approximation that the orbital period is much less than the age 
t for all particles which have turned around by time i, so that 
the adiabatic invariance holds throughout the turnaround 
region. It is clear that this assumption breaks down near rta(i), 
but we proceed nevertheless. We will show that the resulting 
errors are not large. 

Given the approximations stated above, the mass enclosed 
by ra for a fixed particle labeled by x increases as 

dMfl(x, t) 
dt 

4np0xfa 
dx^ 

dt 
rjx, t) 

. rjt) J ’ 
(18) 

where P is the fraction of time a particle turning around at time 
t spends inside ra. For a nonsingular potential P(x) oc x for 
x <0 ; we make the Ansatz P(x) = ¿x and apply this for all 
x < 1. This assumption is clearly wrong near x = 1, but we 
believe that the results obtained below justify this Ansatz. If 
most of the particles turning around have large periapses 
because they have significant angular momentum, then P(x) 
would have to be reduced at small x. Using the adiabatic 
invariance of Ma ra, we obtain 

J? X \ = /_4_\ dXt* 
dt \rjj \x4aj a dt 

(19) 

As demonstrated by Hoffman (1987), equation (16) yields mass 
profiles in good agreement with A/-body simulations (Quinn, 
Salmon, and Zurek 1986), at least for d In xtJd In i < |. 

where af = a¿(x) is the expansion factor when the given shell 
turns around. Equation (19) is to be solved subject to the initial 
condition (from the Zel’dovich approximation) rfl(x, t) = ^ x 
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at a(t) = a^x). The solution may be written as a quadrature : 

2r, 
= A(x, t) = 11 + 

1/2 
q = 

*ta(0 (20) 

The integral is for fixed x so that q = q(t). The quantity A is 
simply the factor by which the mass interior to the apoapse 
radius of the particle increases due to secondary infall. Thus, to 
obtain the nonlinear mass profile from the mass and radius of 
shells at turnaround, one simply multiplies the mass by A and 
the radius by A-1. The shrinkage factor A can be computed 
once xta(i) is known from equation (15). In general the integrals 
in equations (15) and (20) must be performed numerically. 

For power-law linear density profiles <5(x) acx~n, like those 
considered by Fillmore and Goldreich (1984) and Bertschinger 
(1985), equation (20) is easily solved to give (for n 2) 

For n > 2 the orbits thus shrink a finite amount while for n < 2 
they continue shrinking. The asymptotic mass dependence for 
x xta(<2 cii) is easily shown to be M(r, t) oc r3/(1 +”) for n > 2 
and M(r, t) oc ra^21^-1 for n < 2, as found by Fillmore and 
Goldreich. 

Figure 4 compares the mass profile derived from the turn- 
around model presented above with the exact profile obtained 
by Bertschinger (1985) for the n = 3 similarity solution. The 
dimensional mass profile was computed for each case, and then 
the radius was normalized by the exact turnaround radius, 
with the mass being scaled by (47c/3)a“3p0 rta. Inside the outer 
caustic the agreement is remarkable. Good agreement (with 
errors less than ~ 10%) also obtains for the similarity solutions 
with n = 2.4, 1.5, and 0.6 presented by Fillmore and Goldreich 
(1984). We thus are confident, to the extent that the infall can 

be treated as being cold, that the modified turnaround model 
will give accurate rotation curves for the halos accreted by 
cosmic strings. 

IV. GALAXY FORMATION : RESULTS 

Applying the spherical nonlinear model described in § III to 
the linear density profiles derived in § II for cosmic strings and 
massive neutrinos, we have calculated the present-day rotation 
curves from the mass profiles: Vc = (GM/r)1/2. The results are 
shown in Figure 5 for Q = h = 1.0 and several masses of 
cosmic string loops. The rotation curves are remarkably flat. 
They extend remaining flat to —20% of the present turn- 
around radius which, even for the lightest loop shown here, 
exceeds 100 kpc. This result differs from that of Sato (1986), 
who found rising rotation curves (pocr~3/2) because he 
neglected orbital shrinkage. The rotation curves would be 
modified at large radius by tidal interactions with neighboring 
galaxies, which have not been included here. This competition 
for matter by several loops should not affect the rotation 
curves well inside the tidal radius. The rotation curves are also 
modified at small radii by several processes which will be dis- 
cussed below (§§ IVa-b). These modifications do not alter the 
conclusion that cosmic strings produce hot dark matter halos 
corresponding to flat rotation curves. By contrast, cold dark 
matter and cosmic strings yield rotation curves declining as 
Vç ccr~1/8 (Zurek 1986). We will also show (§ IVc) that the 
distribution of galaxy luminosities (as measured by Vc) in the 
hot dark matter model agrees reasonably well with observa- 
tions. 

a) The Phase-Space Constraint 
A crucial consideration for hot dark matter is the phase- 

space density constraint of Tremaine and Gunn (1979). They 
pointed out that the maximum coarse-grained phase-space 

o 

Fig. 4.—Mass profile for self-similar accretion of cold dark matter onto a point mass. Solid curve gives the exact solution while the dashed curve gives the profile 
obtained from the semi-analytic turnaround model described in the text. 
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in 

a 

r (k pc) 

Fig. 5.—Rotation curves for the hot dark matter halos accreted by cosmic string loops of masses 1, 2, 4, 8, and 16 x 108 M0. The mass distributions were 
calculated using the turnaround model. 

density must be less than the maximum initial fine-grained 
density /ip 3 because of phase mixing. This constraint yields, for 
the rotation curves of Figure 5, a minimum radius inside of 
which the phase space density would have to increase. In fact, 
this constraint has already been applied in Figure 5. The curves 
have been truncated at small radii so that the phase space 
constraint is satisfied over the entire range plotted. 

To estimate the minimum halo radius we approximate the 
halos as singular isothermal spheres since the rotation velocity 
is so nearly constant for all radii. We approximate the phase- 
space distribution of the halo particles as Maxwell-Boltzmann. 
Neutrino degeneracy and the possibility of other phase space 
density distributions consistent with a flat rotation curve can 
change the results somewhat (Madsen and Epstein 1984). The 
phase-space constraint is then satisfied for radii r satisfying 

2K> 
4n5/2Gm4 (22) 

This result differs by a numerical factor from that of Tremaine 
and Gunn (1979), who used the central density and core radius 
for a nonsingular isothermal sphere. For one species of neu- 
trino dominating the mass density, equation (22) becomes 

- 73-8<!“!)-4 • <23> 

Because Tremaine and Gunn assumed Qh2 = 0.0125, they con- 
cluded that light massive neutrinos cannot constitute the dark 
matter in galaxy halos. This is not true for Q = /z = 1, although 
a very short age of the universe (6.5 x 109 yr) would then be 
implied. 

Kormendy (1987) has recently summarized the observa- 
tional data relating to hot dark matter in dwarf galaxies, which 
provide the best test of the phase space constraint. The smallest 

known spiral galaxy, DDO 127, has an approximately flat 
rotation curve beyond ~2 kpc with Vc & 34 km s-1. This halo 
is consistent with equation (23). Figure 5 suggests that cosmic 
strings and hot dark matter can make dwarf spirals this small, 
although loop decay, which we discuss below, creates some 
difficulties. 

The strongest application of the phase space constraint will 
come from dwarf spheroidals (Lin and Faber 1983). If these 
tiny galaxies contain significant amounts of dark matter, that 
matter cannot be light massive neutrinos. The observational 
status of dark matter in dwarf spheroidals is unclear. Aaronson 
and Olszewski (1987) find velocity dispersions of ~ 10 km s- \ 
corresponding to 1^ æ 14 km s“1, in the Local Group dwarfs 
Ursa Minor and Draco. These galaxies have visible core radii 
of ~0.15 kpc. If these measurements are confirmed by other 
groups and the possibility of dark baryons is excluded, we will 
have to dismiss the hot dark matter scenario, or at least to 
postulate the existence of more than one form of collisionless 
dark matter. 

b) Loop Decay, Baryon Infall, and Loop Motion 
A second process modifying the rotation curves at small 

radius is the decay of string loops by emission of gravitational 
radiation. A loop of mass Ms and mass per unit length p decays 
in a time (Vachaspati and Vilenkin 1985) td < 
Msc/(45Gp2). For Gp/c2 = 4 x 10-6 and h = 1, the lightest 
loop considered in Figure 5 decays by a redshift zd = 650. The 
disappearance of the loop has little effect on mass shells with 
x>xfs(td) since by this time gravitational instability has 
already produced perturbations in the hot dark matter exceed- 
ing the direct mass perturbation of the string. For x < xfs(td) 
loop decay retards collapse. From these considerations we 
conclude that loop decay would ruin the entire bottom rota- 
tion curve shown in Figure 5 and would depress the next 
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lowest curve (with Vc & 45 km s_1) for r < 15 kpc, but would 
have little effect on the other curves. These estimates are rough 
and need to be refined by redoing the linear perturbation 
theory with loop decay included before a reliable estimate of 
the minimum mass halo can be obtained. Moreover, baryonic 
settling may be sufficient to preserve flat rotation curves with 
Vc < 50km s_1. 

Our treatment has neglected the baryonic mass component. 
Baryons are important because, besides producing the visible 
matter in galaxies, they dominate the gravitational mass in 
galaxy cores. Baryonic infall not only directly increases the 
mass inside a given radius; it also pulls in the dark matter 
(Blumenthal et al. 1986). These effects are enhanced in the case 
of cosmic strings because the baryon Jeans length is much less 
than the neutrino free-streaming damping length. Thus, even 
without dissipation the baryons will be pulled in more by a 
loop than the neutrinos will be for loops decaying after recom- 
bination at a redshift 1300. In principle, the resulting mass 
profiles can be calculated using the same methods as described 
in § III, but we will leave this for future work. These calcu- 
lations would be important in establishing whether dwarf gal- 
axies with small core radii can form with hot dark matter and 
cosmic strings. We can already conclude that baryons must 
dominate in the centers of such systems. 

Finally, we have neglected the peculiar motions of the loops 
by treating them as stationary in the comoving frame. Loops 
are formed with relativistic peculiar velocities. Neglecting 
acceleration by beamed gravitational radiation (Vachaspati 
and Vilenkin 1985; Hogan 1987), the peculiar velocity of a loop 
decreases by the redshift factor (u = const, in eq. [3]). It is clear 
that the loop motion will have little effect on the dark matter if 
the loop moves less than the neutrino free-streaming distance. 
For a loop formed at expansion factor af with peculiar velocity 
vf, loop motion can thus be neglected ifaf vf < u0 = 0.514/z-2 

km s-1. This condition implies (1 + z^l + zeq) > 
2.0(vf/0.1c\ or Çf < 0.67 for a typical speed vf = 0.1c. Using 
the Turok and Brandenberger (1986) loop formation model, 
the mass of a loop formed at conformal time is 

^eq A^eq 
=^mf+9), (24) 

where e æ 0.2 and ß = 9. The neutrino streaming argument 
now implies that large loop formation velocities have no 
appreciable effect on the hot dark matter for Ms< 1.0 
x \0loh~\p_6l4) M0, where fi_6 = 106c2/G. Since galaxies 
are formed by smaller loops (see Fig. 5), we conclude that 
initial loop motion has no effect on the dark matter in galaxies. 
Loop motion would more easily affect the slower-moving 
baryons and could play a role if the rocket effect accelerates the 
loop (Hogan 1987). However, as shown by Bertschinger (1987), 
loop motion does not decrease the amount of mass that col- 
lapses around (or behind) the loop. 

c) Luminosity Function of Galaxies 
A successful theory of galaxy formation must not only be 

able to produce galaxies, it must produce them in the right 
numbers and sizes. In the cosmic string scenario the size dis- 
tribution is fairly well determined since each loop is 
responsible for creating one object. Mergers can complicate 
this simple picture, and we will consider them briefly. 

For the loop size distribution we rewrite the distribution 
adopted by Bertschinger (1988) using the dimensionless con- 

formal time : 

idnitf) 
_vc-3/2r 3(^+6) 

Ufitf + 9). 
d£f (25) 

This equation gives the mean number of loops in a volume r2
q 

formed in the interval d£f about £f. Turok and Brandenberger 
(1986) estimate v « 0.01. Obtaining the number density of 
loops of a given mass from equations (24) and (25), we can 
determine the number density of galaxies dn/dVc of a given 
asymptotic circular rotation speed. We prefer to describe 
galaxy sizes by Vc since this quantity is fairly well determined 
both observationally and theoretically. Other measures, such 
as galaxy luminosity, depend on details of baryon collapse and 
star formation which are poorly understood. 

To obtain the observed galaxy number-rotation speed dis- 
tribution we combine the Schechter (1976) luminosity function 

dn = (26) 

and the empirical luminosity-velocity dispersion relation of 
Faber and Jackson (1976), as measured by Sargent et al. (1977; 
corrected to H0 = 100/i km s“1 Mpc~ 

log a = 0.366 + 0.5 log h - 0.100M* . (27) 

For an isothermal distribution, <j = 2-1/2 J^. For the Schechter 
function parameters, we fix = —19.1 + 5 log /z and 0* = 
0.012/z3 Mpc-3 (Davis and Huchra 1982). 

Figure 6 compares the theoretical distribution, assuming 
one galaxy per loop and /z = 1, with the empirical relation. The 
string mass per unit length and the empirical faint-end slope a 
have been chosen to give the best agreement, yielding Gfi/ 
c2 = 4 x 10-6 and a = 1.38. Measurements of a are uncertain, 
ranging from a = 1.25 (Schechter 1976) to a = 1.6 (Godwin 
and Peach 1977), with a = 1.38 being consistent with most 
measurements. Because the Hubble constant and the param- 
eters of the loop size distribution are uncertain, we have done 
the calculations for a range of parameters, from which we con- 
clude dn/dVc oc v(ßn)3/2h912. The strong dependence on h arises 
mostly because for smaller Hubble constant req is larger so that 
the number density of loops produced near zeq is smaller. 
Agreement with observations therefore requires 

Gja 
4 x 10 

V o.oi / 

-1 
(28) 

We consider the faint end of the luminosity function a strong 
success for cosmic strings and hot dark matter with /z = 1. A 
smaller Hubble constant would require more or more massive 
loops ; microwave background isotropy limits probably 
require G/z/c2 < 10~5 (Kaiser and Stebbins 1984). We should 
stress, however, that Figure 6 neglects loop decay, which might 
make it difficult to form galaxies with < 50 km s-1 (§ lYb). 
The number density of such faint galaxies (MB< —12) is 
poorly known. 

The cosmic string model overestimates the number of 
massive (Vc > 300 km s- x) galaxies, but it is not unique in this 
regard. Frenk et al. (1985) also find overly massive halos in 
AT-body simulations of cold dark matter. Such systems are 
probably actually groups of galaxies rather than galaxies. 
Frenk et al. follow only the evolution of the dark matter halos, 
which may merge even when the baryon cores remain intact. 
To an optical observer such a system is a group of galaxies 
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Fig. 6.—The distribution of galaxies of varying asymptotic circular rotation speeds. Solid curve corresponds to a Schechter luminosity function with slope 
a = 1.38; luminosity has been converted to velocity dispersion and then to rotation speed using the Faber-Jackson relation for an isothermal halo. Dashed curve is 
the result of the cosmic string model with hot dark matter, Q = h = l, and G/i/c2 = 4 x 10“ 6. 

even though dynamically it may better be described as a single 
massive halo. We believe that the same interpretation applies 
here. 

To test the importance of mergers we compared the mean 
separation n~1/3 of galaxies more massive than a given size 
with the present turnaround radius. The turnaround radius 
exceeds 0.5n~1/3 for KZ 150 km s x. We argue crudely that if 
a galaxy merges with a lighter one it will change little, while if it 
merges with a more massive one it will be disrupted. This 
argument is not very strong, but it does suggest that mergers 
do not strongly modify the luminosity function for < 150 
km s-1. 

We conclude that the distribution of galaxy sizes looks 
promising in the strings and hot dark matter model, but we 
caution that the analytic arguments presented here should not 
be trusted too much. It is important that iV-body simulations 
be performed to test these results. 

v. DISCUSSION 

We have considered the linear and nonlinear growth of per- 
turbations in hot dark matter induced by loops of cosmic 
string. Interestingly, for Qh2 = 1 and Gfi/c2 = 4 x 10“6 the 
model yields flat rotation curves and good agreement with the 
empirical galaxy luminosity function. The large value of Qh2 

implies an uncomfortably short universe age of 6.5 x 109 yr 
but is consistent with direct measurements of Q and h. 

Small values of Qh2 are unsatisfactory in this model for two 
reasons. First, the Tremaine and Gunn (1979) phase-space 
density constraint has the minimum hot dark matter core 
radius scaling as (Q,h2)~2. For a neutrino mass m ä 100 eV/c2 

(Qh2 = 1) the phase-space constraint is barely satisfied for the 
smallest known dwarf spirals and is already violated if dwarf 

spheroidals with MB < —10 contain significant amounts of 
dark matter within 1 kpc of their centers (Kormendy 1987). 
Second, a smaller Qh2 reduces the duration of the matter- 
dominated era and so reduces the growth of dark matter per- 
turbations; a smaller Qh2 also increases the neutrino 
free-streaming distance. These effects require heavier or more 
numerous strings for compensation (eq. [28]). Microwave 
background isotropy constraints require Gfi/c2 < 10“5 (Kaiser 
and Stebbins 1984). For h = 0.5 this is consistent with galaxy 
formation by strings and massive neutrinos only if the Turok 
and Brandenberger (1986) loop distribution parameters are 
seriously in error, which is a possibility. 

Let us suppose that cosmic strings do exist with G/V 
c2 = 4 x 10~6. How can they be detected? First, gravitational 
lensing by strings (Vilenkin 1981) produces pairs of images 
with typical separation 4nGfi/c2 æ 10". A large loop could lens 
several background quasars. The detection of several pairs of 
images along a curve would hint at a cosmic string (Gott 1986; 
Vilenkin 1986). A definitive test would come from the observa- 
tion of a step-like discontinuity in the microwave background 
temperature. Kaiser and Stebbins (1984) showed that ST/ 
T ^ ünGß/c2 æ 10-4 across a string moving relativistically 
transverse to the line of sight. Finally, the gravitational radi- 
ation background produced by decaying loops would intro- 
duce timing noise into millisecond pulsars which should 
become measurable within a few years (Hogan and Rees 1984). 
We conclude that cosmic strings should not be very elusive 
objects. 

Our calculations are most uncertain in the cores of galaxies 
because we did not include directly neutrino phase mixing, 
loop decay, or baryonic infall. A more careful treatment of 
these effects is needed to determine the galaxy core radii. The 
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model is not likely to have severe problems except with dwarf 
spheroidals, but it would be useful to determine whether any 
signature of cosmic strings or massive neutrinos may be found 
in galaxy cores. The signature will not be as obvious as a 109 

Mq string loop sitting in the Galactic Center, since such a loop 
would have decayed at z > 40. We note that after the string 
evaporates galaxy formation is similar to the standard cold 
dark matter scenario, since the neutrino free-streaming dis- 
tance is then subgalactic. Although some nonlinear structure 
forms at z > 100, most of the structure forms in the last few 
expansion times. 

Our analytic collapse calculations need to be supplemented 
by iV-body simulations. We have shown that the Schechter 
(1976) luminosity function is a plausible outcome (with 
a = 1.4), but we would like to see numerical confirmation of 
this since we neglected galaxy mergers. Also, such calculations 
could address the question of angular momentum generation, 
which we have ignored. Here loop motion might be important 
(Bertschinger 1987). 

33 

Finally, A-body simulations are needed to test large-scale 
structure formation. Melott and Scherrer (1987) found unsatis- 
factory results for cosmic strings and cold dark matter: the 
large-scale matter distribution is too lumpy. Shellard et al 
(1987), Brandenberger et al. (1987) and Bertschinger (1988) 
found too small large-scale streaming velocities with cold dark 
matter. Hot dark matter is bound to be an improvement but 
quantitative answers will require large simulations. 

In summary, we have presented some of the details of a 
theory of galaxy formation with cosmic strings and massive 
neutrinos. We find that cosmic strings solve many of the prob- 
lems normally associated with hot dark matter and vice versa. 
As unusual as this combination may seem, it clearly deserves 
closer study. 

We wish to thank Roman Juszkiewicz for inspiring this 
work and Marc Davis for several helpful suggestions. 
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