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ABSTRACT 
Rich clusters of galaxies and their environs are studied by comparing high-resolution AT-body simulations 

with observations, to examine whether the degree of subclustering in and around clusters is sensitive to the 
cosmogonic scenario which led to their formation. If it is, this sensitivity could be used to help constrain the 
allowable initial density fluctuations from which the presently observed large-scale structure of the universe 
might have arisen. Several new statistical methods for measuring the degree of subclustering are presented. 
The amount of substructure within the main bodies of rich clusters is found to be not very sensitive to the 
initial conditions. In general, the observed subclustering is much weaker than has sometimes been claimed and 
is in many cases no larger than that expected from random fluctuations. This suggests that most rich clusters 
are in a relaxed state at present. Virial and projected mass estimates are also consistent with most rich clusters 
having already relaxed. A more promising means for distinguishing between the different cosmogonic sce- 
narios is found from statistical measurements of small-scale clustering in the regions immediately surrounding 
rich clusters in the simulations, which show significant dependence on the amount of small-scale power 
present in the initial fluctuation spectrum. This suggests that observational studies of the small-scale clustering 
of galaxies in the regions surrounding rich clusters and in the field may provide perhaps the most promising 
means yet for distinguishing between different cosmogonies. 
Subject headings: cosmology — galaxies: clustering — galaxies: formation 

I. INTRODUCTION 

Most currently popular cosmogonic models assume that the 
early universe was essentially homogeneous except for the pre- 
sence of small-amplitude density fluctuations, and that the 
growth of large-scale structure from these initial fluctuations 
can be understood in terms of gravitational instability in an 
expanding universe. However, because at present it is difficult 
to place strong constraints on the types of primordial pertur- 
bations, on the form of the initial fluctuation spectrum, or even 
on the dominant mass component of the universe, several very 
different though equally viable scenarios are possible within 
this gravitational instability framework. In the extremes, struc- 
ture is believed to have formed either by clustering hierarchi- 
cally from small to large scales (e.g., Peebles and Dicke 1968; 
White and Rees 1979) or via fragmentation from large to small 
scales (e.g., Zel’dovich 1970; Doroshkevich, Shandarin, and 
Saar 1978), depending on the exact form of the initial fluctua- 
tion spectrum. If primordial perturbations occurred in both the 
matter and radiation fields such that the baryon/photon ratio 
remained constant (i.e., adiabatic perturbations), then photon 
diffusion and viscosity prior to the onset of the gravitational 
instability era would have erased all density fluctuations below 
a characteristic comoving length of ~3(Q/i2)-3/4 Mpc (Silk 
1968), resulting in the collapse of supercluster-sized pancakes 
which would subsequently fragment into clusters and galaxies 
(here and throughout, Q is the ratio of the present density of 
matter in the universe to the critical value required for closure 
and h is the Hubble constant in units of 100 km s"1 Mpc -1). A 
similar pancake scenario would arise if neutrinos possessing a 
nonzero rest mass (say ~ 30 eV) are the dominant mass com- 
ponent of the universe, since free streaming of these particles 

while still relativistic would have erased fluctuations below a 
comoving length ~41m30 h~1 Mpc, where m30 is the neutrino 
mass in units of 30 eV (Bond, Efstathiou, and Silk 1980; Dor- 
oshkevich et al 1981). If, on the other hand, the initial pertur- 
bations were such that the matter density was perturbed on top 
of a uniform radiation background (i.e., isothermal 
perturbations), then density fluctuations would have initially 
been present on all relevant scales. In this scenario, the forma- 
tion of structure would proceed in a hierachical manner, from 
galaxies, to clusters of galaxies, to superclusters. A similar hier- 
archical clustering scenario would also be expected if the uni- 
verse is dominated by weakly interacting, nonbaryonic 
particles, or “ cold dark matter ” (e.g., Pagels and Primack 
1982; Peebles 1982), although in this case the collapse of struc- 
ture on different scales is expected to occur over a short cosmo- 
logical time interval, since the predicted initial fluctuation 
spectrum is quite flat over a wide range. Hybrid scenarios are 
also possible, in which the initial fluctuation spectrum pos- 
sesses a coherence length as in the neutrino scenario, but with 
an additional low-amplitude small-scale component. A fluc- 
tuation spectrum of this type might result from the presence of 
different types of dark matter or perturbations (e.g., Dekel 
1983, 1984; Dekel and Aarseth 1984), or if the universe under- 
went more than one inflationary phase (Silk and Turner 1986; 
Turner et al. 1987). 

As an attempt to confront the different theoretical scenarios 
with observations, rich clusters of galaxies have been studied 
here and in other papers (West, Dekel, and Oemler 1987a; 
West Dekel, and Oemler 1987h, West, Oemler, and Dekel 
1987; hereafter Papers I, III, and IV, respectively). Although 
clusters of galaxies are at a more advanced dynamical stage 
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than superclusters and voids, the hope is that some memory of 
the cosmological initial conditions has survived the cluster col- 
lapse and subsequent evolution. The principle advantage of 
studying rich clusters is that they are a well-studied class of 
objects, and as such there are at present many good data avail- 
able for a large number of clusters. However, because clusters 
are very nonlinear systems at the present epoch, they are not 
amenable to analytic studies such as those used to describe the 
linear evolution of density fluctuations. Thus, one must resort 
to numerical simulations in order to extrapolate the evolution 
of structure from some assumed primordial linear fluctuation 
spectrum into the nonlinear regime. By comparing the system- 
atic properties of clusters of galaxies formed in AT-body simula- 
tions of different cosmological scenarios with observations of 
real clusters, it is hoped that it will be possible to constrain the 
range of viable scenarios. 

One of the fundamental differences between the various cos- 
mogonic scenarios is the presence, or lack, of a small-scale 
component in the primordial spectrum of density fluctuations. 
Because it is this component which is responsible for the for- 
mation of small-scale structure, one would expect the number 
and sizes of small groups and subclusters to be a tell-tale sign 
of the form of the initial power-spectrum. Thus a quantitative 
description of the degree of small-scale clustering, both within 
rich clusters and their environs, might provide a strong test of 
the different scenarios. This is rather different from the usual 
approach of searching for traces of the cosmological initial 
conditions using the largest scale structures, such as super- 
clusters and voids. Nevertheless, any theoretical scenario 
which purports to describe the origin and evolution of the 
large-scale structure must also be able to explain the observed 
distribution of pairs and groups of galaxies. Furthermore, it 
must be able to account for the presence at the present epoch 
of both centrally concentrated, relaxed clusters like Coma, and 
very irregular, clumpy systems such as Hercules. 

The presence, and degree, of substructure within clusters of 
galaxies may also provide valuable information on the 
dynamical states of clusters (White 1976; White and Rees 
1979; Geller 1984; Cavaliere et al 1986), as well as on the 
process of cluster formation itself. Violent relaxation associ- 
ated with cluster collapse should destroy most subclustering 
within rich clusters, especially in their inner regions. Therefore, 
if most clusters do indeed possess a significant amount of sub- 
structure, then they are most probably still in the precollapse 
phase, and hence not yet relaxed systems. In this case, esti- 
mates of cluster masses from application of the virial theorem 
would be in error. 

Unfortunately subclustering is notoriously difficult to 
measure in a meaningful, quantitative, and unambiguous way. 
The presence and significance of subclustering depends greatly 
on what criteria one chooses for identifying such structure. 
Numerous authors have claimed to detect substructure within 
clusters (e.g., Geller and Beers 1982; Gioia et al 1982; Baier 
1983, 1984, and references therein; Bothun et al 1983; Quin- 
tana, de Souza, and Arakaki 1986; Fitchett and Webster 1986; 
Fabricant et al 1986, Binggeli, Tammann, and Sandage 1987; 
Mellier et al 1987). It has even been claimed that the oft- 
observed and enigmatic secondary maximum in the surface 
density profiles of clusters (e.g., Omer, Page, and Wilson 1965; 
Bahcall 1971; Austin and Peach 1974; Oemler 1974; Dressier 
1978, 1980a) can be explained in terms of subclustering (Baier 
1983; although see Bahcall 1971). X-ray observations also 
seem to suggest the presence of substructure in some clusters 

(see, for example, Foreman and Jones 1982, and references 
therein). To date, the most thorough search for substructure 
has been that of Geller and Beers (1982). Using surface number 
density contour maps based on the galaxy positions given by 
Dressier (1976, 1980b) in his study of 65 rich clusters, they 
concluded that substructure is a common phenomenon in clus- 
ters, occurring in ~ 40% of the clusters in the Dressier sample. 
Baier (1983) has suggested that perhaps as few as 20% of 
observed clusters can be considered real, single, relaxed 
systems, with most clusters being essentially agglomerations of 
smaller lumps. 

To provide an objective measure of the presence and signifi- 
cance of subclustering three new statistical methods were 
devised and tested, and then applied to samples of both simu- 
lated and real clusters. The iV-body cluster simulations used in 
this study are briefly described in § II. The statistical tests for 
subclustering are then described and applied to the simulated 
and observed clusters in § III. In § IV, small-scale clustering in 
the regions surrounding rich clusters is studied. Finally, § V 
contains a discussion of the results and conclusions. 

II. INITIAL CONDITIONS FOR N-BODY SIMULATIONS 

While numerous previous studies have been done using 
N-body simulations of different cosmogonic scenarios (e.g., 
Aarseth, Gott, and Turner 1979; Efstathiou and Eastwood 
1981; Frenk, White, and Davis 1983; Miller 1983; Melott 
1983; Centrella and Melott 1983; Klypin and Shandarin 1983; 
Dekel and Aarseth 1984; Dekel, West, and Aarseth 1984; 
Efstathiou et al 1985; Davis et al 1985; Frenk et al 1986), 
resolution on the scale of clusters in these simulations has 
generally been too low for use in a detailed study of the system- 
atic properties of clusters. This is because the dynamical range 
which it is possible to treat in such large-scale simulations is 
quite limited; one is attempting to model a large volume of the 
universe using a limited number of particles, consequently, 
each individual particle must be quite massive. 

In order to simulate clusters with the desired high 
resolution, a novel approach was used here, in which the clus- 
ters were simulated in two steps. First, low-resolution, large- 
scale cosmological simulations of the different theoretical 
scenarios were performed to find the locations where proto- 
clusters formed for a given set of initial conditions. These 
results were then used to generate the initial conditions for the 
second, major step, in which high-resolution simulations of 
individual clusters were performed. In this way, it is possible to 
study in detail the properties of clusters formed from a wide 
range of cosmological initial conditions. 

a) General Method 
A general method for generating any desired form of the 

initial fluctuation spectrum has been described in detail in 
Paper I, and is reviewed here only briefly. The objective is to 
represent the assumed power spectrum of small-density fluc- 
tuations at the onset of the gravitational instability era in each 
of the different cosmological scenarios being considered. It is 
assumed here that density perturbations in the early universe 
were Gaussian, so that the spatial fluctuations can be 
expressed in terms of Fourier components with random 
phases. The simplest form for such an initial fluctuation spec- 
trum is a power law, 

<\ôk\y^kn (i) 
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where <5* are Fourier components of the dimensionless density 
fluctuations dp/p. In this case, rms fluctuations on a given mass 
scale M in the linear regime vary as 

ÔM/M oc M“(3+n)/6 . (2) 

The task of generating the initial conditions for the AT-body 
simulations then amounts to distributing a finite number of 
particles within the simulation volume in such a way that the 
desired initial power spectrum is accurately represented within 
some range of interest kmin <k< kmax. A convenient method 
for realizing the initial power spectrum is based on the approx- 
imation developed by Zel’dovich (1970) for describing the 
linear evolution of density fluctuations. In general, the Eulerian 
position, r, of any particle in an expanding cosmology at some 
time, t, can be expressed as a combination of its Lagrangian 
(comoving) position, q, and some displacement from that posi- 
tion. Zel’dovich showed that in the linear regime, one can con- 
veniently approximate this displacement by assuming it to be 
compsed of separate spatially dependent and temporally 
dependent terms. Specifically, 

r = a(t)lq - h(i)^)] , (3) 

where a(t) is the cosmological expansion factor [and hence 
a(t)q is the unperturbed position], b(t) is the growth rate of 
linear density fluctuations in the universe, and {//(q) represents 
the spatial perturbation. For ~ 1, b(t) scales linearly with 
the expansion factor a(t). The question then is how to generate 
the spatial perturbation, ÿ(q), for the desired initial spectrum of 
density fluctuations. Briefly, since the perturbations are 
assumed to be uncorrelated, }//(q) can be generated by the 
superposition of small-amplitude plane waves of random 
phases and directions. This procedure was implemented as 
follows. N particles were initially distributed uniformly inside a 
unit sphere of volume V. The particles were distributed at the 
points of a cubic grid, so as to initially suppress any undesired 
small-scale noise, with (V/N)1/3 grid points used. Then, the 
position of each particle (and in the pancake and hybrid sce- 
narios, its velocity as well; see § lib) was perturbed by a super- 
position of Nk small-amplitude sine waves with randomly 
chosen phases and directions. Using this procedure, the desired 
initial power spectrum should be faithfully represented on 
scales down to twice the initial separation of grid points. The 
evolution of each system in the linear regime was then followed 
using the Zel’dovich approximation until a stage where the rms 
density contrast on a comoving scale Au = 0.5 (in units of the 
radius of the initial sphere size of the simulation) reached 
~0.25. The cosmological expansion factor, a(t), was then set 
equal to 1, and the iV-body simulations begun. Again, the 
reader is referred to Paper I for further details. 

b) Initial Conditions for Different Cosmogonic Scenarios 
Simulations were performed for the following five scenarios : 

(a) a pancake scenario with a spectrum truncated above some 
critical wavenumber, (b) a hybrid scenario in which the initial 
perturbation spectrum possesses a coherence length as well as 
a small-scale component, and (c), (d), and (e) three hierarchical 
clustering scenarios with power-spectrum indices n = 0, — 1, 
and —2 , respectively. All of these simulations assumed an 
Einstein-de Sitter universe (Q = 1). However, the simulations 
done of the rc = 0 hierarchical clustering scenario were also 
repeated for an open universe, Q = 0.15 at the present epoch. 
The specific initial conditions for each scenario are described 
below and summarized in Table 1. 

TABLE 1 
Parameters of Initial Fluctuation Spectra3 

Model Scenario n A„ ;.m„ £i < 

a  Pancake 0 0.5 0.5 1.0 1 5.7 
b  Hybrid*1 0,0 0.1,0.5 0.5 0.5, 1.0 1 5.7 
c  Hierarchical 0 0.1 0.5 1.0 1 11.3 
d  Hierarchical -1 0.075 0.5 1.0 1 11.3 
e  Hierarchical -2 0.075 0.5 1.0 1 11.3 
f  Hierarchical 0 0.1 0.5 1.0 0.15 22.6 

3 For details see text. 
b All wavelengths are in units of the radius of the initial sphere of the 

large-scale simulations. 
c Expansion factor at which the clusters were studied. 
d Amplitude jump at Àu is a factor of 2 in | <5fc | . 

i) Pancake Scenario 
Here the initial spectrum was truncated at a critical wave- 

number, ku, which should represent the coherence length 
expected to esult from photon diffusion in adiabatic pertur- 
bations or the damping length in a neutrino-dominated uni- 
verse. The form of the linear fluctuation spectrum was taken as 

<<5*>2 x kn for kmin <k< /cmax ; (4) 

0 otherwise. 

A power-spectrum index n = 0 was assumed. Nk = 200 waves 
were used here, from kmin = 2n until the spectrum was trun- 
cated at kmax' = 471, corresponding to perturbations on scales 
^min = 0-5 to Amax = 1.0 in units of the radius of the initial 
sphere size of the simulations. Thus, the coherence length in 
these simulations should result in the formation of pancakes 
whose comoving diameter is about one-half the simulation 
size. In addition to the density perturbations, perturbations to 
the velocity field were also included (as would be expected for 
adiabatic perturbations), with the peculiar velocity of each par- 
ticle relative to the Hubble flow being given by the time deriv- 
ative of equation (3). 

ii) Hierarchical Clustering Scenarios 
Here fluctuations were initially present on all scales. To 

examine the effects of having different amounts of power on 
large and small scales, simulations were performed for three 
different values of the power-spectrum index, n = 0, — 1, and 
— 2.Nk = 700 waves were used in all cases. For the case n = 0, 
the initial fluctuations ranged from Amin = 0.1 to Amax = 1.0, 
while Amin = 0075 for n = —1 and —2. In these simulations 
the particles had no initial peculiar velocities superposed on 
the general Hubble expansion. Simulations with identical 
initial conditions were run for the n = 0 case in both flat and 
open universes. Although not explicitly simulated here, a 
cosmological scenario in which cold dark matter dominates is 
also essentially a sequence of hierarchical clustering. The 
primary difference between this scenario and the aforemen- 
tioned hierarchical clustering scenario has to do with the form 
of the initial power spectrum. Specifically, the cold dark matter 
scenario predicts a well-defined shape of the initial fluctuation 
spectrum which cannot be represented by a single power law 
over a wide range of wavelengths. However, on the relevant 
scales for clusters of galaxies, the slope of the power spectrum 
in the cold dark matter scenario lies roughly between 0 and 
— 1, and hence can be approximated by either the n = 0 or 
n = — 1 hierarchical clustering cases studied here. 
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iii) Hybrid Scenario 
To model this scenario, the large-scale component of the 

initial perturbation spectrum was truncated at a critical wave- 
length, with fluctuations present from imin = 0.5 to ¿max = 1.0, 
and associated velocity perturbations. An additional small- 
scale component was also included, ranging from Àmin = 0.1 to 
^max = 0.5. The ratio of the small-scale component was taken 
as one-half that of the large-scale component at the coherence 
length, Àu = 0.5. A power-spectrum index n = 0 was assumed 
for each component. 

Four random realizations of each of the different cosmo- 
logical scenarios were performed. The same random number 
sequences were used in selecting the wavenumbers and phases 
for the different scenarios, so as to allow intrinsic differences to 
be separated from stochastic occurrences. 

Naturally, great care must be taken to ensure that the pro- 
cedures outlined above do indeed adequately represent the 
desired initial power spectrum within the range of interest for 
clusters. This procedure was checked by a variety of means, all 
of which confirmed that the desired initial fluctuation spectrum 
was indeed faithfully reproduced (Paper I ; see also Braun and 
Dekel 1987). 

c) Large-Scale Cosmological Simulations 
Large-scale cosmological simulations were performed with 

~4000 equal-mass particles using a comoving direct AT-body 
code (Aarseth 1984). This code integrates directly the Newto- 
nian equations of motion in three dimensions using a softened 
gravitational potential, 

<£ = — + e2)1/2 (5) 

where and mj are the masses of two particles, r0- is their 
separation, and e is the softening length. In these large-scale 
simulations, the comoving value of e varies inversely with the 
expansion factor, a(i), with an initial value e = 0.03 at the start 
of the simulation. The direct-summation iV-body method was 
best suited for the present study, since accurate resolution of 
forces on small-scale is required if one desires high-resolution 
simulations of clusters and small-scale structure. 

The stages of the simulations that correspond to the present 
epoch were determined by comparing the slope of the two- 
point correlation function, ^(r), in the low nonlinear regime 
with the slope of the observed galaxy correlation function. 
Equating the correlation length, r0 = 0.1 of the simulations to 
the claimed value for galaxies, r0 « 5 /i_1 Mpc (Davis and 
Peebles 1983; although see Oemler et al 1987), then sets the 
scaling from model to physical units. Next rich clusters were 
identified in these large-scale simulations using the “ friends-of- 
friends” procedure described in Paper I. For a given value of 
separation parameter, d, all particles closer to one another 
than this distance were linked together. Particles that are 
linked to each other, either directly or indirectly, form a cluster. 
The parameter d is related to the number overdensity, n/<n>, at 
the outer edges of the cluster, via n/<n> = (d/d0)~3, where d0 is 
the mean separation between neighbors in a Poisson distribu- 
tion for the same number density of particles, d0 = (V/N)~1/3, 
and N is the total number of particles contained within the 
simulation volume V. The value of d used here to identify the 
rich clusters in these large-scale simulations corresponds to an 
overdensity of ~ 35 at the edges of the clusters. Clusters identi- 
fied using this procedure were found to contain typically 30-50 
particles, each of mass m = 3.7 x 1013 M0. However, as pre- 
viously discussed, because the aim here is to study the detailed 

structure of these clusters and their surrounding region, such 
few particles of such large mass cannot provide sufficient 
resolution on small scales. It is for this reason that the second, 
high-resolution step was taken to create the final cluster 
models used in later analysis. 

d) Simulations of Individual Clusters 
Having identified the locations where rich clusters formed 

for a given set of initial perturbations, new simulations were 
performed using these same initial conditions but now model- 
ing with higher resolution smaller volumes centered on the 
locations of each of the five richest clusters found in each of the 
large-scale simulations. In this way the resolution can be 
greatly increased, since by concentrating on the relatively small 
volume around each cluster, the mass of each individual par- 
ticle in the new simulations can be much smaller, and more of 
the particles in the simulated volume eventually end up in the 
cluster itself rather than in other surrounding structures. The 
initial radius of these individual cluster simulations corre- 
sponds to 45% of the initial radius of the large-scale simula- 
tions. This volume size was chosen since it is sufficiently small 
to achieve the desired high resolution, yet sufficiently large that 
it still includes the relevant surrounding structures, As a check, 
several simulations were run with larger volumes, and it was 
found that no significant differences resulted in the structure of 
the clusters (see Paper I). High-resolution simulations with 
~1000 particles were run for each cluster using a non- 
comoving version of the Aarseth code, with each particle in 
these new simulations corresponding to roughly an L* galaxy 
(Paper I). A fixed softening length e = 0.01 in models units was 
used, which should be comparable to the size of a typical 
galaxy, 8 « 50 kpc with the scaling of the previous section. 
Twenty clusters were simulated for each of the cosmogonic 
scenarios considered here, a total of 120 clusters. Figure 1 
shows several representative clusters formed in each of the 
different scenarios. The effects of the different initial fluctuation 
spectra are illustrated even more clearly in Figure 2, where in 
each column is shown a different cluster that formed in the 
same location in each of the different large-scale simulations 
which used the same random number sequence to generate the 
initial conditions. Thus, the apparent differences in the visual 
appearance of the cluster formed in the different scenarios 
reflect the differences in the small-scale component of the 
initial perturbation spectrum. 

The next objective was to quantify in a statistically meaning- 
ful way the amount of substructure within these clusters. 
Because the ultimate goal is to compare the simulated clusters 
with observed ones, it is important to treat the simulated clus- 
ters in much the same way that an observer would. Three 
orthogonal, projected views of each of the simulated clusters 
were used, at those times corresponding to the present epoch. 
A cubic volume with origin at the center of the simulated 
volume was cut to ensure equal depth along the line of sight. 
The cluster’s center in each case was taken as the location of 
the density maximum of the projected distribution of particles 
within this cube, as determined by an iterative count procedure 
in square grid cells. This procedure was found to work quite 
well; in all cases, the cluster center determined by this pro- 
cedure agreed well with that determined from visual inspection 
of the particle distribution. The cluster radius, Ri0o> was then 
determined by finding the radius at which the projected cluster 
density profile first falls to the mean background density, and 
the total cluster mass then found by counting all particles 
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Fig. 2.—Illustration of the effects of different initial fluctuation spectra on the structure of rich clusters. Labels correspond to the scenarios listed in Table 1. Row 
a shows three typical clusters formed in simulations of the pancake scenario. Row b shows these same three clusters as they formed in the hybrid simulations. Rows c 
and e are these same three clusters as they formed in the n = 0 and n = — 2 hierarchical clustering scenarios. Thus, the apparent differences in the clusters formed in 
the pancake, hybrid, and n = 0 hierarchical clustering scenarios reflect differences in the amount of small-scale power present in the initial fluctuation spectrum, while 
differences in the n = 0 and n = — 2 hierarchical clustering cases demonstrate the effects of having more power on large scales. 
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within this radius (see Paper I). The cluster half-mass radius, 
R50, was taken as the radius encompassing half this total mass. 
Given the scaling of § lie the typical half-mass radii of these 
clusters range roughly from 0.5 to 1 /z"1 Mpc, depending some- 
what on the cosmological scenario. For example, the mean 
value of the half-mass radius is <R5o) = 0.84 ± 0.15 /z_1 Mpc 
for clusters formed in the pancake simulation, while <R5o> = 
0.48 ±0.15 h-1 Mpc for those formed in the n = 0, Q = 1 
hierarchical clustering scenario. Similarly, <R10o) = 3.31 
± 1.08 /z"1 Mpc for the pancake clusters, and <Ri0o> = 2.49 
± 0.75 /z“1 Mpc in the hierarchical clustering case. However, 
because of the uncertainties in the correlation functions used to 
set the scaling from model to physical units, these differences 
should not be taken as very significant. 

III. TESTS FOR SUBCLUSTERING 

To provide a quantitative description of the presence and 
significance of substructure within clusters, three new sta- 
tistical tests have been developed. These have been designed to 
eliminate possible contributions from global deviations from 
homogeneity, such a the overall falloff of the cluster density 
with radius, and global deviations from spherical symmetry, 
such as flattening of the mass distribution. 

a) Description of Statistical T ests 
i) Symmetry T est 

This test quantifies the overall mirror symmetry of the 
galaxy distribution within a cluster about its center, on the 
premise that a subcluster represents a localized asymmetry 
superposed on an otherwise symmetric distribution. For each 
particle (or galaxy), z, the local density around that particle is 
estimated by finding the mean distance to its five nearest neigh- 
bors in projection, Then the local density in the vicinity of a 
point o, which is diametrically opposite the cluster center from 
particle z, is measured by the mean distance to the five nearest 
neighbors around this point, d0. If the particle distribution is 
indeed symmetric, on average and d0 should be roughly 
equal, while if the particle distribution is clumpy, then dt and d0 
should in general be different. As a measure of any asymmetry, 
a statistic ß was defined by 

ß = log10(d0M) > (6) 

and the average value of ß over all particles provides a measure 
of any gross deviations from symmetry. For a symmetric dis- 
tribution </?> « 0, while values of </?> greater than 0 indicate 
the presence, and significance, of any asymmetries. Since this is 
done about each particle, </?> is a density-weighted average, 
and thus is more sensitive to the presence of substructure than 
if random points were selected within the cluster. The value of 
ß also depends on the density of the clumps themselves, with 
more compact lumps producing a larger Value. It is also pos- 
sible to examine the trend of symmetry/asymmetry with dis- 
tance from the cluster center, ß(r), to look for any systematic 
trends of subclustering with radial distance. In practice, global 
values of ß were measured for two separate regions; for par- 
ticles in the ranges 0 < r < Rso and R50 < r < R10o- 

One of the primary advantages of this test is that it is unaf- 
fected by any global flattening of the particle distribution, 
which could generate a false signal of subclustering with some 
tests which assume spherical symmetry of the galaxy distribu- 
tion. In addition, even in the absence of any “significant” 
localized subclustering, this test can provide a measure of the 
overall regularity or irregularity of the mass distribution, 

which might provide a crude means for determining the 
approximate dynamical state of a given cluster. 

ii) Angular Separations T est 

If one considers the distribution of galaxies within a cluster 
in terms of only angular coordinates about the cluster center 
(relative to some arbitrarily defined fixed coordinate axis), the 
presence of any subclustering will clearly result in an excess 
number of small angular separations between galaxy pairs 
relative to the corresponding number expected in a spherically 
symmetric, subcluster-free distribution. Thus, examining the 
distribution of angular separations between pairs of cluster 
galaxies may provide a simple and useful test for substructure. 
Because it is the distribution of small angular separations that 
is of most interest here, it is more useful to calculate the harmo- 
nic mean value of the angular separations rather than, say, the 
mean or median value, since the harmonic mean is weighted 
most by small values. The harmonic mean angular separation 
is defined by 

0hm = ^2/7V(N- 1) Jeÿ'j \ (7) 

where 0^ is the angular separation between particles z and ;, 
and the sum is over all pairs, N being the total number of 
particles. The useful measure is the ratio of 6hm measured for 
the cluster over that for a Poisson distribution of the same 
number of particles, 6hm/9p. This ratio should be ~1 if no 
subclustering is present, while it will be less than 1 if there is 
substructure. In application, the harmonic mean angular 
separation of the particle distribution was computed using the 
same two radial bins used for the symmetry test, 0 < r < Rso, 
and R50 <r < R100. The corresponding harmonic mean 
values expected for a random distribution of N particles were 
computed by averaging over 1000 Monte Carlo simulations 
which were generated for selected values of N in the range 
20 < N < 500, and by interpolation between these values. 
These were generated by selecting N angles, 0, uniformly at 
random in the range 0-271, and computing the harmonic mean 
angular separation for the given distribution. After some 
testing, it was found that the stability of this statistic could be 
significantly improved by imposing a lower limit to the angular 
separations considered, since even in a Poisson distribution the 
occasional rare pair of exceedingly small separation can give 
rise to rather wild fluctuations in the harmonic mean values. 
By rejecting all pair separations less than 1% of the expected 
mean interparticle separation if the N particles were uniformly 
distributed (i.e., 0.01[27r/AT]), this statistical test becomes much 
more robust. This is not at all a harsh constraint imposed on 
the allowable separations: for example, in a Poisson distribu- 
tion of N = 500 particles (Npairs « 5002/2) the average number 
of pairs rejected in each of the 1000 Monte Carlo simulations 
was only ~ 5. 

This angular separations test provides a nice complement to 
the aforementioned symmetry test, since it yields information 
about the spectrum of interparticle angular separations, which 
will be affected by the presence of say, a single, large subcluster, 
or by a galaxy distribution dominated by an excess of small 
groups, binaries, or both (e.g., Struble and Rood 1981). Also, 
when applied to a given radius interval, this test is insensitive 
to the radial mass distribution within the clusters. (In principle, 
one might use the harmonic mean value of the projected 
spatial separations between pairs as a measure of sub- 
clustering; Quintana, de Souza, and Arakaki 1986. However, 
such a test is probably too sensitive to the shape of the cluster 
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density profile to provide unambiguous evidence for the pre- 
sence of subclustering.) The principal disadvantage of this 
method is that the two-dimensional projected galaxy distribu- 
tion is reduced to a single angular dimension, with a corre- 
sponding loss of some information. Also the angle subtended 
by substructure of a given physical size will obviously depend 
on its distance from the cluster center, so a meaningful analysis 
must be confined to a limited radius interval, Finally, unlike 
the symmetry test, flattening of the particle distribution might 
affect 0hm, by biasing the angular separations toward small 
values even in the absence of genuine subclustering. As it turns 
out, though, cluster ellipticity does not seem to have a great 
effect on this statistic (see § Illh). 

iii) Density Contrast Test 
An interesting property of any detected substructure is the 

fraction of the total cluster mass which is actually contained in 
the clump or clumps, as well as the distribution of subcluster 
masses. For example, a single “ subcluster ” composed of, say, 
five galaxies in a cluster of 200, while perhaps representing a 
true physical association, is hardly of consequence for the 
dynamics of the cluster as a whole, since even in relaxed clus- 
ters outlying groups will continue to fall in at later times (e.g., 
Gunn and Gott 1972). Also because the three-dimensional 
galaxy distribution in clusters is viewed in only two dimen- 
sions, some apparent subclusters and lumps may in fact be 
nothing more than projection effects or random fluctuations. 
Obviously, then, the existence and significance of substructure 
are very subjective. 

In an attempt to quantify the significance of subclustering, a 
test was used which employs a group-finding algorithm to 
locate all separate clumps of a specified density contrast in 
each cluster using the “ friends-of-friends ” method described in 
§ II. One can then examine the number and sizes of these 
clumps at different density constrast levels in order to search 
for the existence of distinct subclusters which contain a signifi- 
cant fraction of the total cluster mass or binding energy, or 
both. For each cluster of galaxies, all separate groups within 
the cluster were identified for density constrast levels of p] 
<p> = 5, 10, 20, 40, 60, 80, 100, 150, and 200. At the lowest 
density levels, almost all cluster particles are joined together to 
form a single group, while at the very highest density contrasts 
only small dense groups and isolated pairs are identified. If 
significant subclustering is truly present, one would expect that 
as the density contrast level is raised, at some point the cluster 
distribution should “fragment” into several distinct and 
sizable lumps. The majority of the clusters showing substruc- 
ture in the density contour plots of Geller and Beers (1982) 
seem to possess one or two subcondensations at various dis- 
tances from the cluster center. Other N-body simulations of 
cluster formation via hierarchical clustering (e.g., White 1976; 
Cavaliere et al 1986) have also shown that during the collapse 
phase subclustering often occurs in the form of several promi- 
nent clumps which subsequently merge to form a single, 
relaxed cluster. Thus, as a measure of the “significance” of 
subclustering, the maximum fractional mass contained in the 
second and third largest subclusters found at any of the differ- 
ent density contrast levels, S2max and S3max, was examined (the 
largest (“subcluster” is always due just to the fact that the 
cluster mass distribution is centrally concentrated). This 
density contrast test somewhat resembles the method used by 
Geller and Beers, although the test used here studies the mass 
fraction contained within a subcluster in addition to its density 

enhancement. This test does not assume any specific shape of 
the subclusters. 

It is worth reiterating that these three tests for subclustering 
are not simply redundant ways of measuring the same pro- 
perty. Each is sensitive to a different aspect of subclustering, 
and thus they are complementary measures. 

b) Checks of Subclustering T ests 
It is important to calibrate the results of these statistical 

tests, and to make sure that they do indeed succeed in detecting 
any significant substructure which may be present in the clus- 
ters, without generating spurious signals. These methods were 
first tested on a set of“ artificial ” clusters which were generated 
by a Monte Carlo technique. In principle, one could have gen- 
erated such clusters by assuming a specific shape for the 
density profile (say an r1/4 profile, or Hubble profile), and then 
distributing N particles according to this prescription. 
However, although the results of the symmetry and angular 
separations tests are independent of the cluster radial mass 
distribution, there is a chance that the choice of density profile 
might affect in subtle ways the detection of lumps of a given 
size using the density contrast test. Instead, to guarantee that 
the radial mass distribution of these artificial clusters was iden- 
tical to that of the simulated clusters without needing to 
choose some analytic form for the cluster profile, the simulated 
clusters themselves were used to create the artificial clusters. 
For the particle distribution within a given simulated cluster, a 
corresponding artificial cluster, with no substructure, was gen- 
erated by keeping the radial coordinate of each particle the 
same, but assigning randomly chosen angular coordinates. In 
this way, artificial clusters were created which have three- 
dimensional radial mass distributions identical to those of the 
simulated clusters, but possess no subclustering, due to the 
randomly chosen angular positions. Twenty such artificial 
clusters were generated in this manner, each being based on a 
different simulated cluster. One such artificial cluster is shown 
in Figure 3a. The tests for subclustering where then applied to 
three orthogonal projected views of each of these clusters. For 
this sample, the mean value of the symmetry index was found 
to be 

<£> = 0.003 ± 0.036 for 0 <r<RS0, 

<£> = 0.001 ± 0.039 for R50<r< R100 , 

while the mean values found for the angular separations test 
were 

<0hm/0p> = 0.986 ± 0.109 for 0 < r < R50 , 

<0hm/0p> = 1-007 ± 0.106 for R50<r< R100. 
Hence, these two tests behaved as expected, demonstrating the 
lack of any significant subclustering. The distribution of values 
of S2max found for these artificial clusters using the density 
contrast test is shown in Figure 4. The mean values of S2max 
were <S2max> = 0.050 ± 0.021 and <S3max> = 0.032 ± 0.015. 
Thus it seems that even in a galaxy distribution which is free of 
any genuine subclustering, clumps containing 5%-10% of the 
total cluster mass are expected to occur simply from random 
fluctuations and projection effects. Indeed, nearly one-third of 
these “ subcluster-free ” artificial clusters were found to possess 
clumps containing 5%-15% of the total mass. Furthermore, if 
the cluster is flattened, one could expect to find even larger 
values of <S2max> and <S3max> even in the absence of any 
genuine subclustering. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
7 
..
..

 IW
 

WEST, OEMLER, AND DEKEL Vol. 327 14 

As mentioned earlier, there is some danger that flattening of 
the galaxy distribution might generate a false signal of sub- 
clustering with the angular separations test. To check just how 
serious this effect is, a sample of artificial clusters was gener- 
ated whose distribution of observed ellipticities matched that 
of the clusters formed in the pancake simulations (Paper III), 
with ellipticities in the range 0.0 < 8 < 0:5. The resulting dis- 
tribution of values of (OhJ0Py for these artificial clusters was 
found to be fairly insensitive to such elongations, with a mean 
value <0hm/0p> = 0.09 ± 0.15 found for this sample. Further 
testing showed that this statistic is reasonably unaffected by 

Fig. 3.—An artificial cluster, generated by the technique described in the 
text, (a) Cluster without any subclustering; (b), (c), and (d) same cluster with 
subclustering superposed, as described in the text. The length of each box 
corresponds to 5 ft-1 Mpc. 

^max 
Fig. 4.—Distribution of values of S2max for the set of artificial (subcluster- 

free) clusters. 

flattening for ellipticities up to e ~ 0.5 although larger values of 
8 were found to strongly bias 6hm to small values, thus produc- 
ing a false signal of subclustering. However, within the range of 
ellipticities appropriate for the clusters studied here, the 
angular separations test is fairly unaffected by flattening of the 
cluster mass distribution. 

Having demonstrated that these tests do not produce spu- 
rious signals of subclustering, the next step is to show that they 
are indeed sensitive to any significant substructure which may 
be present. To do this, different types of subclustering have 
been superposed on the field of the artificial cluster shown in 
Figure 3a, and the statistical tests then rerun. Figure 3b shows 
the addition of a single, large subcluster. This subcluster is 
located beyond the cluster half-mass radius and contains 
~ 20% of the total cluster mass, distributed randomly within a 
sphere of radius 0.25 /i_1 Mpc. In Figure 3c two smaller sub- 
clusters were added to the original cluster, one located interior 
to R50, the other beyond R50. Each contains 10% of the total 
mass, distributed randomly within spheres of radii 0.10 and 
0.15 /z-1 Mpc. And in Figure 3d, five very small, dense knots 
have been superposed on the cluster, each containing ~5% of 
the cluster mass, distributed within spheres of radius 0.05 h ~1 

Mpc. Application of the three statistical tests yielded the 
results shown in Table 2. Note that all three tests for sub- 
clustering detect the presence of these different kinds of sub- 
structure, although for a given type of subclustering one test 
may be more sensitive than the others. If numerous subclusters 
had been included, or if these subclusters contained an even 
greater fraction of the total cluster mass, or if the particles 
within the subclusters were themselves clustered rather than 
randomly distributed, then these tests would give an even 
stronger signal of substructure. However, these simple cases 
serve to demonstrate that these tests are indeed capable of 
detecting substructure when present. 

c) Application of Tests to Simulated Clusters 
These three statistical tests for subclustering were then 

applied to the entire set of simulated clusters, using projected 
views. The results for each of the different scenarios are shown 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
7 
..
..

 IW
 

SUBCLUSTERING IN RICH CLUSTERS OF GALAXIES 15 No. 1, 1988 

TABLE 2 
Checks of Subclustering Tests 

0i'J0r 

Cluster 0 < r < Rso K50 < r < J?100 0 < r < Rso J?50 < r < R100 S2m„ 

a  0.04 - 0.01 1.02 1.09 0.04 
b  0.03 0.20 0.99 0.41 0.21 
c  0.37 0.22 0.59 0.74 0.12 
d  0.13 0.24 0.68 0.61 0.05 

in Figures 5-8. Mean values of these statistical measures are 
listed in Tables 3, 4, and 5. The results are briefly summarized 
below. 

i) Results from Symmetry Test 
Figures 5 and 6 show the distributions of values of ß found 

for the regions 0 < r < R50 and R50 <r < R100, respectively. 
Mean values of ß for all the different scenarios are listed in 
Table 3. For the innermost region, the mean values of ß for all 
scenarios are similar within the statistical uncertainties and are 
consistent with little or no subclustering. For the region R50 < 
r < R100, some differences can be seen between the various 
scenarios, with the least amount of substructure detected in 

clusters formed in the pancake scenario, and the strongest 
signal of subclustering for clusters in the n = 0, Q = 1, hierar- 
chical clustering scenario. However, the valuesof ß are gener- 
ally not very large (compare to Table 3), which suggests that 
the substructure being detected in not very sizable. 

ii) Results from Angular Separations Test 
Figures 7 and 8 show the distributions ofdhm/dP found from 

the angular separations test, for the same radial bins as above. 
Mean values are listed in Table 4. For the region 0 < r < R50. 
the mean values of 8hm/0P for all scenarios are found to lie 
within one standard deviation of each other and are consistent 
with little significant subclustering in this region. For the 
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Fig. 5.—Results of the symmetry test. Shown are the distributions of ß for the region 0 < r < Rso. Labels denote the following scenarios: (a) pancake, (b) hybrid, 
(c)> (d), (e) hierarchical clustering (Q = 1) for n = 0, — 1, and —2, respectively, and (f)n = 0 hierarchical clustering for Q = 0.15. (g) Distribution found for Dressler’s 
sample of rich clusters. 

Fig. 6.—Results of the symmetry test for the region Rs0 < r < R100. Labels are the same as in Fig. 5. 
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TABLE 3 
Mean Values of ß 

<ß> 

0.01 ± 0.06 
0.02 ± 0.04 
0.04 ± 0.04 
0.03 ± 0.04 
0.03 ± 0.06 
0.04 ± 0.06 

0.07 ± 0.07 
0.15 ± 0.12 
0.16 ± 0.12 
0.11 ±0.07 
0.11 ±0.04 
0.08 ± 0.12 

0.01 ± 0.04 0.03 ± 0.10 

Scenario 

Pancake   
Hybrid    
Hierarchical (n = 0)   
Hierarchical (n= — 1)  
Hierarchical (n = — 2)  
Hierarchical (n = 0, Q = 0.15) 

Abell clusters 

region Rso <r < R10o> the mean values of this statistic suggest 
the presence of some substructure in these simulated clusters, 
with the pancake simulations again showing the weakest signal 
of subclustering and the n = 0, Q = 1 hierarchical sub- 

clustering scenario showing the strongest evidence. However, 
the mean values of 6hm/9P for this outer region also lie within 
one standard deviation of each other for all scenarios. 

iii) Results from Density Contrast T est 
The distributions of values of S2max are shown in Figure 9, 

and these results are summarized in Table 5. It is apparent that 
some signal of substructure is being detected in all scenarios. 
However, there are relatively few subclusters containing a large 
fraction of the total cluster mass. If an arbitrary criterion for 
“ significant ” substructure is set at, say S2max > 20% of the 
total cluster mass (remembering that 5%-10% fluctuations 
occur naturally due to random variations and projection 
effects; see § Illh), then only ~5% of clusters in the pancake 
scenario and ~8% in the n = 0, Q = 1 hierarchical clustering 
scenario meet this criterion. For a less stringent requirement, 
S2max > 15% of the total cluster mass, ~12% of the pancake 
clusters, and ~28% of the n = 0, Q = 1 hierarchical clusters 

Fig. 7 

Q /ft 
whm7 wpoisson 

Fig. 8 
Fig. 7.—Results of the angular separations test. Shown are the distributions of values of 0hm/0pfor the region 0 < r < Rso. Labels are the same as in Fig. 5. 
Fig. 8.—Results of the angular separations test for the region Rso <r < Ri00. Labels are the same as in Fig. 5. 
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meet this criterion. Thus, it is not uncommon to observe some 
subclustering at levels marginally above Poisson noise, 
although large subclusters are quite rare in these simulated 
clusters. 

It is interesting to note that there is a general trend which 
goes in the sense one might have expected a priori on the basis 
of the small-scale component of the primordial power spec- 
trum in each scenario. In the pancake scenario, little substruc- 
ture is detected with these tests, a result which is not too 
surprising given the lack of small-scale fluctuations in the 
initial spectrum. The hierarchical clustering simulations, on the 
other hand, while exhibiting little evidence for significant sub- 
structure in the innermost regions, do show a signal for some 
subclustering at radii. Clusters formed in the hybrid scenario 
yield results essentially intermediate to those of the pancake 
and hierarchical clustering scenarios, which again is not too 
surprising. In general, though, the signal of substructure 
detected in these different scenarios is usually not very strong 
(compare to the cases in Table 2). The fact that only a small 
amount of significant subclustering is found in most of these 
simulated clusters, especially in their inner regions, suggests 
that they are most probably relaxed systems. Thus, it seems 
that subclustering within clusters cannot provide as useful a 
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Fig. 9.—Distribution of values of S2max from the density contrast test. 
Labels are the same as in Fig. 5. 

TABLE 4 
Mean Values of 9hm/9P 

<0hJ0P> 
0 <r < R 50 Kso < r < Ki 

0.95 ± 0.18 
0.96 ± 0.20 
0.89 ± 0.19 
0.95 ± 0.17 
0.92 ± 0.12 
0.90 ± 0.18 

0.80 ± 0.14 
0.74 ± 0.18 
0.71 ± 0.19 
0.78 ± 0.17 
0.78 ± 0.14 
0.78 ± 0.21 

0.90 ± 0.18 0.82 ± 0.22 

Scenario 

Pancake   
Hybrid   
Hierarchical (n = 0)  
Hierarchical {n = — 1)   
Hierarchical (n = — 2)   
Hierarchical (n = 0, Q = 0.15). 

Abell clusters . 

test of the different cosmogonic scenarios as had been orig- 
inally hoped, since relaxation effects seem to have erased most 
traces of the initial conditions. Since the present epoch in these 
simulations was chosen on the basis of the correlation function 
of the large-scale galaxy distribution, this implies that most 
clusters should be expected to exhibit little significant substruc- 
ture today. This is essentially consistent with the results of 
Cavaliere et al (1986), who find that the number of 
“multicomponent” clusters should decrease rapidly at the 
present epoch, although they claim that only a small fraction of 
clusters should already be relaxed systems. However, as will be 
discussed shortly, there is some danger of selection effects when 
identifying clusters (in both the large-scale cosmological simu- 
lations and observationally as well) which may introduce sig- 
nificant biases here. 

d) Subclustering in Observed Clusters 
To compare the above results on subclustering in the simu- 

lated clusters with observed clusters, these same tests were 
applied to the sample of 55 clusters for which Dressier (1980b) 
has provided galaxy positions. Unfortunately, application of 
the symmetry and angular separations tests is complicated 
here by the fact that the measured area for each cluster is often 
quite small. These two tests can only be applied within an area 
defined by the largest circle, with origin at the cluster center, 
which can be drawn within the measured area. In some cases, 
this area is actually quite small, since the clusters are not 
always centered in the measured areas. The cluster centers 
were located using the same iterative procedure as was used for 
the simulated clusters (see § II ; except A548, where the cluster 
center was taken as the center of the two distinct clumps 
because of the limited plate area). Crude measures of the 
cluster radius and half-mass radius were then obtained for 
each cluster by simply taking as R100 the distance of the fur- 

TABLE 5 
Results of Density Contrast Test 

Scenario <S2max> 

Pancake     
Hybrid     
Hierarchical (n = 0)   
Hierarchical (n = — 1)  
Hierarchical (n = — 2)  
Hierarchical (n = 0, Q = 0.15) 

10.9 + 5.1 
11.7 + 5.4 
12.6 ± 5.8 
9.0 ± 4.5 
9.7 ± 5.9 
9.2 ± 6.0 

Abell clusters   13.2 + 6.3 

5% 
9% 
8% 
4% 
5% 
6% 

7% 

17% 
20% 
28% 
18% 
13% 
14% 

24% 
1 Column entries give percent of clusters with given S2m 
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thest galaxy from the adopted center, and the radius encom- 
passing half the total number of galaxies as R50. In reality, the 
clusters undoubtedly extend beyond the measured areas pre- 
sented by Dressier, and thus these values are underestimates of 
the true R50 and R10o- A comparison of the mean values of R50 
and R100 of the observed clusters with those of the simulated 
clusters showed reasonably good agreement for Rso, although 
R100 tends to be significantly smaller for the observed clusters. 
Hence these two tests were applied within regions 0 < r < Rso 
and Rso < r < Rl for the observed clusters, where RL is the 
radius of the largest circle which could be drawn within the 
measured area. Unfortunately, RL often does not extend far 
beyond Rso. For the density contrast test, however, the entire 
measured area could be used. The results of these tests are 
summarized below. 

i) Results from Symmetry Test 
Results from the symmetry test are presented in Figures 5g 

and 6g. Mean values of ß are listed in Table 3. For the region 
0 < r < R50, the clusters appear to be quite consistent with few 
gross deviations from overall symmetry, thus indicating that 
little significant substructure is present. Similarly, for the 
region R50 <r < RL, the observed clusters seem to show little 
significant substructure, and in fact exhibit a weaker signal of 
subclustering than the simulated clusters. However, it is highly 
possible that the observed lack of subclustering in this region 
may simply result from the fact that RL is usually not very 
large, and hence any substructure which might be present at 
larger radii would not be included. Nevertheless, within RL 
these results seem to indicate the presence of little, if any, sig- 
nificant subclustering in these observed clusters, or that any 
substructure which may be present might be quite diffuse. The 
distribution of values of ß found for the observed clusters was 
then compared with those of the different theoretical scenarios 
by means of a Kolmogorov-Smirnov (K-S) test. The results of 
this K-S test are shown in Table 6, in which D is the maximum 
value of the absolute difference between the two cumulative 
distribution functions of ß (normalized to range from zero to 
unity), and S is the probability of a value of D greater than the 
observed one occurring under the null hypothesis that the two 
distributions are drawn from the same parent distribution, 
with small values of S indicating that the two distributions are 
significantly different. If one imposes a conservative signifi- 
cance level of S < 0.01 for rejection of this null hypothesis, then 
for the region 0 < r < R50, the distributions of values of ß in 
all the different cosmogonic scenarios are consistent with the 
observations, while for the region R50 < r < R100 none of the 
different scenarios is consistent with the observed clusters, 
since the observed clusters exhibit less substructure in this 
region than do the simulations. 

TABLE 6 
Results of K-S Test for Distributions of i 

0 < r < R, Rs0 < r < R< 
Scenario Versus 

Observed Clusters D 

Pancake   
Hybrid   
Hierarchical (n = 0)    
Hierarchical (n = — 1)     
Hierarchical (n = — 2)  
Hierarchical (n = 0, D = 0.15) 

0.175 
0.222 
0.200 
0.250 
0.289 
0.231 

0.378 
0.140 
0.234 
0.057 
0.016 
0.114 

0.461 
0.708 
0.647 
0.611 
0.590 
0.404 

4.01 x 10"5 

1.67 x 10“11 

1.36 x 10“9 

3.62 x 10“9 

1.36 x 10“8 

4.85 x 10“4 

TABLE 7 
Results of K-S Test for Distributions of 9hm/6P 

Scenario versus 
Observed Clusters 

0 < r < R, 

D 

Rso < r < Rt 

D 

Pancake   
Hybrid   
Hierarchical (n = 0)   
Hierarchical (n = — 1)  
Hierarchical (n = —2)  
Hierarchical (n = 0, D = 0.15) 

0.132 
0.195 
0.087 
0.229 
0.185 
0.170 

0.744 0.207 
0.272 0.211 
0.989 0.218 
0.107 0.174 
0.289 0.227 
0.429 0.188 

0.399 
0.372 
0.338 
0.598 
0.266 
0.521 

ii) Results from Angular Separations T est 
The results of the angular separations test for the observed 

clusters are presented in Figures Ig and %g. Mean values of this 
statistic are listed in Table 4. A small signal of subclustering is 
apparent here, especially at large radii. Comparison of the dis- 
tribution of values of QhJQ? for these observations with those 
of the different scenarios by means of the K-S test (Table 7) 
shows that there are no statistically significant differences 
between the distributions found for the observed and simu- 
lated clusters for both small and large distances from the 
cluster center. 

iii) Results from Density Contrast T est 
For the density contrast test, a mean background level of 

eight galaxies deg-2 was taken from Dressier (1980h). Results 
from this test are presented in Figure 9 and in Table 5. It is 
interesting to note that very few of these clusters possess sub- 
clusters which contain a significant fraction of the total system 
mass. If the same criterion for significant substructure is taken 
as before, viz. S2max > 0.20, then only ~7% of clusters in this 
sample are found to possess significant subclustering. For a 
much less stringent criterion of S2max >0.15 (i.e., only slightly 
above the expected Poisson noise), the total fraction of such 
clusters is 24%. Only in one case, A548, does the galaxy dis- 
tribution consist of essentially two dominant clumps of the sort 
seen in the simulations by White (1976). 

e) Is There Subclustering beyond Poisson Noise? 
Results from the three statistical tests of subclustering which 

have been used here indicate the presence of some substructure 
in both the simulated and observed clusters. However, in terms 
of the overall cluster mass distribution, the actual amount of 
such subclustering seems to be quite small. And while there is 
generally good agreement between the simulations and obser- 
vations, the observed clusters often seem to have less substruc- 
ture than the simulated ones, although as discussed in the 
previous section, this is probably an artifact of the rather small 
area around each cluster which was observed by Dressier 
(1980h). 

What then could account for the differences in subclustering 
found here and by Geller and Beers (1982), who claimed to find 
evidence for much more substructure in the same sample of 
observational data? Obviously, it must be the different criteria 
used to assess the significance of substructure. In their study, 
Geller and Beers used surface number density contour plots 
based on the galaxy positions given by Dressier to search for 
substructure in these clusters. These contour plots were gener- 
ated by counting galaxies in square grid cells, with some 
smoothing. As a criterion for identifying significant substruc- 
ture, they required that two or more “ peaks of interest ” lie at 
least 3oR above the highest closed contour which surrounds 
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them, where gr is the statistical error in this contour, taken to 
be the square root of the number of galaxies per cell. However, 
with this method the significance of any substructure is mea- 
sured relative to a very local (and arbitrarily chosen) back- 
ground, which will vary not only from cluster to cluster, but 
from location to location within a given cluster as well. 
Because most of their plots are limited by counting statistics, 
there is a danger than random fluctuations in the local density 
might produce a false signal of subclustering. Furthermore, 
although this test examines the density enhancement of sub- 
clusters, it says nothing about the actual physical size of any 
detected substructure; i.e., it does not distinguish between a 
subcluster containing 5% of the total cluster mass and one 
containing 50%. Hence, before claiming that some group of 
galaxies represents a true physical subcluster, one must first 
test the null hypothesis that these particles are in fact randomly 
distributed; i.e., is the local number density of galaxies consis- 
tent with fluctuations expected in a Poisson distribution? 

Following Politzer and Preskill (1986), one can show that in 
a Poisson distribution of particles having a mean surface 
density, «, distributed over a total area, A, the expected number 
of clusters per unit area containing k members within an area, 
a, is given by 

Dk(n, a) = a~lk2Pk(n, a), (7) 

where Pk is the Poisson probability that a randomly selected 
region of area a contains k particles, 

Pk(n,a) = (na)ke-na(l/k\). (8) 

Then the total number of such clusters expected in the area A is 
simply DkA. Using equation (7), it is possible to show that 
much of the substructure previously claimed to have been 
found in Dressler’s sample of clusters is in fact consistent with 
purely random fluctuations. This can be illustrated with spe- 
cific examples. 

Figure 10a shows the galaxy positions given by Dressier for 
the cluster A754, from which Geller and Beers (1982) claimed 
that there is a region of significant substructure in the lower 
right portion of this figure. Examination of their contour plot 
and Figure 10a shows that this “subcluster” can be easily 
identified, since it appears fairly isolated; it is indicated by the 
small box in Figure 10a. The number of galaxies in the claimed 
subcluster is 9. This represents only ~6% of the total number 
of galaxies in this sample, and therfore even if this clump were a 
genuine physical subcluster, it would seem to be of little conse- 
quence in terms of the overall cluster dynamics. One must then 
ask whether this “subcluster” represents a statistically signifi- 
cant deviation from random fluctuations expected in the 
galaxy distribution. Obviously the overall distribution of gal- 
axies in A754 is not random, since the cluster is centrally con- 
centrated. However, if the central region is excised, one can 
then test the hypothesis that the fluctuations is the galaxy 
distribution in the outer regions (which is much less 
concentrated) are in fact consistent with Poisson noise. Figure 
10a shows a small area which has been cut from the central 
region of the cluster, leaving 92 galaxies distributed over the 
remaining area. The smallest box which can be drawn around 
all nine galaxies in the suspected subcluster has an area 
a ä 4900 mm2. The total area over which the 92 galaxies are 
distributed is ,4 ä 2.16 x 105 mm2, giving a mean surface 
density n « 4.27 x 10-4 galaxies mm-2. Using equation (7), 
one then calculates that if the galaxies were indeed distributed 
in a Poisson fashion, one would expect to find ~0.93 such 

subclusters within this area A. Hence, the one subcluster which 
has been found is quite consistent with purely random fluctua- 
tions of the galaxy positions. In fact, this procedure actually 
somewhat underestimates the probability of finding such a 
subcluster, since choosing the smallest possible box around the 
subcluster maximizes the local density fluctuation. This same 
procedure was applied to several other clusters as well. For 
example, the cluster A119 meets the Geller and Beers criterion 
for having significant substructure. Their contour plot for this 
cluster shows several lumps in the galaxy distribution. The 
three largest clumps are indicated in Figure 106. Again, the 
central region shown in this figure has been removed, and then 
the probabilities of these “ subclusters ” being simply random 
fluctuations in the remaining galaxy distribution were calcu- 
lated. A total of 79 galaxies remain distributed over an area 
A « 9.78 x 104 mm2, yielding a mean density n « 8.07 x 10"4 

galaxies mm2. The clumps labeled “1” and “2” in Figure 106 
each contain eight galaxies (~7% of the total cluster 
population), and the smallest box which can be drawn around 
each is a » 2070 mm. Using equation (7), one then calculates 
the expected number of such clumps in the area A, assuming a 
Poisson distribution, to be ~0.85. For the third subcluster, 
which contains six galaxies within an area a « 1.48 x 103 

mm2, one would expect to find, on average, ~2.9 such clumps 
in a random distribution. Thus, the existence of these 
“subclusters” appears to be consistent with simple random 
fluctuations. One last example: Geller and Beers contour plot 
for the cluster A1991 also shows what appears to be a single, 
isolated subcluster composed of six galaxies (Fig. 10c). 
However, application of equation (7) shows that the expected 
probability of finding such a clump is ~21% in a purely 
random distribution. Although these calculations are rather 
crude, they serve to illustrate the point that much of the sub- 
structure previously claimed to have been detected in clusters 
is in fact consistent with the simpler hypothesis of random 
fluctuations in the local density. Of course, there are many 
cases where subclusters detected in clusters are in fact quite 
inconsistent with random fluctuations, thus representing true 
physical associations. For example, the cluster DC 0317-54 
(Fig. lOd) in the Dressier sample contains an isolated group of 
six galaxies, yet application of equation (7) shows that the 
number of similar groups expected in a Poisson distribution is 
only ~0.04 (although this subcluster contains only ~9% of 
the total population). And one could hardly deny the existence 
of substructure apparent in the galaxy distribution of clusters 
such as A548. Thus, this discussion is not intended to suggest 
that substructure does not exist within some clusters, but rather 
that perhaps its occurrence and significance have been overesti- 
mated in the past. The use of density contours for identifying 
substructure perhaps gives an exaggerated visual impression of 
just how chaotic the actual galaxy distribution is when the 
sample contains few galaxies. Certainly the results from the 
three statistical tests for subclustering which have been used 
here suggest that significant substructure within clusters is not 
as common a phenomenon as previously thought and that, 
when it does occur, the characteristic sizes of these structures 
are quite small. This means that perhaps clusters are, for the 
most part, relaxed systems, and thus application of the virial 
theorem does indeed yield accurate dynamical measures of 
cluster masses. This question is addressed further in the 
Appendix. _____     

One additional caveat is warranted: selection effects abound 
here, in both the observed and simulated clusters. In catalogs 
of observed galaxy clusters (e.g., Abell 1958), there is most 
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likely a significant bias caused by the tendency to select nice- 
looking, regular clusters over those whose appearance is less 
like the canonical “ Coma-like ” clusters. Similarly, the 
“ friends-of-friends ” technique used in § II to identify clusters 
in the simulations is likely to miss multicomponent clusters 
because of their disjointed mass distribution. Just as which 
criteria one chooses for identifying subclusters largely deter- 
mines the amount of subclustering one subsequently finds, so 
too the criteria used for locating and identifying clusters them- 

selves may introduce significant biases. Fortunately, however, 
the aforementioned selection effects in both the simulations 
and observations are probably very similar, and therefore it 
seems safe to assume that one really is comparing clusters of a 
similar nature. Still, as discussed in Paper I, very irregular 
systems like A1367 are noticeably absent from these simula- 
tions, and thus it is possible that none of the cosmogonic sce- 
narios studied here can account for the whole variety of 
clusters in the real universe. 

Y 

12. 110. 207. 305. 4^2. 500. 

X X 

x X 
Fig. 10.—Distribution of galaxies from Dressier (1980b) for the following clusters: (a) A754; (b) A119; (c) A1991, {d) DC 0317-54. Small boxes indicate suspected 

subclusters, and large boxes indicate the central regions which have been removed for calculations discussed in the text. 
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IV. SMALL-SCALE CLUSTERING IN THE REGIONS 
SURROUNDING CLUSTERS 

Although dynamical effects within clusters appear to quite 
efficiently obliterate most traces of the cosmological initial 
conditions which might otherwise have been detectable in the 
form of subclustering, small-scale clustering in the regions 
beyond rich clusters might still provide a sensitive test of the 
different cosmogonies. Visual inspection of Figure 1 suggests 
that the amount of small-scale clustering present in the 
environs of rich clusters is indeed a function of the cosmogonic 
scenario, with those scenarios which originate from fluctuation 
spectra with significant power on small scales showing a clum- 
pier galaxy distribution in general. As a measure of small-scale 
clustering in the regions surrounding rich clusters, the sym- 
metry and angular separations tests of § III were applied in the 
region 3-8 ft-1 Mpc from the center of each of the simulated 
clusters. These results are shown in Figures 11 and 12, and 
summarized in Table 8. It is quite evident that, in most cases, 
these tests now distinguish very well between the different cos- 
mogonic scenarios. Although the pancake simulations exhibit 
only a small amount of significant small-scale clustering in the 
cluster environs, simulations of the hybrid and hierarchical 
clustering scenarios show a great deal of such clustering in this 
region. Furthermore, the amount of small-scale clustering 
detected depends quite sensitively on both the form and slope 
of the initial power spectrum. A trend of increasing small-scale 
clustering with distance from the cluster center is clearly indi- 

ß 

Fig. 11.—Distribution of values of ß for the region 3-8 h 1 Mpc around 
each simulated cluster. Labels are the same as in Fig. 5. 

TABLE 8 
Results of K-S Test for Distributions of S2m 

Scenario versus 
Observed Clusters D 

Pancake   
Hybrid   
Hierarchical {n = 0)  
Hierarchical (n = — 1)   
Hierarchical (n = — 2)   
Hierarchical (n = 0, Q = 0.15 

0.227 
0.149 
0.212 
0.492 
0.429 
0.514 

0.124 
0.585 
0.180 
1.81 x 10"6 

5.23 x 10~8 

1.26 x 10~6 

cated in Figure 13, which plots ß(r) for three representative 
scenarios. These results suggest that perhaps a great wealth of 
information about the initial fluctuations spectrum may come 
from the region just beyond the confines of rich clusters. 
Although there are at present few good data available on the 
distribution of galaxies within several megaparsecs beyond the 
edges of rich clusters, it would seem that an effort to obtain 
such data could provide the best means yet for distinguishing 
between different comogonies. 

V. CONCLUSIONS 

Substructure and small-scale clustering in and around rich 
clusters of galaxies formed in different cosmogonic scenarios 

Q /Q 
whm ' ^poisson 

Fig. 12.—Distribution of 0hm/0p for the region 3-8 h 1 Mpc around each 
simulated cluster. Labels are the same as in Fig. 5. 
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TABLE 9 
Mean Values of Statistical Tests for Region 3-8 /i-1 Mpc 

Scenario <ß> <0hJ0P> 

Pancake   
Hybrid   
Hierarchical (n = 0)   
Hierarchical (n= — 1)  
Hierarchical (n = —2)  
Hierarchical (n = 0, Q = 0.15) 

0.12 ± 0.09 
0.38 ± 0.14 
0.64 ± 0.19 
0.54 ± 0.18 
0.41 ± 0.18 
0.38 ± 0.29 

0.62 ± 0.16 
0.39 ±0.11 
0.28 ± 0.10 
0.30 ± 0.10 
0.35 ± 0.15 
0.34 + 0.24 

have been studied by means of V-body simulations and have 
been compared with available observations. Several new sta- 
tistical tests for subclustering have been developed and applied 
to both the simulated and observed clusters (see Table 9). 
Results from these tests indicate the presence of some substruc- 
ture in both the simulated and observed clusters. However, in 
most cases the actual amount of subclustering detected within 
the inner few megaparsecs is rather small. 

For the simulations, the degree of subclustering, especially at 
greater distances from the cluster center, is found to depend 
somwhat on the scenario, in the general sense that one might 
have expected a priori on the basis of the initial fluctuation 
spectrum. Hierarchical clustering scenarios, in which the initial 
spectrum contains a small-scale component, show a stronger 
signal of subclustering than the pancake scenario, which has 
no initial small-scale component. Some slight subclustering 
does occur in the pancake scenario, originating from nonlinear 
coupling of perturbations on larger scales. The hybrid sce- 
nario, with its lower amplitude small-scale component, yields 
results intermediate to those of the pancake and hierarchical 
clustering scenarios. A slight trend can even be seen among the 
different hierarchical clustering scenarios, with the n = 0 clus- 

ters showing a slightly stronger signal of subclustering than the 
n = —2 case, which is consistent with the former having more 
power on small scales. 

Application of these same tests to Dressler’s sample of 
observed clusters indicates that they also possess little signifi- 
cant substructure. It is argued that previous attempts to quan- 
tify the amount of subclustering within clusters have 
overestimated both its frequency and importance relative to 
the overall cluster mass distribution. It has been shown that 
many “subclusters” claimed to have been detected in earlier 
studies are in fact consistent with Poisson noise. However, 
it is cautioned that, in general, the “significance” or 
“ insignificance ” of subclustering is very subjective, depending 
greatly on what criteria are chosen for identifying such sub- 
structure. Furthermore, selection effects in the cataloging of 
clusters can introduce serious biases. And ideally one would 
like to have redshifts for as many cluster members as possible, 
to confirm the reality of any suspected substructure in velocity 
space. 

Dynamical mass estimates (see Appendix) are consistent 
with the simulated clusters being in virial equilibrium and, if 
these simulations provide good models of real clusters, then 
most rich clusters should be expected to be in a relaxed stage 
today. Both virial and projected mass estimators are found to 
yield fairly reliable cluster masses, even in these simulations in 
which the clusters are generally neither spherical nor isolated, 
but rather are embedded in larger scale structures which arise 
in the different cosmogonic scenarios. Hence, it seems that 
relaxation, which so efficiently erases traces of the initial condi- 
tions from the final cluster density and velocity dispersion pro- 
files (Paper I), also succeeds in smearing a significant fraction 
of the expected differences in the degree of subclustering within 
rich clusters. 

Application of the subclustering tests in regions 3-8 /i_1 

Fig. 13.—ß as a function of distance from the cluster center for three representative scenarios: (a) pancake; (b) hybrid, and (c) n = 0, Q = 1 hierarchical clustering. 
These values are averages over all clusters. 
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Mpc from the cluster centers, as a measure of small-scale clus- 
tering in the regions surrounding rich clusters, yields results 
which show a very strong dependence on the cosmogonic sce- 
nario from which the clusters arose. The amount of small-scale 
clustering is found to depend quite sensitively on the amount 
of power which the initial fluctuation spectrum possesses on 
small scales, with the greatest degree of such clustering 
occurring in the n = 0, Q = 1 hierarchical clustering simula- 
tions, and the least found for simulations of the pancake sce- 
nario. Similarly, the amount of small-scale clustering is found 
to be fairly sensitive to the slope of the initial power spectrum 
in the different hierarchical clustering scenarios. Given the fact 
that relaxation effects seem to have erased most traces of the 
initial condition within the inner parts of clusters, it is argued 
that the regions surrounding rich clusters may provide a 

greater wealth of information regarding the initial form of the 
perturbation spectrum. Differences between the various sce- 
narios might also be reflected in the cluster-cluster and group- 
group correlation functions, as well as the multiplicity and 
luminosity functions of bound objects in the universe. It is 
clear, however, that more and better observations of the galaxy 
distribution in the few megaparsec regions around rich clusters 
are needed and should not be prohibitively difficult to obtain. 

Many thanks to Sverre Aarseth for kind permission to use 
his N-body codes and to Simon White for useful comments. 
M. J. W. thanks the Weizmann Institute of Science and the 
Hebrew University of Jerusalem for their generous hospitality 
during part of this work. 

APPENDIX 

VIRIAL AND PROJECTED MASS ESTIMATES 
Ever since Zwicky (1937) attempted to estimate the mass of the Coma cluster from application of the virial theorem, astronomers 

have continued to use dynamical methods as a means of estimating the masses of groups and clusters of galaxies. Such an approach 
is based on the fundamental assumptions that clusters are in virial equilibrium, and that the galaxies trace the overall mass 
distribution within clusters. However, virial theorem mass estimators have at times been criticized as being biased, having large 
systematic errors, and in general being inefficient from a statistical viewpoint (e.g., Bahcall and Tremaine 1981; Wolf and Bahcall 
1972, Rood and Dickel 1979; Heisler, Tremaine, and Bahcall 1985). Checks of dynamical mass estimators almost always consider 
only isolated, uniform spherical systems, which, while a reasonable assumption for star clusters, might not be valid for observed 
clusters of galaxies, which are often neither isolated nor spherical. Furthermore, if significant subclustering is indeed a frequent 
phenomenon in rich clusters, then most clusters must still be in a previrialized stage, and, hence, mass estimates based on the 
assumption of virial equilibrium are in error (e.g., Geller and Beers 1982; Beers, Geller, and Huchra 1982; Bothun et al 1983). Thus 
it seems that a brief digression into the issue of dynamical methods of determining the masses of clusters would be of interest here, 
since the simulations used in this study attempt to treat clusters and their surrounding regions in a more realistic manner, free of a 
priori assumptions regarding the shapes, orientations, mass and velocity distributions, and relative isolation of clusters. 

To examine whether or not dynamical mass estimates for the simulated clusters studied here are indeed consistent with them 
being in a relaxed state, virial and projected mass estimates were compared to the “true” cluster mass, Mtrue, as determined by 
counting all particles within the cluster radius, R100 (see § II). For a self-gravitating system of N equal-mass particles, an estimate of 
the virial mass of the system is obtained from 

Mvir = (3uN/2G)(Yj ru ^ , (Al) 

where G is the gravitational constant, Vlos is the line-of-sight velocity of each particle, i and r^ is the projected separation between all 
pairs i,j. Bahcall and Tremaine (1981) have suggested an alternative method for estimating the mass of spherical systems which is 
based on moments of the projected mass, 

Mproj = 24ÍNG)-1 X (VfosRi), (A2) 
i 

where, as before, Vlos is the line-of-sight velocity of particle, i, and R¡ is its projected radial distance from the cluster center. 
Eqs. (Al) and (A2) were used to calculate the virial and projected masses of all clusters in two representative cases, the pancake 

and n = 0, £2 = 1 hierarchical clustering scenarios. For each cluster, only particles within R100 were used. The values of Mvir and 
Mproj thus determined were then compared to Mtrue. Mean values of Mvir/Mtrue and Mproj/Mtrue from all clusters were 

<Mvir/Mtrue> = 1.17 ± 0.23 , 

<Aiproj/Mtrue> = 0.96 ± 0.33 . 

Thus it seems that on average both estimators yield reliable measures of the true cluster mass; the variance in these quantities is 
actually fairly small as well. 

Hence, these results suggest that, if these simulated clusters are indeed representative of real ones, then application of the virial 
theorem yields reliable mass estimates, which is consistent with the clusters being in virial equilibrium. Since the present epoch in 
these simulations was chosen independently on the basis of the two-point correlation function of the large-scale galaxy distribution, 
this suggests that most rich clusters should be in a relaxed state today. 
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