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ABSTRACT 
It has been suggested that electron conduction may significantly reduce the accretion rate (and star forma- 

tion rate) for cooling flows in clusters of galaxies. A numerical hydrodynamics code was used to investigate 
the time behavior of cooling flows with conduction. The usual conduction coefficient is modified by an effi- 
ciency factor, n, to realize the effects of tangled magnetic field lines. Two classes of models are considered, one 
where fi is independent of position and time, and one where inflow stretches the field lines and changes ju. In 
both cases, there is only a narrow range of initial conditions for ju in which the cluster accretion rate is 
reduced while a significant temperature gradient occurs. In the first case, no steady state solution exists in 
which both conditions are met. In the second case, steady state solutions occur in which both conditions are 
met, but only for a narrow range of initial values when n = 10-2. 
Subject headings: galaxies: clustering — galaxies: intergalactic medium — hydrodynamics 

I. INTRODUCTION 

Observations of clusters of galaxies show them to be rich in 
hot gas (108 K), and show that the cooling time of this gas is 
often less than a Hubble time (reviews by Fabian, Nulsen, and 
Cañizares 1984 and Sarazin 1986). If cooling processes are 
more important than reheating processes, then gas is cooling at 
a rate of 102-103 M0 yr-1 (the accretion rate M). The detec- 
tion of optical filaments (Cowie et al 1983; Hu, Cowie, and 
Wang 1985) indicate that some 104 K gas is present, but vast 
amounts of gas at 10-104 K gas do not accumulate during a 
Hubble time. It is frequently suggested that the hot gas cools 
quickly and forms into stars. While this may contribute greatly 
to the development of certain central dominant galaxies 
(Fabian, Nulsen, and Arnaud 1984; White and Sarazin 1987), 
few systems show evidence of star formation during the past 
several billion years (for a Salpeter initial mass function; 
O’Connell 1987). This discrepancy led Jura (1977), Sarazin and 
O’Connell (1983), and Fabian, Nulsen, and Cañizares (1982) to 
suggest that only low-mass stars form in cooling flows. They 
argue that the high pressure of the environment would reduce 
the Jeans mass and make the formation of low-mass objects 
likely. However, the pressure of the interstellar medium in star- 
burst galaxies is large, yet high-mass stars form readily. Given 
our present understanding of star formation, theoretical argu- 
ments regarding the mass of the forming stars must be viewed 
with caution. 

Alternatively, reheating processes, such as conduction, may 
prevent the hot gas from cooling and forming into stars. 
Because the gas density decreases (and the cooling time 
increases) with radius, only gas within a few hundred kilo- 
parsecs from the center (the distance is defined as the cooling 
radius) can cool in a Hubble time. However, the gas beyond 
the cooling radius contains vastly more thermal energy than 

1 The National Radio Astronomy Observatory is operated by Associated 
Universities, Inc., under contract with the National Science Foundation. 

the gas within it. Consequently, if conduction were able to 
transfer only a small fraction of the thermal energy between 
these two regions, it would be possible to reduce M consider- 
ably. 

A critical constraint on any model including conduction is 
that the observed temperature gradient be reproduced. The 
temperature contrast between the inner and outer regions is 
measured in only two cases, M87 and NGC 1275 (Perseus), 
and is found to be at least a factor of 3 cooler in the central 
region (Stewart et al 1984; Bertschinger and Meiksin 1986; 
Ulmer et al 1987). A successful conduction model would 
reproduce this temperature gradient while significantly 
reducing the accretion rate. 

One can estimate that the conductive heat flux exceeds radi- 
ative cooling for temperature gradients with a length scale of 
less than 0.5 (n/0.01 cm-3)-1 Mpc (for T = 108 K). Because 
this is larger than a cluster cooling radius, conduction can 
easily dominate radiative losses. However, a tangled magnetic 
field will shorten the electron’s mean free path and could 
reduce the conduction coefficient by orders of magnitude. 
Stewart et al (1984) and Sarazin (1986) have pointed out that a 
balance between radiative losses and conductive heating 
throughout the cluster would be rare, since it occurs only for a 
narrow range of densities. In reply, Bertschinger and Meiksin 
(1986) show that the conduction coefficient can grow more 
rapidly than the radiative loss term with increasing radius. 
Even if radiative cooling dominates in the central region of a 
cooling flow, such as M87 and NGC 1275 (Stewart et al 1984; 
Bertschinger and Meiksin 1986), it may be balanced by con- 
ductive heat transport at larger radii, which is where the great- 
est contribution to the accretion rate (M) occurs. In the steady 
state solutions of Bertschinger and Meiksin, the mass accretion 
rates are reduced by a factor of 3-10 below the rates without 
conduction. Also, Tucker and Rosner (1983) developed a 
hydrostatic model for M87 in which heating by relativistic 
particles is distributed by thermal conduction ; radiative accre- 
tion does not occur in their model. 
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There is concern as to whether these steady state solutions 
are stable and whether a cluster cooling flow would naturally 
evolve to this end state. We have made time-dependent hydro- 
dynamic calculations to determine whether such solutions are 
long-lived and whether conduction is, in general, important in 
the cluster environment. 

II. BASIC EQUATIONS AND METHOD 

We have used a one-dimensional time-dependent numerical 
hydrodynamic code to follow the evolution of a cluster cooling 
flow. A modified King mass distribution is used for the cluster 
potential : 

p = p0(l + r2/r2)~3/2 . 

Following Bahcall (1977), we use a core radius rc = 250 kpc, 
and p0 = 1.8 x 10-25 g cm-3. The potential at r = 0 is 
— 9 x 1016 cm2 s-2 (corresponding to a line-of-sight velocity 
dispersion of 1000 km s“1), and the mass at 2.5 Mpc is 
1 x 1015 Mq. The fluid equations that are solved are very 
similar to those used by White and Sarazin (1987), except that 
terms with time derivatives have been retained and a conduc- 
tivity term has been added. The equations are 

dp | p d(r2v) _ qp -a ;r|m 

dt r2 dr iCOOI 

dv ÔP GMp 
P dt + dr r2 ’ 

P 
dE 
dt -(r- 1)£^= -p2a + 12. 

r2 dr 

The conduction coefficient k is given by either the Spitzer value 
or the saturated value, depending upon the conditions in the 
flow. This conduction coefficient is modified by an efficiency 
term p that reflects the reduction of the mean free path of 
electrons by tangled magnetic field lines (0 < p < 1 ; equivalent 
to the coefficient/used by Bertschinger and Meiksin 1986); p is 
the most important parameter in this study. Thermal insta- 
bilities are assumed to grow at the rate given by linear analysis 
(Mathews and Bregman 1978; Balbus 1986), and when pertur- 
bations become nonlinear, the gas involved is removed from 
the cooling flow. Following White and Sarazin (1987), this is 
represented as a loss term in the fluid equations, and the rate at 
which mass is removed from the flow is given by l/icooi times a 
correction factor due to the thermal conductivity (described 
below). 

i Conductivity is able to suppress the growth of thermal insta- 
bilities for wavelengths less than some critical wavelength 
(Field 1965): 

where A is the radiative cooling function given by Edgar 
(1987). The removal of gas by thermal instabilities has been 
modified by multiplying the rate of gas removal by 
exp [—(Acrit/r)

m] to reflect the damping of small wavelength 
perturbations by conduction. Including this effect is the 
primary difference between our models and previous works on 
this subject. When the critical wavelength is greater than the 

radius at which the gas parcel lies, thermal instabilities are 
suppressed. When m is large there is an extremely sharp cutoff, 
and when m = 1 the cutoff is rather smooth (we have tried 
several values of m and other methods of removing gas, but 
there was little influence on the results; only the m = 8 case will 
be discussed in detail). A weakness in this approach is that 
conduction suppresses the growth of the initial perturbations, 
not the perturbations that have become nonlinear (which is 
what is represented in the fluid equations). However, this 
description is probably representative of the true situation, and 
as we have found, the results are extremely insensitive to such 
details. 

The numerical code used for this investigation is a one- 
dimensional (spherically symmetric), time-dependent formula- 
tion described by Ruppel and Cloutman (1975) and Cloutman 
(1980). The equations are linearized in the time-advanced vari- 
ables and are solved by matrix inversion. The formulation is 
efficient, allows for time steps greater than the Courant time (it 
can be used either implicitly or explicitly), and can represent 
either a Lagrangian or an Eulerian flow; here it is run implic- 
itly in an Eulerian mode. 

Initially, isothermal gas with a temperature of 108 K and a 
central density of 5 x 10“ 3 is placed in hydrostatic equilibrium 
in the gravitational field of the cluster. For the outer boundary 
conditions we take the derivatives in the temperature and pres- 
sure to be zero. Values for p and n are chosen, and the simula- 
tion is allowed to run for 15 x 109 yr. We have not included 
the effects of cosmological processes, such as cluster formation 
and expansion of the universe. 

These initial conditions correspond to a cosmological time 
shortly after the epoch of cluster formation. Cluster gas would 
relax within the cluster potential and reach a temperature 
characteristic of the isothermal potential well in a few sound 
crossing times (a few x 109 yr). 

III. MODELS WITH CONSTANT CONDUCTION EFFICIENCY 

When the magnetic fields are tangled and the conduction 
efficiency is small, the cooling flows behave as though there 
was no conduction; quantitatively, this occurs when p is less 
than 0.003 (corresponding to 2crit = 50 kpc). For the choice of 
initial conditions, the flow within the cooling radius (about 200 
kpc) reaches a steady state after 12 x 109 yr, which is deter- 
mined by the isobaric cooling time of gas with the given initial 
conditions. At this time, substantial temperature gradients 
exist in the flow (more than a factor of 3 decrease from the 
exterior to the interior), and the accretion rate is about 500 M0 
yr “1 within the cooling radius (about 200 kpc). 

In contrast, when the magnetic field are well aligned and 
conduction is efficient, steady state solutions develop in which 
radiative losses are balanced by conductive heating. The range 
of p for which this occurs is 0.02-1, corresponding to Acrit > 
160 kpc (this includes the straightforward case of simple 
Spitzer conduction). Thermal instabilities are suppressed 
everywhere, so the accretion rate is zero. However, the tem- 
perature gradient produced is quite small, in conflict with some 
X-ray observations. 

The intermediate regime, 0.003 < p< 0.02 is of special inter- 
est. For solutions in this range, no steady state solution exists 
in which radiative losses are balanced by conductive heating 
within the cooling radius. This can be seen in Figures la-Id, 
which cover the period when conductive heating becomes 
overwhelmed by radiative losses in a model where p = 0.008 
(the final conditions after 15 x 109 yr are also given). Cooling 
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Fig. 1.—Accretion rate (a), temperature (b), density (c), and velocity (d) for a cluster cooling flow where ^ = 0.008. Each plot is a time sequence of curves, marked 
in billions of years. 

becomes dominant because the balance between radiation and 
conduction is not a stable one. Radiative cooling occurs iso- 
barically at every location, so as the temperature decreases 
slightly, the gas is compressed and cooling increases. The 
decline in the central temperature also leads to an increase in 
the temperature gradient, which is beneficial for the conductive 
heat transfer, but the conduction coefficient decreases quite 
rapidly with temperature. In this range of fi, a decrease in the 
temperature leads to a greater increase in the radiative cooling 
than in the conductive heating. The situation becomes less 
favorable for conduction as cooling proceeds (Fig. 1). 

For the model where ¡á = 0.008, we have examined the 
behavior of the temperature gradient and the accretion rate 
during the period when radiative losses surpass conductive 
heating (Fig. 2). There is a 4.2 x 108 yr period when the tem- 
perature contrast is at least a factor of 3 while the accretion 
rate is suppressed by at least a factor of 3. It is possible, but 
unlikely, that a cooling flow could be viewed in this configu- 
ration. 

The models may also be analyzed by determining the range 
of /z in which the observations are reproduced when all models 
are run for the same amount of time (in this case, 15 x 109 yr, 

but the results are fairly insensitive to the actual value). In 
Figure 3 we show the ratio of the temperature contrast (at 10 
kpc compared with the outer, uncooled region) and the ratio of 
the total accretion rate relative to that for the case without 
conduction. There is only a small range in n where a significant 
temperature gradient develops while the accretion rate is also 
reduced. The conditions for which T(10 kpc)/108 K and 
M/M0 ^ 2 occur for —2.18 < log ¡i < —1.83, and these 
quantities are less than j for —2.04 < log /¿ < —1.92. We see 
no physical reason why a cluster would naturally have this 
value of fi. 

IV. A MODEL WITH A VARYING CONDUCTION COEFFICIENT 
In the preceding model, we assumed that the tangling of the 

magnetic field was unrelated to the dynamics of the system and 
was a constant value in time and space. However, the processes 
likely to exist in cooling flows, such as the infall of gas, recon- 
nection of field lines, and motion of galaxies through the hot 
medium, will probably alter both the large- and the small-scale 
structure of the magnetic field. In particular, the inward flow of 
gas could lead to more efficient conductivity by stretching the 
field lines and increasing the mean free path of the electrons. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

32
6.

 .
63

9B
 

BREGMAN AND DAVID Vol. 326 642 

Fig. 2.—Temperature contrast between gas at 10 kpc and the outer 
uncooled gas, and the accretion rate relative to the nonconduction case, given 
as a function of time for the model where fi = 0.008. During a brief period, a 
significant temperature gradient exists while the accretion rate is suppressed. 

Fig. 3.—Temperature contrast and accretion rate (relative to the noncon- 
duction case) are shown after 15 x 109 yr for a range of ¿u for the basic model 
(upper panel) and the case where inflow alters the conduction efficiency (lower 
panel). In only a narrow region of parameter space is the temperature gradient 
significant while the accretion rate is suppressed. 

This could lead to a self-regulating model where initially the 
thermal conductivity is poor in a cluster cooling flow. The 
cooling flow continues until the conductivity is sufficiently 
increased to balance radiative losses with conductive heating; 
a steady state model ensues in which no flow exists and the 
accretion rate is zero (an idea first suggested to us by W. 
Forman). 

To develop this thesis, one needs a quantitative description 
that can connect the mean free path of thermal electrons to the 
characteristics of the flow. This is a complicated issue that 
depends upon the spectrum of irregularities in the magnetic 
field, something we know little about. Faraday rotation obser- 
vations in clusters (Jaffe 1980) suggest that the coherence 
length of the magnetic field and the electron mean free path are 
~20 kpc, so that conductivity depends sensitively on the 
topology of the magnetic field. We adopt the simple model that 
scattering centers are fixed in the magnetic field, which is 
frozen into the fluid. Then the distance between scattering 
centers, s, behaves as 

ds/dt = s dv/dr . 

When the flow accelerates inward, as occurs in cooling flows, 
dv/dr is positive and the electron mean free path grows with 
time. To calculate cooling flow models in which this occurs, we 
begin the calculations as before (fi constant everywhere) and 
then determine new local values for n(r, t) oc min [s(r, í), d], 
where d is the Coulomb mean free path. A series of such calcu- 
lations with a range of initial values for ji were made. 

When conduction dominates the flow from the outset 
lfi(t = 0) > 0.02], the solutions are unaltered compared with 
the previous model (§ III). Also, little change was found in 
cases for low values of fi(t = 0) (< 0.001). In a Hubble time, 
¡i{r, t) does not increase enough to bring the conductivity coef- 
ficient into the range where the heat flux can balance radiative 
losses. One noticeable difference is that the improvement of the 
conduction coefficient within the cooling radius has pushed 
inward the locations at which thermal instabilities occur. The 
most interesting results occur in the intermediate domain, 
where 0.02 > n(t = 0) > 0.001. Compared to the above model 
(§ III), there is a broader range of initial conditions for which a 
temperature gradient exists at the same time as the accretion 
rate is suppressed (Fig. 3, lower panel). This condition appears 
to persist in time (it is moving toward a steady state within the 
cooling radius), and the region in which thermal instabilities 
occur is considerably closer to the center of the cluster. 

As with the preceding model, the reduction of the accretion 
rate along with the existence of a significant temperature gra- 
dient occurs over only a small range of parameter space. The 
explanation for this is that, in converging flows, the velocities 
(and velocity gradients) in the outer regions are small, so that p 
does not change much near the cooling radius. It is precisely 
the region near and beyond the cooling radius that contains 
the thermal energy that one would like to conduct to the inner 
region. Unfortunately, efficient thermal coupling between the 
inner and outer region does not in general develop. 

V. DISCUSSION AND CONCLUSIONS 

For the conduction models considered, it is difficult to find 
solutions where the temperature gradient is considerable while 
the accretion rate is suppressed. To understand this result, we 
consider the simple analytic model in which the temperature at 
the cooling radius is held constant while the temperature at the 
origin is allowed to vary. To avoid an infinite heat flux at the 
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origin, we demand that the temperature gradient go to zero 
there (dT/dr = 0 at r = 0) and adopt a temperature profile 
between the cooling radius (T = at rc), and the origin (T — 
T0) of 

T = To + (ff (Tc-T0). 

Then, for isobaric cooling, the ratio of the conductive heat flux 
to the radiative cooling rate is 

rjKT^-^-To), 

where ß — din A/d ln T, and A is the radiative cooling func- 
tion. For some value of n, a solution exists in which radiative 
cooling is balanced by conductive heating provided that 
drj/dT0 < 0, a condition that exists when 

r0 > Tc(9/2-/?)/(! 1/2-/?) - 

For the temperature range of interest, ß & j, so T0 > 0.8 Tc 
(when this argument is applied to the temperature profiles from 
the models of White and Sarazin 1987, T0 > 0.7Tc). Thus, if 
radiative losses are to be held in check by conductive heating, 
only mild temperature gradients may exist. 

The results of the calculations are insensitive to the details of 
the suppression of thermal instabilities, or how gas is removed 
from the system (i.e., the values of q, m). There are two reasons 
why such details are unimportant. First, when cooling begins 
to overwhelm conductive heating, drj/dT > 0, and a runaway 
situation occurs with cooling proceeding rapidly. Second, since 
the velocities in cooling flows are subsonic, the initial pressure 
profile, P(r), is nearly independent of time; consequently, 
cooling occurs isobarically. To illustrate the effect of these con- 
ditions, suppose that certain thermal instability modes were 
suppressed by artificially increasing the critical wavelength by 
some factor while holding n constant. For a brief time, thermal 
instabilities are less widespread, so more gas is retained and the 
mean density is higher. Consequently, the gas cools more 
rapidly, and the critical wavelength decreases sharply with 
temperature, soon reaching the stage where thermal insta- 
bilities grow. Such an alteration to the model leads to minor 
quantitative changes in the results (slightly higher density in 
the cooling region), but no qualitative differences. We tried 
several different schemes for removing gas from the flow when 
thermal instabilities occur, including allowing the gas to cool 
completely (cooling halted at 104 K) before removal, and not 
removing the cooled gas at all (it piles up in a few zones near 
the origin). None of these schemes led to substantive differ- 
ences from the above results (although quantitative differences 
were found and the numerical solutions often became difficult 
to calculate). We conclude that our results are insensitive to 
many of the details of the calculations. 

To summarize, we have investigated two cooling-flow 
models in which the effects of conduction are considered. The 
standard conduction coefficient is modified by a factor 

which is the conductive efficiency. This efficiency factor, which 
has a range of 0-1, reflects the reduction of the conductivity 
coefficient due to tangled magnetic fields. In the first model, fi 
remains fixed in space and time for a particular hydrodynamic 
simulation. A series of simulations, each with a different value 
of ju, show that there are no steady state solutions in which 
radiative losses balance conductive heating and where a sub- 
stantial temperature contrast is reproduced. From the time- 
dependent evolutionary models, the amount of time or range 
of parameter space in which these two conditions are met is so 
small that it is unlikely that more than a tiny fraction of clus- 
ters possess these properties. Separately, Meiksin and Bert- 
schinger (1987) have calculated similar models and come to 
similar conclusions. 

The second model considered is one where the magnetic field 
lines are stretched and the mean free path of thermal electrons 
increases as the gas flows inward. If the conductive heat flux 
were to increase sufficiently, radiative losses could be balanced 
while thermal instabilities are suppressed and the accretion 
rate is reduced. However, numerical simulations show that 
solutions of this type occur only for a narrow range of initial 
conditions. Such solutions do not generally occur because only 
one flow time has elapsed during 15 x 109 yr in the region near 
the cooling radius ; hence conductivity is not improved greatly 
in that region. Since the thermal reservoir lies beyond the 
cooling radius, it is precisely this region for which the conduc- 
tivity must be improved if the flow is to be substantially 
altered. 

It may be premature to dismiss the role of conduction 
because such models failed to produce a significant tem- 
perature gradient and reduce the accretion rate. Temperature 
gradients are only measured well in a few cases, Perseus being 
the best example. Young stars and cooled gas are also detected 
in Perseus. While Perseus is probably a system where conduc- 
tion is unimportant, there may be systems where conduction 
dominates the flow properties. Such clusters would have little 
or no temperature gradient, a shallower density gradient than 
in cases without conduction, no cool gas, and no star forma- 
tion. While all clusters with optical filaments have cooling 
times less than a Hubble time (Hu, Co wie, and Wang 1985), 
not all clusters with short cooling times contain optical fila- 
ments. Conduction may be important in this second class of 
objects. We suggest the possibility that two classes of clusters 
exist, high- and low-conduction clusters, whose properties are 
distinguished by temperature gradients, the presence of cooled 
gas, and the activity of star formation. 
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