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ABSTRACT 
The ‘standard” cosmology of cold dark matter (CDM) in a flat universe with Gaussian, scale-invariant 

fluctuations, which is so successful in explaining the major properties of galaxies and their clustering on mod- 
erate scales, fails to account for the observed clustering of clusters and streaming velocities on scales - 30-100 
h 1 Mpc. Assuming that these observations are being interpreted correctly, we consider an open Friedmann 
model where CDM and baryons contribute comparably to the mean mass density. In this model the CDM is 
responsible for galaxy formation, while the presence of the baryons induces a large-scale feature in the spec- 
trum of fluctuations at the pre-recombination Jeans mass, giving rise to structure on very large scales. Using 
linear analysis and simulations based on the Zeldovich approximation, we find the resultant cluster-cluster 
correlation function and mean streaming velocity to be compatible with the observations. 
Subject headings: cosmology — dark matter — elementary particles — galaxies: clustering — 

galaxies: formation 

I. INTRODUCTION 
The cosmology where the universe is dominated by some 

sort of cold dark matter (CDM), with the “ standard ” assump- 
tions of critical density (Q = 1) and Gaussian, scale-invariant 
initial fluctuations, is very successful in explaining the major 
observed properties of galaxies (e.g., Blumenthal et al 1984, 
hereafter BFPR; Frenk et al 1985; Blumenthal et al 1986; 
Dekel and Silk 1986). With appropriate “biased” galaxy for- 
mation it can also reproduce the clustering of galaxies on 
scales up to ~ 10 /z“1 Mpc (Davis et al 1985) and perhaps even 
the “voids” of a few tens of megaparsecs (White et al 1987). 
But there is recent evidence for significant structure on even 
larger scales, perhaps up to ~100 /z_1 Mpc, which poses a 
nontrivial difficulty for this CDM scenario (and for any other 
scenario which is based on the “ standard ” assumptions, such 
as the neutrino scenario). 

One crucial observation is the superclustering of clusters of 
galaxies. It is characterized, for each richness class, by a cluster- 
cluster correlation function which can be approximated by 
(Bahcall and Soneira 1983; Klypin and Kopylov 1983) 

Ur)^(2r/dy1-8 , (1) 

where d is the mean separation between neighboring clusters of 
the given class. For example, the correlation function of Abell 
clusters of richness R > 1, for which d & 55 h~1 Mpc, is 
approximated by equation (1) between r % 7 h~1 Mpc and 
r > 100 /z_1 Mpc. (Here h is the Hubble parameter in units of 
100 km s"1 Mpc-1.) The signal is significantly positive at least 
out to 30 /i-1 Mpc; on larger scales the data are less significant 
(Ling, Frenk, and Barrow 1987; N. Kaiser, private 

1 Lick Observatory Bulletin, No. 1084. 

communication), but there is no evidence that the function 
goes negative. In the standard biased CDM picture the gal- 
axies and the clusters are assumed to arise from peaks above a 
threshold va in the locally Gaussian density fluctuations after 
being smoothed on the relevant scale. Then £cc is approx- 
imately related to the two-point correlation function of the 
matter, ^(r), by 

èJr) = exp [(v/<r)2£(r)] - 1 , (2) 

(Kaiser 1984; Politzer and Wise 1984; see Jensen and Szalay 
1986 and Bardeen et al 1986 for a more detailed discussion) 
which becomes a simple linear proportion for ^cc(r) 1. In 
“standard” nonbiased CDM ^ is expected to go negative at 
rc = 18 h~2 Mpc (Bond and Efstathiou 1984), and with the 
required bias it would go negative at an even smaller scale. 
Thus, equation (2) implies a negative Çcc for r > rc, in conflict 
with the observed result. (In the case of a universe dominated 
by light neutrinos, ¿cc was found numerically [Barnes et al 
1985] not to be much larger than Ç and to be independent of 
the cluster richness—also in disagreement with the observa- 
tions.) 

The other puzzling finding of potentially great importance is 
the bulk motion inferred for elliptical galaxies and clusters in a 
spherical region ~60 /z-1 Mpc in diameter around us 
(Burstein et al 1986; Dressier et al 1987). The best fit of a 
uniform bulk motion to the data, which consists of redshifts 
and independently obtained distances, yields a streaming 
velocity of V = 599 ±104 km s-1 relative to the microwave 
background frame of reference. Related results have also been 
obtained by other observers (Rubin et al 1976; Collins, Joseph, 
and Robertson 1986). The velocity field in this region, when 
studied in more detail, seems to be dominated by a spherical 
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infall toward a point attractor at a distance of ~45 ft-1 Mpc 
and in the general direction of Centaurus—the direction of the 
“bulk” motion vector (S. M. Faber, private communication). 
Nevertheless, if the sample were uniform and complete to a 
given distance, then the mean (“bulk”) velocity within this 
volume is still a meaningful measured quantity which should 
be reproduced with nonnegligible probability by the theoreti- 
cal model, independently of the detailed complex velocity 
pattern within the volume. But one should be aware of the 
possibility that the depth of the sample of E galaxies is effec- 
tively smaller than the quoted 60 /i-1 Mpc and is perhaps not 
even uniform across the sky. The effective depth has recently 
been estimated to be smaller by a factor of ~2 (Kaiser 1987), 
and there are indications that the ESO survey used in the south 
is actually less deep than the UGC survey which was used in 
the north (S. M. Faber, private communication). Missing gal- 
axies behind the “ attractor,” which should be falling in a direc- 
tion just opposite to the mean bulk motion, could result in an 
overestimation of the mean velocity. We therefore perform our 
analysis over spheres with radii in the wide range 20-140 h~1 

Mpc. This should allow an improved comparison with the 
observed results as the understanding of the sampling effects 
develops. 

The bulk velocity, if real, also poses a severe difficulty for the 
standard scenarios. In a linear analysis, the mean-square mass 
fluctuation and bulk velocity over spheres of radius R inside 
some large volume Vu are related to the power spectrum via 
(e.g., Peebles 1980) 

and 

=(è 4n{a° H°)2f2{Q) \yk< 1 ^|2] w2{kR) *(4) 

where 

m) = 
d log ô(a) 

d log a \a = a :Q° 

a is the universal scale factor, d is the fluctuation amplitude, 
and W(kR) is a window function which is the Fourier trans- 
form of the window function in position-space. For a “top- 
hat ” window of radius R in position-space (normalized to have 
a unit volume) one has (Peebles 1980) 

W(kR) = 3/(kR)3[sin (kR) - kR cos (kR)] . (5) 

For normalization one can use the rms fluctuation of the 
number of galaxies which is observed to be ôN/N = 1 over 
spheres of radius 8 k_1 Mpc (Peebles 1982; Davis and Peebles 
1983). So for a given spectrum, assuming ôM/M < ôN/N as is 
appropriate if the galaxies arise from density peaks in Gauss- 
ian CDM fluctuations, one can predict an upper limit for the 
rms bulk velocity on any given large scale. With the standard 
CDM spectrum the predicted rms streaming velocity over 
spheres of R = 60 k-1 Mpc is way below the observed value, as 
we discuss further in § II below. (See also Bond 1986; Vittorio, 
Juszkiewicz, and Davis 1986; Vittorio and Turner 1986.) 

These observations of very large scale structure could poss- 
ibly be explained if the fluctuation spectrum had more power 
on very large scales. For example, the cluster-cluster correla- 
tion function, based on preliminary estimates (Dekel 1984h), is 

expected to have a large amplitude qualitatively similar to the 
observed one because the clusters, as a result of the large-scale 
coherence length, are “ superbiased ” into forming in 
“ superpancakes.” And extra power in the fluctuation spectrum 
on large scales produces higher values for the bulk motion 
velocity. Note that, because of the k2 term, the ÔM/M integral 
(eq. [3]), which is used for normalization, is much less affected 
by the power on large scales than the V integral (eq. [4]). 

It is not easy to imagine physical mechanisms which might 
generate such large-scale power while retaining the desirable 
features of the CDM model on the galaxy to cluster scales. In 
this paper, we direct special attention to the baryon-photon 
Jeans mass as a phenomenon that would be important in a 
hybrid model in which cold dark matter and baryons contrib- 
ute comparable amounts of the matter in the universe. (We 
have also called attention to this possibility in earlier pub- 
lications: Dekel 1984a, b; Primack, Blumenthal, and Dekel 
1986; Primack 1986.) If baryons provide a significant fraction 
of the mass density in the universe, and if Qh2 > 0.05, the 
spectrum develops a secondary peak on a very large scale cor- 
responding to the baryon-photon Jeans scale just prior to the 
plasma recombination (e.g., Gott and Rees 1975; Peebles 
1980), 

Àj^SOiQh2)-1 Mpc. (6) 

Fluctuations on smaller scales are Jeans stable and cannot 
grow until recombination (z ä 103), while on larger scales their 
growth is unimpeded. 

In order to preserve the desirable features of the CDM 
scenario—in particular, in order to have galaxy-scale fluctua- 
tions grow and survive the era of Silk damping—the model 
also incorporates cold dark matter. If Qcdm is substantially 
larger than Qb, the fluctuation power on large scales would not 
be significantly enhanced; thus we consider a hybrid model 
with approximately equal quantities of baryonic and cold dark 
matter. But, as is well known, the baryonic density is con- 
strained by the comparison of standard big bang nucleo- 
synthesis calculations with the abundance of the light nuclides : 

Dj, < 0.035 h~2 (7) 

(Yang et al 1984; Boesgaard and Steigman 1985). Thus we 
consider a model with Qb æ 0.1 and Qcdm « 0.1. Such a cosmol- 
ogy is therefore open : Qtot ä 0.2. 

Although it conflicts with the dogma of cosmic inflation that 
Q = 1, lowering Q might itself be helpful in accounting for 
large-scale structure: the spectrum shifts to larger scales 
roughly in proportion to (Q/i2)-1, like the scale corresponding 
to the horizon at the time when the universe became matter- 
dominated (zeq). If Qh2 » 0.1, the feature in the fluctuation 
spectrum corresponding to is indeed on a scale much larger 
than the scale where the galaxy correlations are observed; with 
the normalization ÔM/M < 1 at 8 k-1 Mpc there is more 
power on large scales, as required. Indeed, one could turn our 
argument above around and argue that the measurements of 
the mass clustered on galaxy and cluster scales (Faber and 
Gallagher 1979; BFPR) already suggest that Q is substantially 
less than unity, that the recent evidence (such as bulk motion) 
for enhanced large-scale power is consistent with this, and that 
for such an open universe the baryons are likely to be an 
important component of the model. 

A danger in considering a fluctuation spectrum with 
enhanced large-scale power is that the observed upper limits 
on the fluctuations in the microwave background temperature 
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constrain the amplitude of the spectrum from above on various 
scales (see the review by Kaiser and Silk 1987). Finding a sce- 
nario that can satisfy simultaneously the opposite constraints 
is a nontrivial task. No difficulty is expected in our C + B 
model with the isotropy of the microwave background on large 
angular scales (see also Silk and Vittorio 1987), and the pre- 
dicted anisotropies at 6° are close to but not in excess of the 
Melchiorri et al (1981) 95% confidence level bound (J. R. 
Bond, private communication). But there is possibly a diffi- 
culty on small angles, discussed in more detail in § IV. Our 
attitude, for the purposes of the present paper, will be to 
proceed to consider the C + B model despite this potential diffi- 
culty. Perhaps, as Kaiser and Lasenby (1987) have suggested, 
the small-angle AT/T upper limit of Uson and Wilkinson 
(1984) is somewhat overstated. There are several other pos- 
sibilities. The small-angle AT/T fluctuations can be washed 
out by reionization, which could naturally occur in this hybrid 
model due to the early formation of subgalactic objects from 
the CDM component of the fluctuations. Another way out 
would be to invoke a nonzero cosmological constant (e.g., Vit- 
torio and Silk 1985), which could also remove the cosmological 
curvature term and thus make the model flat and therefore 
consistent with inflation (Peebles 1984; Turner, Steigman, and 
Krauss 1984). Finally, increasing Q is another alternative 
approach to decrease the potential conflict with the AT/T con- 
straints. There have been several recent suggestions to modify 
the assumptions underlying the standard big bang nucleo- 
synthesis calculations that lead to the restriction equation (7) 
on Qft. In order to explore parameter space better, we also 
consider the large-scale structure in a G + B model with Qb = 
Ocdm = 0.2 and Qtot = 0.4. 

Our main objective in this paper is to explore the extent to 
which models such as C + B with extra large scale power can 
indeed account for the observations of enhanced clustering of 
rich clusters and of large-scale bulk motion. In § II, we discuss 
the physical origin of the fluctuation spectrum in more detail, 
and the results of the linear calculation of the bulk motion. 
Section HI contains our main results, which are obtained by 
applying the Zeldovich approximation to realizations of the 
C + B fluctuation spectrum. The streaming velocity is calcu- 
lated within spheres of various sizes surrounding randomly 
chosen points in the realization volume. The results are quali- 
tatively similar to those of the linear calculation. Rich clusters 
are identified in our realizations using a cluster finding algo- 
rithm. Remarkably, the cluster-cluster correlation function has 
both the right shape (~r-2) and approximately the right 
amplitude to correspond to the observed ¿cc. These results 
support the hypothesis that fluctuation spectra with enhanced 
large-scale power, such as arise in the C + B model, can indeed 
account for the large-scale observations. Similar conclusions 
have recently been reached by Bond (1987) and Bardeen, Bond, 
and Efstathiou (1987) who used a different technique and con- 
sidered a larger class of models. 

In § IV we discuss our results. We also attempt to assess the 
difficulties with the C + B model, and consider alternatives. 

The Zeldovich realizations discussed in this paper were done 
using a technique that allows one to put equal weight in each 
logarithmic interval of wave number k. This was important 
here, since we are simulating a fluctuation spectrum with sig- 
nificant weight over a large range of k. It is essential in this 
technique not to use the fast Fourier transform. Since the tech- 
nique may be of use in other contexts, we describe it in some 
detail in Appendix A. Appendix B explains how we define 

clusters for the purpose of calculating their correlation func- 
tion. 

II. LINEAR CALCULATIONS 
We start from the usual CDM assumptions of a primordial 

Harrison-Zeldovich scale free (\Sk\
2 & k) spectrum of adia- 

batic Gaussian fluctuations. The fluctuation spectrum for the 
cold dark matter plus baryon (C + B) model was calculated 
using a code in which the radiation and baryons, cold dark 
matter, and three species of massless neutrinos are treated as 
separate components. Free streaming of the neutrinos is 
treated to sufficient accuracy by expanding in moments. 
Photon diffusion or Silk damping is put in “by hand,” by 
erasing the radiation plus baryon fluctuations at the appropri- 
ate damping time. 

The characteristic feature of this fluctuation spectrum is a 
large peak at the scale of the baryon-photon Jeans mass 2j, 
with smaller peaks superposed on the smooth spectrum at 
smaller scales. The smooth spectrum on smaller scales arises as 
in the usual cold dark matter model (see, e.g., BFPR). 
Logarithmic growth in the cold dark matter amplitude ôcdm as 
a function of scale factor a = (1 + z)_ 1 occurs between horizon 
crossing and matter domination at zeq, with growth pro- 
portional to a after zeq and until the mean density of the uni- 
verse deviates significantly from the instantaneous critical 
density. Growth of fluctuations in the baryonic component is 
inhibited by Compton drag until recombination on scales 
smaller than 2j, and baryonic fluctuations on scales smaller 
than ~1014 M0 are completely erased by Silk damping. After 
recombination, the amplitude of the baryonic fluctuations ôb 
catches up to <5cdm. In this model, these fluctuations are 
responsible for forming galaxies and clusters. Wiggles in the 
spectrum below reflect the fact that fluctuations in the 
radiation-baryon fluid oscillate rather than grow on these 
scales before recombination. 

In order to understand how the C + B spectrum gets 
enhanced large-scale power, it is perhaps clearest to compare it 
to a pure CDM model with the same Qtot and the same initial 
primordial amplitude. On scales larger than 2j, fluctuations 
that start at early times with the same amplitude grow by 
essentially the same amount. But on smaller scales, the baryons 
contribute no growth in the C + B model, so the total fluctua- 
tion amplitude is smaller. However, since we follow the stan- 
dard procedure and normalize both fluctuation spectra so that 
ôM/M = 1 on the relatively small scale of 8 /z-1 Mpc, the net 
result is to boost the amplitude on large scales of the C + B 
spectrum. 

This is illustrated in Figure 1, which plots the normalized 
ÀM/M versus R, assuming h = 0.5. One observes that the 
large-scale power of the Q = 0.2 C + B spectrum is enhanced 
over the Q = 0.2 cold dark matter spectrum (C) by the effect 
just discussed. It is also enhanced over the D = 0.4 C + B spec- 
trum and the Q = 1 C spectrum by the shift of power to larger 
scales in more open universes discussed in § I. Since the nor- 
malization of an Q = 1 CDM spectrum will typically be further 
reduced by a bias factor, the effective enhancement of large- 
scale power in the Q = 0.2 C + B model is considerable. 
However, a corollary is the reduced small-scale power, which 
results for example in a relatively late time of galaxy formation. 

The root-mean-square bulk motion velocity corresponding 
to each of these fluctuation spectra can be calculated from 
equation (4) in the linear approximation. This is plotted in 
Figure 2 as a function of the radius R of the spherical window. 
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Fig. 1.—Fluctuation amplitude ÖM/M for four models: fí = 1 and Q = 0.2 with 90% of the matter density in cold dark matter and 10% in baryons (these are 
labeled C), and Q = 0.2 and Q = 0.4 with equal matter density in cold dark matter and in baryons (C + B). The Hubble constant has been assumed to be h = 0.5. The 
curves are normalized so that ÔM/M = latR = 8/i_1 Mpc; thus they are all “ unbiased.” 

In each case, the spectrum has been normalized according to 

ÖM/M = 1 at 8/i"1 Mpc (8) 

as in Figure 1. This is reasonable for the Q = 0.2 C + B model, 
since in that case the total mass density is comparable to that 
in galaxy and cluster halos, and thus the visible galaxies may 
trace the mass fairly well; i.e., there is no biasing. It is probably 
unreasonable for the Q = 1 CDM model, for which the fluctua- 
tion spectrum and hence the velocity should be lowered by a 
biasing factor of at least 2 (Davis et al 1985; see a review by 
Dekel and Rees 1987). Thus, biased CDM predicts a bulk 
motion which is much smaller than that claimed in the recent 
observations. The Dressier et al (1987) value is shown on 
Figure 2, for comparison. But it is interesting that the Q = 0.2 
C + B model comes close. This motivated the Zeldovich 
approximation calculations discussed in the next section. 

III. VERY LARGE SCALE STRUCTURE IN ZELDOVICH 
REALIZATIONS 

For given spectra of fluctuations we generate particle reali- 
zations using the procedure described in Appendix A. We use 
N = 323tc/6 particles in a sphere of radius R = 160 /z-1 Mpc. 
This procedure enables us to represent the spectrum over a 
large range of wavenumbers from 1.2 x 10“3 to 0.3 h Mpc-1 

(the Nyquist frequency). 
We calculate bulk velocities using all of the points, i.e., all of 

the “galaxies” as defined in Appendix B, without applying a 
<5min density threshold. (The results were found to be insensitive 
to the way we select “galaxies”; imposing different <5min values 
had very little effect. Thus the peaks and the underlying mass 
distribution have essentially the same bulk motion in this cal- 
culation.) The position and peculiar velocity of each “ galaxy ” 

is given by the Zeldovich approximation (Appendix A). We 
then apply “ top-hat ” windows in position-space, by selecting 
100 centers at random inside the 0.825R radius of each realiza- 
tion and considering concentric spheres about these centers of 
various radii such that they are encompassed by the volume of 
the realization excluding the 0.05R outer shell. In each volume 
we calculate the three-dimensional bulk motion of the center of 
mass, V and the dispersion about it. We then calculate the rms 
value of V over all windows of the same size within the given 
realization. The results are presented in Figures 3 and 4. Figure 
3 summarizes the results; each curve represents an average 
over several realizations. As Figure 4 shows, the Zeldovich 
approximation results show a big scatter from realization to 
realization which is comparable to the typical bulk velocity on 
the scale R. In cases where there is significant power on scales 
larger than R the bulk velocity and the scatter remain high on 
all scales within R, reflecting the strong contribution of large 
wavelengths to the integral in equation (4). Comparing Figures 
2 and 3, it is seen that the Zeldovich approximation results 
averaged over the realizations have approximately the same 
values and a similar trend with R as the linear approximation, 
but are systematically higher, ~10% higher on the smaller 
scales increasing to ~ 20% higher on the largest scale plotted. 

We have normalized the velocities using ÖM/M = 1 at 8 ~1 

Mpc, where ÔM/M is calculated in the linear approximation as 
in the previous section. The linear calculation of ÔM/M near 
ôM/M « 1 may be an underestimate. This would result in an 
overestimated bulk velocity. One may try to estimate the non- 
linear correction using Zeldovich realizations (e.g., Hoffman 
1988), but such an estimate suffers from severe uncertainties. 
But from the AT-body simulations of Davis et al (1985), it 
appears that the renormalization factor is only ~15%. For 
definiteness we have normalized all the fluctuation spectra 
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pIG 2. Root-mean-square bulk velocity for various models as a function of the radius R of the spherical window function, calculated using eq. (4) 
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Fig. 3—Root-mean-square bulk velocity for various models as a function of the radius R of the spherical window function, calculated from Zeldovich 
approximation realizations as explained in the text. Error bars represent the standard deviation of the rms velocity of several realizations. The star in this and the 
next figure represents the measurement reported by Burstein et al. (1986) and Dressier et al. (1987). 
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pIG 4 Bulk velocity from several realizations of the Q = 0.2 C + B model. Heavy line and error bars are the same as on Fig. 3. Note the large spread between 
different realizations. 

according to equation (8) using equation (3) and ignoring this 
nonlinear renormalization factor. It should be kept in mind 
that there is in any case some uncertainty in the normalization 
because of the possibility of biasing. Recall that the model of 
CDM with Q = 1 requires “ biased galaxy formation ” with 
ÔM/M smaller by a factor ~2.5 (Davis et al. 1985), so the 
predicted bulk velocity should be smaller by the same factor. In 
the models with Q ~ 0.2, however, there is no need for biasing, 
and the adopted normalization is appropriate. 

Clusters are identified as described in Appendix B. We use 
<5min = 1 to define “galaxies.” To obtain clusters of comparable 
number density to Abell clusters of richness >1, i.e., nA1 = 6_ 
x 10~6 (/T1 Mpc)-3 (Bahcall and Soneira 1983), we use d/d 

which corresponds to n/n « 200 and iVmin = 3. The resulting 
cluster-cluster correlation function is plotted as a function of 
Ir/d in Figure 5. In the CDM case with Q =1 and no biasing, 
the predicted £cc is too low in amplitude by a factor of ~3 
when compared to the observations (eq. [1]), while in all three 
open models the two agree very well. If anything, the ampli- 
tudes in the hybrid C + B models are a little too high. But 
considering the fairly large scatter between different simula- 
tions illustrated in Figure 6, and the uncertainty in the 
observed correlation function, all three open models should be 
regarded as consistent with observations. 

The observed correlation functions of less rich clusters 
(Schectman 1985) and of superclusters (Bahcall and Burgett 
1986) can also be approximated by equation (1), where d is in 
each case the mean separation of the objects considered. We 
attempted to see if a similar scaling relation obtains in our 
calculations. Figure 7 shows the correlation function for 
“ small clusters,” defined so that their number density is half 
that of Abell’s of richness > 1 (i.e., for these objects, d = AAh~1 

Mpc). In the cluster finder for this case we used iVmin = 2. The 
similarity of the results in Figure 7 to those in Figure 5 suggests 

that the correlation function of clusters calculated from the 
Zeldovich approximation does indeed scale with r/d. 

In parallel to our calculations, Bardeen, Bond, and Efsta- 
thiou (1987) have studied a large variety of models using the 
statistical formalism of Bardeen et al. (1986) and assuming 
linear Gaussian noise. One of the models they consider (their 
“BCO”) is the same as our Q = 0.2 C + B. The agreement 
between their results for ^cc and ours is good. 

One issue that seems worth commenting on is that the fact 
that the galaxy-galaxy and cluster-cluster correlation functions 
£gg(r) and ¿cc(r) observationally have similar logarithmic slopes 
is not a trivial consequence of a model like C + B, since they 
arise quite differently. The matter two-point correlation func- 
tion is initially rather flat at early times, but it steepens rapidly 
with time as a result of the action of gravity. Indeed, this fact 
can be used to identify the present epoch in AT-body calcu- 
lations (e.g., Davis et al. 1985), assuming that galaxies trace 
mass or at least £gg(r) oc £(r). However, the ~r~2 slope of Çcc in 
Figure 6 does not represent the result of the nonlinear action of 
gravity, which is not included in the Zeldovich approximation, 
but instead reflects the initial fluctuations. It is thus interesting 
and perhaps significant that the slope of £cc comes out roughly 
right in the models considered. 

IV. DISCUSSION 

The results presented in the last section are evidence that the 
hybrid open cold dark matter plus baryons (C + B) model can 
reproduce with high probability the large-scale streaming 
velocity V and the enhanced cluster-cluster correlations Çcc 
indicated by the recent observations. Although we considered 
models with equal Qb and Qcdm, it is clear that similar results 
will obtain if these quantities are only roughly equal. More 
generally, these calculations suggest that an adiabatic, Gauss- 
ian, scale-invariant (Harrison-Zeldovich) fluctuation spectrum 
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Fig. _5.—Cluster-cluster correlation functions for clusters equivalent to Abell R> l selected from Zeldovich realizations for four models, plotted vs. x = 2r/d, 
where d = 55 /i-1 Mpc is the mean separation between clusters. Error bars are the standard deviation of the mean of several realizations. Heavy solid line is an 
approximate fit to the observational data, eq. (1). 

.1 1 
x 

Fig. 6.—Cluster-cluster correlation functions as in Fig. 5, from eight realizations of the Í2 = 0.2 C + B model. There was a similar spread among the individual 
realizations for the other models studied. 

© American Astronomical Society Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

32
6.

 .
53

9B
 

BLUMENTHAL, DEKEL, AND PRIMACK Vol. 326 546 

.1 i 
X 

Fig. 7.—Cluster-cluster correlation functions for “small clusters” with mean separation d = 44 h~1 Mpc selected from Zeldovich realizations for four models, 
plotted vs. x — Ir/d. 

can possibly lead to very large scale structure consistent with 
observations if there is enhanced large-scale power in the fluc- 
tuation spectrum. 

We regard our results which are based on the Zeldovich 
approximation (Grinstein and Wise 1987), as suggestive rather 
than definitive; in particular, they suggest the desirability of 
more elaborate calculations, presumably with Af-body codes. 
In addition to checking such quantities as V and Çcc in such 
calculations, it will be important to verify that the model also 
retains the desirable features of the original cold dark matter 
model on the scale of galaxies and clusters. 

Since observations indicate that there is roughly one order 
of magnitude more dark matter than visible baryonic matter 
(stars and gas) in galaxies and clusters, most of the baryons in a 
model like C + B must somehow be converted into dark 
matter. (Or else, a smaller fraction of the baryonic material 
than the cold dark matter participates in the formation of 
galaxies and clusters, which seems unlikely.) The two known 
forms that these baryons might take without running afoul of 
standard limits are small, unevolved stars (i.e., “Jupiters” or 
“brown dwarfs”; see Dekel and Shaham 1979) and compact 
objects arising as the remnants of very massive stars (Carr, 
Bond, and Arnett 1984) or of ordinary stars (Larson 1987). In 
either case, the open question is to understand why the initial 
mass function for these objects is not a simple extrapolation of 
that of the visible stars in our vicinity. But since the origin of 
even the local IMF is not really understood, a primordial IMF 
peaked either at small or large masses is not at all impossible. 

It is not clear how seriously to take the apparent conflict 
between the prediction of the Q = 0.2 C + B model for ÔT/T on 
the 4Í5 scale, which Bardeen, Bond, and Efstathiou (1987) have 
calculated to be 8 x 10“5 for h = 0.75, and the Uson and 
Wilkinson (1984) 95% confidence level field upper limit of 

2.9 x 10“5. Kaiser and Lasenby (1987) have recently shown 
that the Uson and Wilkinson data are not as restrictive as their 
quoted upper limit implies. If, however, the conflict is regarded 
as significant, there are at least three possible explanations. 
The simplest is to suppose that reionization occurs early 
enough to wash out the small-angle fluctuations in the cosmic 
background radiation. 

Suppose that the universe was entirely reionized at a redshift 
Zi and remained ionized thereafter. The optical depth is then 

ri(Zi) c 
1(2,.)= oTnedl = — oTnb QI = 0.072 Qb 0h0I, (9) 

Jo **0 

where 

Sne* 0 <jt = ——r = 0.6652 x 10 24 cm2 
r 3m2 

is the Thomson cross section, and 

= p (1 + zfdz 
Jo (1 +z)2(l +Q0z)112 

=ih0 
{C(1+Q°Zi)3/2 -1] - 3(1 _ n°)C(1+ßoZi)1/2 ~1]} • 

(10) 

Setting t(z¿) equal to unity, it follows that, to be effective in 
washing out small-angle fluctuations in the cosmic back- 
ground radiation, reionization must have occurred before » 
34 for the C + B model with Qb = Qcdm = 0.1 and h = 0.5. For 
M ä 105 M0, just above the Jeans mass right after recombi- 
nation, 3M/M = 8.5 (with ÔM/M =1 at 8 /i“1 Mpc). For 
Q = 0.2, the growth factor for linear fluctuations from z = 34 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
8 

8A
pJ

. 
. .

32
6.

 .
53

9B
 

VERY LARGE SCALE STRUCTURE IN OPEN COSMOLOGY 547 No. 2, 1988 

to z = 0 is 13.2; thus 1 a fluctuations had amplitude 0.65 at zf. 
Only positive fluctuations stronger than ~ 3 cr will have col- 
lapsed by this time, but enough energy may have been liber- 
ated in a resulting early generation of stars to cause 
reionization: it is fairly marginal but not impossible. 

It is not at all clear, however, that reionization can actually 
help resolve the small-angle bT¡T problem. Vishniac (1987) 
has recently argued that reionization can actually introduce 
more fluctuations than it erases, especially in an open universe. 
But this analysis should not be regarded as conclusive because, 
for example, it ignores the possible effects of the reionization 
on the velocities of the gas particles. 

The other two modifications to the model are either to 
increase Q above 0.2 or to add a cosmological constant. In 
either case, there is more growth of the fluctuation amplitude 
from recombination to the present epoch, so the amplitude at 
recombination, and hence the prediction for ÔT/T, is smaller. 
There is also a geometric effect in the same direction for small- 
angle ÔT/T. As we have seen in the previous section, an 

= 0.4 C + B model produces ample large-scale structure. 
Presumably, an Q = 1 model with comparable amounts of 
cold and baryonic matter is not in serious conflict with the 
observed structure either. 

Such models are in conflict with the standard nucleo- 
synthesis constraints, of course; but several physical pheno- 
mena have been studied recently which could modify the 
nucleosynthesis constraints (Audouze, Lindley, and Silk 1985; 
Applegate and Hogan 1985; Applegate, Hogan, and Scheerer 
1987; Alcock, Fuller, and Matthews 1987; Dimopoulos et al. 
1987) . In particular, assuming that the cold dark matter con- 
sists of weakly interacting particles of mass ~ 3 GeV, the small 
fraction of the CDM particles which annihilate at late times 
(>103 s) may increase the deuterium abundance enough (via 
annihilation into energetic nucleon-antinucleon pairs which 
subsequently dissociate helium and, in the case of neutrons, 
also directly form deuterium) to relax the deuterium constraint 
on Qb (D. Seckel, private communication; Reno and Seckel 
1988) . The 7Li constraint is apparently also relaxed, so the only 
nucleosynthesis constraint remaining is that from 4He, which 
implies < 0.2-0.3, with the upper limit dependent on the 
neutron lifetime. Thus, for example, an Q = 1 model with 
Qb « 0.3 appears to be allowed. But our Qfc = 0.2, Qcdm = 0.2 
C + B model may still be inconsistent with nucleosynthesis, 
because Qcdm = 0.2 may not be large enough for late CDM 
annihilation to be sufficiently effective. 

There is no astrophysical evidence to preclude adding a 
cosmological constant, and there is even the motivation of 
adding just the right value to make the universe flat, and thus 
consistent with inflation (Peebles 1984). The desirable features 
of the C + B model are preserved, but the ÖT/T conflict is 
eliminated. The problem with this approach is that it requires a 
seemingly implausible amount of fine-tuning of the parameters 
of the theory. Also, galaxy formation occurs rather late in such 
a model. 

Finally, there are of course other modifications of the stan- 
dard cold dark matter model besides those we have considered 
here that might preserve its good behavior on galaxy to cluster 
scales but add large scale power. Many were considered by 
Bardeen, Bond, and Efstathiou (1987), including ad hoc modifi- 
cation of the fluctuation spectrum. Another model that may be 
worth studying is the addition to Qcdm » 0.1 of one or more 
flavors of very light (few eV) neutrinos in an open cosmology 
with Qv « 0.1 (see Shafi and Stecker 1984). The presence of 
cold dark matter is known to modify (Valdarnini and Bono- 
metto 1985; Bonometto and Valdarnini 1985; Achilli, 
Occhionero, and Scaramella, 1985) the feature in the fluctua- 
tion spectrum associated with neutrino free streaming (Bond 
and Szalay 1983). But with very light neutrinos the free stream- 
ing length Àv = 120(mv/10 eV)-1 Mpc is so large that there is 
probably little effect from the CDM. Thus this model will also 
have enhanced power in the fluctuation spectrum on very large 
scales. But this model is indeed an ad hoc hybrid which postu- 
lates comparable densities of two types of nonbaryonic dark 
matter. 

As we have discussed, considering an open cosmology both 
itself enhances the large-scale power and, in the context of the 
C + B model, is required by the usual nucleosynthesis con- 
straints. As is well known, the most straightforward interpreta- 
tion of the observational data on galaxies and clusters suggests 
Í2 ä 0.2 (Peebles 1986). The most interesting recent measure- 
ment that bears on the value of Q is the galaxy counts as a 
function of redshift of Loh and Spillar (1986). Although these 
observations suggest that Q > 0.4, they need to be confirmed. 
Other recent galaxy count measurements by D. Koo, R. Kron, 
and A. Szalay suggest a lower value for Q (D. Koo, private 
communication). 

In conclusion, it is not clear whether one should be opti- 
mistic or pessimistic about cold dark matter in the light of the 
evidence for very large scale structure that we have discussed. 
We have considered a plausible physical mechanism for boost- 
ing the fluctuation spectrum on large scales; namely, the addi- 
tion to the cold dark matter of a comparable density in 
baryons in an open cosmology. This results in large-scale 
streaming velocities and cluster-cluster correlations compara- 
ble to those observed. There may be <577 T problems associated 
with this C + B scheme, but there are potential solutions. Alter- 
natively, perhaps fluctuations in the cosmic background radi- 
ation are on the verge of detection. 
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APPENDIX A 

ZELDOVICH REALIZATION OF GAUSSIAN FLUCTUATIONS 

We want to represent a random-phase realization of a given power-spectrum of small density fluctuations, 

P(k) = <|^)|%|=fc, (Al) 

in a range kmin < k< kmax, by appropriately distributing N particles in an arbitrary given volume V (e.g., a unit sphere), without 
necessarily requiring periodic boundary conditions. The particles are first distributed uniformly inside the volume, at the points of a 
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comoving cubic grid denoted by q. According to the Zeldovich (1970) approximation, at a time t, the comoving position of each 
particle is displaced by 

-a(t)bm(g), (A2) 

where a(t) is the universal expansion factor and b(t) is a spatial constant whose growth rate is determined by the linear Poisson 
equation in an open Friedmann model. This growth, as a function of the cosmological redshift z, can be approximated fairly well by 

b(t) = b0/(l + Qz), Ù = 2.5 Q/(l + 1.5 Q), (A3) 

which grows like b(t) oc i2/3 until 1 + z « Q_1 and approaches a constant value b0 later on. To represent “adiabatic” fluctuations, 
each particle is assigned a corresponding peculiar velocity relative to the Hubble flow of 

-a(t)b(t)y\r(q), (A4) 

representing only the growing modes. With the approximation (A3) one has today 

b(t = t0) = b0ÙH0. (A5) 

The spatial perturbation \|/(#) is taken to be the superposition of Nk small-amplitude plane waves, 
Nk u 

'!'(?) = ¿ sin (ki - q + </>,) 
i= 1 Ki 

The corresponding density fluctuation is 

which, in the linear approximation, is simply 

%) = b(t) 
3 
E 

dij/j 
dqj 

Nk 
: b(t) ¿ cos (k¡ - q + (p^l 

i=l ( 

(A6) 

(A7) 

(A8) 

The amplitudes P¡/2 are chosen at random from a Gaussian distribution in which the variance is the power spectrum, P(k). The 
phases ^ are chosen uniformly at random in the interval (0, 2n). The directions of the wavevectors, kh are chosen uniformly at 
random. Their amplitudes, kh are chosen at random within (kmin, kmax) such that the number density of waves is w(/c). In practice, we 
select the k values via a function u(k) which satisfies 

w(k)d3k = 
Nk 

“(kmax) - «(kmin) 
du(k). (A9) 

The values of u(k) are chosen uniformly at random in the interval u(kmin) < u(k) < w(/cmax), and the corresponding wavenumbers k are 
used in the superposition. 

The weight function w(k) could, in principle, be arbitrary. For example, the choice w(/c) = const., corresponding to u(k) — k3, 
would give a uniform coverage of the three-dimensional /c-space. This choice is equivalent to the use of a cubic grid in /c-space, which 
is forced when periodic boundary conditions are imposed and Fourier transforms are calculated (Efstathiou et al 1985). But then 
the representation of the spectrum for small /c’s is poor and the representation of the spectrum for large /c’s is wasteful. A much more 
“ uniform ” representation of the spectrum over the whole range (kmin, /cmax) is achieved with an equal number of waves per 
logarithmic interval in k, i.e., 

u(k) = \n k , (A10) 

which corresponds to 

w(k) = 
Nk 

4rc(ln kmax - In kmin) 
(All) 

We find that the distribution of <5 over 8000 grid points inside a unit sphere, as calculated by equation (A7) with b 1 and 
Nk ä 1000 per each decade of k, indeed approximates a normal distribution very well. It is not due only to the fact that the 
amplitudes were chosen from a Gaussian distribution; the random phases and the large number of waves in every small In k interval 
tend to generate a Gaussian distribution based on the central limit theorem. 

The desired fluctuations are represented well down to a comoving wavelength corresponding to twice the initial grid separation 
(the Nyquist frequency), 

= 2w/femax = 2(K/JV)1/3 . (A 12) 

The above procedure was tested by Fourier transforming the resultant <5(^) back to /<-space (using standard FFT) and calculating 
the power spectrum from it. A CDM spectrum was reproduced to an accuracy better than 20% over the range (kmin < 2n/R, /cmax). 

In order to normalize the spectrum in the linear regime we write the mean square mass fluctuation averaged over spheres of 
radius Ras 

<(ôM/M)2yR = ü)b2(t) 00 P(k)W2(kR)d3k , 
Jfcmin 

(A 13) 
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where W(kR) is the Fourier transform of the window in position-space, chosen here to be a “top hat” of radius R (eq. [5]). (The 
factor I is due to the fact that we use sine’s rather than exponentials in the Fourier analysis.) The functions P(k) and b(t) are 
normalized such that on a certain scale, Ru, 

({ÔM/M)2yRu = b2{t) . (A 14) 

For example, if there is no bias, one would choose b0 = 1 at Ru = $h~1 Mpc based on the present distribution of bright galaxies. 

APPENDIX B 

CLUSTER FINDING IN THE ZELDOVICH APPROXIMATION 

We explain here how we define clusters of “ galaxies ” in a realization of the matter distribution which has been generated as 
described in Appendix A. 

According to the Zeldovich approximation, the local density at an Eulerian position 

r(q,t) = a(t)lq-bm(q)'] 
which is a function of the Lagrangian position q and the time i, is given by 

det 

(Bl) 

(B2) 

where p is the mean density. After the deformation tensor is diagonalized locally (the tensor is symmetric under the 
assumption of no rotation), with eigenvalues À^q) defined such that ^ > A2 > /I3, the density can be written as 

p = p(l - b^y^l - bl2y\l - b^y1 . (B3) 

In the linear regime, b^x <1, the local density fluctuation can be approximated by 

<5p/p ä b(Ài -f ^2 + ^3) • (B4) 

As a necessary selection criterion for particles that may represent “galaxies” one can use öp/p > <5min, with some chosen value for 
^min (e-g*> in a ' top-hat ” model, the linear values <5min = 1.06 and 1.7 correspond to turnaround and collapse, respectively). 

We can require further that the collapse is three-dimensional to a certain extent. Consider a point which is a local positive 
maximum of Ày. the density there increases as b(t) grows, approaching infinity at some critical time in which bXj = 1. This 
corresponds to a collapse along the local principal axis j. If the fluctuation in a given region is dominated by a given wavelength, 
then a coherent structure is formed with dimensions comparable to that wavelength. The geometry of the structures, at least near 
the critical formation epoch, is determined by the ratios of the eigenvalues. Flat sheets will be formed where À1 > /l2, elongated 
filaments where æ 22 > À3 (at the intersections of sheets), and compact spheroidal objects where À1 ^ À2 ^ (at the “knots” 
where “ filaments ” intersect). An alternative necessary condition for candidates for “ galaxies ” that may belong to rich clusters is 
therefore bÀ3 > Àmin, with some chosen positive value for Amin. 

In order to assign “ galaxies ” to clusters we apply a minimum pair separation criterion to their positions as given by equation 
(Bl). Each cluster member is required to be separated from its nearest neighbor (who is also a cluster member) by less than a critical 
separation d. The separation parameter d is related to a density threshold by p/p = (d/d)~3, where d is the mean separation between 
neighbors. We also apply a minimum number requirement Nmin, which was chosen to be 3 for Abell clusters and 2 for “ small 
clusters.” The parameter d is then chosen by trial and error such that the mean number density of the resultant clusters is 
comparable to the given number density of the clusters of interest. The center of the cluster is defined as the center-of-mass of the 
cluster members. 
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Note Added in Proof—A. C. S. Readhead, C. R. Lawrence, S. T. Myers, and W. L. W. Sargent (in I AU Symposium 130, 
Evolution of Large-Scale Structures in the Universe, ed. J. Audouze and A. Szalay (Dordrecht: Reidel), in press [1988]) have 
announced new upper limits on ÔT/T at 7.15; the latest (95% confidence level) bound is ST/T < 1.7 x 10"5 (A. C. S. Readhead, 
private communication, 1987 December 3). According to recent calculations by J. Holtzman of UCSC (1988, in preparation), this 
limit is consistent with out Q = 0.2 C + B model, with a cosmological constant such that the universe is flat, only if /i « 1 and 
ÍVQ0.3. Raising Q allows/i smaller and/or Qft/Q larger. 

A recent reconsideration of the effect of reionization at z » 100 (G. Efstathiou and J. R. Bond, M.N.R.A.S., 227, 33p [1987]) 
indicates that it is capable of substantially reducing ÔT/T on a scale of a few arcminutes. If such reionization occurs, our B + C 
model may be consistent with observations even without a cosmological constant. 
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