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ABSTRACT 

Finite-temperature neutron star models with a fluid core, solid crust, and thin surface fluid “ocean” are 
capable of sustaining a broad diversity of normal modes of oscillation. We have performed linear, adiabatic, 
Newtonian, nonradial pulsation analyses of such stars, including the elastic effects of the neutron star crust. 

For any star, there are two general categories of nonradial oscillations: spheroidal modes and toroidal 
modes. The spheroidal modes, in turn, are comprised of several subclasses. The p-,/-, and 0-modes are well 
known from conventional stellar pulsation theory. For neutron stars, two additional classes of modes that we 
term s- and i-modes result from crustal elasticity and are relatively new to stellar astrophysics. The > and 
p-modes have periods of a few tenths of milliseconds, with higher overtones having shorter periocis. There are 
two groups of 0-modes. The core 0-mode displacements are confined almost completely to the fluid core, while 
the surface 0-modes are limited primarily to the thin fluid layer overlying the crust. The core 0-modes have 
quadrupole (l = 2) periods H/ > 10 s, and the surface 0-modes have quadrupole periods ilg > 50 ms, both 
for T < 108 K. The 0-mode periods are roughly inversely proportional to the internal temperature Tc. The 
s-modes are essentially normal modes of shear waves in the solid neutron star crust. These modes have quad- 
rupole periods Hs < 1 ms and depend strongly on the crust thickness. Waves can also propagate on the solid- 
fluid interfaces, and the normal modes corresponding to such waves are the interfacial (i-) modes. The periods 
of these modes depend strongly on The local density and temperature at the interfaces. r • i 

In the absence of rotation and magnetic fields, the toroidal oscillations of neutron stars consist of a single 
subclass: the torsional oscillations, which are normal modes of elastic waves in the solid crust. The fundamen- 
tal torsional mode has a quadrupole period of ~20 ms and is remarkably independent of the stellar mass. 
The overtones have shorter periods Htn « 2 ms Ar/n, where n is the overtone number, and Ar is the crustal 
thickness in kilometers. ^ . 

Damping mechanisms we have investigated include gravitational radiation damping, neutrino emission 
damping, electromagnetic radiation from an oscillating stellar magnetic field, nonadiabatic effects, and interna 
friction and viscosity. Which of these mechanisms dominates depends upon the type of mode, the spherical 
harmonic index /, the equilibrium model, and other parameters. , • v u * 

Finally, we suggest that surface 0-modes may be excited during thermonuclear outbursts in X-ray bursters 
and may lead to observable quasi-periodic oscillations. 
Subject headings: pulsars — stars: interiors — stars: neutron stars: pulsation 

I. INTRODUCTION 

a) Observational Motivation 
Two disparate types of observations are suggestive of non- 

radial oscillations in neutron stars. The drifting subpulses and 
micropulses detected in some radio pulsars provide one 
example. The other is the quasi-periodic variability seen in 
some X-ray burst sources, as well as the quasi-periodic oscil- 
lations (QPOs) recently discovered in a number of bright X-ray 
sources (Lewin and van Paradijs 1986). 

i) Pulsars 
Individual pulses in radio pulsars are often composed of one 

or more subpulses having characteristic widths of 3-10 degrees 
of longitude (Manchester and Taylor 1977; Smith 1977). In 
some pulsars the subpulses drift systematically through the 
integrated pulse profile, with a separation time P2 between 

successive subpulses ranging from 10 to 50 ms (Manchester 
and Taylor 1977; Wright and Fowler 1981). The drift band 
spacing P3 is the time between subpulses at a fixed phase (see 
Fig. 5 of Taylor and Manchester 1977) and ranges from 10° to 
102s (Cordes 1981). 

Microstructure, consisting of short duration (0.1 ms) spikes, 
has been observed in ~ 12 pulsars. These micropulses are often 
quasi-periodic, with periods ranging from ~ 0.1 to 5 ms 
(Cordes 1981, and references therein) and are of low ß, varying 
on time scales of -10 ms (Cordes 1976). Boriakoff (1976) first 
proposed that the 0.9 ms quasi-periodicity he detected in the 
microstructure of PSR 2016 + 28 might be due to neutron star 
oscillations. Van Horn (1980) elaborated upon this proposal by 
suggesting that the micropulse periodicities might be due either 
to / = 0 or to / = 1 p-modes of the neutron star and that the 
subpulse-to-subpulse variations might be caused by beating of 
p-modes closely spaced in period. 
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Van Horn (1980) also suggested a possible association of 
subpulses (P2 ~ 10-50 ms) with torsional oscillations of the 
neutron star. This suggestion contains the possibility of a 
simple explanation of the subpulse drift phenomenon. In a 
rotating star, the nonradial oscillation frequencies are split into 
closely spaced multiplets, analogous to Zeeman splitting in 
atomic physics. The difference in frequency between rotation- 
ally split modes may correspond to the drift band spacing P3. 

Clearly, the drifting subpulses and micropulses represent 
complex phenomena which at present are not well understood. 
In addition, there are complications in connecting any postu- 
lated neutron star oscillations with observations of real 
pulsars. For example, any oscillation must be observed 
through the pulse window. This severely limits the number of 
pulses that can be observed and broadens the pulse width. Also 
the oscillations are passed through the pulsar emission mecha- 
nism, which is a noisy and as yet poorly understood process 
(see Ruderman and Sutherland 1975; Arons 1983, and refer- 
ences therein; Jones 1981, 1982, 1984). Further, many of the 
computed neutron star oscillation modes have periods which 
are longer than the pulsar rotation period. Rotational effects 
will thus be important for these modes, and such effects have 
not yet been treated. Pulsars typically also have magnetic field 
strengths B - 1012 G. Carroll et al (1986) have recently shown 
that such large fields strongly alter those modes concentrated 
near the neutron star surface, further complicating identifica- 
tions with observed short time scale behavior in pulsars. 

ii) X-Ray Burst Sources 

The properties of X-ray burst sources have recently been 
reviewed by Le win and Joss (1984) and by Joss and Rappaport 
(1984), and the outbursts are believed to be produced by explo- 
sive thermonuclear burning of matter accreted onto the surface 
of a neutron star. 

In a number of X-ray burst sources and in several X-ray 
transient sources, periodicities ranging from ~10 to 70 ms 
have been observed (see Livio and Bath 1982; Livio 1982; 
Sadeh and Livio 1982). Livio and Bath (1982) in particular 
have reviewed several possible models for the origin of these 
phenomena and have concluded that g-mode oscillations of 
the neutron star are the most promising candidates. Very 
recent calculations by McDermott and Taam (1985, 1987) 
strongly suggest that the / = 1 ôf-mode, with minimum period 
~12 ms, may be directly excited in the outermost surface 
layers due to the e-mechanism associated with rapid alpha 
captures. 

b) Prior Theory 
i) Overview of the Neutron Star Oscillation Spectrum 

A general stellar model can sustain two main classes of non- 
radial oscillations: spheroidal modes and toroidal modes. For 
a neutron star with a fluid core, solid crust, and surface fluid 
“ ocean ” of molten crustal material (a configuration we term a 
“three-component” neutron star), the spheroidal oscillations 
consist of several different subclasses: p-modes, g-modes, an 
/-mode, and modes new to stellar pulsation theory that we 
have named s- and i-modes. The p-modes are essentially 
normal modes corresponding to acoustic waves, and their 
properties are sensitive to the mean density of the neutron star. 
The period of a p-mode can be estimated as the travel time of 
an acoustic wave across the star. This yields a period Hp ~ 
RJct ~ 106 cm/1010 cm s"1 -0.1 ms. The p-modes result 
from the thermally induced buoyancy of perturbed elements of 

matter. Estimates of the p-mode periods are more difficult than 
for the p-modes, because the mode properties are very sensitive 
to the thermal properties of the equilibrium model. The 
p-modes and the p-modes are separated by a single/-mode for 
each / > 2. The period of the /-mode is close to, but slightly 
longer than, that of the fundamental p-mode. The s- and 
i-modes are, respectively, spheroidal and toroidal shear- 
dominated modes. The periods of these modes can be esti- 
mated as the time required for a shear wave to cross the crust 
of a typical neutron star. For a crust thickness of 2 km and a 
shear speed ct — 108 cm s_1, we obtain a period —2 ms. The 
i-modes are interfacial modes concentrated at the fluid/solid 
interfaces in the neutron star. The periods of these modes 
depend very sensitively upon conditions near the interfaces. 

ii) Spheroidal Oscillations of Zero-Temperature Models 
The detailed general relativistic theory of nonradial stellar 

pulsations was first developed in a series of pioneering papers 
by Thorne and his coworkers (Thorne and Campolattaro 
1967; Thorne 1969; Campolattaro and Thorne 1970; Ipser and 
Thorne 1973). The most recent addition to this literature is the 
paper by Lindblom and Detweiler (1983), which contains a 
comprehensive study of the quadrupole /-modes for models 
based on 13 different equations of state. The mode periods 
were found to lie between —0.1 to 1 ms for a broad range of 
central densities and for a diverse set of equations of state. 
Gravitational wave damping times were found to be typically a 
few tenths of a second. 

Although the present paper is confined to a study of non- 
radial oscillations, it seems appropriate also to mention briefly 
the previous work on radial oscillations, which comprise a 
special case corresponding to l = 0. Such modes have been 
studied in some detail by Meitzer and Thorne (1966), by 
Bardeen, Thorne, and Meitzer (1966), and more recently by 
Glass and Lindblom (1983). Glass and Lindblom have com- 
puted the fundamental and first-overtone radial pulsation 
modes for neutron star models constructed from 13 different 
equations of state and have found periods of a few tenths of a 
millisecond, of the same magnitude as nonradial acoustic 
modes. 

iii) Toroidal Oscillations of Zero-Temperature Models 
Toroidal oscillations are less familiar than spheroidal modes 

in stellar pulsation theory because they are generally all degen- 
erate at zero frequency. Restoring forces provided by rotation, 
magnetic fields, or nonzero shear modulus break this degener- 
acy. In a neutron star with a solid crust, these modes, also 
called torsional oscillations, thus have finite periods. Torsional 
oscillations of neutron stars were first considered qualitatively 
by Ruderman (1968). Hansen and Cioffi (1980) carried out the 
first detailed numerical computations, using Newtonian pulsa- 
tion theory. These calculations yielded fundamental toroidal 
mode periods of —20 ms, with the period being remarkably 
independent of stellar mass. Overtones have periods < 2 ms. 
Recently the relativistic theory of toroidal oscillations has been 
developed in a comprehensive paper by Schumaker and 
Thorne (1983). Because toroidal oscillations have zero 
Lagrangian density variations (i.e., <5p = 0), they have no time- 
varying mass quadrupole moment, and gravitational radiation 
is produced only by higher order processes. The gravitational 
radiation damping times for these modes are accordingly very 
long; Schumaker and Thorne estimate 104 yr for the quadru- 
pole modes. 
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iv) Finite- Temperature Models 
In homogeneous, zero-temperature stars, all gr-mode fre- 

quencies are zero. Either strong material discontinuities or 
finite temperatures can break this degeneracy. McDermott, 
Van Horn, and Scholl (1983) carried out the first computations 
of 0-modes in neutron star models with nonzero temperature, 
treating the star as a wholly fluid body (i.e., ignoring the 
nonzero shear stength of the crust). They found H^ > 50 ms for 
a model with central temperature ~ 108 K and showed that the 
0-mode periods vary approximately as the inverse of the 
central temperature. These modes have significant amplitude 
only in the outermost few meters of the neutron star, and they 
are only weakly damped by gravitational radiation, with 
damping times in the cooler neutron star models exceeding the 
Hubble time. 

Very recently, Finn (1987) has investigated the effect of 
density discontinuities associated with abrupt changes in 
nuclear equilibrium composition in zero-temperature models, 
using a “slow motion” general relativistic formalism. He finds 
discontinuity 0-modes associated with these interfaces. 

The effects of a solid crust upon the spheroidal oscillation 
spectrum of a neutron star were first included in the work of 
McDermott (1985). A preliminary report of these results was 
presented by McDermott et al. (1985), and the present work 
contains a detailed account of these calculations. These results 
are based upon the Newtonian theory of elastodynamics. At 
the time these calculations were done, the general relativistic 
pulsation equations for spheroidal oscillations of models with 
nonzero shear modulus had not yet been derived. This situ- 
ation has now been rectified by Finn (1987), but the Newtonian 
theory is sufficient for the purposes of this survey of the general 
properties of the oscillation modes. 

c) Structure of Paper 
Realistic neutron star models are capable of sustaining a 

wide variety of normal modes of oscillation. In this paper we 
describe the oscillation spectra of nonrotating, nonmagnetic 
neutron stars, using a linearized adiabatic analysis that 
includes the effects of the crustal elasticity. More detail can be 
found in McDermott (1985). The equilibrium configuration is a 
“ three-component ” model consisting of a fluid core, a solid 
crust, and a thin surface fluid layer we term the “ ocean.” 

The plan of this paper is as follows. The equilibrium models 
are first briefly discussed in § II. In § III we derive the 
(Newtonian) pulsation equations, including boundary and 
interfacial “jump ” conditions. A local analysis of the pulsation 
equations is carried out in § IV in order to provide a back- 
ground for the detailed numerical calculations. The numerical 
results for the spheroidal mode spectrum are discussed in § V, 
and the comparable results for the toroidal modes are dis- 
cussed in § VI. Various possible damping mechanisms for the 
nonradial oscillation modes are discussed in § VII, and in 
§ VIII we conclude with a summary and discussion of our 
principal conclusions. The numerical method used to solve the 
equation set for stellar models with internal boundaries is 
described in the Appendix. 

II. EQUILIBRIUM MODELS 
Realistic three-component neutron star models were made 

available to us from the neutron star evolutionary cooling cal- 
culations of Richardson (1980; see also Richardson et al 1982), 

and these have formed the foundation for the present investiga- 
tion. 

Richardson (1980) computed two sequences of fully general 
relativistic, quasi-static evolutionary models for cooling 
neutron stars. These calculations provide detailed numerical 
solutions of the evolutionary equations given by Thorne 
(1977). In one sequence, the stellar mass was chosen to be 0.503 
Mg, and in the second, 1.33 M0. In both sets of models, the 
material properties of the neutron star matter were assumed to 
have the following characteristics. The outer crust, extending 
down to the neutron drip point at p = 4.3 x 1011 g cm-3, was 
assumed to consist of bare Fe nuclei embedded in a uniform, 
neutralizing, degenerate electron gas, which becomes rela- 
tivistic for densities p > 106 g cm“3. In addition to the ther- 
modynamic contributions from the nuclear and electronic 
kinetic energies, the equation of state employed included con- 
tributions from photons, from the Coulomb interactions 
between nuclei and electrons, and from nuclear vibrations and 
rotations. 

Throughout the envelope of a neutron star, the Coulomb 
interaction between ions is strong. The strength of this inter- 
action is characterized by the dimensionless parameter F, 
which is the ratio of the Coulomb energy to kT (see Brush, 
Sahlin, and Teller 1966). The matter of the outer crust under- 
goes a first-order fluid/solid phase transition at the position 
where F = 155. At a temperature of 109 K, this corresponds to 
a density p ~ 5 x 1010 g cm“3. Thus, for Richardson’s evolu- 
tionary sequences, which span the range of central tem- 
peratures from 109 to 107 K, the crystallization boundary 
marking the crust/ocean interface always occurs closer to the 
surface of the star than the neutron drip point. 

An important quantity for our calculations is the shear 
modulus of the solid lattice. The prescription we have used to 
compute this is that given by Pandharipande, Pines, and Smith 
(1976): 

p = 0.3711 
ZV,#3 

21/3 (1) 

where nN is the number density of the nuclei. It is noteworthy 
that the shear speed c, = p/p - 108 cm/s is remarkably con- 
stant throughout the neutron star crust, as previously noted by 
Ruderman (1968). 

The inner crust of the neutron star, which we take to be the 
region of densities between the neutron drip point at 
p = 4.3 x 1011 g cm“3 and the base of the crust at 2.4 x 1014 g 
cm 3, is assumed to consist of nuclei with Z » 40, degenerate, 
relativistic electrons, and degenerate, nonrelativistic neutrons. 
The actual composition of the nuclei in the inner crust is taken 
from the work of Negele (1974) and of Negele and Vautherin 
(1973), who also give the zero-temperature equation of state for 
such matter. In addition to the zero-temperature thermodyna- 
mic properties, the equation of state used included the leading 
thermal corrections for the nuclei, electrons, and free neutrons. 
For the nuclei and electrons, these properties were computed 
as for the outer crust, while the thermal properties of the free 
neutrons were taken to be those of an ideal, noninteracting 
Fermi gas, modified to take account of superfluidity as dis- 
cussed by Yang and Clark (1971) and Muhlschlegel (1959). The 
effect of neutron superfluidity is to reduce the contribution of 
these particles to the heat capacity and to suppress the neu- 
trino emission from the modified URCA nucleon-nucleon 
bremsstrahlung process (Maxwell 1978; Friman and Maxwell 
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TABLE 1 
Neutron Star Models 

Mass Tc R* pc d Atcr p0 
Model (M0) (K) (km) (gem“3) (cm) (km) (gem“3) 

Fiducial 0.503 1.03 + 7 10.1 9.44+14 1.80 + 2 2.45 1.04 + 5 
NS05T7 0.503 1.03 + 7 9.839 9.44+14 3.71 + 1 2.36 5.23 + 4 
NS05T8 0.503 9.76 + 7 9.785 9.44+14 2.86 + 4 2.02 2.76+10 
NS13T8 1-326 1.05 + 8 7.853 3.63 + 15 1.75 + 3 0.41 4.24 + 9 

1979). The neutrons are superfluid from approximately the 
point of neutron drip to a density of ~ 1 x 1014 gem-3. 

At densities greater than 2.4 x 1014 g cm-3, the lattice is 
assumed to dissolve, and the core of the neutron star is taken 
to consist of a mixture of free and highly degenerate neutrons, 
protons, and electrons. The equation of state of zero- 
temperature matter in this regime is taken to be that given by 
Baym, Bethe, and Pethick (1971), extended to the highest den- 
sities by Pandharipande, as quoted by Baym, Pethick, and 
Sutherland (1971). To this zero-temperature equation of state 
are added the leading thermal corrections for the three species, 
computed as for noninteracting particles and modified for 
neutron and proton superfluidity as discussed above. The 
nucleons are superfluid over essentially the entire core. At den- 
sities above p = 5 x 1014 g cm-3, the models are assumed to 
contain a pion condensate (see Scalapino 1972). The contribu- 
tions of these particles to the material properties are negligible, 
except that they strongly enhance the neutrino emission rate 
and thus greatly accelerate the cooling of the neutron star. We 
note that, while the equilibrium neutron star models explicitly 
include the effects of superfluidity of the neutrons and protons, 
the pulsation calculations we have performed have not taken 
this into account but have simply treated the neutrons and 
protons as ordinary fluids. Thus, in particular, we are unable to 
discuss Tkachenko oscillations of the superfluid vortex lines 
(Ruderman 1970). 

a) Fiducial Model 
We have selected a 0.5 M0 neutron star model with Tc = 

1.03 x 107 K from the evolutionary sequence computed by 
Richardson (1980; see also Richardson et al. 1982) as a fiducial 
model for our nonradial pulsation calculations. Most of our 
code development has been carried out using this model, and 
we report the results of our computations in some detail. 
McDermott, Van Horn, and Scholl (1983) also have studied 
the pulsations of this model, approximating it as a completely 
fluid star, and we have also used it to perform preliminary 
calculations for a neutron star with a fluid core, solid crust, and 
a surface fluid ocean. The surface layers of this model, however, 
are approximated as a poly tropic ideal gas of fully ionized iron. 
This does not represent the microphysics well enough to yield 
reliable results for those modes which have largest amplitudes 
near the neutron star surface. For this reason, the results for 
the fiducial model are primarily of academic interest, and our 
results of more physical interest are those obtained for the 
composite models described below. 

b) Composite Models 
The equilibrium neutron star models used in most of our 

pulsation calculations are composites of Richardson’s evolu- 
tionary cores, to which are appended detailed neutron star 
envelopes constructed by Gudmundsson (1981; see also Gud- 
mundsson et al 1983). Clearly, a perfect match of core and 

envelope is not possible, and we have contented ourselves with 
requiring continuity of the pressure, temperature, radius, 
baryon number, and gravitational potential at the matching 
point, taken to be at mass density p « 1010 gem-3. The lumin- 
osity, however, has a substantial discontinuity. This does not 
affect the qualitative results of the present, adiabatic calcu- 
lations, although quantitative values for those pulsation modes 
which are more sensitive to the thermal structures of the 
models may be somewhat modified. Nonadiabatic calculations 
can be expected to be quite seriously affected, however, and we 
have avoided all but the most general of such computations for 
this reason. 

We have constructed three composite models in the manner 
described above. Two have mass M* = 0.503 M0. One of 
these, at age 0.47 yr, has central temperature Tc = 9.76 x 107 

K; this model is designated “NS05T8.” The second model, 
representing a later evolutionary stage at 155 yr, has Tc = 1.03 
x 107 K, and it is designated “NS05T7.” The remaining 
model, from a different evolutionary sequence, has mass M* = 
1.33 M0, Tc = 1.05 x 108 K, and age 0.035 yr; this model we 
designate “NS13T8.” The properties of these composite 
models, as well as those of the fiducial model, are summarized 
in Table 1. Besides M* and Tc, this table contains the stellar 
radius R*, the central density pc, the depth d of the surface 
fluid “ocean,” the thickness Aicr of the solid crust, and, finally, 
the density p0 at the base of the ocean. For a more detailed 
description of the characteristics of the composite models, see 
McDermott (1985). 

III. PULSATION EQUATIONS 

a) General Form 
The calculations described in McDermott, Van Horn, and 

Scholl (1983) are based upon a relativistic version of the 
Cowling approximation, in which all perturbations to the 
metric tensor are neglected. In the nonrelativistic limit, these 
equations reduce directly to the Newtonian fluid Cowling 
equations, which we now describe. 

In the presence of solid matter, the hydrodynamic equations 
normally used in stellar pulsation theory must be generalized 
to allow for shearing stresses that an inviscid fluid cannot 
support. The pulsation equations for nonradial oscillations 
with nonzero shear modulus are derived in an astrophysical 
context by Van Horn and Savedoff (1976) and were first 
applied to white dwarfs with crystalline cores by Hansen and 
Van Horn (1979). There is also a wealth of geophysical liter- 
ature on the subject of normal modes of self-gravitating 
spheres which provides very helpful guidance, and we have 
found the books by Lapwood and Usami (1981) snd by Aki 
and Richards (1980) and the paper by Alterman, Jarosch, and 
Pekeris (1959) to be particularly useful. The application of the 
theory to the free oscillations of the Earth (Buland 1981) has 
been very successful in revealing details about the interior of 
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our planet, and one may hope that eventually the study of 
neutron star oscillations will prove similarly successful in pro- 
viding information about the interiors of these extremely dense 
stars. 

The deformation of a solid body is described by the 
Lagrangian displacements t) of infinitesimal mass elements 
from their equilibrium positions. It is useful to define a strain 
tensor uik (see Landau and Lifshitz 1970), which for small 
deformations is given by 

1 / dw dut 
—1 + —- 
dxk dXi = uk (2) 

If the strain tensor is diagonalized at a point, the diagonal 
components represent the fractional change in the length along 
the principal axes at that point. For example, uxx is the frac- 
tional change in distance between two elements lying on the 
x-axis. The trace, uih of the strain tensor is the fractional 
change in volume of a small volume element V due to the 
deformation.1 That is % = ÔV/V = —<5p/p, where ÖV and dp 
are the changes in volume and density during the deformation. 

The equations governing the motion of a mass element are 
the continuity equation, the momentum equation, and 
Poisson’s equation: 

^ + V • (pt>) = 0 , (3a) 

^ + (» • V)» = - V • <t - V<D , (3b) 
dt p 

V20 = AnGp , (3c) 

where dojdxj is the ith component of the divergence of the 
stress tensor . 

To derive pulsation equations, we apply perturbations to 
these equations and the equations describing the behavior of 
the elastic solid and retain only terms of first order in the 
perturbation variables (see Cox 1980 or Unno ei al 1979 for 
this procedure applied to the equations of fluid dynamics; Van 
Horn and Savedoff 1976 and Hansen and Van Horn 1979 give 
the corresponding results for an elastic solid.). As usual, we use 
primes to denote Eulerian perturbations and Ô to denote 
Lagrangian perturbations (moving with the mass element). We 
assume the unperturbed state to be one of hydrostatic equi- 
librium, so that the unperturbed velocity v0 = 0. If/ represents 
a typical perturbation variable, we have in this approximation 
df/dt = df/dt + (v • V)/ ä df/dt. In particular, the Lagrangian 
perturbation velocity v is given by 

du / w-r\ du 
(4) 

The deformation of a solid produces internal forces 
described in terms of the stress tensor aik = akh which is a 
measure of the internal force per unit area. The stress tensor aik 
can be interpreted as the ith component of the force acting on a 
unit area oriented perpendicular to the xfc-axis. In the special 
case of an inviscid fluid, aik = —pdik, where p is the pressure. 
It also turns out to be useful often to refer to the traction t, 
which is the force per unit area acting across an internal 
surface. If n is the unit normal vector to such a surface, the 
traction is (7^-. 

1 We use the summation convention throughout, unless otherwise noted: 
repeated indices denote summation over all values. 

It should be observed that the equilibrium state of a star is 
much different from the equilibrium state normally considered. 
Typically, in standard elasticity theory, the equilibrium state is 
one in which the stress and strain are zero. For a star in hydro- 
static equilibrium, the stresses —pôik are extremely large. If a 
state of zero stress and strain could somehow be postulated for 
stellar material, then one would be forced into the realm of 
nonlinear stress-strain theory. Instead, the approach we adopt 
is the one used by previous workers in both astrophysics and 
geophysics. This is to define the initial strain as zero in the 
reference (hydrostatic equilibrium) state and to take the initial 
stress as Gik

{0) = —p(0)Sik. The perturbations are then small 
strains that are studied in relation to the small incremental 
stresses they produce. The problem of initial stress is not trivial 
and is discussed by Aki and Richards (1980, and references 
therein). 

For adiabatic motion in an isotropic elastic solid, the 
relationship between the incremental stress ôaik and the strain 
is 

foik = (r+ M^ik - 3«H öik), (5) 

where Fi = (d in p/d In p)s, and the elasticity of the solid is 
measured by the shear modulus p; see McDermott (1985, 
Appendix A), Aki and Richards (1980), or Van Horn and Save- 
doff (1976) for derivations of equation (5). When the 
perturbed stress tensor reduces to 0Gik -► F tfUuö^ — 
— FiP^p/p)^* = —Spadôik, which is the adiabatic Lagrangian 
perturbation for an inviscid fluid. 

A linear, adiabatic wave equation can be derived from the 
perturbed equations by assuming an oscillatory time depen- 
dence of the form u(x, t) = Ç(x)eiat, where g is the pulsation 
frequency (see McDermott 1985 for details). The result is 

A._v(i^v.„)_v(i„.vp0) 

-lrA — V • « + V<D' + — {V(!ííV • «) - (\ß • V)h 
Po Po 

-V(ii • \p) + (u - \)\p - plV2u + V(V • «)]} , (6) 

where lr is the unit vector in the radial direction, and A is 
defined by 

1 _ _1_ dpo 
- p0 dr rlPo dr ' U 

The perturbation to the gravitational potential is given by 

V2a>'= -47tG(ii-Vpo + PoV-w). (8) 

Equation (6) is the linear, adiabatic wave equation for non- 
radial oscillations of an elastic sphere. In the following sub- 
sections, we show how the angular dependence of this equation 
can be separated in two different ways, leading to the radial 
equations for the spheroidal and toroidal oscillation modes. 
From this point we drop the zero subscript on the equilibrium 
quantities. 

b) Spheroidal Modes 
The spheroidal separation of variables for the pulsation 

equations (6) and (8) is given by 

= V{r) (9a) 

<D' = mr)Ylm , (9b) 
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where Ylm(0, 0) are the usual spherical harmonics (see Jackson 
1975). When these forms are inserted into equations (6) and (8), 
the pulsation equations become 

p^
u = pfr-ArlP&-fr 

ri d ( 2du\ 
-^JrV -dï) 

Æ+l}u + 2l(l 

^4 
(10a) 

2i/_ K 
^ P r 3 r dr \dr r r 

-(?7r('l4i)-,SLPV + ?Vl ,10b) 

? i {'2 ?) - ^2“ - 4’C(1' í+^ •m) 

where 

« = 4 7 (r2c;) _ 
rz dr 

Kl + 1) 

^ TiP „ 1 dp -, 
y = — a — ——17 + 0 . 

P p dr 

(lOd) 

(10e) 

These equations are the same as those given by Van Horn and 
Savedoff (1976) or, with O' = 0, those of Hansen and Van Horn 
(1979). 

In general, stellar pulsations cause perturbations of the 
gravitational potential. Cowling (1941) showed that the basic 
features of nonradial oscillations can be obtained with reason- 
able accuracy even when O' is neglected. This “Cowling 
approximation ” reduces the order of the system of differential 
equations (eqs. [10a]-[10e]) by two, considerably simplifying 
the calculations. All of the calculations we report in the present 
work are based on this approximation, but we note here that it 
may eventually prove inadequate for modes formed deep 
within the star. 

In the core and ocean of the neutron star matter is in a fluid 
state, while in the crust it, of course, is solid. Equations (10a)- 
(10e), which are written for a solid, can easily be shown to 
reduce to the corresponding fluid equations as ► 0. To solve 
the global pulsation problem for the three-component models, 
the equations appropriate to the solid crust must be solved 
simultaneously with the fluid equations appropriate to the 
ocean and core, with the solutions coupled together at the 
ocean/crust and crust/core interfaces by suitable “jump ” con- 
ditions. The forms of these interfacial boundary conditions are 
given explicitly in the following subsection. 

For the solid crust it is convenient to recast equations (10a)- 
(10c) in the form of four first-order ordinary differential equa- 
tions written in terms of suitable dimensionless variables. We 
use the quantities 

U 1 „ dU\ ^.-(^ + 2,.—j, 

V pídV V U\ 
Za “ r ’ Z* — p\dr r + r) 9 

(11) 

where À = rxp - 2/3/i is the Lamé coefficient. These quantities 
are related to the variables used by Hansen and Van Horn 
(1979), but their definitions are slightly different than the ones 

we use here. The variables zx and z3 are, respectively, the radial 
and transverse displacements in dimensionless form, while z2 
and z4 are proportional to the radial and transverse tractions. 
The tractions appropriate to the spheroidal separation of vari- 
ables are explicitly given by 

V 

d0 
— + 

r r 

r r / sin 
dYlm 

0 d(¡) 

(12a) 

(12b) 

(12c) 

For numerical calculations, it is useful to introduce the new 
independent variable x = In (r/p), which has the virtue of pro- 
viding more uniform zoning. With this choice, and using the 
dimensionless variables introduced in equation 11, the spher- 
oidal pulsation equations (eqs. [10a]-[10e]) become, in the 
Cowling approximation, 

(l + iÆ= -(l+2^)z1+-z2 + /(Z+l)^z3, (13a) 
dx \ «3/ «3 «3 

(1 + F)^ = f-c1Ffi2-4K+ Í7F+ nFi —jzi 
dx \ 0(3/ 

+ F-4 

+ 1(1 + 1)(V - ÓFj ^)z3 + /(/ + 1)Z4 : 

dz 1 
(1 + F) ~r~ — ~zi + z4 ? dx a, 

(13b) 

(13c) 

(l + P)#i = (F-6rl^lz1-^z: 
dx «3 

+ -CiVQ2 + - {[21(1 + 1) - l]aia2 

+ 2[(/(/+l)-l]a
2}||z3 

+ (V-3)z4, 
4 

(13d) 

where 

«i =■ 

and 

a2sri-|“> + (14) 

v = 
din p _ pgr ^ _ d in Mr 

dlnr p 9 dlnr 

RJ Mt 

°2Rl 
GM* 

(15) 

For the fluid pulsation problem, a different choice of dimen- 
sionless variables is necessary. The fluid problem is second 
order, as opposed to the fourth-order system defined by the 
pulsations of the solid crust. A convenient choice of variables 
for the fluid problem is the set of “ Dziembowski variables ” 
which have been widely used in computations of the nonradial 
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oscillations of stars (see Unno et al 1979; Cox 1980): 

(16) 

These quantities are related to the dimensionless variables zf 
through by the expressions 

zi=yi. Z2=V(yi-y2), Zi=JLy2- (V) 

Note that z3 is no longer an independent quantity in the fluid 
case but is a linear combination of z1 and z2. 

In terms of the Dziembowski variables, the fluid pulsation 
equations are given by 

(l + i?)yi = ax - 3 bi + m ± i) 
L CiO2 

(18a) 

(1 + P) 
dy2 
dx 

= (Cifi2 + Ar)yl + (1 — Í7 — Ar)y2 . (18b) 

These are the forms we employ in the fluid ocean and core of 
the neutron star. 

i) Boundary Conditions 
The boundary condition at the center of the neutron star 

may be obtained by expanding y1 and y2 about the center and 
requiring that these variables be regular at r = 0. The result of 
this expansion is 

CiQ2 

~T~ 
y1-y2 = 0. (19a) 

The surface boundary condition is obtained by the require- 
ment that ôp/p -► 0 as r -► R*. We carry out expansions valid 
near the stellar surface to obtain (see Carroll 1981) 

(V - CiQ
2 - 4 + Ü)yi + Kl + 1) 

CiQ2 ^y2 = 0 . (19b) 

Because the pulsation equations are linear, they do not fix 
the absolute amplitude of the oscillations. It is customary in 
stellar pulsation theory to establish the amplitude by normal- 
izing the relative radial displacement to unity at the stellar 
surface : 

yi(RJ = 1 . (19c) 

We adopt this same convention. 
To connect the eigenfunctions yt and y2 for the fluid ocean 

and core to the eigenfunctions Zj—z4 used in the solid crust, 
appropriate interfacial jump conditions must be employed. 
The physical conditions which must be satisfied at any inter- 
face are continuity of the radial displacement and of the trac- 
tions: 

zi=yi, (20a) 

*2 = v(yi - y2), (20b) 

Z4 = 0. (20c) 

Note that the horizontal traction (proportional to z4) is identi- 
cally zero in a fluid because an in viscid fluid cannot support 
shear stresses. 

c) Toroidal Modes 
The toroidal modes of a nonrotating, nonmagnetic neutron 

star are torsional oscillations, which are normal modes of 

shear waves in the solid crust. For / = 1, these modes are mani- 
fested as a simple oscillatory twisting of the crust. For this case, 
u can be written in the form u = il x rel<Tt, where D is a general 
function of r (see Aizenman and Smeyers 1977). Illustrations of 
the velocity field for low-/ toroidal oscillations are shown in 
Saio (1982). 

The toroidal separation of variables is defined by the condi- 
tions 

V • 11 = 0 , ur = 0. (21) 

This immediately implies that = 0 and O' = 0, from the 
perturbed forms of the continuity equation and Poisson’s 
equation. Note that for any quantity/, <5/=/' + w • V/=/', 
since / depends only on r in the equilibrium model. Thus 
Eulerian and Lagrangian perturbations are identical for toroi- 
dal oscillations. 

In spherical coordinates, the separation of variables that 
satisfies conditions given in equation (21) is 

<22) 

Substitution of these expressions into the linear adiabatic wave 
equation (6) yields two identical equations for the pulsation 
amplitude W : 

1 d f 2dW\ 
r2 dr X dr ) 

, Kl + 1) . (23) 

To solve this second-order equation numerically, we rewrite it 
as two first-order equations. To this end we introduce the two 
dimensionless variables S1 and S2 : 

= — ? =JLK(d_w W\ 
2~ <t2 M*\dr ~ r ) ' 

(24) 

These quantities have the advantage of permitting us to avoid 
taking numerical derivatives of the poorly known quantity p. 
They also have natural interpretations: Si is the dimensionless 
amplitude, and S2 is proportional to the traction. In terms of 
these quantities, the system of equations for the toroidal modes 
becomes 

¿Si <t2M* 
r —^ S 

dr fiR (25a) 

— 3S2 . 

i) Boundary Conditions 

(25b) 

The boundary conditions for the toroidal oscillation modes 
are that the horizontal tractions must be zero at the top and 
bottom of the crust. In terms of the transverse amplitude W9 
the conditions ôte = ô(Tr0 = 0 and ôt# = borç = 0 reduce to the 
single condition 

(26) 

In terms of the dimensionless variable S2, this condition is 

S2W = 0 , 
where ^ is the radius of either interface. 

(27) 
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As in the case of the spheroidal oscillations, we require a 
normalization condition to complete the specification of the 
solution. With the vanishing of the tractions at the fluid/solid 
boundaries and with the radial displacement being identically 
zero for the toroidal modes, the pulsations of the crust com- 
pletely decouple from the ocean and core. In consequence, we 
can no longer make use of the conventional normalization 
condition, viz. that the relative radial displacement equal unity 
at the stellar surface. Instead, for the toroidal modes we use the 
normalization condition that the relative transverse displace- 
ment be normalized to unity at the surface of the crust : 

5^)=!. (28) 

These conditions complete the definition of the eigenvalue 
problem for the toroidal oscillations. 

IV. LOCAL ANALYSIS 

Global solutions of the nonradial oscillation equations for a 
stellar model in general require numerical calculations. In the 
limit of very short wavelengths, however, the pulsation equa- 
tions reduce to algebraic eigenvalue equations which can be 
solved analytically. This “ local analysis ” is useful in providing 
information about the nature of the pulsation modes in the 
short-wavelength limit and provides a guide to the detailed 
numerical calculations that follow. 

Our starting point for a local analysis of the nonradial oscil- 
lations of neutron stars is the equation set (10a)-(10e), for 
spheroidal modes, or equation (23), for toroidal modes, with 
O' = 0 in either case. When the wavelength associated with a 
perturbation is small compared to any characteristic length 
scale L of an equilibrium quantity, a perturbation variable can 
be written in the form : 

/' =/o exp (ikr), (29) 

where kr > 1, kL > 1. 
Under this condition, equations (10a)-(10e) yield 

This root corresponds to shear-modified p-modes. In the fluid 
limit (p->0), this reduces to <7+ = k2af, the usual dispersion 
relation for local acoustic waves. 

The second root of equations (30a)-(30c) is, again to leading 
order in kr, 

cr2. ^k2cf . (32) 

This root corresponds to shear waves in the neutron star 
crust. In the fluid limit, the character of this root totally 
changes. When p -» 0, the first non vanishing terms yield 

<33) 

where N2 = — Ag is the square of the Brunt-Väisälä frequency. 
This is the usual dispersion relation for internal gravity waves. 

From these limiting cases for the dispersion relations, we can 
obtain direct numerical estimates for the periods of the various 
global oscillation modes. For a low-order global mode, kR* ~ 
1. This stretches the limits of validity of the local approx- 
imation but leads to estimates which still are qualitatively 
correct. 

For the p-modes, equation (31) yields for the estimated 
period 

0.5 ms / R6
3 V/2 _ 0.5 ms /5 x 1014 g cm~3 

H'* fcR* \MJmI) K kR* { p 

(34) 

where Re = R*/106 cm. 
The periods of the s-modes are conveniently estimated by 

using the fact that c, ~ 10*? cm s-1, remarkably insensitive to 
depth in the neutron star crust. In terms of the crust thickness 
Ar, the period is approximately 

^ 6 ms Ar 
~ kAr 1 km * 

(35) 

Here 

2JJ = ^k2cf + ^cf+g — Aaj 

1(1 + 1) Aaf - Í/ + Kl + 1) 

x ^ik(cf — c2) — ^ c2 + , 

2F = ^ — ik(cf - cf) - ^ cf + g^U 

+ [k2cf - ik -r c(
2 + cfjv 

a2 - c2 = a2 + -- a' = p ’ Cl - ai+lp 

(30a) 

(30b) 

(30c) 

where a, is the speed of an acoustic wave in a fluid, and c, and c, 
are, respectively, the speed of a longitudinal and of a transverse 
wave in an isotropic, elastic solid. 

Equations (30a)-(30c) comprise a second-order system in a2. 
One of the two roots of this dispersion relation is, to leading 
order in kr, 

c\Kk2c2. (31) 

For the 3-modes, equation (33) gives very different values for 
the surface layers and for the deep interior. To evaluate the 
periods for these modes, we use the following definitions (see 
Cox 1980): 

A = H; WXp)(V - Vad), tfp 1 = ~d In p/dr , 

xp = (Ô In p/d In p)T , 

Vad = (Ô In T/Ô In p)s. 

XT = (d In p/d In T)p , 

V s (d In T/d In p)* , 

The periods of the surface 3-modes are difficult to estimate a 
priori in any simple way (see McDermott, Van Horn, and 
Scholl 1983) because spatial gradients are extremely steep in 
these layers, and it is not possible to select “ typical ” values for 
the parameters. For the core 3-modes, however, we may use 
values appropriate to an ideal neutron gas to obtain: Xt ~ 
(5/6)n2(kT/eF)2 ~ Xp ~ 5/3, Vad ~ 
0.4, and V « 0. These values lead to 

m « 35 s 
kR* 

W + 1)] 
, ,n I MA116 

(36) 

where T7 = T/107 K. 
Equations (30a)-(30c) also provide some information about 

the relations between the radial and transverse displacement 
eigenfunctions U and F. For the root ct+

2, equation (30b) 
shows that \U/V\ ~ kr > 1. Thus, in the local approximation, 
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mass motions in the p-modes are primarily radial. Conversely, 
for the shear modes (<7_2), equation (30a) shows that | Í7/ 
F| ~ /(/ + l)/kr 1. Mass motions in the shear modes there- 
fore are mainly transverse. A similar analysis shows that the 
internal gravity waves also involve predominantly transverse 
motions. 

For the torsional oscillation modes, a similar local approx- 
imation can be developed by applying the condition (29) to 
equation (23). This yields a result similar to equation (32) for 
the spheroidal s-modes. For a neutron star with a thin crust, 
Hansen and Cioffi (1980) have shown that the fundamental 
(n = 0) oscillation mode period is approximately given by 

n 60 ms _ 
Í’'! = 0~[/(/+ 1)]1/2 ^ 

Similarly, the periods of the higher harmonic 
by 

(37) 

modes are given 

0 
2 ms / Ar \ 

n \1 km/ (38) 

V. NUMERICAL RESULTS 

a) Mode Spectrum of the Fiducial Model 
The results of our numerical calculations for the spheroidal 

oscillation modes of the fiducial model are summarized in the 
mode spectrum shown in Figure 1. This figure displays both 
the oscillation spectrum of the “three-component” (fluid core 
plus solid crust plus fluid ocean) fiducial model and, for com- 
parison, the mode spectrum obtained for the same model by 

treating it as if it were completely fluid (p = 0 throughout). For 
the three-component model, we have also included the tor- 
sional oscillations in order to provide a complete picture of the 
oscillation spectra of this star. 

As Figure 1 shows, the /- and p-modes are little affected by 
the presence of the solid crust. This is not surprising since the 
longitudinal sound speed is generally much higher than the 
speed of the shear waves (c*2 > ct

2\ so that the speed of an 
acoustic wave is not greatly affected by the rigidity of the crust. 
Figure 1 also shows, however, that there are now two types of 
0-modes: surface 0-modes similar to those found in purely fluid 
models and a new set of 0-modes with very long periods (tens 
of seconds for a model with a central temperature of 107 K) 
that are confined completely to the fluid core. The surface 
0-modes, which are qualitatively similar to those of the pure 
fluid model, are largely confined to the ocean, and their periods 
are somewhat longer than the corresponding modes of the 
purely fluid model. A new class of spheroidal modes not found 
in fluid stars is the s-modes. These are shear-dominated modes 
with periods of about a few milliseconds. Another new class of 
modes is the interfacial modes (the i-modes). For the fiducial 
model, the period of the core/crust i-mode is ~7 ms, and the 
period of the ocean/crust mode is ~ 150 ms. 

At this point it is appropriate to introduce the nomenclature 
we use to describe the spheroidal modes. We have opted not to 
use the geophysical nomenclature, in which all the spheroidal 
modes are lumped together under the designation nSl 
(Lapwood and Usami 1981). Instead, we have endeavored to 
generalize from the standard astrophysical classification 
scheme for the p-,/-, and 0-modes, first introduced by Cowling 
(1941), in which the modes are named according to the primary 

Fig. 1. The l = 2 oscillation spectrum of the “three-component” fiducial model, which contains a fluid core, solid crust, and surface fluid “ocean” (lower) and 
the spectrum of the same model when the shear modulus ft is artificially set to zero throughout (“fluid star”, upper), both as functions of log period. Lower panel 
displays both the spheroidal and toroidal modes of the three-component model. See text for a discussion of the spectrum. 
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TABLE 2 
Spheroidal Oscillations of Fiducial Model 

201 

Mode Period3 Periodb Period0 
Energy3 

(ergs) {VIU)R 

292e  69.9 s 
20/  30.9 s 

203S  841 ms 
202

s  622 ms 
2g)

s  355 ms 
211   147 ms 
212   6.53 ms 
,5,   2.26 ms 

639 ms 
521 ms 
342 ms 

692 ms 
565 ms 
371 ms 

2S9 ' 
2Í- 

0.423 ms 
0.397937 ms 
0.384 ms 

0.195 ms 

0.398108 ms 0.412 ms 

20!   0.186 ms 

202   0.159 ms 
203   0.124 ms 

0.189 ms 

0.170 ms 
0.122 ms 

0.190 ms 

0.171 ms 
0.124 ms 

2.98 + 58 
5.66 + 57 

7.08 + 43 
1.23 + 43 
1.78 + 42 
2.56+43 
2.64 + 52 
3.14 + 51 

5.70 + 50 
9.79 + 50 
5.06 + 50 

1.09 + 51 
1.84 + 48 

2.07 + 47 
1.27 + 47 

5.59 + 6 
1.13 + 6 
2.44 + 5 
3.64 + 4 
7.07+1 
8.49 + 0 

2.97-1 
2.63-1 
2.44-1 

6.31-2 
5.73-2 

4.17-2 
2.55-2 

‘ Computed for three-component model (fluid core, solid crust, fluid ocean). 
5 Periods computed assuming pure fluid, Newtonian pulsation theory. : Periods computed from pure fluid relativistic pulsation theory. 

restoring force that is responsible for the oscillations (e.g., 
gravity, pressure, or shear stress). Hence we have adopted the 
name s-modes for the shear-dominated spheroidal modes. 

Following this practice, we designate the g-modes by ¡gn
s and 

,gn
c for the “surface” and “core” modes, respectively. Here l is 

the spherical harmonic index, and n is the overtone number 
(n = 1, 2,...). The s-modes are designated ,sn, the single/-mode 
for each l is indicated by,/, and the p-modes are denoted by ,pn. 
We choose to order the interfacial modes by decreasing period; 
thusis the interfacial mode with higher period, and ,i2 is the 
one with lower period. 

The periods and pulsation energies of selected quadrupole 
modes for the fiducial model are listed in Table 2, where the 
total time averaged pulsation energy is 

E = ¿a2 |R*P[^2 + Kl + 1)V2]r2dr , (39) 

where U and V are defined by equation (9a). Eigenfunctions for 
some of these modes are displayed in Figures 2-9. Listed in 
Table 2 are the periods for the three-component fiducial model, 
the periods derived for the completely fluid fiducial model from 
a Newtonian analysis, and the periods obtained for the fluid 
model from relativistic calculations in the Cowling approx- 
imation (McDermott, Van Horn, and Scholl 1983). Note that 
the Newtonian periods given in this and subsequent tables 
correspond to the local reference frame. The periods observed 
at infinity can be obtained approximately from these values by 
applying the appropriate redshift correction: H^ = 
nlocai(l-2GM+/R+c

2)'1/2 (see § VIII). Also listed is the time- 
averaged pulsation energy obtained from the three-component 
calculations and the ratio V/U of the horizontal amplitude to 
the vertical (radial) amplitude at the stellar surface. All pulsa- 
tion energies, except for those of the core 0-modes, are normal- 
ized to unit relative vertical amplitude at the surface. Thus, if 
the relative radial amplitude at the surface is (C/r) |r=i?s|e = 
lO-2, then the energies in the table must be multiplied by 
(10-2)2. The core 0-modes are normalized to unit relative verti- 
cal amplitude at the top of the crust. It should be noted that all 

Fig. 2.—The mode displacements vs. fractional radius. The period of 
this mode is 30s9. The radial displacement U is given by solid curve, and the 
horizontal displacement V by dashed curve. Note that the motion is almost 
completely excluded from the solid crust and that the horizontal displacement 
has a discontinuity at the core/crust interface. The value of V just below the 
interface is 0.9, and it becomes vanishingly small within the crust. 

the highly transverse nature of these surface 0-modes. 
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Fig 4—The 2g/ mode displacements calculated for the completely fluid fiducial model and for the three-component fiducial model. The effect of the crustal 

displacement V (dashed curve), which is divided by 103 in this figure, dominates the motion. Note the logarithmic abscissa necessary to display this mo e. 

Fig. 6. The 2/2 mode displacements vs. fractional radius. The period is 6.53 ms. In this case the 2i2 mode is a core/crust interfacial mode. Note the cusp in U (solid 
CU F^r-Th^CSTacements vs. fractional radius. The period of this mode is 2.62 ms. Note that the eigenfunctions are almost totally confined to the crust 
and that the transverse displacement (divided by 10, dashed) tends to dominate the radial one. 
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2f 

changed very little by the introduction of the crustal rigidity (see text), the 
horizontal displacement does exhibit some significant changes. 

pulsation energies quoted in this paper, unless otherwise noted, 
are based on unit relative radial amplitude at the stellar 
surface. This can be misleading, because the radial amplitude is 
generally orders of magnitude smaller than the transverse 
amplitude. Some care is therefore necessary in interpreting 
these energies. 

i) Core g-Modes 
The core g-modes have very long periods, as predicted by 

equation (36). The reason for this is that the Brunt-Väisälä 
frequency N, which characterizes the g-modes, is proportional 
to kT/€F in degenerate matter, where eF is the Fermi energy. 
For conditions near the top of the strongly degenerate, super- 
fluid neutron core, we find AT ~ 0.1 s_1. These modes are 
almost entirely confined to the fluid core of the neutron star 
(r/R* < 0.76), as indicated by Figure 2 for the 2gic mode. Note 
that the horizontal amplitude V has a large discontinuity at the 
interface. At the boundary of a solid and an inviscid fluid, the 
fluid can “ slip ” horizontally past the interface, while the radial 
displacement 1/must be continuous. 

Even though the amplitudes of these modes are relatively 
small in the crust, they climb again to large values in the ocean. 
The behavior of the core ¿/-mode eigenfunctions is not well- 
determined in the ocean of our model, however, because the 
mode periods correspond to periods of very high-order surface 
¿/-mode overtones. This produces extremely short-wavelength 
oscillations in the ocean that are not resolved by the zoning in 
our models. To verify that the basic structure of the core 
0-modes is being computed correctly, we have therefore carried 
out many “two-component” calculations, in which it is 
assumed that the crust extends all the way to the stellar surface. 
These calculations yield core eigenfunctions which are indistin- 

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 

displacement 

Fig. 9.—The 2Pi mode displacements calculated for the purely fluid fiducial 
model and for the three-component model. The periods of the p-modes are 
changed negligibly by the crustal rigidity, but the transverse displacement 
often exhibits oscillations in the crust, as seen here. 

guishable from those of the “three-component” calculations 
and periods which are the same to better than six significant 
digits. 

ii) Surface g-Modes 

The surface 0-modes of the fiducial model have periods of 
355 ms and longer. The most remarkable features of these 
modes are the extreme confinement of the displacements to the 
very outer layers of the neutron star and the overwhelming 
dominance of the horizontal motion V over the radial motion 
U. Both of these features are clearly exhibited in Figure 3 for 
the 20 mode. The effect of the solid crust on the surface 
0-modes is dramatically illustrated in Figure 4, which shows 
the 203s fluid mode along with the 203S “three-component” 
mode. The eigenfunctions are seen to be “ squeezed ” out of the 
crust, shortening the effective wavelengths of these modes. This 
reduction in the effective wavelength causes an increase in the 
period (see eq. [35]), from 639 ms to 841 ms. The effect of the 
crust upon the period, at least for the 203S mode, is substan- 
tially larger than the relativistic eifect (see Table 2). 

iii) Interfacial Modes 
There are two interfacial modes for each value of / in a 

neutron star with a fluid core, solid crust, and fluid ocean. The 
identifying characteristic of such modes is a cusp in the radial 
displacement at the interface. For the fiducial model, the ^ 
mode is the crust/ocean interfacial mode, and the fi2 mode is 
the core/crust interfacial mode. The 2h mode has a period of 
~ 147 ms. The displacements are shown in Figure 5. Note that 
the displacement in the ocean is dominated by the horizontal 
component. This crust/ocean mode is closely analogous to the 
Rayleigh waves familiar from geophysics. 
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The 2¿2 core/crust mode has a period of ~6.5 ms. The dis- 
placements are shown in Figure 6. Note the characteristic cusp 
in U at the core/crust interface. This mode is analogous to the 
Stoneley mode of geophysics. We have also studied the core/ 
crust interfacial mode in our “two-component” neutron star 
model and have found periods and eigenfunctions virtually 
identical to those of the “ three-component ” calculations. The 
crust/ocean interfacial mode, of course, is absent for the “two- 
component” model. In fact, the disappearance of this mode 
and the surface 0-modes provides reassurance that we have 
correctly identified the association of these oscillations with the 
crust/ocean interface and with the surface fluid ocean, respec- 
tively. 

iv) Shear Modes 
The s-modes have shorter periods than the interfacial 

modes. For example, the 2^ mode has a period of 2.26 ms. The 
displacements for this mode are illustrated in Figure 7. The 
s-modes are almost totally confined to the crust, and the hori- 
zontal motion is somewhat larger than the radial motion. 

To investigate the properties of the spheroidal shear modes, 
we have also carried out a number of numerical experiments in 
which we have artificially reduced the shear modulus of the 
solid crust. As equations (30c) and (32) show, a reduction in n 
decreases the shear velocity and increases the periods of the 
s-modes. Our numerical experiments have confirmed this 
expectation and provide additional justification for our physi- 
cal interpretation of these modes. 

These reduced 0 calculations also have produced dramatic 
changes in the two interfacial modes, in ways which were not 
previously anticipated. In particular, as n decreases, the period 
of the core/crust mode increases rapidly, and there is inter- 
ference between this oscillation and the crust/ocean mode. For 
sufficiently small values of 0 < fi0/6.5, where ¡i0 is the unre- 
duced shear modulus, these two modes exchange character- 
istics, exhibiting the phenomenon of “ mode bumping ” which 
has been well studied in other contexts (see Pekeris, Alterman, 
and Jarosch 1962; Aizenman and Smeyers 1977). Continued 
decrease of p causes the 2h mode period to begin to resemble 
the 20is mode of the corresponding purely fluid model (i.e., one 
with p set to zero artificially). When the shear modulus is 
reduced by as much as a factor of 14, the 2h mode eigen- 
function and period are virtually the same as for the fluid 20is 

mode. See McDermott (1985) for a detailed discussion of how 
the mode spectrum reverts to its fluid form as the shear 
modulus is reduced. 

v) f-Modes 
The 2/ mode period, at ~0.4 ms, is situated among the 

higher order s-modes. For the fiducial model the 2/mode lies 
between the 2s9 and the 2s10 modes. The period of the 2/mode 
is changed very little by the introduction of the crustal rigidity; 
for the fluid fiducial model the period is 0.398108 ms, while for 
the three-component fiducial model it is 0.397937 ms. The dis- 
placements, however, do show some slight changes, as indi- 
cated in Figure 8. The elasticity of the crust produces spatial 
oscillations in the horizontal motion V. 

Even though the period of the 2/mode is very close to that 
of the adjacent s-modes, the eigenfunctions are quite distinct. 
The/-mode has a global character, and the radial displacement 
is smooth. In contrast, the 2s10 mode is strongly confined to 
the outer crust, and the displacements are highly oscillatory. 

vi) p-Modes 
Located among even higher s-mode overtones are the p- 

modes. Like the /-mode, they are easy to pick out from the 
midst of the s-modes because their eigenfunctions are clearly 
distinguishable. The 2p1 mode has a period of -0.19 ms, 
approximately as given by equation (34). The 2P1 mode of the 
three-component model is shown in Figure 9 along with its 
counterpart for the fluid fiducial model. There is very little 
difference in the period of the 2p1 mode between the fluid and 
three-component models; indeed we have used this feature to 
help single out the p-modes in the three-component model. 
The p-modes are primarily compressional waves, and the speed 
of a compressional wave is only slightly affected by the shear 
(see eq. [30c], and note that F^ > p). Note that the p-modes 
are confined to the outer 10%-20% of the fractional radius 
and that the radial displacement generally dominates the 
transverse displacement. 

b) Systematic Properties 
In addition to the fiducial model, we have constructed three 

composite neutron star models, as discussed in § III, and have 
computed the pulsational characteristics of each. Model 
NS05T7 is the fiducial model with a Gudmundsson envelope; 
comparison of the results for these two models provides a 
measure of the sensitivity of different modes to the detailed 
structure of the neutron star envelope. Model NS05T8 has the 
same mass as NS05T7, but the central temperature is Tc & 108 

K rather than 107 K; comparison of the properties of these two 
models enables us to study the temperature sensitivity of the 
results. Model NS13T8 has a mass of 1.33 M0 and a central 
temperature similar to that of NS05T8; comparison of these 
results yields information about the dependence upon the 
stellar mass. The periods and pulsation energies for each of the 
composite models are collected in Table 3. 

As can be seen by comparing the periods and energies for the 
fiducial model in Table 2 with those for model NS05T7 in 
Table 3, the differences in envelope structure produce substan- 
tial changes in all but the global p- and /-modes. The qualitat- 
ive features of the spectrum are the same in both cases, 
however. The s-modes and the i2-niode, which “ feel ” more of 
the crust, are somewhat more affected than the/- and p-modes. 
The /-mode and the 0-modes, which are very sensitive to the 
properties of the upper crust and the ocean, are of course 
affected strongly. Surprisingly, the core 0-modes also are sub- 
stantially different. We conjecture that the cause of this is the 
different phasing of the eigensolution at the core/crust interface 
that is produced by the different envelope solutions. 

Comparison of the results for the different composite models 
in Table 3 shows that the core and surface 0-modes are insensi- 
tive to the stellar mass (see eq. [36]) but depend very strongly 
on the internal temperature, as expected. The core 0-mode 
periods, and to a lesser extent the surface 0-mode periods, are 
approximately proportional inversely to the core temperature. 
Changes in the core 0-mode displacements with mass or tem- 
perature, however, are slight; the core 0-modes are confined to 
the core, and the displacements are largest just beneath the 
interface. In the hotter models, where the ocean is much 
deeper, the surface 0-mode displacements extend much deeper 
into the star. For these models the ocean is deep enough so 
that the eigenfunctions appear not to “ feel ” the crust, at least 
for low-order modes. 

The 2/ and 2i2 modes appear to be significantly affected by 
the internal temperature. In the fiducial model, we have associ- 
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TABLE 3 
Periods and Pulsation Energies of the Composite Neutron Star Models 

Mode 

NS05T7 NS05T8 NS13T8 

Period 
Energy3 

(ergs) Period 
Energy3 

(ergs) Period 
Energy3 

(ergs) 

202 
20ic 

203s 

202S 

201S 

2(l ' 
2*2 • 

2Pl ' 
iPl ■ 

88.54 s 
37.56 s 

438.9 ms 
368.4 ms 
232.4 ms 

90.62 ms 
7.297 ms 
2.427 ms 
1.351 ms 
0.3979 ms 
0.1859 ms 
0.1585 

2.8 + 59 
4.8 + 58 

1.65 + 40 
4.39 + 39 
4.13 + 41 
8.65 + 41 
3.35 + 52 
2.05 + 52 
5.73 + 51 

8.076 s 
3.311 s 

66.36 ms 
57.41 ms 
49.39 ms 
13.93 ms 
7.426 ms 
2.290 ms 
1.294 ms 

1.6 + 55 
2.8 + 54 

6.29 + 40 
4.32 + 41 
4.93 + 41 
1.43 + 52 
3.84 + 48 
9.10 + 51 
5.62 + 51 

7.451 s 
2.598 s 

61.55 ms 
53.91 ms 
43.67 ms 
17.72 ms 
9.911 ms 
0.7307 ms 
0.4280 ms 

1.96 + 48 
2.18 + 47 

0.1804 ms 
0.1562 ms 

1.05 + 50 
1.61+47 

0.0831 ms 
0.0598 ms 

3.2 + 56 
2.7 + 55 

1.96 + 40 
1.44 + 41 
3.74 + 41 
1.65 + 53 
4.08 + 47 
1.32 + 54 
2.53 + 53 

8.33 + 50 0.3974 ms 1.05 + 51 0.2299 ms 1.59 + 52 
3.08 + 51 
1.55 + 50 

1 All energies based on [7(R^)/R# 

ated the 2h mode with the crust/ocean interface and the 2h 
mode with the core/crust interface. This distinction becomes 
blurred in the hotter models. In the NS05T8 model there is a 
mode (Fig. 10) that exhibits cusps in the radial displacement at 
both interfaces. Since identification is problematic, we choose 
to refer to the higher period interfacial mode as the 2ii and the 
lower period mode as 2i2. 

The s-mode periods are relatively insensitive to the tem- 
perature but are highly dependent on the mass. The more 
massive star NS13T8 has much shorter periods s-modes. This 
is due to the thinner crust and the resulting shorter crossing 
time for the shear wave. The basic features of the displacements 
for these modes, however, are unaffected by increments in 
either mass or temperature. The motion is largely restricted to 
the crust, and the horizontal motion slightly dominates the 
vertical displacement. 

The 2/mode, like the p-modes discussed below, is almost 
totally insensitive to the internal temperature but does depend 
on mass. The horizontal displacement shows spatial oscil- 
lations in the crust due to horizontal traction, which is absent 
in the pure fluid models. 

The p-modes also are insensitive to internal temperatures. 
This is because the p-modes are primarily compressional oscil- 
lations, and the matter is so highly degenerate that the longitu- 
dinal sound speed does not depend on temperature. The 
p-mode periods scale with mean density fairly accurately as 
predicted by equation (34). The ratio of the 2Pi period in the 
NS05T8 model to that in the NS13T8 model is 2.17, and in 
comparison, (p[NS13T8]/p[NS05T8])1/2 = 2.26. The p-modes 
tend to be confined to the outer 20%-30% in fractional radius, 
and they sometimes show oscillations in the horizontal dis- 
placements due to the additional restoring force provided by 
the crust. 

In addition to quadrupole modes, we have also computed 
/ = 1, 3, and 4 modes. To compute dipole (/ = 1) modes it is 
necessary to rescale the Dziembowski variables (eq. [16]) to 
avoid singular behavior at r = 0 (see McDermott 1985). The 
resulting pulsation equations then are slightly different in form, 
but the method of solution is the same, and we have shown by 
explicit checks at other values of / that our results do not 
depend on the form of the equations we use. The general /- 

dependence of the periods is summarized in Figure 11. The 
fundamental torsional mode ji0 is also displayed to indicate the 
place of the torsional oscillations in the overall mode spectrum. 
Generally, the mode periods remain roughly constant or 
decrease with increasing /. For example, the dependence of the 
periods of the p-modes on / is predicted quite accurately by the 
local dispersion relation (33), which gives 

n,+1/n,oc+//(/ +2). (40) 

The exception to this is the ^ mode, which increases slightly in 
period as / is increased. 

log (1-r/R*) 

Fig. 10.—The 2h mode for the NS05T8 model has a period of 13.9 ms. In 
this interfacial mode, the displacements are confined to neither interface. 
Instead, the radial displacement (solid curve) shows cusps at both interfaces. 
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log n (sec) 
Fig. 11. Dependence of the mode spectrum of the fiducial model on spherical harmonic index /. At least one of each major subclass of the spheroidal modes is 

shown. Also displayed is the ¿q mode. Note that ,/and ,i0 modes do not exist for / = 1. Of course, / may only assume integer values. 

VI. NUMERICAL RESULTS: TOROIDAL MODES 

The spectrum of toroidal modes for the fiducial model is 
shown, together with the more complicated spheroidal mode 
spectra, in Figure 1. These modes are essentially the orthog- 
onal polarization of the spheroidal shear (s-) modes. The resto- 
ring force for the particular subclass of toroidal modes we have 
investigated, the torsional oscillations, is the finite shear 
strength of the crust, just as for the s-modes. We have therefore 
named these oscillations i-modes, and we use the same conven- 
tion to distinguish between the different modes. Thus, the ltn 
mode belongs to spherical harmonic index / and has n nodes in 
the radial eigenfunction. 

This notation is rather different from the geophysical nota- 
tion for similar modes: „7]. We use the lower case t and have 
interchanged the indices n and l relative to the geophysical 
convention for consistency with conventional usage in stellar 
pulsation theory. We also note that other classes of toroidal 
modes are possible in stars with magnetic fields or rotation. 
Papaloizou and Pringle (1978) have termed the latter r-modes, 
and Carroll et al (1986) have named the former a-modes. 

The variation of the zi0 mode period with / is illustrated in 
Figure 11, together with the periods of the spheroidal modes. 
Note that there is no zi0 mode. A nodeless dipole mode is 

incompatible with conservation of angular momentum 
because dipole modes correspond to oscillatory rotations of 
the crust. 

The mode periods and pulsation energies are listed in Table 
4 for the fiducial model and the three composite models. The 
pulsation energies, given by 

£ = i(72/(/+l) pW2r2 dr, (41) 
Jcrust 

are the total time-averaged energies normalized to unit relative 
amplitude at the top of the crust (i.e., [!F(r)/r]r:=rc = 1, where rc 
is the outer crustal radius). 

The periods of the overtones are independent of /, and they 
are approximately proportional to the crust thickness (see eq. 
[38]), which is sensitive to the mass. As an example, the ratio of 
the crust thickness of the NS05T8 model to that of the NS13T8 
model is ~4.9, and in comparison the ratio of the 2ti periods 
for these models is ~ 5.1. The periods and eigenfunctions of the 
overtones are almost completely insensitive to /. This can be 
understood mathematically by examining the pulsation equa- 
tions (25a)-(25b). The only /-dependent term is the coefficient 
of in equation (27b): /(/ + 1) — 2 — G2pr2lp. For /<60 and 
periods of ~ 1 ms, the a2 term is dominant. 

TABLE 4 
Periods and Pulsation Energies of the Fiducial and Composite Neutron Star Models 

Mode 

Fiducial Model NS05T7 NS05T8 NS13T8 
Period 

(ms) 
Energy 
(ergs) 

Period 
(ms) 

Energy 
(ergs) 

Period 
(ms) 

Energy 
(ergs) 

Period 
(ms) 

Energy 
(ergs) 

1*2 
1*3 
1*4 
2*0 
2*1 
2*2 
2*3 
2*4 

1.749 
1.015 
0.8315 
0.6689 

19.06 
1.742 
1.014 
0.8307 
0.6685 

1.21+48 
7.95 + 46 
4.89 + 45 
6.00 + 45 
1.25 + 48 
3.67 + 48 
2.39 + 47 
1.46 + 46 
1.80 + 46 

1.885 
1.097 
0.8199 
0.7027 

18.59 
1.877 
1.096 
0.8190 
0.7022 

2.06 + 48 
6.34 + 47 
5.77 + 46 
7.94 + 46 
1.60 + 48 
6.26 + 48 
1.92 + 48 
1.73 + 47 
2.38 + 47 

1.795 
1.050 
0.7547 
0.6382 

18.54 
1.788 
1.049 
0.7539 
0.6378 

2.98 + 48 
1.69 + 48 
2.91+47 
2.34 + 47 
1.60 + 48 
9.06 + 48 
5.13 + 48 
8.77 + 47 
7.02 + 47 

0.3512 
0.2079 
0.1457 
0.1192 

17.32 
0.3512 
0.2079 
0.1457 
0.1192 

1.09 + 49 
6.40 + 48 
1.59 + 48 
2.72 + 47 
3.31+47 
3.26 + 49 
1.92 + 49 
4.76 + 48 
8.15 + 47 
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2^0 

Fig. 12.—The 2i0 eigenfunctions for the NS05T7 model. This mode has a 
period of 18.6 ms. The transverse displacement W{r) is basically linear in r. The 
horizontal traction S2 is shown as a dashed curve. 

Fig. 13.—The 2ti eigenfunctions for the NS05T7 model. This mode has a 
period of 1.88 ms. The transverse displacement is W {solid), and the transverse 
traction is S2 {dashed). 

The 2io and 2h mode eigenfunctions for the NS05T7 model 
are shown in Figures 12 and 13. We have displayed only the 
/ = 2 modes because the eigenfunctions for other /-pole modes 
are essentially identical (at least for / < 4). Similarly, eigen- 
functions for other models do not differ significantly from 
those of the NS05T7 model. 

Note that the mode has the character of an interfacial 
mode ; its amplitude is largest at the outer surface of the crust, 
and the mode period behaves quite differently with changes in 
parameters than do the other i-modes. It has been demon- 
strated by Hansen and Cioffl (1980) that the zi0 mode (at least 
for low /) is almost independent of the stellar mass ; our calcu- 
lations confirm this result. The period of the 2io mode is invari- 
ably ~20 ms. The eigenfunctions of the j£0 modes are almost 
completely independent of l (at least for small /). The displace- 
ment is of a very simple character; to a good approximation 
W(r) ocr (see Fig. 12). 

We also note that the torsional oscillations are insensitive to 
the temperature. This result is not surprising because the shear 
modulus itself is almost independent of the temperature. 

VII. DAMPING MECHANISMS 

Among the dissipative mechanisms we have investigated are 
gravitational radiation, neutrino emission, and electromag- 
netic radiation from an oscillating dipole magnetic field. In 
schematic form we have also considered nonadiabatic effects 
and internal friction/viscosity. In the following sections we 
summarize our calculations for these damping mechanisms for 
both the spheroidal and the toroidal modes. Our numerical 
results for the damping times of the different spheroidal modes 
are given in Table 5 and for the toroidal modes in Table 6. 

a) Spheroidal Modes 

i) Gravitational Radiation Damping 
Historically, one of the first damping mechanisms con- 

sidered for neutron star oscillations was the emission of gravi- 
tational radiation. The first completely self-consistent 
numerical calculations were carried out by Thorne (1969) for 
quadrupole /- and low-order p-modes. The damping times 
resulting from these calculations were typically of the order of 
1 s. Much more recently, a comprehensive set of quadrupole 
/-mode calculations has been carried out for 13 equations of 
state by Lindblom and Detweiler (1983). The damping times 
quoted by these authors, of the order of tenths of seconds, are 
claimed to be more accurate than those given by Thorne. 

The three-component calculations reported in this paper are 
based on Newtonian pulsation theory, with the additional 
assumption that perturbations to the gravitational potential 
can be neglected (Cowling approximation). These approx- 
imations prevent us from performing self-consistent calcu- 
lations of gravitational radiation damping. We have, however, 
carried out a posterior/ estimates of the power radiated and of 
the consequent damping using the general expression, for 
/ > 2, given by Balbinski and Schutz (1982) for the amplitude 
e-folding time due to the emission of gravitational radiation. In 
our notation their result is 

_2E o / c\2* + 1 (/ — 1)[(2¿ + 1)1 !]2 

^ “ Lgw “ 2jiG W 1(1 + IX/ + 2) 

fg* drpr\U2 + 1(1 + 1)F2] 

{Jo* drpr,+ l[U + (I + l)^]}2 ’ 1 ’ 

where n ! ! = n(n — 2)(n — 4) ... 1. 
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Calculations based on equation (42) show that gravitational 
radiation is a very efficient damping mechanism for the/- and 
p-modes. For the 0.5 M0 models, the damping times are a few 
tenths of seconds, in basic agreement with the results of Lind- 
blom and Detweiler (1983). The 1.3 M0 model, however, has 
much shorter decay time scales. The 2f mode of this model has 
a damping time of ~ 10 ms, and the low-order (in n) p-mode 
damping times are tenths of milliseconds. Higher order /-pole 
modes are somewhat longer lived. For example, the 3/and 3pi 
modes of the fiducial model have damping times xg ~ 10 s. 
Because of the short lifetimes of the /- and p-modes, however, it 
is unlikely that they will be observed, except perhaps as tran- 
sient phenomena. 

In constrast to the p-modes, the core gr-modes are very ineffi- 
ciently damped by gravitational radiation, despite the fact that 
these modes are confined to the core and therefore involve bulk 
motions of large amounts of mass. The reason is that Tg cc a 
(for l = 2), and the frequencies of the core p-modes are very 
low. Typical quadrupole dissipation times range from 107 yr 
for NS13T8 up to 1015 yr for the NS05T7 model. 

The surface p-modes also are very weakly damped by gravi- 
tational radiation because the frequencies of these modes, too, 
are relatively low. In addition, the displacements in the surface 
p-modes involve very small amounts of mass. Typical quadru- 
pole damping times range from 107 yr (NS05T8) up to 1021 yr 
(NS05T7). Higher order /-pole modes have even longer dissi- 
pation times. 

The low order (in n) 2sn modes, which are intermediate in 
both period and mass motions between the p- and p-modes, 
have intermediate gravitational radiation damping times 
covering a broad range from 104-107 s. 

ii) Neutrino Damping 

The early cooling of neutron stars is overwhelmingly domi- 
nated by neutrino emission. Because neutrino cooling is so 
important, it is necessary to ask whether oscillations may be 
significantly damped by pulsed neutrino emission. Previous 
calculations of neutrino damping of neutron star oscillations 
generally fall into two categories (see Sawyer 1980, and refer- 
ences therein). In the first, oscillations are damped by the net 
excess of emission averaged over a pulsation cycle. In the 
second category, the emission of neutrinos derives from 
pulsation-induced departures from /-equilibrium. As the 
density changes during the pulsation, the relative concentra- 
tions of neutrons, protons, and electrons changes, causing a 
departure from chemical equilibrium. 

We have evaluated the neutrino damping of neutron star 
oscillation modes using a quasi-adiabatic analysis. This tech- 
nique is discussed in general by Cox (1980) and in particular 
for neutrino damping of white dwarf pulsations by Osaki and 
Hansen (1973). The damping time is given by 

where C = J (öT/T)*öevdMr, and E is the time-averaged pul- 
sation energy (eq. [39]). The Lagrangian perturbations to the 
neutrino emissivity can be expressed in terms of the tem- 
perature and density perturbations as follows : 

<5ev = 
dev 

5 ln T 
<5T dev 

p T + d In p 
ôp 

T P 
(44) 

where 

r iVad 

dp 

p * 
(45) 

Note that the quasi-adiabatic analysis implicitly assumes that 
the matter remains in chemical equilibrium throughout the 
pulsation cycle. This may not be valid if the relaxation times of 
the principal neutrino-producing reactions are long in com- 
parison to the pulsation period, and future studies should 
investigate the validity of this assumption. 

Neutrino damping is most effective for the core g-modes of 
the hotter models. For example, in the NS13T8 model, the 292C 

mode has a damping time of tv ~ 9 x 10“2 yr. In the cooler 
(NS05T7) model, with much lower neutrino emission, the core 
0-mode damping times are tv ~ 103-104 yr. These results for 
the core 0-modes are critically dependent on the presence of 
the pion condensate assumed by Richardson (1980). The emiss- 
ivity due to “quasi-particle /-decay” (see Richardson et al 
1982) in the pion condensate is proportional to T6, and for this 
reason, core mode pulsations of the cooler models are much 
less efficiently damped than they are for the hotter models. 

The surface 0-modes are only weakly damped by neutrino 
emission. For the hotter models, typical damping times are 
10-1000 yr. The cooler model is exceedingly weakly damped, 
with Ty^lO11 yr. The emission process responsible for 
damping in the hotter models is a combination of the plasma 
process and crust bremsstrahlung. 

For the interfacial modes, the neutrino damping times are 
generally longer than the gravitational radiation damping 
times, sometimes by several orders of magnitude. For the 
shorter period s-, /-, and p-modes, the neutrino damping is 
insignificant in comparison to gravitational radiation losses. 
The reason for the inefficiency of neutrino damping in these 
cases is that the pulsation energies of the s-,/-, and p-modes are 
much larger than those of the surface 0-modes, while the neu- 
trino processes that are most effective are essentially the same 
as for the surface 0-modes. The/- and p-mode eigenfunctions 
are not large enough in the region where pion-assisted neu- 
trino emission is important for that process to be an effective 
damping mechanism for these modes. For the s-modes the 
eigenfunction actually vanishes in the core. The /-modes must 
each be considered separately, and the results depend upon 
whether a particular mode is more “0-like” or “p-like” in 
character. 

iii) Electromagnetic Damping 
Because the magnetic field decay time in neutron star matter 

is much longer than the period of any pulsation, the magnetic 
field is effectively frozen into the matter on the pulsation time 
scale. During pulsations the field oscillates with the matter, and 
this produces electromagnetic radiation, which can drain 
energy from the oscillation. 

We have made an a posteriori estimate of the power radiated 
by a magnetic dipole field frozen into a pulsating neutron star, 
under the assumption that the field does not significantly alter 
the pulsation periods or displacements. The details of this cal- 
culation and further discussion of the approximations and 
assumptions have been reported elsewhere (McDermott et al 
1984h). The estimated damping times are listed in Tables 5 and 
6. Note that Tem ocB0~2 and that the tables are based on B0 = 
1012 G. Recent work by Carroll et al (1986) includes the effects 
of the field on the oscillations self-consistently for a simplified, 
cylindrical model of the polar regions of a neutron star. These 
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calculations have shown that for sufficiently large values of B0 
the field dramatically alters the character of the surface g- 
modes, which are primarily concentrated in the outermost 
layers of the neutron star. The field essentially leaves the other 
modes of the star unaffected, however. These calculations also 
show that the estimates of electromagnetic damping times 
which are given in Table 5 are too long, in some cases by as 
much as a factor of 100. 

We have estimated the electromagnetic damping times for 
all of the spheroidal modes, although the results for the surface 
0-modes and the crust/ocean interfacial mode have no 
meaning for B0 = 1012 G, since these modes are radically 
altered by such fields. For J > 2, all modes shorter in period 
than the modes are damped more efficiently by gravita- 
tional radiation than by electromagnetic damping. 

For the dipole modes, there is no gravitational radiation, 
and the electromagnetic power radiated is 

P(/ = 1, m = 0) = 2 x 104 2F + U 
R j. 

*0 
1012/G 

R* \ V0.2 ms\6 

106 cm n 
erg s (46) 

where U and V are the radial and transverse displacements 
evaluated at the surface of the neutron star. For the /- and 
p-modes, a typical pulsation energy is ~1Q50(U/R*)2 ergs, 
which leads to a damping time of Tem ~ 0.1 yr. For all other 
dipole modes, the longer periods yield damping times Tem ~ 
108 yr, much too long to be of interest. Ohmic dissipation 
effects due to small relative motions of the matter with respect 
to the field lines have been shown to be generally insignificant 
(Carroll et al. 1986). 

iv) Nonadiabatic Effects 
The motion of perturbed matter elements during a pulsation 

is nearly, but not precisely, adiabatic. The slight departures 
from adiabaticity, however, can dissipate energy from the pul- 
sations. For example, heat flow down the temperature gra- 
dients associated with the pulsation is such a dissipative 
mechanism. Carroll (1982, private communication) has carried 
out a quasi-adiabatic analysis of this effect for the surface 
0-modes of the pure fluid fiducial model (assumes p = 0; see 
§ III). He finds that the surface 0-modes are efficiently damped 
by this mechanism. For the 29is mode (371 ms period) the 
decay time he obtains is ~100 s, and the overtones generally 
have shorter damping times. 

These results are rather uncertain, however, because the 
surface layers of the fiducial model are only crude, polytropic 
approximations and because they do not allow for partial ion- 
ization of 56Fe. Thus, the opacity and its temperature and 
density derivatives, which are needed accurately as input to the 
quasi-adiabatic calculations, are only crudely represented. In 
addition, the large discontinuity in luminosity between the 
envelope and interior in the composite models renders thermal 
damping calculations suspect for those cases as well. Further 
study is obviously warranted. 

b) Toroidal Modes 
i) Gravitational Radiation Damping 

For the torsional oscillations, there is no net mass /-pole 
moment because ôp and ur are identically zero for these modes. 
As a consequence, there is no mass quadrupole or higher order 
mass /-pole gravitational radiation from the torsional oscil- 

lations. Instead, the gravitational radiation must come from 
“mass currents.” Schumaker and Thorne (1983) have provided 
a prescription for computing the damping time for such cases 
in the weak field, slow motion limit. In our notation, the ampli- 
tude damping time is 

_ Í^\ÍS\2,+1 (/-l)[(2/+l)!!]2Lustpr2^2^ 
Xg \&TtG/\<jJ (I + 2Xjcrust r

l + 2pWdr)2 

Schumaker and Thorne estimate that the damping time of a 
fundamental quadrupole torsional oscillation is 104 yr. 

Gravitational radiation is an inefficient damping mechanism 
for the torsional oscillations. We find the damping times of the 
2t0 modes to be ~ 103-104 yr, in agreement with the estimate 
of Schumaker and Thorne (1983), although the overtones are 
damped much more rapidly. For the 0.5 M0 models, the 
damping times are typically 1 yr for the first few quadrupole 
overtones. The 1.3 M© model, however has much shorter over- 
tone periods, and as a result these modes decay much more 
quickly. The 2tn modes for this model have dissipation times 
ranging from ~ 10-2 yr (for n = 1) to ~ 10-4 yr (for n = 4). 

For higher /-pole modes, gravitational radiation is much less 
effective, and the damping times rise rapidly. As an example, 
for the NS05T7 model the 3Í0 mode has a damping time of 
~ 108 yr, and the 4i0 mode decay time is ~ 1012 yr. 

ii) Nonadiabatic Effects and Neutrino Losses 
For the torsional oscillations, the quasi-adiabatic analysis 

fails to provide a nonzero damping rate for the neutrino 
damping. Recall that one of the properties of the torsional 
oscillations is that ôp = 0. This in turn implies that (ST)ad = 0 
(see eq. [45]), so that there is no damping due to nonadiabatic 
effects. With dp and ÔT both zero, there is also no dissipation 
of pulsation energy due to modulated neutrino emission (see 
eq. [44]). Since we believe that the adiabatic eigenfunctions are 
good approximations to the nonadiabatic eigenfunctions, it 
seems likely that even in a fully nonadiabatic calculation the 
damping of the torsional oscillations via nonadiabatic effects 
and neutrino emission will be very weak. 

iii) Electromagnetic Damping 
The electromagnetic damping time for the dipole modes is 1 

yr, depending upon the period. For the quadrupole modes, the 
2t0 damping time is Tem ~ 107 yr, much longer than the gravi- 
tational radiation damping time. For the overtone 2tn modes, 
however, electromagnetic damping becomes increasingly 
important. As an example, for the 2t3 mode in the NS05T7 
model, Tem ~ 0.03 yr, whereas Tg ~ 0.7 yr. Note, however, that 
for successively higher overtones, the slow motion approx- 
imation (see Schumaker and Thorne 1983) becomes less satis- 
factory, and therefore both xg and Tem become less reliable. 

i\) Internal Friction and Viscosity 
In terrestrial solids, sound waves are damped by internal 

friction. It is conceivable that internal friction may be the prin- 
cipal dissipative mechanism for some of the neutron star oscil- 
lation modes, particularly those for which other damping 
mechanisms are weak (e.g., torsional oscillations). The crustal 
lattice is likely to be filled with various defects and impurities 
which enhance this dissipation. In cooled, single crystal labor- 
atory samples of silicon or sapphire, Q-values of up to ~ 109 

have been achieved (see Douglass and Braginski 1979), where 
Q = ttt/II. A Q < 109 for neutron star matter would lead to a 
damping time t ^ 0.1 yr for the torsional oscillations. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
5.

 .
72

5M
 

Vol. 325 MCDERMOTT, VAN HORN, AND HANSEN 

Landau and Lifshitz (1970) have shown that the formalism 
for handling internal friction is completely analogous to that 
for the viscosity of a fluid. They introduce a dissipative stress 
tensor which, for the torsional oscillations where uü = 0, 
reduces to ôxik = 2rjùik, where rj is the shear “viscosity.” The 
damping time of the torsional modes is expected to be roughly 
T - (2pr2/rj), where p and rj are to be evaluated near the peak of 
the displacement, W(r). For the 2io m°de this peak occurs near 
nuclear density, p ~ 1014 gem-3. 

It is an understatement to say that the determination of the 
internal dissipation in neutron star matter is fraught with diffi- 
culties and uncertainties. Even in terrestrial matter there are 
many damping mechanisms that cannot be accounted for by 
known processes (Johnson 1982, private communication). 
Flowers and Itoh (1976) have nevertheless made estimates of 
the viscosity of neutron star matter, principally for tem- 
peratures below the melting point of the crust. However, they 
have computed only the electronic contribution to the vis- 
cosity, including the following scattering processes: electron- 
phonon, electron-impurity, electron-electron, and 
electron-neutron, the latter for densities above neutron drip. 
Examination of Tables 1 and 4 of their paper shows that for 
T = 108 K, the electron-phonon contribution dominates all 
other mechanisms for all densities, even for unreasonably large 
impurity concentrations (x¿ ~ 1) and for large values of 
(Z* - Z)2, where Zf is the impurity atomic number, and Z is 
the atomic number of the equilibrium species. For T = 107 K 
the electron-phonon contribution is still dominant unless 
XiiZi - Z)2 > 10-2. If the electron-phonon contribution is in 
fact dominant, then for T = 108 K and p - 1014 g cm"3, we 
obtain rj ~ 3 x 1014 poise, and for T = 107 K and p ~ 1014 g 
cm“3, we have rç ~ 3 x 1016 poise. Thus our estimates of the 
damping times of the torsional oscillations are t ~ 104 yr for 
108 K models and t - 102 yr for 107 K models. This gives a Q 
ranging from lO^-lO13, or 103-105 times higher than that 
achieved in the terrestrial laboratory. Flowers and Itoh, 
however, do not treat the ionic contribution to the internal 
friction or viscosity. This contribution may in fact be domin- 
ant, and its neglect probably means that the quoted viscosities 
are underestimates, perhaps by many orders of magnitude. 
Thus, the damping time scales associated with these processes 
are highly uncertain. They are sufficiently small, however, to 
provoke interest and warrant further investigation. Very 
recently Cutler and Lindblom (1987) have examined the effect 
of viscosity on the/-mode. They find a damping time of -1 yr 
for typical neutron star parameters. 

VIII. SUMMARY AND CONCLUSIONS 

Even in the absence of rotation and magnetic fields the 
normal mode spectrum of a neutron star is far more complex 
and diverse than is generally recognized. We have carried out 
the present investigation to help illuminate this complexity and 
to provide a foundation for interpreting the quasiperiodic 
oscillations seen in some pulsars and X-ray burst sources. 

Both the core and surface 0-modes of neutron stars have 
periods which vary inversely with the core temperature. The 
core 0-modes are almost totally confined to the fluid interior of 
the neutron star and have long periods (H/ > 3 s for 7^ < 108 

K). Because of their very large pulsation kinetic energies, 
-1055-1058 ergs for unit relative radial amplitude at the base 
of the crust, these modes are unlikely to be excited to observa- 
ble amplitudes except perhaps in the supernova core collapse 
which forms the neutron star. The most efficient damping 

mechanism we have identified for these modes is neutrino 
emission, which is most effective in the hotter models (tv ~ 
0.1-100 yr) and which depends on the presence of an assumed 
pion condensate. For such rapid damping, any core 0-mode 
oscillations triggered by the formation of a neutron star are 
unlikely to remain observable following dissipation of the 
supernova remnant shell. If such pulsations were to be 
detected, this would provide strong evidence against the exis- 
tence of a pion condensate in those neutron stars. The periods 
of the core 0-modes are probably only accurate to within 
~25% because of our use of the Cowling approximation and 
because of uncertainties in the location of the core/crust inter- 
face. Rotational effects, which we have not treated, also are 
likely to be important, and the mode properties are likely to be 
affected strongly by superfluidity of neutrons and protons in 
the core. 

The surface 0-modes have periods H/ > 50 ms for Tc < 10 
K. The periods are sensitive to the depth of the surface fluid 
ocean, and the modes are “ squeezed ” out into the ocean by the 
advancing crust as the neutron star cools. With pulsation ener- 
gies <1033 ergs for unit relative transverse amplitude at the 
surface, these modes may be excited to observable amplitudes 
by accretion-fed thermonuclear outbursts (McDermott and 
Taam 1987) and may thus lead to observable quasiperiodic 
oscillations in X-ray burst sources. Of the three composite 
models used in the present pulsation calculations, the NS13T8 
model has physical properties most similar to those expected in 
the envelope of an X-ray burst source. The 20is mode period 
for this model is 44 ms, right in the middle of the 10-70 ms 
range of the observed periodicities (Livio and Bath 1982). The 
pulsation displacements are large in the region where the 
nuclear burning occurs, a condition necessary for efficient exci- 
tation by the burning region. Furthermore, the surface 
0-modes have relatively low pulsation energies, another condi- 
tion for ease of excitation. The 29i mode of the NS13T8 model 
has an energy E = 1.1 x 1033[F(RJje)/R*]2 ergs. Even if only a 
minute fraction (~ 10"6) of the 1039 ergs released in an X-ray 
burst could be channeled into oscillations, the surface 0-modes 
would be driven to high amplitudes. Rotation periods <0.1 s 
are likely to be important for these modes, and typical pulsar 
magnetic fields will radically alter them. 

The effect of general relativity on the periods of the surface 
0-modes is very accurately predicted by the redshift of the 
neutron star (Carroll 1982, private communication). Because 
the surface 0-modes are so highly localized in the outer layers, 
they have the character of a local clock. The period of such a 
clock, as seen from infinity, is simply computed by applying the 
redshift correction to the local period. For the fiducial model 
this gives n*. = nlocal(l - IGMJR^c2)-112 = 1.0828nlocal, to 
be compared to our relativistic mode calculations, which result 
in UJUlocal = 1.083 ± 0.002, for low-order quadrupole 
modes. 

The interfacial modes have periods intermediate between 
those of the surface 0-modes and the s-modes. In the fiducial 
model, the ocean/crust interfacial mode, with period ~ 150 ms 
and pulsation energy -1043 ergs, has the character of a Ray- 
leigh wave. This mode, like the surface 0-modes, is potentially 
capable of being excited in X-ray burst sources. The mode 
properties, including the period, are extremely sensitive to 
structural details near the ocean/crust boundary. We do not 
know the primary damping mechanism for this mode; it may 
be due to nonadiabatic effects, as appears to be the case for the 
*0/ modes. Also like those modes, the properties of this inter- 
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facial mode appear to be radically altered by strong magnetic 
fields. The crust/core interfacial mode, with period ~6.5 ms 
and pulsation energy ~ 1052 ergs in the fiducial model, has the 
character of a Stoneley mode. This mode appears to require 
more energy than is expected to be available in order to be 
excited in an X-ray burst source. It is damped by gravitational 
radiation in ~ 200 days. 

The s-modes are essentially normal modes of spheroidal 
shear waves, and the displacements are largely confined to the 
crust. The periods are sensitive to the crust thickness and range 
between 1-2 ms for the 2s1 mode. Pulsation energies are —1052 

ergs for the 0.5 M0 models but are lower for the higher masses. 
In all cases, the energies are so high that these modes probably 
cannot be excited to observable amplitudes. Gravitational 
radiation is moderately effective in damping these modes, with 
damping times ~ 0.5-100 days. These modes and other short- 
period modes are likely to be essentially unaffected by mag- 
netic fields or rotation, except perhaps for millisecond rotation 
periods. 

The /-mode and the p-modes have short periods (II < 0.2 ms 
for the J and 2Pi modes) and large pulsation energies, ~ 1048- 
1051 ergs, mitigating against their potential observability. They 
are very efficiently damped by gravitational radiation, with 
damping times ranging between 10 and 100 ms. The /-mode 
has a global character and may be affected by superfluidity. 
Neglect of the gravitational potential perturbations results in 
errors of <25% in our estimate of the period. The p-modes are 
restricted to the outer ~20% in fractional radius, and the 
Cowling approximation therefore has little effect on the 
periods. 

The torsional oscillations are normal modes of toroidal 
shear waves in the neutron star crust. The 2t0 mode period is 
invariably ~20 ms, and the overtone periods are directly pro- 
portional to the crust thickness QII,, « (2Ar/n) ms, where Ar is 
the crust thickness in kilometers]. These modes have pulsation 
energies ~ 1048-1049 ergs. The damping mechanisms we have 
considered for these modes are all relatively weak. For 
example, gravitational radiation damping is the dominant 
energy loss mechanism among the ones we have considered for 
the 2t0 mode, but the damping time is Tg ~ 103-104 yr. 
Depending on the magnetic field strength, the values of / and 
m, and the temperature of the neutron star, the damping could 
be dominated by gravitational radiation, with Tg < 1 yr, elec- 
tromagnetic radiation, with Tem < days, or possibly internal 
friction, perhaps with on the order of days to years. Tor- 
sional oscillations could be excited in a pulsar macroglitch, 
although the amplitude seems likely to be small. A pulsar 
macroglitch is manifested by an abrupt increase in rotational 
frequency. Observations of the Vela pulsar indicate that 
AQ/Q ~ 2 x 10“6 (Taylor and Manchester 1977). The sudden 
spin-up corresponds to a release of internal energy E ~ 
l/2/Q2(AQ/Q), where / is the moment of inertia of the neutron 
star. Assuming values of / ~ MR2 ~ 1045 g cm2 and Q ~ 10 
(for the Vela pulsar), the energy released is £ ~ 1041 ergs. Con- 
ceivably such an event could excite torsional oscillations which 
might persist long enough to be observable. The energy of a 
typical torsional oscillation mode is £ ~ 1048[IF(RJ|C)/RS|C]

2 

ergs. If all the energy of a glitch were channeled into a single 
torsional mode, an amplitude of W(R*)/R* ~ 10_4-10-3 

could be expected. It is not yet known how large an amplitude 
is necessary to produce an observable perturbation of the 
pulsar emission mechanism. 

There are many potentially important effects for real 
neutron stars that we have not included in our analysis of the 
“three-component” oscillation spectrum but have noted in 
passing. Among these are superfluidity, rotation, magnetic 
fields, and general relativity. 

Superfluidity of the neutrons in the inner crust, and of the 
protons and neutrons in the core, may have a significant effect 
on modes with large core amplitudes, such as the core g-modes 
and the /-mode. For example, vortex unpinning may produce 
substantial damping of these modes. In addition, there may be 
new modes (“Tkachenko” oscillations; see Ruderman 1970) 
that arise specifically from the properties of superfluids. 

Radio pulsars have typical magnetic field strengths of 1012 

G. As shown by Carroll et al (1986) and as noted above, the 
surface modes (*#/ and the crust/ocean interfacial mode) will 
be profoundly altered by such large fields. The magnetic pres- 
sure is £ma„ = B2/Sn ~ 4 x 1022£12

2 dyne cm-2, where 
Bi2 = ^o/lÖ12 G, and if we assume an ideal, degenerate, non- 
relativistic electron gas for the surface layers, then the gas pres- 
sure is Pgas ~ 3 x 1012p5/3 dyne cm-2 (assuming fie = A/Z = 
2). Thus the magnetic pressure dominates until p > 106£12

6/5 g 
cm-3. This implies, for example, that the entire ocean of the 
NS05T7 model would be dominated by magnetic effects. 

Radio pulsars also have a very broad range of observed 
rotation periods, from 1.6 ms to ~4 s. When the period of an 
oscillation mode is comparable to or longer than the rotation 
period, rotational effects are expected to be important. Even 
for the most slowly rotating neutron stars, the core gr-modes 
are likely to be strongly affected by the rotation. For milli- 
second pulsars all the modes, with the possible exception of the 
/- and p-modes, are likely to be radically altered by the rapid 
rotation. 

If neutron star oscillations can be observed, then as the cal- 
culations reported in this paper show, they are potentially 
capable of providing important new fundamental information 
about the interior conditions of these extremely dense objects. 
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APPENDIX 

NUMERICAL METHOD 

Vol. 325 

The spheroidal and toroidal eigenvalue problems described by equations (13), (18), (19), and (20) and by equations (25), (27), and 
(29), respectively, are two-point boundary value problems. The numerical technique used here to solve them is the Newton-Raphson 
method, which has enjoyed wide use in pulsation calculations (see Winget 1981; Carroll 1981). Because of the presence of internal 
surfaces of discontinuity in the unperturbed stellar model, however, the solution of the neutron star problem requires special 
procedures, which we describe below. 

The solution of a general system of first-order linear equations by the Newton-Raphson method proceeds as follows. The 
equations can evidently be written in the form : 

^=Myj};Cl2), ¿ = (Al) 

where x is the independent variable, and Q2 is the dimensionless eigenfrequency (eq. [15]) to be determined. To complete the 
specification of the problem, / boundary conditions and one normalization condition are needed; these can be written in the form 

gii{yj{a)} or {y,{fc)};Q2]=0, /=!,...,/ +1, (A2) 

where x = a and x = h are the endpoints of the range of x. Equation (Al) is next cast in finite difference form, and a solution 
({yj, Q2) is written as the sum of a trial value ({ÿ,}, Ü2) plus a correction, i.e., + öyt and Q2 = Q2 + <5(Q2). Equations (Al) and 
(A2) are then linearized in_the corrections to produce a system of algebraic equations for the corrections ¿y, and <5(Q2) which can be 
solved in terms of y, and Q2. Application of the corrections yields new trial values of y¿ and Q2, and iterations of this procedure are, 
in our calculations, continued until all the convergence parameters e, are less than lO"8. Here the convergence parameters are 
defined by 

1^1 
£n=l Itfl 

i= 1, (A3) 

where N is the total number of shells. Typically, four to five iterations are required to obtain the indicated level of convergence, and 
at the last iteration it is not uncommon to find values of <5(i22) ranging from 10" 22 to 10 2S. 

For a completely fluid star, the system (Al) is the second-order equation set (eq. [18a]-[18b]). The boundary conditions are (i) 
regularity of the solution at the stellar center (eq. [19a]), (ii) the condition ôp/p ->• 0 at the stellar surface (eq. [19b]), and (iii) the 
normalization condition at the stellar surface (eq. [19c]). Solution of this system of equations proceeds in the following way. 
Between the first and second shell in the stellar model, there are five unknown quantities : the corrections ôy^ and ôy2 at the central 
shell, the corresponding corrections at shell 2, and the correction <5(i22) to the eigenvalue. Equation (Al) in finite difference form 
provides two relations among these variables, and the central boundary condition provides a third. Application of these conditions 
permits the elimination of three of the unknowns in terms of the remaining two. Between shells 2 and 3, we add two new unknowns, 
the corrections 0y1 and ôy2 at shell 3, and two new finite difference equations of the form (Al) relating those variables to the 
unknowns remaining at shell 2. Again the system can be solved in terms of two remaining unknowns. Evidently this process can be 
repeated until the shell added is the one at the stellar surface. At this point, in addition to two unknowns and two new finite 
difference equations, we add the surface boundary condition and the normalization condition. The system now becomes determi- 
nate, and the equation set can be solved to obtain all of the required corrections. 

In the case of a neutron star with a solid crust, which we take to have an inner boundary at shell /_ and an outer boundary at 
shell / + , the solution of the equation set proceeds in exactly this same way until the inner boundary of the crust is reached. In the 
step from shell - 1 to shell we change from the two Dziembowski variables (eq. [16]) y2 and y2 to the four z-variables (eq. 
[11]). The variables zl and z2 are related to yt and y2 through the interfacial jump conditions (eq. [20a], [20b]), and the quantity 
Z4. = 0, because we impose the free slip condition (eq. [20c]) at the boundary. Thus in moving from shell / _ — 1 to shell / _, we add 
four unknowns (the corrections bzi at shell /_) to the two unknowns by ¡ and ôy2 at shell /_ — 1, and we add three relations among 
these unknowns. After the application of these three relations, there remain three unknowns at shell / The step from shell /_ to 
shell /_ + 1 adds four new unknowns <5zf and four relations of the form of equation (Al) among them. Clearly, in a manner similar 
to that of the fluid case described above, this permits the propagation of three unknown corrections through the crust to the 
outermost shell of the crust, /+. At this point we must return to the Dzembowski variables in the fluid ocean. The step from shell / + 
to 7+ + 1 thus adds two new unknowns, the two corrections óy¡ at shell 7+ + 1, to the three at shell 7 +, together with three relations 
among them (the expressions relating y, and y2 to zi and z2 and the free slip condition z4 = 0). Thus at shell 7+ + 1 we return to a 
system containing only two unknown corrections, and the remainder of the numerical solution proceeds as discussed above. 

We began the testing of our numerical method using a simplified version of the code, which was designed for a model consisting of 
a fluid core and a solid crust, but with no surface fluid ocean. Our equilibrium model for these initial tests was a piecewise 
homogeneous model of the Earth kindly supplied to us by R. Buland of the United States Geological Survey. Our code reproduces 
the periods given by Buland for this model to better than one part in 105 for the spheroidal mode with the longest period. The 
agreement is slightly less good for the overtones, as one would expect, since there are fewer shells per wavelength for these modes. In 
addition, the eigenfunctions agree well except for some small differences in the horizontal motion in the core. 

To test the “ three-component ” Newton-Raphson code, we have adopted a standard (fiducial) equilibrium neutron star model. 
This is the 0.5 M0 model with central temperature Tc ~ 107 K from Richardson’s evolutionary sequences mentioned above in § II. 
We have also carried out normal mode calculations for this model using a completely different numerical method than the 
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Newton-Raphson technique described here. In this other numerical approach, which is basically a shooting method, the full set of 
pulsation equations for liquid and fluid regions is integrated from the stellar center to the surface using a fourth-order, step- 
correcting, Runge-Kutta algorithm with cubic spline interpolation of the necessary stellar parameters. Jump conditions at interfaces 
are applied directly in this scheme. While highly accurate in principle, this method is somewhat difficult to implement because, in the 
solid crust of the model, there are two linearly independent solutions for z which must be computed separately and then later 
combined to obtain the final eigenfunctions. The general method used here has been reviewed by Woodhouse (1980). Briefly, it 
consists of phrasing the pulsation variables in terms of “minors,” which are vector cross product representations of thezf, and then 
disentangling the system to recover the zf. Because of the computational complexity and cost, these methods were used only as 
benchmarks for the main set of calculations. Comparison of the results from the two different methods for modes with / = 2 
generally shows quite good agreement. Most of the periods agree to within a few percent or better. There is one exception, however: 
the core/crust interfacial mode. The shooting method yields a period of 5.3 ms for this mode, while the relaxation technique yields 
6.5 ms, a difference of almost 25%. Despite this difference, the eigenfunctions produced by the two different methods are very 
similar. We do not know the reason for the disagreement in period, but it seems to be unique to this interfacial mode. These types of 
interfacial modes (called Stoneley modes in geophysics) are often difficult to compute because of the steep gradients of eigen- 
functions implied by the trapping on the interfaces and associated decoupling from the rest of the star (or Earth; see Buland and 
Gilbert 1984). Because the properties of this one mode are extremely sensitive to conditions in the vicinity of the interface, it is 
perhaps not too surprising that this case should yield results which depend upon the particular numerical method employed. Aside 
from this case, the agreement between the two sets of results for the other mode calculations provides confidence in the qualitative 
results and yields a measure of the residual error in these numerical computations. We also note that in numerical experiments in 
which /x 0, the pulsation periods reduce to their pure fluid values. See McDermott (1985) for details. 

The method of solution of the toroidal oscillation problem is essentially the same as that described for the spheroidal modes. This 
is a much simpler problem, because the toroidal modes are described by the second-order system (eq. [25]), with the free slip 
boundary condition (eq. [27]) imposed at the top and bottom of the crust, together with the normalization condition (eq. [28]). The 
numerical solution of this problem proceeds in a manner very similar to that described above for a purely fluid model. 
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