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ABSTRACT 

We calculate the beam shapes, pulse profiles, and spectral transmission function at infinity for the radiation 
originating in columns or hot spots on slowly rotating neutron stars, represented by the Schwarzschild metric. 
These are used for models for binary accreting pulsars and may apply to isolated neutron stars as well. We 
discuss the shadowing effects and their interplay with the frequency changes as a function of the observer 
angle. We give the observed bolometric beam shapes and pulse profiles as a function of radius, as well as 
observed pulse-phase spectra and frequency-dependent pulse profiles, for various types of source functions at 
the surface. The more realistic accretion (or emission) column geometry used indicates that these may show a 
larger degree of modulation than was previously thought, as compared to hot spots. The observational impli- 
cations for X-ray-emitting pulsars are discussed. 
Subject headings: gravitation — pulsars — relativity — stars: neutron — X-rays: binaries 

I. INTRODUCTION 

Gravitational light bending is expected to occur near 
neutron stars whose radii are not much greater than the 
Schwarzschild radius. For most current models of the equation 
of state (see Shapiro and Teukolsky 1983) the ratio of the 
stellar radius R to the Schwarzschild radius Rs = IGM/c2 is 
approximately in the range 2 < R/Rs < 4, in which case the 
photon orbits will significantly deviate from the flat-space case 
(see Misner, Thorne, and Wheeler 1973). This is of great obser- 
vational importance in the interpretation of both rotation- 
powered and accretion-powered pulsars since a very large 
body of the data consists of pulse profiles and timing informa- 
tion, and much, if not most, of this radiation is expected to 
arise from the stellar surface or very close to it. Recently, 
Pechenick, Ftaclas, and Cohen (1983) and Ftaclas, Kearney, 
and Pechenick (1986) have investigated the influence of these 
effects on the beaming of the bolometric (frequency-integrated) 
radiation from a hot spot on the surface of a slowly rotating 
neutron star in the limit where the Schwarzschild metric is 
applicable. A general flattening of the light curves was found, 
and, for extremely relativistic stars, a certain fraction of the 
radiation observed at infinity is beamed, even for an assumed 
isotropic input at the surface. These results may apply to some 
polar-cap models of rotation-powered pulsars (e.g., Cheng and 
Ruderman 1980; Helfand, Chanan, and Novick 1980; Arons 
1981) and to polar-cap (or slab) models of accretion-powered 
X-ray pulsars, e.g., such as one would obtain if the deceleration 
of the infalling matter occurs through binary particles encoun- 
ters in the denser parts of the atmosphere (Zel’dovich and 
Shakura 1969; Alme and Wilson 1973; Mészáros et al. 1983; 
Harding et al. 1984). The emission surface in these models 
coincides essentially with the stellar surface. 

In this paper, we investigate a different set of problems 
associated with the fact that a significant fraction, or perhaps 
most of the radiation, may in some cases originate from 
regions which are not part of the stellar surface. For accreting 
pulsars, it would be relevant for the case when the infalling 

1 On leave from Max-Planck-Institut für Astrophysik, Garching, FRG. 

matter decelerates at some distance above the surface due to 
shocks or radiation pressure (which may be more prevalent at 
higher luminosities). In this case, one has an accretion 
“column” rather than a polar cap or hot spot, and, as a rea- 
sonable approach to this type of emission region, we consider a 
radiating cone which emits only from its sides, but not from the 
top (Davidson 1973; Basko and Sunyaev 1976; Wang and 
Frank 1981 ; Kirk 1985). A review of the various arguments for 
hot spots or columns in accreting pulsars is given by Mészáros 
(1984). In the general relativistic treatment of the emission from 
a column, there appear two new, qualitatively different effects, 
which are not present in polar-cap or hot-spot models. First, 
the frequency redshift is different for radiation arising from 
different heights, and a treatment of the frequency-integrated 
(bolometric) luminosity does not reveal the full complexity of 
the situation. Second, the star and the elevated emission region 
(or accretion column) will both produce some shadowing of the 
light rays, as they proceed on their curved paths, and this effect 
depends on the emission height (or frequency) and on the direc- 
tion of observation. 

In § II, we present the formalism of frequency-dependent 
transfer in a Schwarzschild metric. This is specialized in 
Appendix A to the situation where one is considering an accre- 
tion column or a raised emission region. For completeness, we 
discuss also the case of a surface hot spot in Appendix B. We 
concentrate in particular on the observational quantities that 
are most often measured, e.g., the spectral photon flux and the 
total apparent flux at infinity. In § III, results are presented for 
the frequency-integrated beam shapes and expected pulse pro- 
files in the case of emission columns for various stellar radii 
and for various different orientations of the rotation and 
column axes with respect to the observational line of sight. We 
present calculations using an isotropic input angular distribu- 
tion at the source and discuss the changes introduced by more 
beamed input distributions such as are expected from scat- 
tering atmospheres. The results for the columns are then com- 
pared with the hot-spot beam shapes and pulse profiles. Some 
of the shadowing effects due to the more complex column 
geometry are already quite apparent for the bolometric flux. In 
§ IV, we discuss the frequency dependence of the observed flux, 
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assuming that the input spectrum is a delta function in fre- 
quency. We discuss the observed spectral flux, and the 
observed pulse shapes from accretion columns as a function of 
frequency, for varying stellar radii and column dimensions. 
The observational implications of our results, as well as a dis- 
cussion of their physical significance, are given in § V. 

II. FORMALISM 
We assume that the central object is slowly rotating (Í2RS 

c) and that the gravitational effects of the external flow are 
negligible compared to those of the central object whose radius 
is R. The Schwarzschild metric (with coordinates i, r, 0, <I>) is 
then appropriate, with Schwarzschild radius Rs = 2GM/c2, 
where M is the stellar mass. The propagation of the radiation 
near the star can be described by a relativisitc transport equa- 
tion for an invariant photon distribution function/, which was 
derived by Lindquist (1966) in its general form. For the station- 
ary (ô/ôt = 0), rotationally symmetrical case (d/d<!> = 0), the 
transport equation with respect to an orthonormal basis can 
be derived by the method of Rifferent (1986), 

„ d/ , (1 - ^)1/2 , df 
—  cos 0 — + 
dr r ^ d® 

r H2 df 
dr) r dn 

(1-H2)1/2 . , ^ df dA df 
   (1) 

Measuring the radial coordinate in units of Rs, one has 
A = (1 — l/r)1/2. The propagation direction of a photon is 
characterized by the unit vector 

n = [/x, (1 — /¿2)1/2 cos </>, (1 — /i2)1/2 sin 0] , 

which defines the angles /x and </> (actually /x is the cosine of the 
angle between n and the radial direction). Together with v, the 
photon frequency, these three parameters characterize the 
photon four-momentum. 

We assume that the photon is emitted at a point Q = (r0, 
^o) with frequency v0, in the direction (/¿0, </>0). It is 

observed at the point P = (r, 0, (I)) with the corresponding 
four-momentum quantities (v, fi, </>) (see Fig. 1). In the limit 
r -► oo, the spectral flux observed is given by (we use h = c = 1 
throughout) 

Fv= ÍÍ Ivßdnd(j) = v2 Íí f^d¡xd(¡), (2) 
J J4-7T J J47t 

where 7V stands for the specific intensity, and all quantities in 
equation (2), including the solid angle of integration, are mea- 
sured at the observer. The function / is constant along the 
characteristics of the transport equation (1). The equations for 
the characteristics may be used, therefore, to express the inte- 
gral (2) in terms of the emission quantities ¡lo, (fro> etc* • 

Fv = y3 fo D(v, ßo, <t>o)ßduo d<t>0 , (3) 

where D is the Jacobian of this transformation,/0 stands for the 
distribution function as a function of the variables r0, 0O, /x0, 
00 V vo> and the integral over 4n is now carried out over the 
transformed domain in the emission region itself. 

The characteristics of equation (1), the first three of which 
are immediately integrable, are 

Fig. 1.—Geometry of the situation, showing coordinates of the emission 
point ß(r0, @0, <I>0), of the observation point P(r, ©, O), and photon four- 
momentum quantities fi0, 0O, v0 and fi, (j), v, respectively, where n = cos (6) 
(note that the azimuthal angles O, </>, O0, and <j>0 are not explicitly indicated). 
Also shown are the column (top) or cap (bottom) configurations, of half- 
opening angle a. 

sin 0 sin </> = sin 0O sin <fr0 , (4b) 

vA = v0 Aq , 

d© cos </> 
dr fir2 

(4c) 

(4d) 

Here, A0 = (l — l/r0)1/2, equation (4a) defines the relativistic 
impact parameter b (see Misner, Thorne, and Wheeler 1973), 
and equation (4c) gives the usual redshift relation. Integrating 
equation (4d) with the help of equations (4a) and (4b) yields the 
result 

cos © = cos ©o cos K — cos 0O sin ©0 sin K , (4e) 

where the quantity K(r, r0, n0) is the angle between the radius 
vector pointing toward the emission point Q(r0) and the radius 
vector point to the observation point P(r) for a photon emitted 
with n0. In the following, we consider r0 > 1.5, in which case 
any outwardly directed photon O0 > 0) is able to escape to 
infinity. Here K(r, r0, /¿0) is given by 

K(r, r0, /¿0) = ft ^ h2 1 - 
~1/2 dx 

- + Q(ro> Mo), 

(5a) 
where 

(0, 

Q(r0, Mo) = f'o 
2b 
n 

x--b2l 1-- 
X 

1/2 dx 
X 

and rm is a solution of the cubic equation 

4 - b2(rm - 1) = 0 . 

Mo^O, 

Mo <0, 

(5b) 

(6) 
Here, rm is the distance of minimum approach of the photon to 
the star, meaningful in the case where the photon has been 
emitted somewhere above the star and in a downward direc- 
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tion. A solution for positive rm exists only if 
1/2 

(7) 

This is a necessary condition for the validity of equation (5b), 
otherwise the photon falls back onto the star. From the rela- 
tions (4) and (5), the Jacobian D in the flux integral (3) can be 
calculated for any shape of the emitting surface. 

in. results: bolometric angular dependence 

a) Column : Frequency-Integrated Emission 
The frequency-integrated emission from the sides of an ac- 

cretion column is calculated in detail in Appendix A. Shadow- 
ing effects are taken care of by the appropriate choice of the 
integration region S0 and of the initial photon distribution at 
the emission surface, J0 (see eqs. [A12]-[A14]). We further 
assume that the top of the column does not radiate. This is 
considered reasonable for accretion columns in high- 
luminosity pulsars, where, due to the dynamical structure of 
the emission region, most of the radiation is expected to be 
radiated sideward (in the upward direction the opacity is larger 
and photons have to diffuse upstream). In all cases presented 
here, we have taken 70 to be independent of the radius r0 and of 
the emission angles 4>0 and g0, i.e., /0 is assumed to show an 
isotropic emission pattern. 

In order to get an idea of the general emission properties of a 
radiating column we first consider the propagation of a single 
light ray emitted at r = r0 with 0O = ^ from the side of a 
column with an opening half-angle a centered on 0 = 0. For a 
fixed stellar radius R there is then an emission radius r0 = Rn 
such that a light ray emitted from that height is tangential to 
the stellar surface at some point and escapes to infinity into the 
direction 0 = tl This is a preferred direction because, for a 
column emitting from its whole surface, a large fraction of the 
area contributes to the observed flux : for symmetry reasons the 
visible parts of the column are complete ring areas whereas for 
other observation angles only some spotlike parts of the 
surface might be visible. The above radius Rn is a function of R 
and a, and this function is shown in Figure 2 (note that for 
ex. = 0, Rn is identical with the focal length defined in the paper 
of Ftaclas, Kearney, and Pechenick 1986). Light rays emitted 
at lower radii (r0 < Rn) are not visible at 0 = tt (the reason for 
that is that rays emitted at g0 < fiR with fiR defined in equation 
[A2] are absorbed by the star; fiR is monotonically decreasing 
with r0 and the deflection angle K [see eq. (5)] decreases mono- 
tonically with ju0). The angular dependence of the observed flux 
from a radiating column will thus depend on whether its upper 
radius Rc lies within the distance Rn or not. Figure 3 shows an 
example of a single column with a = 5° on a star with R = 3RS 

for various column upper radii Rc ; the corresponding value of 
Rn is Rn = 3.94RS. For Rc < Rn, the emission from the column 
will be obscured completely by the star for large observation 
angles 0. If Rc > Rn, parts of the column are still visible at 
0 = Ti, and, due to the large visible area, the flux is strongly 
increased. 

In the following example (Figs. 4 and 5) we have considered 
emitting columns with various combinations of lower and 
upper radii R and Rc, respectively. We have performed calcu- 
lations for stellar radii R/Rs = (1-7, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 
10.0,100.0), and have chosen in each case Rc such that the total 
emitted luminosity (see eq. [A 16]) remained the same. The 
normalization was chosen such that, for R = 2, Rc = 2.2. For 

Fig. 2.—Generalized focal radius Rn as a function of stellar radius and 
column opening half-angle a. Values of a are (from top to bottom) 0°, 5°, 10°, 
20°, 30°, 45°, 60°. 

larger radii, AR/R is less than 10%, and, for smaller radii, it is 
more, the values being Rc = (1.95, 2.20, 2.65, 3.12, 3.60, 4.09, 
5.07, 10.03, 100.003). The constant luminosity constraint has 
been chosen arbitrarily. One can argue that the luminosity (or 
flux) is a given observable, whereas what we do not know is the 
stellar radius and column radii. Since the luminosity depends 
on the emitting area, for the various R we choose the Rc that 
would give the same emitted luminosity. That is, however, by 
no means a necessary choice. 

The results shown in Figure 4 represent the beam function 
for the emission from one pole only, including shadowing 
effects by the star. For some particular observers who sample 

8 38 60 90 120 150 180 
THETR (DEG) 

Fig. 3—Column bolometric beam shape for an isotropic input intensity 
from a single column on top of a star with a radius R = 3, for various upper 
radii Rc. Ordinate shows normalized flux for an observer at infinity and the 
abscissa gives the observation angle © in degrees. The values of Rc are Rc = 
3.03, 3.09, 3.15, 3.30, 3.60, 3.90, 4.20, 4.50. The column half-angle a is 5°, and 
Rn = 3.94. Radii are in Schwarzschild units. 

27 
> 4 

or fi0 > 
-'-äK 
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THETA (DEG) 
Fig. 4.—Column bolometric beam shape for an isotropic input intensity 

from surface of sides of column, extending between stellar radius R and an 
upper radius Rc. Values shown are (see text) R = 1.7, 2., 2.5, 3., 3.5, 4., 5., 10., 
100.. Beaming pattern shown is for one pole with a = 5°. Corresponding values' 
of Rc and Rn are Rc = 1.95, 2.20, 2.65, 3.12, 3.60, 4.09, 5.07, 10.03, 100.003* 
Rn= < 1.7,2.04,2.87,3.94,5.21,6.66,10.05,34.72,943.72. 

® = ?’ ^ *s a^S0 a curve. For two poles, the beaming 
function is obtained from the one-pole beaming function by 
reflecting about 90° and taking into account any possible shad- 
owing due to the second pole. The half-opening angle a of the 
column was again taken to be 5°. In Figure 5, we show the 
more general pulse profiles arising from such a two-pole con- 
figuration due to spinning of the neutron star, as a function of 
the spin phase 2^0^, for various values of the observer aspect 
angles i2 indicated along the top of the graph. Here, ^ is the 
angle between the line of sight and the rotation axis and i2 is 

the angle between the rotation axis and the magnetic or 
column axis. These angles are related to the observation angle 
0 by * 

cos (0) = cos (¿i) cos (i2) + sin (i,) sin (i2) cos (In®*). (8) 

As seen from Figure 4 the emission is beamed strongly back- 
ward (0 » n) for R < 2RS (the lowest two curves), because in 
those cases the column extends above the radius RK. For the 
remaining curves, we always have Rc < Rn, and therefore the 
columns are invisible at large observation angles. The actual 
cutoff angle where the flux goes to zero decreases with increas- 
ing stellar radius and approaches the limiting values a + tt/2 
for less relativisitic configurations (R > 10RS). Note that there 
is no emission for 0 < a since the top of the column does not 
radiate, only the sides. In the interval a < 0 < tt/2 the fluxes 
increase in a way similar to the “classical ” (i.e., nonrelativistic) 
limb-darkening law F oc sin 0. The pulse shapes of Figure 5 
show for the nonrelativistic limit (large radii) a smooth, low- 
modulation pulse, with “peaks ” present at those phases where, 
for a particular set of viewing angles, one can see both columns 
simultaneously. For = i2 = 45° this occurs in the nonrelativ- 
istic limit near 0 = tu/2, where the flux jumps to twice the 
value, since one sees fully both columns. As the configurations 
become more relativistic, the width of these flat-topped peaks 
increases, due to increased bending of the light rays. For R < 
2RS, corresponding to a column model with Rc > Rn9 the 
beaming has become essentially backward, and the peaks 
appear at phase zero, rather than near phase 0.5 as in the 
nonrelativistic case. The effect of varying a different parameter, 
such as the column height while leaving the radius constant is 
shown in Figure 6, where the pulse shapes corresponding to 
the beam shapes of Figure 3 are shown. 

b) Caps: Frequency-Integrated Emission 
We consider now the case of an emitting polar cap. That is, 

the situation where the emission arises from a portion of the 

d 1 
PHASE 

Fig. 5.—Column bolometric pulse shapes for two poles, for an isotropic emission function and a beam shape as given in Fig. 4 Ordinate gives normalized flux 

phase 2^ 0bSerVer 3t mfimty’f0r nlne radu glven in Fi®-4 in ascending order, bottom to top. Numbers along the top give the vowing angles if/i2. Abscissa is pulse 
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010 10 1010 1 
PHASE 

Fig. 6.—Column bolometric pulse shapes for two poles, isotropic injection function, R = 3RS and variable column height Rc as in Fig. 3 

surface of the star around the magnetic poles, from a constant 
radius r0 = R rather than from a range of radii, as in the case of 
the accretion columns of § Ilia. In this case, the calculations 
are somewhat simpler (see Pechenick, Ftaclas, and Cohen 1983 
and Appendix B). There is no shadowing by the star (for r0 = 
R> 1.5), nor by the other pole. We have again used an 
opening half-angle a of 5° and an intrinsic beam function 
which is isotropic. The corresponding beam functions for a set 
of stellar radii have been discussed in detail by Pechenick, 
Ftaclas, and Cohen (1983). A flattening of the beam shape is 
obtained if R is reduced from large values to R « 1.8RS (for 
a < 10°), and for smaller configurations a certain fraction of 
the flux is beamed into the backward direction (0 » n). 

However, the degree of backward beaming is less than in the 
column case, due to the fact that in the caps the flux is mainly 
emitted upward, rather than sideways as in the columns. The 
cap pulse shapes are presented in Figure 7 for the same set of 
radii as in the column case (Figs. 4 and 5). They show a smooth 
variation which is more modulated than the smooth com- 
ponent of the columns (as already found in the flat-space limit ; 
see Nagel 1981 and Mészáros and Nagel 1985). However, the 
cap pulses do not show the extra flat-topped peaks seen in the 
columns, even in the nonrelativistic limit, because when one is 
viewing the object perpendicular to the magnetic axis, so one 
can see both caps, the surface projection factors are very small 
(the effective visible surface is small), and this occurs near the 

0 10 16 10 10 1 
PHASE 

Fig. 7.—Polar cap bolometric pulse shapes for two poles and isotropic input emissivity function. Conventions as in Fig. 5 
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pulse minima, rather than near pulse maxima. Relativistic light 
bending does tend to fill in the minima, which tends to decrease 
the total modulation of cap models. 

IV. RESULTS: FREQUENCY DEPENDENCE 
In the polar-cap models, the frequency dependence is simple 

since all the radiation arises from the same stellar radius, 
and the observed spectrum can be obtained from the emitted 
spectrum by rescaling the frequency according to v = 
v0(l — RJR)112. For the columns, however, at a fixed observed 
frequency v one has contributions from a range of emitted 
frequencies v(l - Rs/Rc)“

1/2 < v0 < v(l - Rs/R)_1/2. One gets 
a superposition of the emission function over all visible points 
on the surface, including multiple images, within this frequency 
range. 

As the simplest example, we shall investigate here the 
response of the gravitational system to an input at the surface 
consisting of a delta function in frequency. That is, in equation 
(A10) we take 

fo(ro, <t>0> Vo) = 0o(ro> Mo» </>o)<5(v0 - ve) . (9) 
This type of function can be considered as a Green’s function of 
the frequency-dependent emission problem; any realistic spec- 
trum emitted from the column may be obtained by super- 
posing such delta function inputs. To simplify things further, 
we take an angular distribution g0, which is isotropic, but even 
so, one is still left with a rather complicated law of super- 
position of frequencies, due to the fi0, </>0 dependence of r0, i.e., 
photons travel along paths of varying ju, </>. Using a numerical 
grid of 15 frequency points and 81 angle points, the spectral 
response function at the observer to a delta function frequency 
input at Vo = ve is shown in Figure 8, for a single pole. The 
stellar radius is R = 2.2RS, which is also the column lower 
radius, and the upper radius is Rc = 2.38RS; again we have 
a = 5° and the resulting value of Rn is 2.34RS. The ordinate is 

8.737 8.742 8.747 8.752 8.757 8.762 
FREQUENCY 

Fig. 8.—Observed differential spectral flux from a column with an emission 
function which is a delta function in frequency and isotropic in angle. Ordinate 
is flux [energy/(time frequency area)], and abscissa is observed frequency in 
units of input frequency at source. Bottom radius is R = 2.2, upper radius 
Rc = 2.38, and Rn = 2.34, a = 5°. Various curves correspond to different 
observation angles 0: 60°, 90°, 145°, 150°, 155°, 160°, 165°, 170°, 175°, 178°, 
180° (from bottom tc top). 

THETA (DEG) 
Fig. 9.—Beaming pattern at infinity for different observed frequencies, for a 

column with input source function which is a delta function in frequency and 
isotropic in angle. Ordinate is observed spectral flux [energy/(time frequency 
area)], and abscissa is observation angle 9, while different curves are for seven 
frequencies between lower and upper range of redshifted frequencies. Param- 
eters are same as in Fig. 8. 

the observed flux in arbitrary units, the abscissa is the observed 
frequency in units of the initial frequency v/ve, and the various 
curves are for different angles 0 of observation. One sees that 
the (dimensionless) value of the emitted frequency v0/ve = 1 has 
been spread over a range of frequencies v/ve < 1. Such effects 
(Av/v « 3%) would be resolvable experimentally, for example, 
with germanium detectors (AE/E & 1%). Due to the delta 
function nature of the injected spectrum, each observed fre- 
quency v corresponds to a specific emission height r0 : 

Thus, for the high frequencies (v > 0.756ve) one has r0 > Rn9 
which, for reasons outlined in the preceding paragraph, results 
in an enhanced flux for large observation angles 0. It is seen 
from the spectral plot of Figure 8 that as 0 approaches n the 
bottom parts of the column are being increasingly obscured by 
the star leading to a cutoff in the spectrum at the correspond- 
ing frequencies. 

The angular dependence of the observed flux for a set of 
fixed frequencies can be seen more clearly in the Figure 9. The 
fluxes for the lower frequencies (which originate closer to the 
bottom of the column) are cut off by the star at relatively 
“ small ” angles (0 « 150o-165°), and the high frequencies, cor- 
responding to r0 > Rn, are still visible at 0 = 180°. 

This frequency and angle-dependent emission structure has 
been translated into a more observationally familiar represen- 
tation for rotating stars by plotting pulse shapes for a configu- 
ration of two oppositely located radiating columns. Figure 10 
gives the normalized flux per unit frequency (ordinate) against 
pulse phase (abscissa), for eight different frequencies shown in 
increasing order from bottom to top and for various viewing 
angles shown along the top. Because the fluxes shown in 
Figure 8 are relatively slowly varying functions for a wide 
range of observation angles (0 < 0 < 140°), not much pulsing 
is seen except for viewing angles which sample very close to the 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
5.

 .
20

7R
 

GRAVITATIONAL LIGHT BENDING NEAR NEUTRON STARS 213 No. 1, 1988 

PHASE 
Fig. 10.—Column normalized pulse shapes for different frequencies observed, for two poles and an input emission function, which is a delta function in frequency 

and isotropic in angle. Various curves are for increasing freqeuency from bottom to top. Parameters are same as in Fig. 8. 

polar axis, and which intersect the strongly backward bent 
beam. In the low-frequency case the obscured 0-interval is 
large enough to give rise to the dips seen at phase 0 and 1 for 
all combinations i1 and i2- The fact that the flux for the high 
frequencies is beamed into a small interval at 0 = tt leads to 
the peaks in Figure 9 for i1 = i2 = 45°. In this case, the pulse 
profiles are actually inverted if the pulses are observed in differ- 
ent energy bands. 

v. DISCUSSION 

We have calculated the frequency-dependent and frequency- 
integrated flux at infinity from columns and hot spots located 
on relativistic, slowly rotating neutron stars. These serve as 
models for isolated or binary accreting pulsars, assuming some 
simplified angular and frequency input spectrum at the emit- 
ting surface. Two isolated pulsars which show evidence of 
broadly modulated X-ray emission are PSR 1509 — 58 (e.g., 
Seward et al. 1983) and PSR 0540 — 693 (e.g., Middleditch and 
Pennypacker 1985), although this does not appear to be a 
widespread phenomenon for this class of sources (see Helfand 
and Becker 1984). By contrast, there are many accreting binary 
pulsar sources (see White, Swank, and Holt 1983). 

The effect of gravitational light bending is rather large for 
configurations with radii less than ~2.5 Schwarzschild radii, 
both in the columns and the hot spots. For the latter case, our 
calculations are in agreement with Pechenick, Ftaclas, and 
Cohen (1983). We have used these hot-spot beam functions to 
present the actual pulse profiles as a function of pulse phase, 
which is the observed quantity, rather than the beam shape. 

The major contribution of the present paper, however, is our 
calculation of the beams, pulse shapes, and spectral properties 
of a different type of emission region, generically labeled emis- 
sion columns, or accretion columns in the case of accreting 
pulsars. The accretion columns distinguish themselves from the 
hot spots by a complicated mixing and shadowing behavior of 
the different frequencies, which appears due to the differential 
gravitational redshift. The column model contains an addi- 

tional free parameter, namely the column’s upper radius Rc. 
The general emission pattern at infinity, then, depends on 
whether this radius is larger or smaller than the characteristic 
radius Rn(R, a) defined in § III (a photon emitted at R* such 
that its path grazes the stellar surface will be seen at an obser- 
vation angle 0 = 180°). For Rc < Rn, the star always obscures 
the column completely for large 0, and, if Rc > Rn, a certain 
fraction of the column will be seen at 0 = 180°, and, due to the 
large visible area, the flux is strongly enhanced in this direction. 
For small opening angles of the column (a < 10°), the radius 
Rn increases rapidly with the stellar radius R; thus, for less 
relativisitic stars (R > 10RS) one will usually have Rc < Rn. 
In general, one sees that both the column and the hot-spot 
beams are strongly backwardly bent for the most highly rela- 
tivistic configurations. One might think that this could lead to 
an increase of the degree of modulation, since the beam is 
sharper. However, for the hot spots (caps), the observed flux 
arises from those rays that, at the surface, emerge close to 
© = 90°, i.e., perpendicular to the B-field, and, for these direc- 
tions, the effective surface area is very small (the usual limb- 
darkening law in flat space would be F oc cos [0]), so that, in 
practice, this leads to a net decrease of the degree of modula- 
tion with decreasing radius for the hot-spot models (see Fig. 7). 
By contrast, for the column models, which are strongly back- 
wardly bent, the effective surface area factor is much more 
favorable (corresponding to F oc sin [0] in the nonrelativistic 
limit), and the degree of modulation decreases more slowly 
with decreasing radius. For R < 1.8RS, when the beam starts 
becoming very sharply backwardly bundled, a very sharp spike 
induced by the gravitational light bending appears in the pulse 
profiles for those viewing angles where the direction 0 « 180° 
is sampled (see Figs. 3 and 4). In addition, the columns studied 
here show an additional modulation, which is present even in 
the nonrelativistic limit, due to the fact that the “columns” 
considered here, unlike those of Nagel (1981) and Mészáros 
and Nagel (1985) are not cylinders but rather portions of cones, 
which are closer to the real dipole geometry (in the region 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
88

A
pJ

. 
. .

32
5.

 .
20

7R
 

214 RIFFERT AND MÉSZÁROS Vol. 325 

AR/R < 20%-30%) than are the cylinders. For cones of 
opening angle a, one can see both columns at the same time for 
I nß — 01 < a, which leads to a doubling of the visible flux. 
Thus, we find here that the column pulse shapes, even when 
strongly gravitationally bent, do not show a preferential lack of 
modulation compared to the hot-spot (or slab) models. We 
have also investigated, but not presented here, more beamed 
angular injection functions, such as might be expected from 
scattering atmospheres. The resulting light curves are only 
modestly more modulated than those in the results of Figures 
3-7. 

We have presented a formalism for investigating the fre- 
quency changes of an arbitrary input spectrum as it propagates 
to infinity from points on the surface of a column above the 
stellar surface and have calculated examples involving an input 
delta function in frequency, whose response at infinity is the 
Green’s function of the problem. Subtle effects arise due to the 
shadowing of different frequency contributions, arising from 
different heights, by the stellar surface and by the opposite 
column, or by the same column after a full rotation, especially 
in the more extreme relativistic cases. In general, the lower 
frequencies, which arise from closer to the surface, are the ones 
that suffer most shadowing, which appears beyond a certain 
angle. This leads to the interesting phenomenon apparent in 
Figure 8, showing a peak at the higher frequencies (where the 
radiation is not shadowed provided the upper column radius 

Rc is greater than the characteristic radius Rn) and a trough at 
low frequencies (where shadowing has occurred). This may 
provide a different explanation for some of the pulse shape 
“inversions” detected in some X-ray pulsars, such as GX 1 +4 
and 4U 1626 — 67 (see White, Swank, and Holt 1983). For an 
alternative explanation, see Mészáros and Nagel (1985) and 
White, Swank, and Holt (1983). 

The injection models investigated here are of the simplest 
kind, in order to distinguish between the purely gravitational 
or geometrical effects and those effects which are connected 
with the physics of the surface layers or the radiative transfer. 
The delta function frequency input discussed can be used either 
as a Green’s function, to calculate the response of any arbitrary 
input frequency spectrum, or may be considered as a very 
simplified model of a spectral line, e.g., a cyclotron line or a 
heavy-element resonance line. In a subsequent publication, we 
shall present results of light bending in columns and hot spots 
using as an input the magnetic radiative transfer calculations 
for the corresponding geometries. 

We are grateful to W. Nagel for useful discussions concern- 
ing hot spots and to C. Ftaclas for many comments which 
helped improve the manuscript. This research has been par- 
tially supported by the Deutsche Forschungsgemeinschaft and 
by NSF grant 85-14735. 

APPENDIX A 

COLUMN EQUATIONS 

The radiating surface of the column is taken to be given by the section of the conical surface 

R <r0< Rc, 0O = a = constant, 0 < O0 < 2tc , (Al) 

where R and Rc are the lower and upper column radii. Here, we assume that the lower boundary also agrees with the stellar surface. 
Some of the radiation emitted will fall upon the star and will not be observed. This is taken into account by specifying the emission 
function /0, 

/o = 0 , for n0 < fiR, all (f>0, v0, and r0, ©0, i>0 given by equation (8), 

where fiK follows from equation (4a) with r = R and (i = 0, and radii in Schwarzschild units, 

Hr= - 
R> 1 - l/r0y'2 

r2o 1 - 1/Rj 
(A2) 

In addition, for strongly bent rays, the photon may hit the same column at the opposite side of the emission point if the deflection 
angle becomes 

K(r, r0, Ho) = 2(n - a), r < Rc . 

We define the quantity fic by the implicit relation 

mc, r0. He) = 2(n - a), one pole , 
or, for a second pole, by K(RC, r0, fic) = ti—2a. Both effects described above can be represented by the requirement 

/o = 0 , for ß0 < nL, all <p0, v0, and r0, ©0, ®0 given by equation (Al), 

where piL = max (ßR, tic). A further restriction on/0 is the condition that the column radiates only in the outward direction, 

/0 = 0 , for cos (p0 < 0, all fi0, v0, and r0, ©0, <I>0 given by equation (Al). 

In addition, we require the symmetry relation 

which means there is no flux in the O-direction. 
/oW>o) =/o(27t - (t>o), 

(A3) 

(A4) 

(A5) 

(A6) 
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We now calculate the Jacobian appearing in equation (3). Since ©o = oc is constant in our case, equation (4b) shows that (j) 
depends on </>0 only (since the observer’s r, 0,0 are fixed for these considerations). Therefore, 

and, from equation (4b), we have 

04) 

dfi d4> 
fiD = fi — — , 

dfi0 ocpQ 

sin a cos (¡)0 (A7) 
d0o (sin2 © — sin2 a sin2 (/>0)1/2 

For the calculation of from equation (4a), one has to keep in mind that r0 depends on </>0, n0. From equation (4a) we have 

djjL 
duo 

AroV 
A *7 L 

A°n ,,2ï d I r° Mo~ — i1 — Mo) l ~7~ i r0 dfi0 \A0J_\ 
(A8) 

Differentiating the relation of equation (4e) with respect to leads to dK/dfi0 — 0, and, from equation (5), we obtain the last 
derivative in equation (A8), so that 

where 

with 

^ _ 1 r2
0 1 

11 dn0 r2 r0 - 3/2 Y(r0, ß0) ’ 

-r 

o, 

Y(r0,Po)= q(x,b)dx + 
Jro J 2 

for f i0 > 0, 

0 
q(x, b) dx , for /x0 < 0 , 

with r —> oo assumed in the expression for K. The spectral flux may now be written as 

(A9) 

^•e,-2?£ 

COS (¡)0 r2 r0 1 

Irj2 - sin2 (/>0]1/2 r0 - 3/2 T(r0, fi0) 
Mr0’ ßo* <¡>0, VoWo d<Po » (A10) 

where S0 is the region of (f>0, Ho, where/0 # 0 and = sin ©/sin a and v0 = v(l - l/r0) 1/2. The factor 2 stems from the symmetry 
relation of equation (A6), and 4>0 is restricted to the range 0 < 4>0 < nil. An equivalent procedure can be applied for obtaining the 
frequency-integrated flux, 

F(r, ©) = \Fvdv , 

and one obtains 

by m 2 rr cos «ftp >0-1 i nr, V) - r2 J j (j?2 _ sin2 ^o)i/2 ro _ 3/2 Y(r0, n0) 

So 

Mo’ ^o) ? (AH) 

in which the intensity lo = §o vo fo ^vo a given function at the column. The additional factor (1 lAo)2 integrai is a result 
of the frequency transformation. . • r 

To complete the equations, we must still calculate explicitly the region of integration S0 in the </>0, Mo plane. First, the condition of 
equation (A5) can be used to constrain the function K. From equation (4e), using the fact that 0 < cos </>0 < 1, we get 

2n(n +1) + © — oc<K< 27t(n + 1) 4- © + oc ; 

2nn -h © — a < K < 2nn + ß 9 

2n(n +1) — © — a<K< 2n(n + 1) — ^ , 

2nn + © — a < X < 2n(n + 1) — © — a , 

for 0 < © < a , 

for a < © < 7c — a , 

for a < © < Ti — a , 

for 7c — a < © < 7T, 

(A 12) 

where ß = arccos (cos ©/cos a), and multiple images are taken into account through the integer n = 0, 1, 2,. The relation (4e) 
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also allows the representation of K as a function of 4>0, 

cos [/C(co, r0, ju0)] = cos [/i±(0o)] , 

M0o) = arccos jj—(cos © cos a ± sin2 a cos 0o(>/2 - sin2 0O)1/2J . (A13) 

Assuming r0 = R and r0 = Rc, this relation implicitly defines the boundaries of the fi0 integration, which then depends on <j>n The 
integral (A10) can now be written as 

where 

cos 0o 
(rj2 - sin2 0o)1/2 (A 14) 

^0» ^Ov0Oî V0) = \fo ? 3/2 Y(r0, fioy 

a, (¡)B = arcsin (sin 0/sin a) in all other cases, (from the root of eq. and the boundaries are given by 0Ä = tt/2 for a < 0 < tt ^    ^ ^   ^ ^ 
[A13]), and a* = min |>L(r±), y^], b± = min [>L(r±), A*]. This takes into account the possibility that the photons can be 
absorbed by the star or the column. The quantities y*, 2^, and r± are implicitly defined by 

K(co, Rc, y*) = , K(co, R, Â*) = w* , K[cc, r±, /xL(r±)] = , 

where w* [which contains the function /i±(0o)] can be deduced from the limits defined by equation (A12), 

r27r(n + 1) — h± 

[Inn + h± , 
for 0 < 0 < a , 
for tt — a < 0 < 7c, 

and 

wn
+ = 2nn + /i+ , 

w~ = 2n(n + 1) - /i_ , for a < 0 < tt - a . 

The sum appearing in the final part of equation (A 14) counts the multiple images, and the number of images N is determined by the 
maximum possible deflection angle Kmax = K[cc, Rc, iíl(Rc)1 i.e, N is the smallest integer greater than KmJ2n - 1. In the integrals 
of equation (A14), r0 is a function of fi0, 0O, which must be determined from 

K(oo, r0, fi0) = Wni^o) * 
The integrals for the flux were solved numerically. We checked our numerical scheme by calculating the total luminosity in two 

different ways and comparing results. Integrating the transport equation (1) over the solid angle leads to a conservation law 
for the integrated flux F = nco3f d¡i dcj) dco : 

4 T (r2A2Fr) + —y42
rf._ (sin 0Fe) = 0 rz drx r/ rsm Qd® (A 15) 

From Gauss’s theorem, one can deduce the following expression for the total luminosity L*,, appropriate to the emission region 
under consideration, 

= 2nr2 sin 0Fr(r, ©)d© = 2n sin a ro(l - l/ro)1/2lre(ro> x)dr0 (A 16) 

where the first integral is calculated over a remote sphere of radius r and the second one extends over our conical emission region. 
Taking F from the equation (All) and comparing the above two integrals, we always obtained a relative error of the order of 
10 -10 4. 

APPENDIX B 

CAP EQUATIONS 

We consider here the case of a radiating polar cap defined by 

r0 = R = constant, 0 < ©0 < oc, 0 < d>0 < 2re . (Bl) 

The derivation of an equation for the observed flux is very similar to the method outlined in Appendix A, and we therefore give this 
derivation very briefly without going into the details. 

The star will absorb all photons emitted with /r0 < 0; thus, we have 

/o = 0, for n0 < 0, all <j)0, v0, and r0, ©0, <D0 given by (Bl). 
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The angle K is now given by equation (5a) with Q = 0 throughout, and it depends on fi0 only because r0 = R is constant. The 
Jacobian is again given by 

with 

jliD = 
dfi d</> 

^ dß0 d<¡)0 ’ 

d(¡) sin 0O cos 0O sin K + cos 0O cos K sin 0O 

d(j)0 eos (¡) sin 0 sin 0O cos K + cos </>0 sin K eos 0O ’ 

and the relations (4b) and (4e) must be used to express (j) and 0O in terms of 0O, 0, and K(co, R, fi0). Assuming again the symmetry 
relation (A6), the flux Fv reads 

dji ( R\2 1 
ßöir0 

= \7) T^mßo’ 

Fv(r, 0) = 2v3l - 
R\2 

rj 1-1/R £ 

d(¡) 

d(j>o fo(®o> Mo? 00? vo)Mo^Mo^0o (B2) 

(note that 0O must be considered as a function of n0 due to eq. [4e]). 
For the case that the emitted radiation field is independent of </>0, the corresponding integration can be performed easily using the 

restriction 0O < a < tt/2 : 

Fv(r, 0) = 
1 

1 - 1/R 
0L(a, 0, /i0)/o(€)o, Mo? vo)Mo ^Mo ? 

Jo 
(B3) 

where 

¡aeréeos (B) , — 1 < B < 1 , 

0 , B > 1, 

71 , B < — 1 , 

and 

B = 
cos a — cos 0 cos K 

sin 0 sin K 

From this we obtain for the integrated flux 

F(r, 0) = 2| 
R 

1 - 
R 

(/>L(a, 0, ^oKo(0o? Mo)Mo^Mo ? 

which corresponds to the result derived recently by Pechenick, Ftaclas, and Cohen (1983). 

(B4) 

(B5) 
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