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ABSTRACT 
A sequence of chemically homogeneous, dynamical stellar models is constructed for different masses. Each 

model is computed by fitting onto a helium-burning core a dynamical optically thick radiative envelope and 
an expanding atmosphere in which line acceleration is taken into account. The fitting procedure uniquely 
determines all the properties of the configuration, including the mass-loss rate M and the terminal velocity 
as a function of the total mass M. Although the bulk of the acceleration takes place in the atmosphere and is 
mainly due to line driving, dynamics is found to be not completely negligible even below the thermalization 
radius where only the gradients of isotropic radiation and gas pressure are responsible for acceleration. The 
derived values of M and are in good agreement with the observational data for Wolf-Rayet stars. In par- 
ticular, the M versus M relation derived by Abbott et al for W-R stars in binary systems is well reproduced. 
Subject headings: Stars: atmospheres — stars: mass loss — stars: winds — stars: Wolf-Rayet 

I. INTRODUCTION 

Line-driven wind models (Castor, Abbott, and Klein 1975; 
Pauldrach, Puls, and Kudritzki 1986; hereafter CAK and 
PPK, respectively; Abbott 1982a; Friend and Castor, 1983; 
Friend and Abbott 1986) proved to be a very successful tool in 
explaining the observed properties of mass loss from OB stars. 

Although the same acceleration mechanism could be, in 
principle, thought to work in Wolf-Rayet stars, which exhibit 
the highest rates of mass loss (see, e.g., the recent review by 
Chiosi and Maeder 1986), a straightforward application of the 
CAK theory to these stars is questionable for a number of 
reasons. In fact, as stressed by several authors (Abbott 1982a, 
b; Abbott and Lucy 1985; Pauldrach et al 1985; Lucy 1986), 
the core-halo approximation is going to break down in the 
dense expanding envelopes of W-R stars, where optical depth 
unity in electron scattering is reached far away in the wind. 
Moreover, the chemical composition of W-R atmospheres, 
being enriched by nuclear burning products, is quite different 
from that of OB stars. While any increase in metallicity is not 
likely to alter deeply the efficiency of radiative acceleration 
(Abbott 1982a, h), the dynamical effects of continuum creation 
in the wind are not well investigated at present (see, however, 
Abbott and Lucy 1985). A further, and perhaps more impor- 
tant, source of uncertainty is the lack of reliable determinations 
of the stellar parameters in W-R stars. In particular, the use of 
commonly accepted values for luminosity and effective tem- 
perature in constructing wind models fails to explain the 
observed fact that W-R stars are ~ 10 times more efficient in 
converting radiative momentum into wind momentum than 
OB stars of comparable luminosity and temperature. 

A possible conclusion is simply that the radiative force due 

1 Present address : Department of Physics, University of Padova, Italy. 

to scattering of photons in the metal lines is not sufficient to 
produce the observed high M values, and, as a consequence, a 
different mechanism for wind acceleration is needed. An alter- 
native possibility exists, however, and was recently suggested 
by Pauldrach et al (1985) on the basis of parameters of the 
W-R binary V444 Cyg newly determined by Cherepashchuck 
Eaton, and Khaliullin (1984). According to these data, the 
commonly accepted values for the W-R star’s effective tem- 
peratures and luminosity could be underestimated by a sub- 
stantial amount, the observed values being in the range 
80,000-100,000 K and 3-7 x 105 L0, respectively. Assuming 
L/Lq » 5.4 x 105, Pauldrach et al (1985) succeeded in repro- 
ducing the observed wind parameters of V444 Cyg satisfacto- 
rily by means of radiative acceleration. Such high values of 
luminosity seem, however, difficult to reconcile with the predic- 
tions of stellar evolution, if one believes that W-R stars are the 
He-burning remnants of massive stars which have lost their 
hydrogen-rich outer envelope. The evolutionary tracks com- 
puted by Maeder (1983) show, in fact, that the luminosity of a 
10 Mq remnant is ~ 1.8 x 105 L0, quite independently of the 
initial stellar mass and the assumed mass-loss rate, while the 
effective temperatures are indeed ~ 100,000 K. 

Although one can argue that computed evolution of massive 
stars is not entirely trustworthy because the mass-loss rates are 
not self-consistently calculated, it is at the same time true that 
all the wind models computed up to now suffer from the fact, 
that, besides the stellar mass M, two input parameters must be 
supplied once a temperature distribution is chosen : the radius 
of the CAK critical point (or the photospheric radius) and the 
stellar luminosity. While this limitation is not too severe in the 
case of OB stars for which reliable data exist, it could introduce 
substantial errors for W-R stars, whose parameters are poorly 
known. These difficulties can be circumvented only by comput- 
ing a model for the whole star which takes into account both 
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the nuclear burning core and the radiatively expanding 
envelope. 

In this paper we discuss how to construct such a unified 
model, and we present numerical results under some simplify- 
ing assumptions. We shall focus our attention on helium 
models which are chemically homogeneous and in which only 
central 3a burning is present. They correspond to the He zero- 
age main sequence (ZAMS) which can be assumed as an ideal- 
ized representation of W-R stars. Moreover, since principal 
goal of the present investigation is to test whether radiative 
acceleration can explain the main observed features of W-R 
winds, we shall further restrict ourselves to the quite over- 
simplified picture in which both the core halo and the radial 
streaming approximations hold; the possible effects of drop- 
ping these two crucial assumptions are discussed briefly in the 
last section. The computed models turn out to be completely 
characterized just by the total mass, all the other free param- 
eters being fixed by the fitting between the three zones in which 
the structure is divided : a central hydrostatic convective core, a 
radiative dynamical envelope, and an atmosphere, which is 
optically thin with respect to true emission-absorption, where 
line driving is taken into account. 

II. BASIC EQUATIONS 
In order to analyze better the various physical processes 

governing a dynamical model, it is more convenient to divide 
the stellar structure into three regions and discuss them separa- 
tely. Such a division is made mainly in order to take into 
account the varying importance and different forms that 
dynamical terms assume in different stellar layers. In particu- 
lar, we have chosen to distinguish : (a) a hydrostatic, convective 
core in which nuclear burning occurs; (b) a dynamical 
envelope, treated in the diffusion approximation, that extends 
up to the thermalization radius r* where the effective optical 
depth T equals f ; (c) a dynamical atmosphere where the contri- 
butions of both continuum and line scattering to radiative 
acceleration are taken into account. 

a) The Hydrostatic Core 
Dynamics is certainly negligible in the central regions of the 

star, and, therefore, to avoid undue complications, we assume 
that the hydrostatic approximation describes our model there 
satisfactorily. In this limit the structure equations are just the 
usual equations governing static stellar models : 

d\n T (1 + 4a) m 
d\n r 5 + 8a(5 + 4a) rv^ ’ 

d\n p 3(1 + 8a) din T 
din r 2(1 + 4a) din r 

if the layer is convective or 

d In T T 
din r SarVç ’ 

dlnp _ J_ / 1 +4q \ 
d In r 2rVç \ 4a / ’ 

if the layer is radiative. In both cases, 

-^-= 1.63 x 10-16AiV3 

a In r 

(3) 

(4) 

(5) 

and 

dl dm 
d in r = d In r 6301 ' (6) 

Here a = Prad/Pgas is the radiation to gas pressure ratio, 
vi = (dP/dp) T = Pgas/p is the isothermal sound speed, M is the 
total mass in unit of M0, m = M(r)/M is the fractionary mass, / 
is the power emerging from a sphere of radius r, while all the 
other symbols have their usual meaning. The gas is assumed to 
be completely ionized helium obeying a perfect gas equation of 
state. The adimensional power generation rate per unit mass 
due to 3a burning is 

e3a = 5.506 x 106yy/3a Tg3 exp (-43.2/T8) 

(see, e.g., Cox and Giuli 1968). The luminosity / = L/ 
(2.52 x 1038M) is in units of the Eddington luminosity referred 
to the electron scattering opacity kes = 0.2 cm2 g~ ^ while F = 
(k/Ks)l is the radiative luminosity in terms of the local Edding- 
ton luminosity; it can, of course, vary even if the radiative flux 
is constant, depending on the Rosseland mean opacity k. The 
reader must also be warned that r is in units of the gravita- 
tional radius rg — 2GM MQ/c2 and velocities are in units of 
light velocity. We are aware that the choice of such units could 
be confusing outside the realm of general relativity, but we feel 
nevertheless that the simplification they introduce in the for- 
mulae makes their use worthwhile. This will be even more 
evident when the hydrodynamical equations are analyzed. It 
should be noted, moreover, that the form we used for the 
hydrostatic equations is not the usual one. This is done essen- 
tially to ensure formal continuity with the hydrodynamical 
equations which are more naturally written using the density 
instead of the pressure as one of the independent variables. 

b) Expanding Radiative Envelope 

Once the energy transport in the stellar layers begins to be 
radiative, we give up the hydrostatic assumption and start 
treating the full hydrodynamical problem. As a matter of fact, 
this requirement is even too stringent, since the configuration 
can be treated with a very high accuracy in the hydrostatic 
limit as long as v <^vc; this condition is fulfilled up to the 
outermost low-density layers. The choice of the radius at which 
dynamics begins to be nonnegligible is, in fact, somewhat arbi- 
trary, although the fact that it is arbitrary is not crucial, and in 
the present case is suggested just by the fact that massive He- 
stars exhibit a completely convective core and an envelope 
which is radiative almost everywhere, apart from thin sub- 
photospheric layers. Here and in the following we will there- 
fore identify the core as the central region extending up to the 
radius where radiative transport begins, while we will refer to 
the envelope as the intermediate zone up to effective optical 
depth t = f. Since LTE holds almost exactly below the ther- 
malization radius, we can safely treat the envelope in the diffu- 
sion approximation. 

The hydrodynamical equations for an optically thick 
medium were already discussed by several authors in connec- 
tion with both outflowing stellar envelopes (e.g., Zytkov 1972; 
1973) and models for X-ray bursters or classical novae (e.g., 
Ruggles and Bath 1979; Kato 1983; Quinn and Paczynski 
1985; Joss and Melia 1986). A detailed analysis of the mathe- 
matical properties of the solutions was recently given by 
Turolla, Nobili, and Calvani (1986). Following their approach 
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the flow equations can be written in the nonrelativistic limit as 

d In p 1 
din r 2r(v2 — v2) 

or equivalently 

d In i? 1 

m-l-irr-4rv2]’ 

1 + 4a 
d In r 2r(i;2 — v2) \ 4a 

JL = 3AI*l0.<LïMï!m 
dlnr 2r(v2 — v2) 

(7) 

F — m + 4rv2 I , (7a) 

*[! 

(v2 - v?) 
4a 

r + v2(y3 - l)(m - 4rv2) , (8) 
]• 

pvr2 = 1.91 x 103MM-2 , (9) 

plus equations (3) and (5); the last one is still necessary as we 
push our dynamical integration deep into the stellar structure 
where the mass varies appreciably. The mass-loss rate M is 
expressed in M0 yr-1, while the adiabatic sound speed v2 = 
(dP/dp)s and the third adiabatic exponent y3 are given by 

5 + 8a(5 + 4a) 2 

3(1 + 8a) Vc 
, . 2(1 + 4a) 

T3 + 3(1 + 8a) ' 

The physical interpretation of the terms appearing in the 
momentum equation (7) is immediate, recalling that m is 
related to the gravitational pull due to matter inside the sphere 
of radius r while (1 + 4a)F/4a accounts for both radiation and 
gas pressure forces. The correction 4rt;2 arises as a consequence 
of spherical symmetry and is usually negligible. In the limit of 
vanishing flow velocity equation (7) reduces to the hydrostatic 
case (4). Equation (9) is the integrated mass conservation law, 
where M is a constant in the case of a stationary flow. Actually 
this is not rigorously true in our problem since the total mass is 
varying with time. We can nevertheless assume that the flow is 
stationary as long as the mass-loss time scale M/M is much 
longer than the dynamical time ~rrg/vc, a condition which is 
surely fulfilled for M < 10-4 M0 yr“1 if i;c > 1 cm s_1; this 
value for the velocity is so low that it is not going to introduce 
any real constraint since the hydrostatic limit has been already 
met well before this. 

Equation (8) describes the evolution of radiative luminosity 
under the assumption that no nuclear energy generation is 
present. We want to point out, moreover, that the dynamical 
energy equation does not yield equation (6) in the static limit. 
The reason is simply that we are dealing with two different 
physical processes for energy generation : nuclear reactions and 
conversion of internal energy into diffusive luminosity, the 
latter being effective only if a non vanishing velocity field is 
present. In the limit M -► 0 equation (8) gives constant lumin- 
osity, which agrees with equation (6) when e3a is zero. 

The dynamical equations show the presence of both critical 
and subcritical points which in general impose regularity con- 
straints on the transonic solution (see Turolla, Nobili, and 
Calvani 1986 for details). In particular M turns out to be an 
eigenvalue of the problem once two input parameters (e.g., 
density and temperature at the critical radius) are specified. 
However, since we are dealing here only with a flow which is 
subsonic everywhere in the envelope, we do not need to bother 
about the existence of such regularity conditions. 

c) The Atmosphere 
In the optically thick region the strong coupling between 

matter and radiation provides us with all the basic equations 
via the diffusion approximation. On the contrary, when the 
effective optical depth drops below unity, one has to face the 
much more difficult problem of solving the complete radiative 
transfer coupled with the hydrodynamical equations. Although 
possible in principle, such a task is so complicated that usually 
some simplifying assumptions are introduced. In particular, if 
one is mainly interested in studying the bulk properties of the 
wind, a common approach is to adopt a temperature distribu- 
tion fixed a priori and to treat the matter-radiation interaction 
by means of a given sample of metal lines, actually ignoring the 
true evolution of the radiation field. Such a procedure, first 
introduced by Castor, Abbott, and Klein, proved very suc- 
cessful in explaining the observed properties of winds in OB 
stars, and it has the main advantage that all the interaction 
terms are grouped together in a single force multiplier. 

Recently PPK extended CAK’s work, dropping the radial 
streaming approximation and using also the more accurate 
expression for the force multipler given by Abbott (1982a). 
Although CAK’s theory can be inadequate to describe W-R 
star winds in view of the possible failure of the core-halo 
hypothesis, we shall nevertheless assume that both the core 
halo and the radial streaming approximations hold. A dis- 
cussion about this point is postponed to the last section. 

CAK’s momentum equation can be cast in our notation as 

d\n v 
d\n r 

1 
2r(i;2 — v2) 

J?)T - 1 4- 4rt;2| 1 - 
d In T\ 
d\nr) 

(10) 

where we have put m = 1, the contribution of the atmosphere 
to the total mass being completely negligible. The force multi- 
plier J? takes into account the scattering of photons into 
Doppler-broadened metal lines and formally enters the Euler 
equation as an extra contribution to the total opacity (see eq. 
[7a] for comparison). The multiplier ^ is well approximated 
by a power-law fit to the tabulated values (CAK; Abbot 1982a) 

Ji = K\ (11) 

where K, a, and ô can be regarded as constants, ne is 
the electron density in units of 1011 particles cm-3, W = 
{1 — [1 — (r^/r)2]172}^ is the dilution factor, 

t = 2.96 x 105Mkespr\ vf) 

d In v 
din r 

(12) 

is the line optical depth in an expanding medium and vth is the 
thermal velocity of the scattering ions (see CAK and PPK for 
details). 

Equation (10) must be supplemented with the continuity 
equation (9) and a temperature distribution T = T(r), which is 
an input parameter as no energy equation is solved. It is inter- 
esting to note that if an energy balance is specified, it is possible 
to eliminate the temperature gradient from the momentum 
equation (10), and this in turn changes the critical velocity to 
the adiabatic sound speed. Although not particularly relevant 
in the present case (since the isothermal sound speed is not the 
real critical velocity in eq. [10] because of the dependence on 
the velocity gradient in JP), one should keep in mind that, in 
general, the sonic point in an optically thin flow is associated 
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with the adiabatic sound speed and not with the isothermal 
one, as discussed by Turolla, Nobili, and Calvani (1986). 

The momentum balance equation (10) is a nonlinear equa- 
tion in d In v/d In r = t/ and can be written explicitly as 

(v2 - v2)v' - CG(r)v2«-ô(vf)a + H(r) = F(r, v, t/) = 0 , (13) 

with 

G(r) = 2a-1W~ôr-20 

H(r) = 
i -r 

2r - 2v2 1 
d ln T 
d\nr I ’ 

and 

C = KF 
8.82 x 10~10Y/5.61 x 1015Y/M^a“5 

K* vti M M 

(14) 

(15) 

. (16) 

As it was proved by CAK, the equation F(r, v, v') = 0 may 
admit zero, one, or two solutions according to the values of r 
and v. The requirement that a continuous solution for i;' exists 
in the whole domain r* < r < oo and v(r*) < v < implies 
that the two conditions 

dF(r, v, v') dF(r, v, v') 
dv' ’ d\n r 

(17) 

must be satisfied at rCAK (the CAK critical point). The existence 
of the constraints (17) fixes the eigenvalue M, the flow velocity, 
and its derivative at the CAK point. The latter is the positive 
solution of the quadratic equation 

dynamical problem. One of the major complications lies in the 
fact that the search for an eigenvalue requires both a piecewise 
integration and matching among the various parts of the solu- 
tion in order to satisfy the boundary as well as the critical point 
conditions. 

The basic scheme is as follows : the numerical integration is 
carried out starting from the center until a given value of the 
fractionary mass is reached; the same is done integrating from 
the CAK critical point inward. The matching of the two 
branches of the solution fixes all the unknown parameters with 
the exception of one which, in our case, is the optical depth at 
the critical point tcak. The latter is then determined requiring 
that the boundary condition t = 0 is fulfilled for r -► oo. Once 
convergence is attained, a model is fully characterized only by 
the total mass of the configuration in an analogous way to 
what Voigt-Russell theorem predicts for static structures. 

The first part of the integration is performed by means of the 
hydrostatic equations (l)-(6), recast using the mass parameter 
g = In [m/(l — m)] as the independent variable. This is com- 
monly done in stellar evolution calculations, since it is the 
more suitable form for numerical integration. The standard 
central boundary conditions m(0) = 0, 1(0) = 0 are replaced, 
again for numerical convenience, by specifying all the quan- 
tities at the surface of a homogeneous kernel containing a 
small fraction of the mass m0 (m0 = 10" 2 in the actual models). 
Denoting the central density and temperature by pc and Tc, 
respectively, the initial conditions are 

q0 = In [m0/(l - m0)], r0 = 2.63 x 105(mo M~2pc
-1)1/3 , 

(l Y I 0H(r) v' H{r)[ 1 dlnG d\n Hi _ 
2v2(l — a) 2v2 |_(1 — a) d In r din r J 

= ^ + ' 
H(r) 

(1 — a) v'CAK 

while M follows from the previous definition of C and from 

(18) 

(19) 

C = 
(v2 - i;2)(2rz;')1 

oiG(r)va~ 
(20) 

These expression differ from the classical CAK results since 
we have also taken into account the dependence on the elec- 
tron density in the force multiplier. They can also be directly 
derived from PPK assuming radial streaming of photons in 
their equations 

III. DYNAMICAL STELLAR MODELS 

In r0 = In Tc - 
1 + 4q m0 

5 + Sa(5 + 4a) 3r0v
2 ’ 

In p0 = In pc - 
1 + 8a m0 

5 + 8a(5 + 4a) 2r0 v2 ’ 
lo = fcaJc m0 , 

where the thermodynamical quantities a and v2 are evaluated 
at the center. Given an initial guess for the central values of 
density and temperature, the integration can be started at q0 
and carried out to the fitting point qf (we have chosen the 
corresponding value of mf in the range 0.75-0.85). Since the 
location of the last convective layer is not known a priori, we 
found it to be more convenient to switch on dynamics only 
after the fitting point is reached and not when radiative trans- 
port begins. This will not introduce any error, according to the 
discussion in the last section. As a consequence, our models 
will have a static radiative zone described by equations (3) and 
(4). The structure starts to be radiative when Schwarzschild 
criterion is satisfied; that is to say, using our notation, when 

The numerical integration of the ordinary hydrostatic stellar 
structure equations, normally performed by means of Henyey’s 
method, yields a unique solution once the usual boundary con- 
ditions are specified together with the total mass. In particular, 
the overall stellar properties are quite insensitive to the photo- 
spheric boundary conditions so that even the zero boundary 
conditions give a reasonable approximation. 

On the contrary, photospheric properties play a crucial role 
in dynamical models. The whole wind structure, and conse- 
quently the mass-loss rate, in fact strongly depends on the 
photospheric conditions. The need for an accurate computa- 
tion of the outermost stellar layers, the appearance of a critical 
point, and the presence of different physical regimes in different 
stellar regions make it more difficult to deal with the complete 

8a(l + 4a) m 
5 + 8a(5 + 4a) F “ 1 ' 

The next step is to integrate from the CAK critical point 
inward, using equations (9) and (10) and specifying a tem- 
perature distribution. Because the wind dynamics is quite 
insensitive to the temperature profile in the atmosphere (see 
CAK and PPK), we use a simple gray temperature distribu- 
tion : 

where 7¡ff is the effective temperature at the thermaliza- 
tion radius. Defining an effective opacity coefficient k* = 
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[3k(k — kes]
1/2, where k is the Rosseland mean opacity, and 

denoting the dimensional radius by the effective optical 
depth is, in spherical symmetry, 

The choice of the optical depth as the integration variable is 
here the most natural one, so we need to add the differential 
form of equation (22) : 

^ In r _ _ 3.37 x IQ"6 / A2 

dT k* Mp UJ 1 j 

to equations (9) and (10). 
In order to start the integration of the atmosphere, we need a 

value of the thermalization radius r* which enters both the 
definition of W(r) and equation (23), but unfortunately r* can 
be evaluated only after the integration has reached t = f. To 
overcome this difficulty and since r* is just below the critical 
radius (PPK), one can tentatively assume that r* = rCAK. The 
exact value of r* will then be computed within an iterative loop 
(see below). All the quantities at the critical point and the 
eigenvalue M can now be evaluated, using the regularity condi- 
tions at rCAK, once trial values for rCAK and for /(rCAK) are given 
together with a first guess for tcak, if one neglects temperature 
derivatives in equations (18) and (20). The values of M and vCAK 
can be then improved through successive iterations, using for 
the temperature derivatives the expressions 

dlnT _ 1.42 x 108 M fc* AA2 

d\nr~~ (t + 2/3) M rv\r) ’ { * 

and 

d2lnT din T f A din T dlnv \ 
-TT^- = - TT  4 Ti + 71— + 3 ’ (25) dlnrz dlnr \ a In r a In r / 

which follow from equations (21) and (23) after eliminating p 
via the continuity equation and with the assumption of con- 
stant opacity in deriving equation (25). We would like to stress 
that in any case these terms are not going to introduce substan- 
tial corrections in the computed values of M and vCAK. Equa- 
tions (9), (10), and (23) are now integrated up to t = f which we 
assume to be the border of the optically thick region. From r* 
inward they are replaced by equations (7)-(9), rewritten using 
In p instead of In r as the independent variable, and the integra- 
tion is carried on until the fitting point is reached. 

The four unknown parameters pc, Tc (relative to the inner 
solution), /(rCAK), rCAK (defining the outer one) are evaluated by 
means of a standard shooting plus Newton iteration technique. 
The inner integration is performed 3 times : the first one using 
the trial values pc, Tc, then varying pc (at fixed Tc), and finally 
varying Tc (at fixed pc). The same procedure applies to the 
outer integration, perturbing now /(rCAK) and rCAK. These trial 
integrations are used to compute partial derivatives of the dis- 
continuities at the fitting point with respect to the values of the 
trial parameters. More accurate starting conditions are then 
interpolated from these derivatives, assuming that all the 
jumps vanish at the fitting point, and the whole scheme is 
iterated until convergence is achieved. 

The model computed in this way contains nevertheless a free 
parameter, since the optical depth at the critical point still 
needs to be fixed. This indétermination is just a consequence of 
the lack of boundary conditions at infinity and can be removed 

once the correct constraint is imposed, assuming that t = 0 as 
oo. In order to do that we have used again a shooting 

method, varying tcak and integrating equations (9), (10), and 
(23) up to some fiducial radius which represent radial infin- 
ity. For all practical purposes one can assume = 50rCAK, 
since both v and t have attained their asymptotic values there. 

The construction of one model can therefore be thought as 
divided into a large loop in which tcak is varied and a small 
loop in which a self-consistent internal solution is generated for 
each value of tcak. Convergence proved not to be critical pro- 
vided that reasonable starting values for pc,Tc, rCAK and l(rCAK) 
are given. Usually most of the computing time is spent achiev- 
ing convergence within the small loop the first time it is 
entered, since the variations in tcak do not influence deeply the 
interior structure. 

IV. NUMERICAL RESULTS 

The integration method developed in the last section is 
applied here to compute a sequence of dynamical stellar 
models for different masses. Since the observed masses of W-R 
stars lie mainly in the range 10 M0 < M <20 M0 (Massey 
1982), we selected three representative values in this inverval 
for numerical integrations: M = 10 M0 (model A), M = 15 
M0 (model B), and M = 20 M0 (model C). Model A has a 
special significance since it provides us both with a direct com- 
parison with the existing observational data for V444 Cyg and 
with a check with previous theoretical results obtained by 
Pauldrach et al. (1985) for the wind structure of this star. 

All the integrations were performed using Cox and Stewart’s 
(1970) opacity tables referring to a mixture of composition 
X = 0, Y = 0.98, and Z = 0.02. In order to avoid the presence 
of discontinuities in the opacity gradients, which turn out to be 
quite troublesome in the dynamical part of the code, a bicubic 
spline interpolation to the tabular values of opacity was used. 
A major open problem is the choice of the constants K, a, and 
ô appearing in the expression for the force multiplier (eq. [11]). 
The tabulation given by Abbott (1982a) and mainly aimed to 
OB stars winds stops, in fact, at Teff = 50,000 K, while the 
effective temperature of W-R stars can be a factor or 2 higher. 
Moreover, K shows quite a strong dependence on the electron 
density in the atmosphere, so one is in the uncomfortable posi- 
tion of extrapolating (or, really, guessing) the appropriate 
values starting from very poor information. Pauldrach et al 
(1985) used K = 0.137, a = 0.68, and ô = 0.07, claiming that 
they represent well the hot boundary of Abbott’s table, 
although some of their models are computed with K = 0.177 
and ô = 0.02. These values are indeed the hot boundary but 
with the tacit assumption that the parameter (nJW) is in the 
range 3.1 x 108 < (ne/W) <3.1 x 1011; that is to say, they are 
using the low-density limit of the force multiplier log. It should 
be stressed, however, that the central value (out of three) of 
nJW used in Abbott’s tabulation is estimated to typify the 
winds of OB stars and can therefore poorly represent W-R stars 
winds, which are commonly thought to be much denser. Fol- 
lowing this reasoning, we have decided to use as fiducial values 
X = 0.42, a = 0.65, and (5 = 0.09. They represent the hot 
boundary, assuming that (ne/W)w_R « 100(ne/IF)OB, and which 
were obtained from Abbott’s data, considering that K depends 
weakly on temperature and more strongly on density, the con- 
trary holding for a. The validity of this assumption can, of 
course, be checked a posteriori by looking at the value of ne/W 
computed by the code. We are, in any case, aware that our 
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TABLE 1 
Parameters of Calculated Models 

ps x 1011 M x 105 vx 
Model M/Mq RJRq RJRq Teff x IO“5 L/L0 x KT5 T (g em“3) M0 yr“1 (km s“1) Mv^c/L 

A   10 1.09 0.88 1.13 1.37 0.21 7.94 0.85 2330 7.14 
B  15 2.44 1.11 1.22 2.93 0.30 2.40 2.41 2410 9.82 
C  20 4.40 1.30 1.28 4.82 0.37 1.26 4.72 2450 12.0 

choice is just tentative, and the consequences of modifying 
these values will be discussed later on. 

The main parameters characterizing each model are shown 
in Table 1. The radius Rs appearing there corresponds to the 
last scattering surface defined by ies = f and ps = p(Rs). The 
computed values of M and show a good general agreement 
with the observational data recently reviewed by Abbott et al 
(1986). The agreement between the observed and the computed 
terminal velocities must, however, be taken with care, since it is 
known that the radial streaming approximation can underesti- 
mate by a factor of 2-3 in the case of OB stars (PPK; Friend 
and Abbott 1986). It is interesting to compare our theoretical 
predictions with observations in the case of the sample of the 
five binary W-R stars considered by these authors and for 
which a fairly good mass estimate exists. The tentative M 
versus M relation obtained in their paper and yielding M oc 
M2'3, is, in fact, reproduced almost exactly by our calculations, 
which give a linear relation between log M and log M, in the 
mass range considered, with a slope of 2.4. The derived relation 
is plotted in Figure 1, together with the observational data and 
their linear best fit. Figure 1 seems, nevertheless, to suggest that 
the computed values of M are systematically underestimated, 
although not by a substantial amount. It is interesting to note, 
however, that other numerical integrations performed with dif- 
ferent values of K and a show the same scaling law for M : the 
net result is just to shift up or down the full line in Figure 1. 
The overall variation in M is within a factor of 5, if K and a are 
chosen at the hot boundary of Abbott’s table. 

This remarkable feature is not surprising since, in CAK’s 
theory, M depends on the mass both in an explicit and in an 
implicit way, through F. In other words, it is the mass- 
luminosity dependence which determines the form of the M 
versus M relation rather than any other effect. In particular, 
the fact that our models follow such a relation is quite indepen- 

Fig. 1.—Derived M vs. M relation (solid line) compared to the observa- 
tional data (large dots) and their linear best fit (dashed line) as taken from 
Abbott ei a/. (1986). Small dots represent computed models. 

dent on the details of the radiative interaction in the wind, and 
it strengthens the suggestion of Abbott et al that this correla- 
tion should hold for all W-R stars in the mass interval here 
considered. We note, however, that for M < 10 MG our 
models predict a gradual steepening in the dependence of M on 
stellar mass, as it is apparent from Figure 1 where only the 7 
M0 model is explicitly shown. On the other hand, according to 
our calculations, for Af > 25 M0, the flow becomes supersonic 
well below the thermalization radius. Most probably this is 
just a consequence of the complete failure of the core-halo 
approximation, which is less and less reliable in modeling the 
flow for increasing stellar masses (see the discussion in § V). 

Contrary to what happens for the mass-loss rate, data in 
Table 1 do not support any strong correlation between termin- 
al velocity and mass, luminosity, or radius; is, in fact, fairly 
constant, although a weak dependence on M is present. We 
note also that the derived values of Mv^ c/L (v is here in ordi- 
nary units), which is the ratio of wind momentum to radiative 
momentum, are of the order of 10, as is observed in W-R stars. 

The runs of velocity and density versus radius are plotted in 
Figures 2a and 2b, respectively, for model A. Figure 2a shows 
clearly that the bulk of the acceleration takes place beyond the 
thermalization radius, being due mostly to line driving. Radi- 
ative acceleration is, however, not entirely negligible even in 
the optically thick region since the velocity at r* is ~ 5 km s-1. 
Both the velocity and the density profiles are qualitatively very 
similar to those ones computed by Pauldrach et al as far as the 
wind zone is concerned, although some quantitative differences 
are present. These discrepancies seem to be due mainly to the 
different values of luminosity and radius we obtained from our 
stellar structure calculations, rather than to the different 
parameterization of We note, however, that, despite the use 
of quite crude approximations in treating the wind region, 
model A does succeed in reproducing the most important fea- 
tures of V444 Cyg wind, thus providing us with further evi- 
dence in favor of line driving as the basic acceleration 
mechanism in W-R stars. 

V. DISCUSSION AND CONCLUSION 

The results reported in the last section suggest that the basic 
observed properties of W-R stars can be reproduced assuming 
that they are homogeneous helium structures undergoing 
central 3a burning and invoking line acceleration as the main 
driving force in their extended atmospheres. Although our 
models still need improvement, we feel that they can neverthe- 
less be used as a starting point for future work. 

As we have stressed before, the main limitations of our 
approach, besides the uncertainties in the force multiplier, 
come from retaining the core-halo approximation in our treat- 
ment of the wind dynamics and from having used a chemically 
homogeneous helium structure to describe a W-R star. Let us 
discuss these two points separately. 

One of the major objections to the applicability of the CAK 
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scattering surface, respectively, {b) Run of velocity vs. radius. 

theory to W-R stars is that line driving is thought to be quite 
inefficient to accelerate the flow in the wind dense inner region 
where the radiation field is nearly isotropic. More precisely, 
this effect can be important in the zone in between the two 
radii at which electron scattering optical depth and effective 
optical depth equal f, rs and r*, respectively. In fact, below r* 
diffusion approximately holds, so that the concept itself of 
force multiplier is meaningless and equations (7)-(9) describe 
appropriately the flow dynamics there, while above rs the radi- 
ation field is almost radially streaming and consequently CAK 
approach is j ustified. 

Clearly what one expects to happen for r* < r < rs is that 
the force multiplier should be more and more depressed 
approaching r*, owing to the increasing degree of isotropy of 
the radiation field. 

To get more insight on the influence of this effect on the 
wind dynamics, let us suppose that the quantity K, defined in 
equation (11), contains a damping factor, decreasing with 
increasing electron scattering optical depth. Formally this 
factor can be included in the definition of G(r) and produces an 
increase in the magnitude of the velocity gradient at the CAK 
point and consequently a decrease of vCAK, as can be seen from 
equations (18) and (19). As long as the damping is effective at 

rcAK and vCAK $> vc,M will be reduced with respect to the value 
computed with the core-halo approximation, being pro- 
portional to K. The most crucial point, for the internal consis- 
tency of our models, is that Tes(rCAK) < 1 since M and t>CAK are 
computed using the critical point conditions (17), which strictly 
hold only assuming a core-halo model. If this condition is 
fulfilled, the fact that the force multiplier is damped by back- 
scattered photons below the critical point does not preclude 
the possibility of accelerating the wind. The correct solution- 
will differ from the CAK one, below the CAK radius, essen- 
tially for the velocity profile, which becomes steeper. The 
dynamical subphotospheric layers, which are governed by 
equations (7)-(9), are, however, elastic enough to react to all 
the changes in the outermost wind zone, and only the deep, 
and very dense, stellar region is really insensitive to the pre- 
sence of the wind. 

An estimate of how a damping of the force multiplier influ- 
ences the wind parameters was obtained numerically, produc- 
ing some test runs with the assumption that K contains a 
damping factor proportional to exp ( —hTes) and modifying 
accordingly the critical point conditions following from equa- 
tion (17). The computed solutions show substantial differences 
with respect to the previous ones as far as the terminal velocity 
is concerned. In the case of model B, in fact, with b = 1, we 
found = 5860 km s-1 and M = 1 x 10"5 M© yr-1. The 
effects of the damping term are therefore quite similar to those 
ones introduced by the finite disk correction: t?CAK moves 
closer to the sound speed, increases while M is reduced. It 
should be stressed, however, that such a damping factor most 
probably overestimates the real effect of the progressive iso- 
tropization of the radiation field with increasing electron scat- 
tering optical depth. For smaller values of b the increase in the 
terminal velocity is no longer so drastic: using b = 0.2 the 
computed terminal velocity is ~ 3500 km s" \ which should be 
compared to the unperturbed value of ~2500 km s“ ^ 

The second point we would like to discuss concerns the 
chemical homogeneity assumption. Strictly speaking, one can 
not neglect the past evolution of the configuration in construc- 
ting more sophisticated models, simply because the evolution 
of a massive star with mass loss will produce a remnant which 
is not a pure helium star. Evolutionary tracks of this kind were 
recently computed by Maeder (1983), assuming an ad hoc 
mass-loss rate. The evolution was followed from the main 
sequence to the appearance of a nondegenerate core through 
the stages corresponding to blue supergiants and Hubble- 
Sandage varables. A comparison of the properties of the final, 
envelope-free, configurations, which are likely to represent 
W-R stars, with our models shows that luminosity is systemati- 
cally ~20%-30% lower in our case, for a given mass. This 
discrepancy cannot be due simply to our dynamical treatment 
or to differences in the numerical technique but must be related 
to more physical causes. As already stressed by Maeder, in fact, 
the overluminosity of W-R, compared to helium stars, arises as 
the consequence of the enrichment of their chemical composi- 
tion by 3a products which start to be formed before the W-R 
phase. Since the mass-loss rate goes roughly as M oc 
(1 — £)-(i-*)/«£-an increase in luminosity, driven by the 
change in the mean molecular weight, will also produce an 
increase in M and consequently a shift of the full line in Figure 
1 upward. It is interesting to note therefore, that taking into 
account evolutionary effect could explain that fact that our log 
M — log M relation seems to be a lower limit to the observed 
values of the mass-loss rate. 
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In order to check the validity of these considerations we 
have computed again a 10 M0 model varying the chemical 
composition. We have considered two cases in which the 
central carbon abundance was ATc(

12C) = 0.1 and Xc(
12C) = 

0.3, respectively. The whole set of equations discussed in § II 
was modified to take into account for the gradient in the 
chemical composition; a profile for X(12C) as a function of m 
was then specified, keeping X{12C) = Xc{12C) = constant up to 
m = 0.85 and imposing the condition that it goes rapidly to 
zero for increasing fractionary mass. For simplicity (and 
lacking a better one) the opacity we used was still that of a 
mixture with Y = 0.98, Z = 0.02. This procedure was followed 
to mimic, as closely as possible within the limitation of our 
code, the structure of a 10 M0 remnant as resulting from a 
evolution with mass loss. The results of these integrations 
suggest that the deficit in the mass-loss rate previously report- 
ed could be probably due to the initial assumption of chemical 
homogeneity. The model with 2fc(

12C) = 0.3 gives in fact a 
luminosity which is ~15% higher with respect to model A, 
and the corresponding mass-loss rate is M = 1.15 x 10“5 M0 
yr“1. 

It should, be stressed, however, that, despite the good agree- 
ment of our models with observations, our results were 
obtained using both some simplifying assumptions in treating 
the wind dynamics and force multiplier parameters derived 
with a crude extrapolation of Abbott’s data. Any progress in 
modeling W-R star winds will therefore demand an extension 
of the available line data at higher effective temperatures and a 
better parameterization of the force multiplier itself, which 

should take into account for departures from the core-halo 
approximation. 

Further refinements in the present models can be obtained 
once the real chemical composition of the star and its spatial 
gradient are known; this can be done only including the com- 
putation of the mass-loss rate outlined in the present paper in a 
stellar evolutionary code. Although we have dealt here only- 
with the problem of mass loss from W-R stars, our approach 
can nevertheless be applied also to OB stars, so that it would 
be possible in principle to follow the evolution of massive stars 
starting from the main sequence up to the W-R phase, without 
introducing any ad hoc assumption about the rate of mass loss. 
However, even such a hypothetical code will not be the final 
tool in stellar evolution since the present treatment is going to 
fail when the model enters a cooler giant phase. Mass loss in 
such stages is in fact not necessarily driven by radiative acceler- 
ation, and, most probably, other mechanisms, like shock 
waves, are at work (see, e.g., Castor 1981). 

We gratefully acknowledge several illuminating discussions 
we had with Cesare Chiosi, Paolo Bertelli, and Alessandro 
Bressan during all the stages of this work. A. Bressan is to be 
specially thanked also for having provided us with both the 
opacity tables and the relative interpolation routine. Finally 
we thank David Abbott, whose helpful comments and sugges- 
tions greatly improved a previous version of this work. 

Work was supported by the Italian Ministry for Public Edu- 
cation and by the National Council for Research. 

REFERENCES 
Abbott, D. C. 1982a, Ap. J., 259,282. 
 . 1982b, in I AU Symposium 99, Wolf-Ray et Stars: Observations, Physics, 

Evolution, ed. C. W. H. de Loore, and J. Willis (Dordrecht: Reidel), p. 185. 
Abbott, D. C, Bieging, J. H., Churchwell, E., and Torres, A. V. 1986, Ap. J., 

303,239. 
Abbott, D. C, and Lucy, L. B. 1985, Ap. J., 288,679. 
Castor, J. I. 1981, in Physical Processes in Red Giants, ed. I. Iben and 

R. Renzini (Dordrecht: Reidel), p. 285. 
Castor, J. I., Abbott, D. C, and Klein, R. 1.1975, Ap. J., 195,157 (CAK). 
Cherepaschuk, A. M., Eaton, J. A., and Khaliullin, Kh. F. 1984, Ap. J., 281,11 A. 
Chiosi, C, and Maeder, A. 1986, Ann. Rev. Astr. Ap., 24, 329. 
Cox, A. N., and Stewart, J. N. 1970, Ap. J. Suppl, 19,261. 
Cox, J. P., and Giuli, R. T. 1968, Principles of Stellar Structure (New York: 

Gordon and Breach). 
Friend, D. B., and Abbott, D. C. 1986, Ap. J., 311,701. 
Friend, D. B., and Castor, J. 1.1983, Ap. J., 272,259. 
Joss, P. C, and Melia, F. 1986, preprint. 

Kato, M. 1983, Pub. Astr. Soc. Japan, 35, 33. 
Lucy, L. B. 1986 in I AU Colloquium 89, Radiation Hydrodynamics in Stars and 

Compact Objects, ed. D. Mihalas and K.-H. A. Winkler (Berlin: Springer- 
Verlag), p. 75. 

Maeder, A. 1983, Astr. Ap., 120,113. 
Massey, P. 1982, in I AU Symposium 99, Wolf-Ray et Stars: Observations, 

Physics, Evolution, ed. C. W. H. de Loore and J. Willis (Dordrecht: Reidel), 
p. 251. 

Pauldrach, A., Puls, J., Hummer, D. G., and Kudritzki, R. P. 1985, Astr. Ap., 
148, LI. 

Pauldrach, A., Puls, J., and Kudritzki, R. P. 1986, Astr. Ap., 164,86 (PPK). 
Quinn, T., and Paczyñski, B. 1985, Ap. J., 289,634. 
Ruggles, C. L. N., and Bath, G. T. 1979, Astr. Ap., 80,97. 
Turolla, R., Nobili, L., and Calvani, M. 1986, Ap. J., 303,573. 
Zytkov, A. 1972, Acta Astr., 22,103. 
 . 1973, Acta Astr., 23,121. 

Massimo Calvani: Department of Astronomy, University of Padova, Vicolo dell’ Osservatorio, 35122 Padova, Italy 

Luciano Nobili and Roberto Turolla : Department of Physics, University of Padova, Via Marzolo 8,35131 Padova, Italy 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 


	Record in ADS

