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ABSTRACT 
Correlated supernovae from an OB association create a superbubble: a large, thin, shell of cold gas sur- 

rounding a hot pressurized interior. Because supernova blast waves usually become subsonic before reaching 
the walls of the shell or cooling radiatively, we may reasonably approximate the energy input from super- 
novae as a continuous luminosity. Using the Kompaneets (thin-shell) approximation, we numerically model 
the growth of superbubbles in various stratified atmospheres. A dimensionless quantity predicts whether a 
superbubble will blow out of the H i disk of a spiral galaxy (and begin to accelerate upward) or collapse. 
Superbubbles blow out of the H i layer when they have a radius in the plane between one and two scale 
heights. They blow out only one side of a disk galaxy if their centers are more than 50-60 pc above the plane 
and the gas layer has density and scale height typical of the Milky Way. Fingers of warm interstellar gas 
intrude into the hot interior when the superbubble overtakes dense clouds. 
Subject headings: hydrodynamics — interstellar: matter — nebulae: supernova remnants — stars: supernovae 

I. INTRODUCTION 
Type II supernovae (SNs) usually occur in OB associations 

rather than being randomly distributed through a galaxy. In a 
typical OB association, roughly one supernova per million 
years will occur, and this rate will remain approximately con- 
stant over 50 million years (the lifetime of the lowest mass B 
stars likely to become SNs). Although the frequency of Type I 
SNs is comparable to that of Type II SNs, the scale height of 
Type I SNs is much greater than that of the gas in a spiral 
galaxy. Therefore it seems likely that the dynamics of this gas 
are dominated by Type II SNs occurring in OB associations 
(McCray and Snow 1979; Heiles 1987; McCray and Kafatos 
1987). 

The stellar winds from an OB association create a hot, low- 
density cavity in the interstellar medium (ISM) which lasts 
longer than the interval between SNs in a typical OB associ- 
ation. Repeated SNs excavate a larger hole than that created 
by the stellar winds or any individual SN, and sweep the ISM 
from a large volume into a thin, dense shell analogous to the 
shell around a stellar wind bubble. The mass in the interior is 
great enough to act as a buffer to the discrete energy inputs of 
the SNs, so the dynamics of the system can be described by 
stellar wind bubble theory (§ II). Thus, in an OB association, 
SNs usually expand into a hot, low-density cavity. In § III, we 
describe the behavior of blast waves within the resulting 
superbubble. 

In a disk galaxy, with an H i layer only a few hundred 
parsecs thick (Shull and Van Steenberg 1985), such a 
superbubble may be able to blow a hole completely through 
the disk, producing structures similar to the “ worms ” 
observed by Heiles (1979, 1984) in the Milky Way H i layer. 
(McCray and Kafatos [1987] give a more extensive discussion 
of the observations of superbubble-like structures.) In § IV, we 
analyze the conditions under which a superbubble is likely to 
blow out of a galactic disk. 

Throughout most of this paper, we assume a cloud-free ISM 
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in our calculations as a first approximation to the real situ- 
ation. In a future paper (Mac Low and McCray 1988) we 
intend to consider the effects of entrained clouds on 
superbubble dynamics. We do show in § V that while clouds 
will pass through a supershell, they do not depressurize the 
superbubble interior. Mass evaporated from them does, 
however, contribute ot its radiative cooling. 

Finally, in § VI we summarize our results. 

II. SUPERBUBBLE DYNAMICS 

We may treat superbubbles as very large stellar wind 
bubbles (Castor, McCray, and Weaver 1975). Rather than 
having a single stellar wind as the central energy source, the 
stellar winds and supernova remnants (SNRs) of an entire OB 
association contribute to the internal energy of the 
superbubble. We show in § HI that our treatment of SNs as 
continuous energy sources is an adequate description of the 
superbubble structure. The ISM swept up by the stellar winds 
and SNRs of the OB association cools and collapses to a thin, 
cold shell early in the lifetime of the superbubble (see eq. [8] 
below). Therefore, we only consider superbubble evolution 
subsequent to shell formation. 

Weaver et al. (1977) calculated the evolution of a bubble 
using a similarity solution involving the stellar wind mechani- 
cal luminosity Lw, the ambient ISM density p0, and time t. Let 
us denote the equivalent mechanical luminosity of SNs as 
^sn = N* ESN/tOB, where AT* is the number of stars that will 
become SNs over the lifespan, t0B, of the OB association, and 
£sn is the average energy per SN. Although OB stellar winds 
will create a hot cavity before the first SN occurs, they are not 
important compared to SNs for the later dynamics of the 
superbubble (McCray and Kafatos 1987). The radius of the 
superbubble may be written as 

R = 
125 Y/5 

Ysa) ^ 
15,3/5 ■■ (267 pc)| 

1/5 

and the velocity, Á, as 

R « (15.7 km s_1)L3^5Uq 1/5if2/5 . 

(1) 

(2) 
776 
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SUPERBUBBLES IN DISK GALAXIES 777 

Fig. 1.—Deviation from the numerical solution with radiative cooling described in § IV by spherical models with a Poisson distribution of discrete SNs. The tick 
marks show when SNs occurred in each of the models. These models have L38 = 1, n0 = 1 cm-3, Pe = 104/cdyne cm 2, and H = 100 pc; thus tD = 1.2 Myr. 

The ISM mass density is p0 = Wo, where no is the atomic 
number density, n0 = nH + nHe, p = (14/1 l)mH is the mass per 
particle in the neutral ISM, assuming nHJnH = 0.1. We also 
have defined the variables L38 = LSN/(1038 ergs s ^ which is 
equivalent to one SN of energy ESN = 1051 ergs occurring 
every 3.2 x 105 yr, and i7 = i/(107 yr). McCray and Kafatos 
(1987) took tOB = 50 Myr; thus L38 = 6.33 x 10 3[N5|C£51], 
where [AT^ E51] is their luminosity scale. The internal thermal 
energy of the superbubble is 1/ = (5/ll)LSNi, for a spherical 
superbubble with an adiabatic interior. We discuss the energy 
budget in more detail below. 

To further support our approximation of discrete SNs as 
continuous events, we used the numerical techniques described 
in § IV to simulate the dynamics of a spherical superbubble 
driven by discrete, Poisson-distributed SNs. In Figure 1, we 
show the evolution of several of the resulting superbubbles. As 
can be seen, although their radii initially differ by as much as 
30% from the numerical solution shown in Figure 2 (curve C), 
by the time five to ten SNs have occurred, they all converge on 
that solution. 

The interior density of a superbubble is dominated by mass 
evaporated from the cold dense shell. We use classical evapo- 
ration theory (Cowie and McKee 1977) to find the mass loss 
rate from the shell, 

m = (16nji/25k)CT5l2R , (3) 

where T is the interior temperature and C = 6 x 10 7 ergs s 1 

cm-1 K-7/2 within 15% for the range of temperatures and 
densities that we consider. Then, following Weaver ei al (1977), 
we find an approximate similarity solution for the interior tem- 
perature and density of such a superbubble. In terms of the 
similarity variable x = r/R, the temperature and atomic 
number density are 

T(x) = Tc(l - x)2'5 

= (3.5 x 106 K)L3
/

8
35no/35Í7 6/35(l - x)2/5 , (4) 

and 

n(x) = nc(l — x)_2/5 

= (4.0 x IO"3 cm-3)L%35nb9l35t;22l35{l - x)"2/5 . (5) 

We have assumed that the pressure is constant within the 
superbubble and that Tc and nc are the central temperature and 
number density of the superbubble. 

In order to make analytic estimates of the cooling of the 
interior gas, we use a cooling rate per unit volume ^ = 

Fig. 2.—Radii of radiatively cooled superbubbles with the same param- 
eters as in Fig. 1, but with (curve A) L38 = 0.01, (curve B) L38 = 0.1, (curve C) 
L38 = 1, and (curve D) L38 = 1, but no radiative cooling. 
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ne ttAÄ(T), where 

Ar(T) = (1.0 x 10~22 ergs cm3 s_1)T60-7C , (6) 

T6 = T/106 K and C is the metallicity of the local ISM (Ç = 1 
for cosmic abundances). For our numerical models, we used 
Gaetz and Salpeter’s (1983) cooling function between 105 and 
107 K and a T1/2 power law above 107 K, as we discuss in 
§ IV. For temperatures between 105 and 107 K, equation (6) 
approximates Gaetz and Salpeter’s function to within a factor 
of 2. In Figure 2, we show how superbubbles grow in a homo- 
geneous atmosphere when subject to radiative cooling. We 
take the external pressure to be Pe = 104/c dyne cm-2 (where k 
is Boltzmann’s constant), and we show the results for several 
different luminosities. 

The shocked ISM will become thermally unstable and col- 
lapse into a thin shell when its radiative cooling time scale, 

tc = 3nkTs/%, (7) 

becomes less than the age of the system. We assume a strong 
adiabatic shock, with postshock electron density n = 4n0 and 
temperature Ts = (3fis/16k)R2. Substituting these values into 
equation (6), using equation (2), and setting t = tc, we find that 
a cold shell will form after a very short time (see Castor, 
McCray and Weaver 1975): 

tc = (2.3 x 104yrK-°-71L°829. (8) 
We therefore conclude that the cold shell will form during the 
stellar wind phase, prior to the first supernova explosion. 

a) Energy Budget 

The superbubble has volume Vb = (4tc/3)R3. The swept-up 
mass, M = p0 Vb, and kinetic energy, K = are concen- 
trated in a thin dense shell. The interior thermal energy is given 
by U = (3/2)Pb Vb, where the internal pressure is given by Pb. 
Equating the pressure to the change in shell momentum per 
unit area, we find 

U = (MR + MR)R/2 , 

and the ratio of kinetic to interior thermal energies is 

X MR2 \ R2 

U R VMR + MRj ~ 3R2 + RR ’ 

If we use the f power law for the radius, R, given by equation 
(1), we find K/U = f. Thus, K + U = (50/77)LSNi, and the 
energy lost to shell formation is (27/77)LSN t. 

Using the numerical model described in § IV, we relaxed the 
assumption that the interior be adiabatic, and included radi- 
ative losses from the interior. The energy components are 
shown in Figure 3, plotted against time for n0 = 1 cm-3, with 
an external pressure, Pe = 104k ergs cm-3, and L38 = 1. At 
early times, when radiation is not yet important, they agree 
exactly with the analytic results (see eq. [10]). The intersection 
of the radiation and thermal energy curves defines the radiative 
cooling time calculated below. 

A radiative bubble does not follow a snowplow solution 
after long times if there is a continued energy input in the 
center and negligible external pressure. Even though most of 
the internal energy is radiated away, the amount remaining is 
enough to drive the shell at a rate appreciably greater than the 
i1/4 rate of a snowplow solution. The numerical solution con- 
tinues to grow at a rate close to i1/2 at late times. 

(9) 

(10) 

Fig. 3.—Energy budget of a radiating, spherical superbubble with the same 
parameters as the models shown in Fig. 1. The components are given as 
fractions of the total energy generated by SNs. They are (curve A) the thermal 
energy of the hot interior, (curve B) the net energy radiated by the interior, and 
(curve C) the kinetic, and (curve D) the thermal energies of the cold shell. The 
shell thermal energy is radiated away during the formation of the shell. Note 
that the zero time values are those given by the similarity solution of Weaver et 
al (1977). 

b) Radiative Cooling of the Interior 
Here we show that the time scale for radiative cooling, tR, is 

significantly longer than the dynamical time scale for expan- 
sion in a stratified disk atmosphere. The only length scale in 
the problem is the stratification scale height of the disk gas, H. 
We define the characteristic dynamical time scale, tD, by equat- 
ing the radius of a spherical superbubble (eq. [1]) to approx- 
imately one scale height : 

tD ^ ^5/3(Po/^sn)1/3 • (U) 

If tR tD we may neglect radiative cooling in analytic calcu- 
lations of superbubble dynamics. We do include radiative 
cooling, formulated as described below, in our numerical cal- 
culations. 

The cooling time scale, tR, for the interior is approximately 
the time at which the total energy radiated becomes compara- 
ble to the total energy contained in the interior. This radiative 
cooling time scale is given by the implicit equation 

U(tR) = 

mtR ÇR 
dt d3rV[n(r, t\ T(r, i)] , 

Jo Jo 
(12) 

where the fraction of SN luminosity remaining in the interior is 
u(tR) = (5/11)Lsn tR (Weaver et al. 1977), and # is the rate of 
cooling per unit volume, as described analytically in equation 
(6) or numerically by Gaetz and Salpeter (1983). 

Using the interior density and temperature given by the 
similarity solution of Weaver et al, equations (4) and (5), we 
may integrate the right-hand side of equation (12). Our analy- 
tic approximation to the radiative cooling rate diverges at low 
temperature, so we cut off the integration at the radius just 
inside the shell where the temperature has dropped to 105 K. 
Cooling starts to fall away seriously from the T_0 7 power law 
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at this temperature. This approximation must be done with 
some care as the final result is moderately sensitive to it. The 
total energy radiated is given by 

Vr^(r, t) ä (1.06 x 1052 ergs)CL2!/35n£6/35i?7/35 , 
f 

dt 

(13) 

(14) 

from which we find that the cooling time is 

tR « (16 Myr)Ç_35/22L|/8
11no 8/11 , 

and the cooling radius is 

Rr * (350 pc^11^-7/11C“27/22 • (15) 

We can now find whether radiative cooling will be impor- 
tant to the dynamics of superbubbles in disk galaxies. The ratio 
of cooling to dynamical time scales is 

¿D 
ISno1-^61 H 

100 pc 
(16) 

Therefore, interior cooling is unimportant for typical Milky 
Way parameters, but it could become important for denser, 
cooler interstellar media, smaller OB associations, or enhanced 
cooling rates (equivalent to raising the metallicity, £). 

III. SUPERNOVA REMNANTS INSIDE SUPERBUBBLES 

The behavior of SNRs within superbubbles will be deter- 
mined by two characteristic radii: (1) the radius at which the 
blast wave becomes subsonic, and (2) the radius at which the 
shell swept up by the SNR cools and collapses. After the blast 
wave becomes subsonic, it will be a weak shock that cannot 
sweep up mass. The kinetic energy of the SNR has been con- 
verted to thermal energy at this point, pressurizing the interior 
of the superbubble. If the shell cools first, implying that the 
cooling radius is smaller than the subsonic radius, then the 
kinetic energy is radiated away and does not contribute to the 
internal pressure. (Cioffi [1985] treated the similar problem of 
a SNR within another SNR.) 

If the blast wave is still supersonic when it hits the cooled 
shell surrounding the superbubble, either the energy of the 
blast will be radiated away, condensing the swept up interior 
material onto the shell, or the shock wave will bounce, even- 
tually thermalizing its energy. McCray and Kafatos (1987) 
assumed the former case, but here we find that the latter case is 
more likely. 

a) Subsonic Radius 
As long as radiation is not important and the kinetic energy 

of the SNR is conserved, we may write the velocity of the SN 
shock as vSN = rSN = (2fESN/m)1/2, where/is the fraction of the 
total SN energy, £SN, which goes into shell kinetic energy, and 
m is the mass of the shell. The shell sweeps up mass from the 
superbubble interior at a rate m — 47cr|N p(r)vSN. Let us assume 
that there are no clouds in the interior and that enough time 
has passed since the last SN blast wave swept through the 
superbubble for the interior to regain the evaporative equi- 
librium structure described in § II. Then we may use the 
density structure given by equation (5) to integrate m and rSN. 

Changing variables to x = rSN/R, the mass integration yields 

m = 4npc R
3h(x) , (17) 

where pc is the central density of the interior, with p(x) = 

pc(l — x) 2/5, and 

Hx) = m m - Aw13/5 4- 4w8/5 - 4w3/5 
13 + ZW° 

with w = 1 — x. Thus, we may write rSN as 

Pcn — 
2/Esi 

m 

1/2 

=[: 
fRs 

2npc R
3h(x) 

1/2 

(18) 

(19) 

In order to find the subsonic radius, we equate the shock 
velocity, rSN, to the local speed of sound : 

,2 _ y^b _ ffisN 
p(x) 2npc R

3h(x) * 
(20) 

The internal pressure, Pb, may be written in terms of the 
thermal energy of the superbubble, U, as Pb = U/2nR3 for an 
isobaric interior. Thus, we find the subsonic radius as a func- 
tion of the ratio between SNR energy and the total 
superbubble energy by solving for x in the equation 

^ = 2 (1 - xfl5h(x) . (21) 

We estimate the kinetic energy fraction, / of total SNR 
energy from the following considerations. The kinetic energy is 
Ksn = while the thermal energy is USN = (3/2)PSN L, 
where PSN and V are the pressure and volume of the interior of 
the SNR; PSN can be approximated by the ram pressure of the 
SNR, PSN = p(x)t;fN. The mass swept up by the SNR in an 
equilibrium bubble interior is given by equation (17). Taking 
V = (4/3)7i:r|N, we find that the ratio of thermal to kinetic ener- 
gies, Usn/Ksn = x3(1 — xy2,5/h(x\ which implies that 

r  h(X)  (22) 
Ksn + USn h(x) + *3(1 - x)~215 ' 

Using this value of / and taking y = 5/3, we find that the 
fractional radius where the blast wave becomes subsonic, xs, is 
given within 5% by 

xs * 0.47(£sn/U)1/3 . (23) 

Once an isobaric superbubble has formed, e.g., from the action 
of stellar winds, all SN blast waves will become subsonic in the 
interior. Thus, the interior mass of the superbubble buffers the 
discrete energy inputs of SNs, allowing them to be treated as a 
continuous luminosity for purposes of calculating the 
dynamics of the supershell. 

b) Cooling Radius 
Here we show that a SN blast wave within a superbubble is 

likely to become subsonic and dissipate before radiative 
cooling is important. The radiative cooling from the shell 
swept up by a SNR depends on its temperature and density as 
described by equation (6). We use a simplified blast wave 
model to calculate these quantities, assuming that the shell is of 
a uniform density given at each radius by the four-fold density 
increase behind a highly supersonic shock front. The thickness 
of the shell, Ar, is then given by 

Ar = 
m 

4nr2 4p(x) ‘ 
(24) 

We take the temperature at the shock front as an approx- 
imation to the temperature in the shell, Ts = (3//l/16/c)r|N, 
where pt = (14/23)mH is the mass per particle in the ionized 
interior. 
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Since we are assuming that temperature and density are 
constant across the SNR shell, we may reduce the integral of 
equation (6) to a multiplication. Substituting rfN = 2f(x)ESN/m, 
we find the cooling rate to be 

Lr = 4.0 x 10-28 ergs s-1 m1/7E^)/7. 

(25) 

The condition for cooling to be important is § LRdt = 
f(xc)ESH, where xc is the fractional cooling radius, at which 
virtually all of the SN kinetic energy has been radiated. Inte- 
grating equation (25) over time and using equation (22) for/(x), 
we may write the equation for xc, the fractional radius where 
cooling becomes important, implicitly as 

»m*j-j*nxX-xr'
dx-°- <26) 

where we have defined a parameter 

i = £sVL-2-1n0-2-2r2-5, (27) 

that is inversely related to the size of the superbubble. This 
equation for xc may be solved numerically. 

In Figure 4 we show the fractional cooling radius for typical 
values of À. From Figure 4 and equation (23) for the subsonic 
radius, we may deduce that SN blast waves within a 
superbubble will usually become subsonic before they become 
radiative. Mass evaporated from the shell will not be plastered 
back onto it until late in the life of the superbubble. 

IV. STRATIFIED ATMOSPHERES 

a) Dimensional Analysis 
In a disk galaxy, superbubbles suffer two possible fates. 

Either they blow out through one or both sides of the H i disk, 
producing a “worm” (Heiles 1979, 1984) or “chimney” 
(Tomisaka and Ikeuchi 1986; Ikeuchi 1987), or they begin to 
collapse in on themselves. By blow out we mean that the 
superbubble begins to accelerate upward. In both cases, 
Rayleigh-Taylor instabilities will eventually break up the 
supershell, either when it begins to accelerate into the halo, or 
when it begins to collapse inward under the influence of ISM 
pressure and the galactic gravitational field. 

Fig. 4.—The fractional radius at which the shell swept up by a SNR will 
cool inside a superbubble with the given value of the parameter L (Larger 
superbubbles have smaller values of À, in general.) Equation (26) has no real 
solutions for values of A > 0.12, which implies that SNRs simply do not cool in 
such superbubbles. 

We can understand this behavior qualitatively from dimen- 
sional analysis. Since (see § lib) radiative cooling of the interior 
is usually negligible before the superbubble becomes dynami- 
cally unstable, we neglect it in the following analysis. An 
appropriate time scale is the dynamical time defined by equa- 
tion (11) in § lib, while the length scale is the density stratifi- 
cation scale height, //. The mass scale is p0H

3, and thermal 
energy scale is Pe H3, where Pe is the pressure of the external 
ISM ; thus the luminosity scale may be defined by 

<? = PeH
3/tD = PeH*/3pöil3L1

s{
3 . (28) 

The dimensional constants may be combined into the dimen- 
sionless dynamical parameter 

D = 
3/2 

940L. 
H 

100 pc/ \104/c dyne cm 
-3I2(_po_Y12 

\pmj 

(29) 

For D æ 1, the expansion speed of the shell at one scale height 
is equal to the effective sound speed of the disk gas. Thus the 
parameter D determines whether the shell will collapse or blow 
out, as long as radiative losses from the interior may be 
neglected. 

b) Numerical Techniques 
We used the Kompaneets, or thin shell, approximation 

(Kompaneets 1960; Zel’dovich and Raizer 1968, p.849) to 
solve this problem. Two conditions must be satisfied for this to 
hold. The first is that the shell indeed be thin. This was shown 
in § II where we calculated in equation (8) that the shell forma- 
tion time is very short for typical parameters. The second con- 
dition is that the interior must be isobaric, which will be true if 
the average interior sound speed, c, is much greater than the 
shell expansion velocity, R. Since the ratio of shell kinetic 
energy to interior thermal energy is K/U = f (eq. [10]), we find 
c/R ä (M/m)1/2, where the interior mass, m, can be found from 
equation (5), and the supershell mass is just M = (4/3)7rp0R

3. 
The result is c/R « 10n8/35L38

3/35Í71/35. 
Since the necessary conditions are evidently satisfied, we 

need to follow only the overall pressure and energy density of 
the interior in order to calculate the supershell dynamics. 
Because the shell is thin and pressure-driven, it moves normal 
to itself everywhere. Using this approximation, the dynamics of 
a blast wave in an exponential atmosphere can be calculated 
analytically (Kompaneets 1960). 

In order to examine other stratifications, we set up a numeri- 
cal solution for the motion as follows. (Our scheme is generally 
similar to that of Schiano 1985.) We split the shell into a 
number of rings (typically 50) perpendicular to the z-axis. We 
then solve the equation of motion for the mass swept up by 
each ring subject to the constraint that the velocity of each ring 
is directed in a direction normal to the plane defined by the 
two adjacent ones. (This suppresses the instability of the shell 
discovered by Vishniac 1983. We will discuss the effect of relax- 
ing this constraint in Mac Low and McCray 1988.) The polar 
caps are also constrained to move parallel to the z-axis. The 
solution of the vector equations was performed in cylindrical 
coordinates, r and z, resulting in five first-order differential 
equations for each ring (two coordinate, two velocity, and one 
mass). The equations for the velocity of the yth ring, Uj = ïj and 
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Vj = zp are 

ñijíij + rrijùj = IP i - P e(zj)] A j cos 0j , (30) 

thjVj + nijVj = [Pi - Pe(ZjïïAj sin Oj - mjgizj), (31) 

and the equation for the mass, nip of thejth ring is 

rhj = Aj{Uj + v])1/2p(Zj) . (32) 

We have denoted the internal and external pressures by Pf and 
Pe, respectively, and the external density by p, with the latter 
two quantities being dependent on the density stratification of 
the external medium. The area of each ring is Aj, while the 
angle from the r-axis of its velocity, as given by its neighbors, is 
Op The galactic gravitational field is given by g(Zj). To find Pt 
we integrate the energy of the interior, given by Ü = LSN 
- Pi V, where V is the volume of the interior. (When radiative 

cooling is considered this equation is modified to include a 
radiative loss term, and the mass evaporated off the shell by the 
hot interior must also be integrated, as we describe below.) 

We define the following scaled variables: time, t — tDx, 
radius, ry = Hi¡/p height above the plane, Zj = HÇj, radial 
velocity, Uj = (H/tD)ßp axial velocity, Vj = (H/tD)yp mass, nij = 
Pq H3pp area, Aj = H2oip volume, V = H\ internal energy, 
U = PeH

3e, internal pressure, Pt = Pe^v Using them we may 
write equations (30), (31), and (32) as the following set of ordi- 
nary differential equations for the shell surface. They are 

= (33) 

= (34) 

ß'j = pl1{D~2,3[ni -mixj COS Oj - pfjßj} , (35) 

= nJ-1{D~2l3[ni -Mjïïocj sin 0, - 

- r[Çj, /(i,)]*)-2/3 , (36) 

ß'j = aß] + y]Y'2m - (37) 

Primes denote differentiation with respect to the scale time, t, 
and we have scaled the functions of height as follows: density, 
p{z¡) = pof (CjX and gravity, g(Zj) = (Pe/p0 H)T[_Cp f (£./)], 
where F is dependent on the density law (for example, F = 1 
for an exponential atmosphere, and F = 2Çj for a Gaussian 
atmosphere). These equations are coupled to the equation for 
the interior energy: e' = D213 — UiV' — where the volume 
derivative is given by = YjjccÄß^ + 7j)1/2> an<^ ^ 
dimensionless radiative cooling. 

We solve the above equations numerically. Note that we 
have confined the dependence of these equations on physical 
quantities to the one dynamical parameter, D, defined in equa- 
tion (29). (The introduction of conductive evaporation and 
radiative cooling to our description of the interior does intro- 
duce other physical quantities.) We used the analytic results of 
Weaver et al (1977) for a spherical bubble of radius much less 
than one scale height as initial conditions for our solution. 

Our numerical models include the effect of radiative cooling 
of the interior, assuming cosmic abundances, and equilibrium 
ionizations. (If the cooling is not included, the numerical solu- 
tions track the power-law solution of Weaver et al. [1977] 
exactly, for the spherical case.) We use a spline fit to the cooling 
curve calculated by Gaetz and Salpeter (1983) for the cooling 
rate. This probably underestimates the actual cooling of the 
shock heated interior gas, because it does not account for the 
effect of nonequilibrium ionization after shock heating. 

The superbubble interior structure is defined by the simi- 

larity solution of equations (4) and (5). We need to know the 
mass evaporated from the cold shell into the hot interior in 
order to find the coefficient for the density equation. Knowing 
the interior pressure from the interior energy, we may then find 
the coefficient for the temperature equation as well. The rate of 
increase of the interior mass, mi, from evaporation off the cold 
shell is given by equation (3) for a spherical geometry, which we 
adapt to the general case as 

where Rj = (rj + z?)1/2. We may then calculate the central 
density by inverting the equation for the mass, m,- = J jin{r)dir. 
The result is 

”‘=iibS(™cos*' 
(39) 

where the equatorial angle </>; = tan 1 (z/r,-), the differential 
angle = (</>,+1 - and yy = 0.98 is a factor that 
accounts for the fact that the (1 - x) 2/5 law is not exact in the 
interior (Weaver et al. 1977). 

c) Results 
We used the numerical model described above to simulate 

superbubble expansion into atmospheres with several different 
stratifications. We here discuss expansion into an exponential 
atmosphere, n(z) = n0 exp (— \z \/H), and into the more realis- 
tic hybrid model atmosphere described by Lockman, Hobbs, 
and Shull (1986). The latter has a Gaussian cloud layer with 
scale height = 135 pc, and an exponential H i layer with 
scale height Hs = 500 pc, giving a density dependence of 

n(z) = ns exp (- |z|/Hs) + nc exp (-z2/H2), (40) 

where n0 = ns + 4.2nc. This atmosphere was derived from 
combined 21 cm and UV observations of OB stars at high 
galactic latitudes. For both these atmospheres we ran models 
with different values of the dynamical parameter, D, and differ- 
ent heights above the plane of the galaxy. We find that D 
indeed predicts whether the superbubble will blow out before it 
begins to collapse in at the equator or the poles. 

i) Exponential Atmosphere 
In Figure 5, we display a superbubble with D = 1000, with 

the OB association either in the plane of the galaxy or 50 pc 
above it. The scale height of the exponential atmosphere is 
H = 100 pc, the density at the plane of the galaxy is n0 = 1 
cm-3, the ISM temperature is 104 K, and the luminosity is 

L38 = 1.1, corresponding to a SN rate of one per ~ 3 x 105 yr. 
For the symmetric model in Figure 5a, blowout (the tran- 

sition from deceleration to acceleration upwards) occurs at 5tD, 
or ~ 6 Myr, when the superbubble has a radius in the plane of 
just under 2H, and a height of ~3H. In exponential atmo- 
spheres, blowout or collapse usually occurs before a 
superbubble grows to 2H in the plane. For values of D just 
high enough to blow out, however, the bubble may grow quite 
large in the z-direction before actually blowing out. The cusp 
at the equator is caused by the discontinuity in the density 
gradient across the plane of the galaxy in a symmetric expo- 
nential atmosphere. 

The asymmetric model shown in Figure 5h is just high 
enough to only blow out one side. Our criterion for one-sided 
blowouts is that, when the top starts to accelerate, the bottom 
be decelerating more strongly than a spherical bubble would. 
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r/H r/H 
Fig. 5. (a-b) Shape of a superbubble with D = 1000 in an exponential atmosphere with tf = 100 pc, L„ = 1 1 P = I0*k dvnes cm“2 and „ 

implying tD = 1.21 Myr. The off-center model is at 0.7H (70 pc), as marked by the cross. Note that the cusp at the plañe i's caused by the doubl’e-sided o = 1 cm 3, 
exponential 

Using this criterion, we find that superbubbles will blow out 
only one side if their centers are above ~0.6H in an exponen- 
tial atmosphere. 

In order to show the effects of different values of D on 
superbubble growth, we show the radius and height of such 
supershells in Figure 6. Under the influence of gravity, low D 
superbubbles will actually become slightly oblate before col- 
lapsing in at the poles, as is illustrated by the D = 10 case 

(curve B). For a density of n0 = 1 cm-3, the lowest two curves 
correspond to unrealistically low SN rates; indeed, a strong 
stellar wind with L38 = 0.01 will have D æ 10. However, these 
results are relevant in environments with higher gas density, 
n0, or gravity, g(z). 

By running models with different values of radiative cooling, 
we are able to test our assertion in § lib that the cooling does 
not play an important role in superbubble dynamics in strati- 

F'O Ó.-Growth of supcrbubbles in an exponential atmosphere with the same parameters as Fig. 5. The dimensionless luminosities vary as follows: (curve A) 
f _ , c * 10 • ’ÍD.~ , 2 Myr)> (Curve B) D = 10(L38 = 0.011, iD = 5.6 Myr), (curve C) O = 100(L38 = 0.11, tD = 2.6 Myr), (curve D) D = 1000(L,„ = 1 1 
accêlerateand écorne u^tablf0*11 ^ ^ he'ght ab°Ve ^ Plane °f ga’aXy ^ ^ rad'US 'n the P‘ane' The CUrVeS are dashed when the superbubbles begin to 
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FIG 7—The effect of cooling on superbubble growth into an exponential atmosphere. The models shown have the same parameters as Fig. 5, except that the 
cooling is (curve A) zero, (curve B) normal, and (curve C) 4 times normal. The cooling function used is given by Gaetz and Salpeter (1983). Size vs. time is shown for {a) 
height above the plane of the galaxy and (b) radius in the plane. 

fied atmospheres. In Figure 7 we show models with no cooling, 
normal cooling, and cooling enhanced by a factor of 4, in the 
D = 100 case (one SN per ~3 Myr). Using equation (16), we 
can calculate that the last is enough additional cooling for the 
cooling to affect the superbubble’s evolution before it blows 
out. This is confirmed by our numerical model. 

ii) Hybrid Atmosphere 
For the model atmosphere of Lockman et al, described by 

equation (40), we define D using the total central density and 
the scale height of the smooth component, Hs = 500 pc. This is 
the dynamically important component of the atmosphere 
because D, as defined by equation (29), is directly proportional 
to density and inversely proportional to scale height. Thus, for 
equal gravities, a long, low-density tail in the density will be 
more important to the growth of the superbubble at large 
times than a higher density component near the galactic plane. 
This implies that OB associations near the plane of a galaxy 
must be quite rich for them to actually blow a hole out of a 
hybrid atmosphere (i.e., begin to accelerate upward), but that 
they may nevertheless produce very large superbubbles after 
pushing out of the denser gas near the plane. 

In Figure 8, we show the shape of symmetric and asym- 
metric superbubbles in a Lockman et al atmosphere, with 
D = 1000. The density at the plane of the galaxy is n0 = 1 
cm-3, the ISM temperature is 104 K, and the luminosity is 

L38 = 2.7, corresponding to a SN rate of one per 1.2 x 105 yr. 
(This could be produced by an association with ^400 poten- 
tial SNs.) Because of the dense slab of gas in the plane, these 
superbubbles are pinched at their equators, and balloon out to 
large radii in the thinner gas above the plane. They collapse in 
at their equators before blowing out for values of D less than 
several hundred. When they do blow out, they have radii ~ Hs 
in the plane of the galaxy and heights of more than 3HS. 
Superbubbles this huge are probably rare. It seems likely, 

however, that superbubbles will eventually blow out, even if 
the equator has started to collapse, for D > 100. 

d) Comparisons with Other Models 
Other workers have made models of similar physical 

systems. Schiano (1985) used the Kompaneets approximation 
to model the effect of a wind from an active galactic nucleus on 
the surrounding ISM, while Tomisaka and Ikeuchi (1986) used 
a two-dimensional hydrodynamics code to model the same 
problem that we treat in this paper. 

Schiano’s (1985) work predicts slightly faster growth of a 
bubble than we do, although we agree on the predicted shapes 
(see our Fig. 7). Typically, at one scale height, his models have 
~ 10% larger radius and thus ~ 30% larger volume. We find 
that the discrepancy results from Schiano’s neglect of the 
inertia of the cold, massive shell in his calculation of shock 
speed. Instead, Schiano assumed that the shock always moved 
at the speed (Pi/Po)112, where is the interior pressure. 

Our results also differ significantly from those of Tomisaka 
and Ikeuchi (1986). In order to compare our results with theirs, 
we used the hybrid atmosphere described by Fuchs and Thiel- 
heim (1979) and the same physical parameters that they did. At 
equal times, our bubbles are usually significantly larger, with 
interiors that have suffered substantially less radiative cooling, 
and shapes that tend to be more pinched at the equator (see 
Fig. 5). There are other discrepancies as well. Tomisaka and 
Ikeuchi find that with a density of 0.1 cm “ 3 in the plane of the 
galaxy, a thin, cold shell does not form completely around the 
superbubble, although we find (see eq. [8]) that such a shell 
should form very early. 

We are uncertain of the reasons for these discrepancies. 
Tomisaka and Ikeuchi’s models do appear to satisfy the condi- 
tion under which the Kompaneets approximation is valid, 
namely, that the pressure be nearly constant along the inner 
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side of the supershell. We are now making two-dimensional 
hydrodynamical simulations in order to resolve these discrep- 
ancies (Mac Low, Norman, and McCray 1987). 

v. CLOUDS 
Superbubbles have no surface tension, and thus, unlike soap 

bubbles, do not pop when pierced by objects such as clouds. 
They simply deform around the piercing object and continue 
to expand. We may show this by comparing the expansion 
velocity of the supershell with the expansion velocity of the hot 
interior into the cool ISM after a cloud has swept away a piece 
of the confining supershell. Consider a superbubble of internal 
pressure, Ph surrounded by a supershell of radius R and mass 
M. The shell follows the equation 

(MR) = 4nR2Pi, (41) 

which may be rewritten as 

MR + MR = 4nR2Pi. (42) 

The first term represents the inertia of the shell (and is negative 
for a decelerating shell), while the second term represents the 
ram pressure of the ISM on the shock. Equation (42) has the 
solution R oc i3/5 (see eq. [1]); given that M = (4ß)np0R

3, 
where p0 is the ISM density, we may write 

'-(•r 
(43) 

If the hot interior of the superbubble is in direct contact with 
the ISM, it will begin to drive a shock into this medium, but at 
a slower speed because the interior pressure is no longer aided 
by the inertia of the shell. For this case, if we take Mh to be the 
mass of the shell swept up by the hot gas, and Rh to be the 

radius of such a shell, equation (41) becomes simply 

MhRh = 4nR2
hPi, (44) 

which yields Rh = (Pi/p0)112- We may treat the hot gas in this 
fashion because a cold shell will reform promptly at the shock, 
as was shown in equation (8). If we now compare the velocity 
of the shell with the velocity of the hot gas once the shell has 
been swept away by an interstellar cloud, we find that 

Rh/R = (^)1/2 « 0.88 . (45) 

In other words, if a portion of the superbubble’s exterior shell 
is removed, the ISM will actually intrude into the superbubble 
in the shell’s frame of reference, rather than allowing the hot 
interior to escape. 

VI. SUMMARY 
In summary, we have made the following points about 

superbubbles: 
1. In most superbubbles, SN blast waves will become sub- 

sonic; their kinetic energy will be converted to thermal energy 
before reaching the outer shell. 

2. Blast waves from SNs within the superbubble will not 
radiatively cool before reaching the outer shell until late in the 
life of the superbubble. Before that time they will probably 
bounce off the cold, dense shell, and eventually release their 
energy into sound waves (see Spitzer 1982). Thus the mass 
evaporated into the interior may slosh in and out, but it will 
not be swept into the cold shell. 

3. The dynamical parameter, D = LSNpl/2P~3,2H~2, deter- 
mines whether a superbubble will blow out of a stratified 
atmosphere before it begins to collapse in at the equator or the 
poles. Using the Kompaneets (thin-shell) approximation, we 
have modeled the evolution of superbubbles in various strati- 
fied atmospheres up to the point of blow out (where the super- 
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shells become Rayleigh-Taylor unstable as they accelerate out 
of the disk of the galaxy). Superbubbles that do blow out gen- 
erally do so within two scale heights. OB associations farther 
than 50-60 pc from the galactic plane only blow out one side 
of the disk. 

4. Encounters with clouds will not release the superbubble’s 
pressure. On the contrary, they will allow ISM to intrude into 
the superbubble. Entrained clouds might significantly enhance 
radiative cooling of the interior, lowering the pressure. 
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