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Summary. Peculiar velocities distort the clustering pattern in redshift space on all 
scales. Four consequences of this are: 

(i) The acceleration vector derived by summing the inverse squared redshifts of 
galaxies differs significantly from the true acceleration even in linear theory. 
Estimates of Q obtained in this manner are only reliable for small Q. 

(ii) The power spectrum of large-scale clustering has a quadrupole anisotropy, 
providing a way to estimate Q. We calculated, for various assumed power spectra, 
the line-of-sight correlation function in redshift space, §v. We find that §v may 
display a strong anticorrelation feature that has no counterpart in real space. 

(iii) The density contrast of the local supercluster will appear enhanced in 
redshift space. Using a simple infall model (with Q = l), we simulate the 
Shapley-Ames catalogue. For an infall velocity around 350 km s-1, the apparent 
density is similar to that observed, so the data do not require Q<^1, or biasing on 
large scales. 

(iv) Turnaround is estimated to occur at a radius — 1500kms_1 from a rich 
cluster, resulting in large transverse features of this scale. Since the velocity field 
is apparently very coherent, high density caustic surfaces must result. Guided by 
the appearance of the spherical model, we argue that the shell-like structures seen 
in some recent redshift surveys are most naturally interpreted as these caustics, 
rather than as the result of energetic explosions. The model also shows the 
apparent falling velocity dispersion with radius that is often seen in rich clusters, 
and suggests that the interpretation of this in terms of equilibrium models is 
inappropriate. 

1 Introduction 

Several extensive galaxy redshift surveys are now available, and these provide a reasonably 
precise three-dimensional view of the world. In a perfectly homogeneous Friedmann universe 
these redshifts would accurately measure radial distance from the observer, and the mapping 
from real space (r-space) to redshift space (5-space) would simply be an identity. In an 
inhomogeneous universe like our own the peculiar velocities associated with any inhomogeneous 
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structure will introduce a distortion in this mapping. In this paper we will explore several aspects 
of this distortion. 

Perhaps the most obvious example of this distortion is the ‘finger of God’ effect which causes 
the dense central regions of clusters of galaxies to appear elongated along the line-of-sight. Inside 
a virialized cluster the velocity of a particle is essentially uncorrelated with its position, and the 
resulting distribution of galaxies in redshift space is just the convolution of the distribution in real 
space with the distribution of velocities. If we try to measure galaxy clustering on larger scales 
from redshift surveys, it is probably reasonable to model the effect of clustering on smaller scales 
by a similar position-independent distribution function, with a width of a few hundred km s-1. 
Presumably with this type of incoherent velocity field in mind, it has been asserted that on large 
scales, where the separation is much greater than the typical random velocities, the effect of 
peculiar velocities on clustering statistics such as the two-point correlation function £{r) can be 
neglected (e.g. Kirshner, Oemler & Schechter 1979; Davis & Peebles 1983; Shanks etal 1983). It 
is not difficult to see, however, that the coherent velocity fields associated with any large-scale 
structure will significantly distort the clustering pattern even on very large scales. 

The simplest example which displays this distortion is the simple ‘top-hat’ homogeneous sphere 
perturbation: if the background universe has Hubble ratio, H, and the perturbation has a small 
fractional density enhancement Aç/ç, the fractional perturbation to the Hubble ratio is 
AH/H= — (l/3)f (Q) Ap/p, with /(Q)=Q° 6 to a good approximation. For an observer outside 
the perturbation, the overdense region will appear in redshift space to be slightly squashed along 
the line-of-sight by an amount AH/H, and the apparent overdensity will be greater than the true 
value by the factor [l+/(Q)/3]. In a universe with Q = l, and containing such perturbations, the 
correlation function measured in redshift space, £s, which essentially measures the square of the 
density enhancement for linear perturbations, would therefore be expected to be roughly 16/9 
times larger than the true correlation function. While this simple model is highly idealized, it 
reveals two features of the redshift space distortion which are quite general: first, since the effect 
(at least for growing perturbations) is to shrink overdense regions and inflate underdense regions, 
the amplitude of the clustering will typically be enhanced. Secondly, in contrast to the elongation 
along the line-of-sight produced by incoherent velocity fields, the clustering pattern will appear 
compressed along the line-of-sight. 

It would, of course, be desirable to be able to invert the distortion process to obtain, from 
estimates of clustering in redshift space, the true spatial distribution. In general this is quite a 
difficult problem, but there are various applications of redshift surveys where some progress can 
be made, either by constructing models or by making simplifying assumptions. In this paper four 
such applications will be considered. 

In the following section we consider the problem of estimating the acceleration vector from a 
magnitude-limited redshift survey. This quantity has been estimated from the revised 
Shapley-Ames (RSA) catalogue by Yahil, Sandage & Tammann (1980), hereafter YST, and 
from the Center for Astrophysics (Cf A) redshift survey by Davis & Huchra (1982), hereafter DH. 
The motivation for these estimates is that they provide an appealingly simple way to estimate Q. 
If one assumes that the major part of our velocity with respect to the cosmic frame defined by the 
microwave background is induced by fluctuations on rather large scales, and that these are 
adequately described by linear theory, then a simple linear relationship between the acceleration 
vector and this peculiar velocity should exist. For a magnitude-limited redshift survey the 
acceleration vector can be expressed as the vector sum over all the galaxies of a 
distance-dependent weight function divided by the square of the radial distance. The weight 
function is necessary because, for a magnitude-limited survey, a given number of galaxies nearby 
is indicative of a smaller amount of mass than the same number found at a greater distance. The 
approach that has previously been adopted is simply to substitute redshift for radial distance in 
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this sum. If Q is not very small then the estimate of the acceleration vector performed in redshift 
space differs from the true value by correction terms which we calculate (to first order in the 
perturbation amplitude), and which we show to be typically larger than the true acceleration 
vector. This result is rather unfortunate since although the assumption that galaxies fairly trace 
the mass distribution on the very large scales of interest here is not entirely compelling, it is at 
least not obviously false. We conclude that, without very detailed modelling of the space 
distribution of galaxies, these estimates of the acceleration vector do not allow one to usefully 
contain the value of Q. 

In Section 3 we consider the anisotropy of the galaxy clustering pattern. As in Section 2 we 
restrict attention to large scales for which linear theory should be applicable, and assume that 
galaxies fairly trace the mass on these scales. We further restrict attention to fairly deep surveys 
wherein there is a useful volume of space in which the weight function is slowly varying on the 
scales of interest. Peebles (1980, section 76) has given expressions for the two-point galaxy 
correlation function based on an approximate model for the streaming motion; here we solve for 
the anisotropy of the power spectrum of galaxy clustering exactly (subject to the assumption of 
linearity). The relation between the power spectra in real and redshift space is very simply stated, 
but since few estimates of this quantity have been made, it is of more practical use to consider the 
correlation function. We calculate the direction averaged two-point function in redshift space and 
find that this differs from the real space correlation function only by an Q dependent factor, so 
this provides one with a useful method to estimate Q. We also consider the two-point function 
restricted to separations along the line-of-sight, 1^, as obtained from ‘pencil-beam’ redshift 
surveys (e.g. Shanks et al. 1983; Kirshner eí al. 1979), or from estimates of clustering of QSO 
absorption features (Sargent et al. 1980; Webb 1986, in preparation). We calculate for an 
assumed power law ^r{r) and from this we draw some general conclusions, we find in particular 
that strong features like the anticorrelation feature suggested by the Durham survey can easily 
arise without any similar feature in true correlation function. Also, we show that for a particular 
power law form for £r(r), the line-of-sight correlation function in redshift space vanishes, a result 
which may be relevant to the interpretation of the absence of clustering of Lyman-a absorption 
systems. 

In Section 4 we shift attention to another important application of redshift surveys, but one for 
which linear theory is probably not a very good approximation. This is the problem of 
determining the density parameter from our infall to the local supercluster. The density of the 
LSC has been estimated using both the RSA and CfA catalogues. While the CfA catalogue has 
the advantage of greater depth, it has the disadvantage that the sky coverage cuts off quite close to 
the Virgo cluster and consequently only a part of the supercluster is sampled. The RSA catalogue 
has much better sky coverage and is arguably the best available sample, for this purpose. YST 
estimate that the overdensity of the supercluster within our radius is ~3, and combining this with 
the estimates of our infall velocity in the simple non-linear spherical collapse model results in 
Q—0.05. There is, however, one unsettling feature of the analysis of YST: they made no 
allowance for peculiar velocities in determining the density contrast and this raises the question as 
to whether the density contrast may have been overestimated. The situation in the literature 
regarding the importance of the correction for peculiar velocities is somewhat confusing: DH 
argued that the correction was important and, if not applied would lead to a significant 
underestimate of Q. Yahil (1981) argued that the correction was very slight, thus vindicating the 
neglect of this in the earlier paper, and that if the correction was applied to the RSA analysis this 
would actually result in a slight decrease in the inferred value of Q. In an attempt to explore this 
point further we have constructed what is perhaps the simplest model which incorporates the 
relevant features. We have laid down a simple spherical structure with a density contrast which 
falls off as r-2, and which resides in a marginally closed background universe. We have populated 
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this with galaxies drawn from a realistic luminosity function and from this we have constructed a 
magnitude-limited sample with sky coverage like that of the RSA catalogue. This model is 
specified by two parameters: our peculiar velocity towards the centre of the enhancement and the 
recession velocity. It is quite easy to find acceptable values for these parameters for which the 
overall appearance of the cluster in redshift space is very similar to that observed (even though the 
true density contrast is only about 80 per cent, the apparent overdensity is much greater), and 
when we calculate the density field in the manner of YST we find good agreement. We conclude 
that, unless the estimates of our infall velocity are revised drastically downwards, the 
observations do not exclude a value of Q—1. 

In Section 5 we consider the influence of peculiar velocities on the morphology of clustering in 
the transition between the linear and non-linear regimes. As we have already discussed in Section 
3, small-amplitude clustering on large scales will appear compressed along the line-of-sight. As 
one approaches the non-linear clustering regime, this compression will become much more 
pronounced, with regions which are just turning around being crushed completely flat in redshift 
space. Using the cluster-galaxy cross-correlation function to estimate the typical profile around a 
rich cluster, we show that one can expect these to be associated with predominantly transverse 
artefacts in redshift space which extend to great distances from the clusters, and which contain 
roughly an order of magnitude more galaxies than partake of the better appreciated ‘finger of 
God’ artefacts. We suggest that these distortions are well able to account for the scale and general 
appearance of the connected features which are seen in the surveys of Giovanelli & Haynes 
(1985), Giovanelli, Haynes & Chincarini (1986), and in the survey by de Lapparent, Geller & 
Huchra (1986). The spherical model displayed here also sheds some light on the falling velocity 
dispersions commonly seen in rich clusters (e.g. Kent & Gunn 1982; Kent & Sargent 1983). These 
are usually interpreted in the framework of equilibrium models. The models considered here 
have a very similar appearance, and suggest a different interpretation. 

The ordering of these four sections is thus: linear density fluctuations in our vicinity (Section 2) ; 
linear density fluctuations at large distances (Section 3); non-linear fluctuations in our vicinity 
(Section 4); and non-linear clustering at greater distances (Section 5). In Section 6 we discuss the 
interpretation of the quantity Q that may be obtained from the methods of Sections 3 and 4, in the 
context of ‘biased’ theories for galaxy formation in which the assumption that galaxies fairly trace 
the mass is invalid. 

2 The acceleration vector 

The local group has a velocity of —600 km s_1 relative to the microwave background, in a 
direction about 45° away from the Virgo cluster. Our infall with respect to the local supercluster 
accounts for only a small fraction of this, and it is usually assumed that the bulk of this velocity is 
induced by the gravitational pull of more distant regions. Since this velocity is considerably less 
than the Hubble velocity across the scale of the region which is assumed to be accelerating 
towards us, linear theory should provide a valid description. 

If we define 

ar-i d3rA(r) 4 (2.1) 
J vr r* 

t 
where A(r) is the density contrast and Vr is the survey volume, then, in linear theory, the peculiar 
velocity of the particle at the origin is 

2 G^crita 
v=—  

3 H 
m (2.2) 
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with /(Q)—Q° 6. If one had distances r to all galaxies in a magnitude-limited catalogue, one could 
estimate ar as 

ar=(nr(r)/^(r)) 1 d2r 
1 

r nr(r) 

r3 <p(r ) 
(2.3) 

where nr{r) d3r is the number of galaxies counted in a volume element d3r around r, and <f>(r) is 
the selection function: 

O(L) dL, 

where <Ï>(L) is the luminosity function, and Llimit is the absolute luminosity of a galaxy which just 
enters the catalogue at distance r. We have assumed here for simplicity that the survey volume has 

so we were able to replace A(r) in equation (2.1) by the estimate of 

1 + A(r)=[«r(r)/0 (r)] x constant. 

We have also assumed that the probability of finding a galaxy of a given type in a given volume is 
just proportional to the amount of matter in that volume, i.e. that galaxies are drawn from a 
universal luminosity function and their distribution in space fairly reflects the mass distribution. 

With this estimate of ar we would be able to estimate Q through equation 2.2. In practice we do 
not have positions for the galaxies, we have instead the coordinates s in redshift space. The 
approach that has been adopted in the past is simply to replace real distances by redshifts in 
equation 2.3 (YST, DH). We shall now show that, unless Q is very small compared to unity, this 
quantity (which we shall denote by as) is unlikely to be even approximately equal to the desired 
acceleration vector ar. 

Given the peculiar velocity field v(r), we can define the line-of-sight component: 

i/(r)=v(r) -f 

where f is a unit vector. 
The mapping from r-space to 5-space is then 

s(r)=r 
£/(r)— £7(0) 

r 

(2.4) 

(2.5) 

where we have chosen units such that H=l. The Jacobian of this transformation is 

d3s—d3r 1 + 
-\2 

1 + 
dU(r) 

dr 
(2.6) 

Now ns(s) d3s=nr(r) d3r by definition, so we have 

nAs) \ 1 

<p(s) ) 

s ns(s) 

<p(s) 

{nr{r)/cP(r)) 

{ns(s)/<p(s)) Í d3r ~3 
Jv, r 

1 + 
t/(r)-t/(0) -2 4>{r) nr(r)/(p{r) 

4>[s{r)\ (nr(T)/4>{r)) 
(2.7) 

If we calculate only to first order in the perturbation, the factor preceding the integral can be 
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replaced by unity, since the integral itself is of first order in the perturbation amplitude. The 
relation between a5 and ar is most clearly seen for the case of a spherical survey volume Vs in 
s-space. Performing the usual decomposition into independent plane waves: 

A(r)=^ A(k)cos (k-r+<9k), 

we can consider each mode separately and combine the results at the end of the day. For the 
perturbation 

A(r) = A0cos(k-r+<9) 

we have 

A0 sin (k*r+#). 

Since the survey volume is isotropic we can take the wave-vector, k, to lie along the z-axis for 
convenience. 

In order to reduce equation (2.7) to a reasonably simple form let us finally make the assumption 
that the survey is deeper than the scale of the perturbation, so that the survey volume fully 
encloses the source of our peculiar motion. This is not very restrictive since, in order for the 
method to work at all it is necessary to make this assumption. Mathematically, this corresponds to 
taking the limit A:rmax>l, where rmax is the depth of the survey. 

We then have 

Ao 
ar=-Ajt — sin (6) 

k 

and 

fls = flr+Q0,6 [sin (///:r+#)—sin 6\ [. (2.8) 

We can see from this that, for Q-» 0, in which case peculiar velocities become negligible, we have 
as->ar as expected. For Q=£0, the terms in brackets are the correction terms due to these 
velocities. The first of these is a ‘surface term’ which arises because the sphere of integration, 
which is concentric about the observer in 5-space, maps to a displaced sphere in r-space. The term 
is relatively harmless since it simply gives rise to a multiplicative factor (1 + Q0 6/3), which can 
easily be corrected for. It is the second term which is more problematic. The magnitude of this 
term can be estimated as follows: for r>k~l, the first sinusoid in equation (2.8) oscillates rapidly, 
and the contribution to the integral cancels out. The second (constant) sine factor, on the other 
hand, gives a logarithmically divergent contribution. This log divergence is cut-off at large r by the 
depth of the survey, and for r<k~l the two sine terms cancel, and this cuts off the divergence at 
small r. The result is 

«s - ar~Q06ar In [{krmax)
20(rmax)/ *)] • (2-9) 

This is typically larger than the desired term ar by an appreciable logarithmic factor. The problem 
is not alleviated by correcting for the observer’s peculiar velocity, as for instance in DH. Such a 
correction only results in another logarithmically divergent contribution to as due to galaxies close 
to the observer. In practice this divergence will be cut-off by the finite number density of nearby 
galaxies, but in an unpredictable manner. 

The presence of this ^dependent correction to as presents a severe problem which undermines 
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this method for determining Q. In order to predict even the sign of this term requires knowledge 
of which region of space is dominating our peculiar acceleration, and in order to evaluate this 
correction with any degree of precision, one would need to construct an elaborate model for the 
density and velocity fields and then fit this to the data. While this would be possible in principle, it 
is a far cry from the simple, model-independent technique as originally presented. It should be 
clear then that the estimates of a5 that have been extracted from magnitude-limited redshift 
surveys do not usefully constrain the value of Q; This is unfortunate, since the assumption that 
galaxies fairly trace the mass on the very large scales relevant for this problem is, if not entirely 
compelling, at least an interesting and natural hypothesis, and the proposed method has the 
great appeal of simplicity. We shall show in the next section that there is an alternative test for Q 
which, while it is somewhat more demanding in the data required for its execution, makes just the 
same assumptions as the method we have discussed above, but does not suffer from the same 
problems. 

3 Anisotropy of galaxy clustering 

In the previous section we were concerned with density fluctuations in our vicinity which are 
presumed to be responsible for our peculiar velocity. We found that the estimator of the density, 
when applied in redshift space, was significantly perturbed by the peculiar velocities. If we 
compare the estimate of the density in a small volume element of redshift space with the true 
density, we can identify three effects due to peculiar velocities. First, each point in the volume 
element will be translated radially, by an amount Ar= f/(r)-i/(0), and so the volume will 
undergo a fractional change 2Ar/r. Secondly, the selection function will change by a fraction 
(d In (p/d In r) Ar/r. Thirdly, if there is any shear in the velocity field this volume element will be 
stretched or compressed. For perturbations in our vicinity all of these terms are appreciable, and 
it is for this reason that it is so difficult to invert the combined effect of these distortions. For 
density fluctuations at great distance from us there will also be significant distortions, but the first 
two of the terms we have identified become negligible, since the radial displacements become 
parallel at large r and the selection function will become very slowly varying on the scale of the 
perturbation, so only the effect of the shear will remain. In this section we shall show that, in the 
appropriate limit, it is possible to invert the distortion for linear perturbations. The inversion is 
very simple, at least when expressed in Fourier space where it shows up as simple quadrupole 
angular dependence. If one makes the natural assumption that the clustering pattern in real space 
is statistically isotropic, then Q can be estimated by measuring the anisotropy of the power 
spectrum in 5-space. Since few estimates of the power spectrum are available it is of more practical 
use to consider the anisotropy of the correlation function. This turns out to be somewhat more 
complicated, but some progress can be made. We give particular attention to two problems. First, 
we calculate the amplitude of the correlation function when direction averaged in redshift space. 
This gives a reasonable approximation to the estimates of £(5) that have been extracted from the 
CfA survey, and other surveys with a large solid volume. Secondly, we explore the relation 
between ^ and when the separations are restricted to lie along the line-of-sight. This is 
appropriate for large separations in ‘pencil beam’ redshift surveys and also for the clustering of 
QSO absorption systems. 

3.1 THE POWER SPECTRUM 

Recall that, for the magnitude-limited survey, the estimate of the density in real space is, up to a 
constant, given by 

gr{r)=nr(r)/(p(r). (3.1) 
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The corresponding quantity in redshift space: ^(s)=n5(s)/0(5) is related to gr via the 
transformation (2.5) and its Jacobian (2.6), as 

ft(r)= 
 iKO 

4>{r[l + (U(r)-Um/r]} 

^ U(r)-U((i) 

r 

-2 

Pr(r), 

so, to first order in the perturbation, we have 

(3.2) 

/ dlncj) 
As(r)=Ar(r)- 2+—— 

V d\nr 

-i/(r)-£/(0) 

r 

dU 

dr 
(3.3) 

For a plane-wave density ripple U~A/k and dU/dr—kU—ts. For a survey of depth rm2LX>k~l, the 
second term in equation (3.3) becomes negligible compared to A except very near to the observer 
but the third term due to the shear of the velocity field remains of the same order as A and 
therefore must be retained. For the Fourier mode 

A^r)=Ak cos (k • r + #), 

we have 

//Q°-6Ak 
U{v) = -^—  

k 
sin (k*r + #), 

where fi is the cosine of the angle between k and the line-of-sight, and therefore 

dU „ 
-—=-(/M

2QO6Ak)cos(kT+0) 
dr 

= —//2Q0-6Ar(r), 

so 

Ai(r)=Ar(r)(l+iM
2Q0-6). (3.4) 

We see from this that a plane-wave density ripple in r-space maps to a plane-wave density ripple in 

5-space with the same phase and wave-vector but with enhanced amplitude. The relation between 
the power spectra P(k)=( | Ak |2) in r-space and 5-space. 

Pi(k)=Pr(k)(l+Q°V2)2. (3.5) 

So, if Q = 1 for instance, and the power spectrum in real space is isotropic, the power measured in 
5-space varies considerably with angle, being four times larger for wave-vectors parallel to the 
line-of-sight than for transverse wave vectors. 

Equation (3.5) therefore provides a way to estimate Q. Simply estimate the power spectrum in 
5-space for various directions k, and then fit to the predicted //-dependence to find Q. However, 
since the power spectrum will probably be estimated as the Fourier transform of the correlation 
function, and estimates for £ are already available, it is of more practical use to find a way to 
determine Q directly from the correlation function. The rest of this section will therefore be 
devoted to exploring the anisotropy of the correlation function in 5-space. 

3.2 THE DIRECTION AVERAGED CORRELATION FUNCTION 

The correlation function £(r) is the Fourier transform of the power spectrum 

£(r)=j d3kP(k)exp(ik-r), (3.6) 
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and this quantity can be conveniently estimated from redshift surveys, the estimator of l+l^x) 
being the number of pairs with separation x divided by the number of pairs that one would obtain 
for a Poissonian distribution of points with the same selection function. 

The correlation function in real space, £r, is isotropic, and is given by 

r o sin(Â7*) 
£r(r)=4jr I dkk2Pr(k) —A (3.7) 

Jo kr 

The correlation function in 5-space will be function of both s and ju, the cosine of the angle 
between the separation, s, and the line-of-sight. Unlike the power spectrum though, where the 
anisotropy has the simple form of equation (3.5), the angular dependence of £ can be quite 
complicated. It is, however, fairly straightforward to calculate the direction averaged correlation 
function in redshift space. The result is 

^>(i)=(l/2)| djugs(s,/i) 

=(H-2/3Q0'6+1/5QL2)|;
r(s). (3.8) 

Note that for Q = 1 we have £<5)=(28/15)which is quite similar to the rather crude estimate 
made in the Introduction for the increase of the squared density contrast for a homogeneous 
spherical perturbation. One can also compare this with the result obtained using Peebles’ model 
for the distribution of peculiar velocities. Using Peebles’ equation (76.9), with the streaming 
velocity given by equation (71.12), and integrating over directions, one obtains 

!<s>(5) = (1 + %Q°-6)£(5), 

clearly different to our result (3.8) 
The quantity f^fa) has been estimated from the CfA survey by Davis & Peebles (1983), where 

the large solid volume of the survey permits the isotropic averaging indicated in equation (3.8). If 
we were to determine by deprojection from 

*v(*)=J dzgs(x,z), 

where x is the component of s perpendicular to the line-of-sight and z is the parallel component, 
then by comparing with §s we could determine Q. Probably the simplest way to extract Q is to 
form the quantity 

ws(x)=j dz£(s)[(x
2+z2)1/2], 

and we then have 

ws(x) = (l + 2/3Q°-6+1/5Q1-2)wr(x). (3.9) 

In order to carry out this procedure it is necessary to have sufficiently high signal-to-noise to be 
able to determine ^(s) in the linear regime where the amplitude is small. While surveys which 
have been performed to date have been rather limited in the volume of space covered, the 
situation should improve in the future for two reasons. First, one can expect the number of known 
redshifts to increase, and second, for the application considered here one can greatly improve the 
signal-to-noise ratio for a fixed number of redshifts by collecting redshifts only for a random 
sample of all galaxies and thereby sample a much larger volume of space (Kaiser 1986). Thus we 
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can reasonably hope that in the not too distant future the method described here should become a 
workable proposition. 

For narrow cone surveys, and for objects seen in absorption against a distant QSO one is 
restricted to separations along the line-of-sight and so this test cannot be applied. We will now 
consider the problem of interpreting correlation functions obtained in this way. 

3.3 LINE-OF-SIGHT CORRELATION FUNCTION 

It would be very useful to be able to determine, from estimates of the correlation function 
restricted to the line-of-sight in 5-space, which we shall denote by , the true correlation function 
£r, or equivalently the true power spectrum Fr. Unfortunately, knowledge of alone is 
insufficient to uniquely determine Pr. Nevertheless, for any given Pr, one can determine from 
equation (3.6), and one can hope that by experimenting with various forms for Pr, one can learn 
some of the general features of the relation between and £r, and thereby be able to draw some 
useful, if limited, inferences concerning Pr from observations of 

Let us start with equation (3.6) then, with Ps given by equations (3.5). For r along the 
line-of-sight we can write 

dktfPrik)* sin kr j —+2Q0-6 

kr 
Pr)'~2] l-12 K^)4"12^)24-24] 

{krf (kr)5 

f 4Q0-6 l9 
+cos kr\ -+Q1-2 

l (kr)2 

[A(kr)2-2A\y 

(kr)A J_ 
(3.9) 

In the limit that Q-* 0, as in equation (3.7). It is illustrative to consider the family of power 
law power spectra: Pr(k)*kn, in which case the correlation function will also be a power law: 
£ra r-(n+3). it is easy to see (by changing variables in (3.9) from k\o z=kr that will also be a 

power law with the same spectral index, but with a different amplitude, so we can write, in this 
case, 

Çv=A(n)Çr. (3.10) 

Before we study the form of the function A(ri), it is helpful to consider a somewhat simpler 
example which will enable us to anticipate to some extent the form of the results. Consider a 
spherically symmetric density enhancement which has a power law profile Ar(r)=r“ with y>0. 
Let us also assume, for simplicity, that Q=l, and restrict attention to the outer parts of the cluster 
where Ar<^l. The velocity field is then v(r)=-(r/3) Aint, where Aint denotes the mean density 
contrast interior to r, and is given by Aint=3Ar/(3- x). It is relatively straightforward to show that 
the density contrast in 5-space is given by 

A, 
3-X - 

(3.11) 

Various features of this result are worthy of note: first, the power law radial profile is preserved, 
but the density contrast in 5-space has a strong quadrupolar component. Secondly, the density 
contrast in the transverse direction (//=0) is always enhanced, while the density contrast along 
the line-of-sight through the centre of the enhancement may or may not be enhanced depending 
on whether y is less than or greater than unity, respectively. This result is quite easily understood: 
for Ar<x r-1 the peculiar velocity is independent of radius so, along the central line-of-sight there is 

no shear, and so we see the true density contrast. For y<l the velocity shear is compressive, while 
for y>l the shear is rarefactive, and reduces the apparent density contrast. For y=2 the shearing 
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Real and redshift space clustering 

just cancels the true density contrast and for steeper profiles there will exist regions in s-space 
where the density contrast is negative, even though Ar is everywhere positive. Thus the contours 
of density contrast will be grossly distorted when viewed in redshift space and the clusters will 
appear to bç flattened along the line-of-sight. The analysis given here is restricted to the outer 
parts of the cluster where linear theory is valid. We will extend the analysis of the idealized power 
law cluster into the non-linear regime in Section 5. 

Returning to the more interesting case of a stochastic density field with power law power 

spectrum Pr(A:)=A:n, we can write 

Sr=I0r^
n+3\ 

£v=(Io+Q0'6/i + Q1 2I2)r~
(n+3), 

where 

sinz 

z 

(2z2-4) 
sin z 4 cos z 

^ ^ sin z ^ cos z 
(z4—12z2+24) —-—l-(4z2—24)—— 

z5 z4 

These integrals can be evaluated numerically for any chosen value of n and the function 
A(n)=£v/£ris plotted in Fig. 1 for a range of rc-values. In order to make the integrals converge it is 
necessary to introduce a smooth cut-off in the power spectrum at large wavenumber. For the 
results shown below we used a Gaussian, Pr(k)=kn exp(-k2/ki). Provided that the cut-off is 
taken to be large, k*>l, the results are independent of k*. 

The results are somewhat analogous to those obtained for the spherical cluster. For n = -2, 
>4 = 1, so for this particular value ofn,§v gives a faithful representation of £r. For steeper profiles, 

spectral index n 
Figure 1. A(n) is the ratio of £v, the line-of-sight correlation function in redshift space, to £r, the true correlation 
function, for a power law power spectrum P(k)^kn. For values of the spectral index greater than about -1.4, ^ 
shows anticorrelation which can be very strong. 
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n>—2, §v is smaller than £r, due to negative shear. The cross-over point at which ^ vanishes is 
around «= — 1.4, and for more positive values of n one sees an apparent anticorrelation, which 
becomes very strong as n approaches 0. 

It is probably unrealistic to assume a pure power law for Pr(k). For instance, in the ‘cold dark 
matter’ scenario the slope of the power-spectrum is continuously varying. The special cases 
considered above do, however, allow one to draw some general conclusions concerning §v. 
Consider the case in which the power spectrum consists of two power law regions which merge 
smoothly together in some way. The correlation function in r-space will then also asymptote to 
the appropriate slopes on small and large scales. The same will be true of , but if the asymptotic 
values of n bracket the value « = -1.4,^ will be forced to change sign, and a spurious feature will 
emerge. In general then, one would expect features in to be reflected as exaggerated features in 

Several concrete examples of the type of distortion that can arise are shown in Fig. 2, where 

Gaussian filtered n = 2 Gaussian filtered n = *4 

(c) log(r) (d) log(r) 
Figure 2. Line-of-sight correlation function in redshift space, and true correlation function, fr, for various 
assumed spectra: (a) P^ocfc^expi-fc2^); (b) P(Â:)aexp(-^/2); (c) P^oc^expi-fc2/!); (d) P(Â:)oc 
A:4exp (-A2/2). In each case the amplitude has been chosen to give unit variance in r-space. Spurious anticorrelation 
is seen in many cases, and in all cases is a very poor guide to £r. 
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we have plotted and for various model power spectra. In all of these spectra a Gaussian 
‘low-pass filter’ has been introduced in order to make the rms density fluctuation finite. We have 
normalized the variance to unity, but for any smaller variance one should simply reduce the 
correlation functions accordingly. As can be seen, there is a pronounced feature in which has 
no counterpart in 

This result is of some importance: if one assumes that the primordial spectrum of fluctuations 
asymptotes to the Zel’dovich spectrum at large scales, as for instance in the cold dark matter 
picture, then £r should display an anticorrelation feature. This feature is predicted to be quite 
weak; it extends to very large, radii but its volume integral is just large enough to cancel the 
positive contribution to J3=fr2^rdr at smaller radii. The examples shown in Fig. 2 show that 
much stronger features can arise in for quite different reasons, and it will be practically 
impossible to learn much about the primordial spectrum from estimates of alone. Certainly it 
would be unwise to interpret the anticorrelation feature suggested by the Durham analysis 
(Shanks et al. 1983) as evidence for a turnover to positive spectral index in the primordial power 
spectrum. 

Another important implication of the foregoing concerns the clustering of absorption systems 
seen in QSO spectra. Lyman-ör clouds appear to be rather weakly clustered in velocity space 
(Sargent et al. 1980; Webb 1986, in preparation). The analysis we have given above shows that 
distortions due to velocity shear are likely to be very important and must be taken into account in 
the interpretation of these data. As an example, note that one possible interpretation of the weak 
correlation seen is that the Lyman-ör systems are in reality more strongly clustered, but that the 
power spectrum has a spectral index close to « =—1.4 on the relevant scale, so is anomalously 
small. In any case, one can use the absence of any strong anticorrelation to put constraints on the 
possible values for n and Q. 

4 Determination of fl from Virgo infall 

In this section we consider the problem of determination of the density parameter from 
observation of the Virgo flow. This test requires two observations. First, one must determine the 
deceleration of the Hubble flow by the excess of matter in the local supercluster. This requires a 
determination of the distance to some sample of galaxies in the LSC, via a ‘Tully-Fisher’, or 
analogous relation, and to a sample of much more distant galaxies, say in Coma, which are 
assumed to be partaking of the uniform Hubble flow. If absolute luminosities are determined 
from the apparent luminosities using redshift as a distance measure, then the LSC galaxies will 
have an L-a relation which is offset with respect to that of the distant galaxies, and this offset is 
interpreted as the perturbation in the Hubble flow. The second datum is an estimate of the density 
enhancement of the LSC which can be obtained from a complete redshift survey. Combining 
these gives an estimate of the density parameter from 

AH f(Q) Ap 

H ~~ 3 p ’ 

in the linear approximation, or from an analogous relation if non-linearity is important. The 
important assumptions here are (i) that the dynamics be reasonably well described by the 
spherical model, and (ii) that the enhancement of galaxies in the LSC faithfully reflects a true 
excess of mass. 

Several groups have now estimated the perturbation to the Hubble flow using a variety of 
distance estimators. There is a broad concensus that the Hubble flow in the LSC is retarded by 
about 20 per cent. The density contrast has been estimated from the CfA survey by DH to be 
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èsqIq—2, but, as they note, the Virgo cluster lies quite near to the edge of this survey and so this 
introduces some uncertainty. They remarked that independent data on the extension of the Virgo 
cluster beyond the boundary of the CfA survey would suggest that their estimate of the density 
contrast is too high. The revised Shapley-Ames catalogue has much better sky coverage for this 
purpose and YST estimate that H^qIq—Z from these data, and thereby find Q—0.05, a value which 
would seem to firmly exclude the possibility that the Universe has closure density unless galaxies 
are more strongly concentrated in the LSC than the matter. 

This particular observation is rather crucial: on smaller scales such as in individual galaxies, 
pairs, groups and clusters etc. the mass-to-light ratios determined increase with mass scale, and 
would seem to permit an asymptotic value —2000 h M©/L© corresponding to closure density. The 
result of YST suggests that on scales exceeding that of rich clusters this increasing trend stops, 
with obvious consequences for the global density parameter. 

Various workers have recently attempted to check the validity of some of the assumptions that 
go into this calculation (Bushouse et al. 1985; Lee, Hoffman & Ftaclas 1986; Villumsen & Davis 

1986) by comparison with the results obtained from similar analyses applied to cosmological 
V-body simulation. These studies allow one to quantify the magnitude of the errors which are 
likely to arise due to such factors as asphericity, ‘random’ motions associated with substructure, 
and the tidal influence of external matter. It should be mentioned, however, that some tests have 
been performed to see how important such factors are likely to be in the LAC itself. Sandage & 
Tammann (1975) find that the infall pattern is remarkably cold; they claim that random peculiar 
velocities within the general infall pattern can be no more than —50 km s-1. Lilje, Yahil & Jones 
(1987) have determined the quadrupole distortion of the Hubble flow within the LSC; they find 
that the contribution of this tidal stretch to our radial velocity component relative to Virgo is 
small, so it would appear that such effects are not very important. One might also question the 
assumed universality of the ‘Tully-Fisher’ relation used to determine the distances to the 
galaxies. The statistical errors quoted for the fractional change in the Hubble ratio are on the 
order of a few per cent, and so it is clearly necessary to believe that any systematic differences 
between the galaxies in the LSC and those in the more distant reference clusters is no larger than 
this. 

In this section, we shall address another problem: the effect of peculiar velocities on the 
estimate of kglg by YST. To this end, we have constructed a very simple dynamical model to 
simulate this distortion. We have taken a power law density enhancement embedded in a flat 
universe, with the velocity field determined from the spherically symmetric, non-linear model. 
This model breaks down for the central region of the cluster where shell crossing must occur, but 
since only a small fraction of the mass of the LSC resides in this region this is not a serious 
problem. This model is specified by two quantities which we take to be the recession velocity of 
the centre of the perturbation relative to the observer, ^lsc> and the amount by which this departs 
from the unperturbed Hubble flow at this distance, i.e. the peculiar infall velocity, vVQC. We then 
populated this three-dimensional model with galaxies drawn from a Schechter-type luminosity 
function, and constructed from this a magnitude-limited sample. Projections of this simulated 
catalogue, with galactic latitude boundaries as in the RSA catalogue, are shown in Fig. 3(a) and 
(b). The values of the parameters were ¿;Lsc=1150 kms_1 and ^0=350 km s-1. The luminosity 
function adopted had a faint end slope of index or=-1.2, and an amplitude in accord with that 
obtained from estimates of the luminosity function from deep samples (Efstathiou & Silk 1983). 
In order to reproduce an overall N(z) like that observed, the magnitude limit was chosen such 
that an L* galaxy will just enter the catalogue at a distance of 2500kms_1. Fig. 3(a) shows the 
distribution of galaxies in real space when projected on to a plane perpendicular to the plane of 
the ‘galaxy’ (the centre of the ‘LSC’ lies at the ‘North Galactic Pole’). For the parameters chosen, 
the density excess interior to our radius is only 80 per cent, and this is reflected in the appearance 
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figure 3. Simulation of a magnitude-limited redshift survey like the RSA survey. The points shown are ‘galaxies’ 
drawn from a realistic luminosity function. The observer is at the centre of the plots. The centre of the density 
concentration lies to the right of the observer, parameters are given in the text, (a) Shows the projection in real space 
on to a plane perpendicular to the observers galaxy, (b) Shows the analogous plot in redshift space. The density 
contrast interior to the sphere containing the observer is only 80 per cent, in accord with the modest appearance in 
r-space. The apparent overdensity in 5-space is, however, much greater. The reader should compare this (3b) with 
the projections of the RSA catalogue shown in the plates accompanying the paper by YST. 

of this plot. In Fig. 3(b) the same set of points is shown but now in redshift space. The density 
contrast is considerably enhanced, and the visual impression is quite similar to the projections of 
the RSA survey shown by YST. 

In order to make a more quantitative comparison with the real survey we have calculated the 
density function for shells around us in a manner like that of YST, i.e. we define the density to be 

Qsoc • This is shown, in Fig. 4 along with that calculated from the data (conveniently given in a 
table by YST). The acceleration is essentially just the integral of this function. The model and the 
data appear to be fairly similar, and so we conclude that, in so far as the parameters adopted are 
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South-  VELOCITY/km s-1  -North 

Figure 4. Density function in redshift space for northern (right half) and southern (left half) hemispheres. The solid 
line is for the model shown in Fig. 3. The dashed line is all the galaxies in the RSA and the dotted line is for the 
ellipticals and SOs (figures obtained from the table in YST). The model has a somewhat higher density in the south 
than the data (see text), otherwise the apparent amplitude is quite comparable. 

allowed by the data, the redshift survey data are quite compatible with the Universe having 
closure density, and the overdensity of matter being the same as the overdensity of galaxies. 

This result is in sharp discord with the conclusions of YST, and it is perhaps worth elaborating 
on the reasons for this discrepancy. First, our recession velocity from the centre of the 
supercluster was taken to be 1150 km s-1, somewhat larger than the value of 1000 km s-1 usually 
adopted for the Virgo cluster, and used by YST. We feel that this choice was not at all 
unreasonable. The value that is relevant for this calculation is the effective centre of the LSC, not 
the point which happens to have the greatest density, since most of the mass, and hence most of 
the source of our acceleration comes from the outer parts of the LSC. We first experimented with 

^lsc= 1000 km s-1, but found that the resulting density enhancement appeared to be too close to 
the observer. This turns out to be quite important, since the density contrast in both the model 
and the data is falling quite rapidly. Secondly, we allow for the distortion by peculiar velocities. In 
a more recent paper, Yahil (1981) claims that this correction is not very important, and, in any 
case, leads to a correction in the opposite sense from that which we have found. This is hard to 
reconcile with Fig. 3(a) and (b). Certainly the sign of this correction depends on the luminosity 
function adopted, and on other details. However, since few details of the calculation were given it 
is difficult to know to what one should ascribe the discrepancy. In any case, if the result is so 
sensitive to such parameters as the luminosity function, then any uncertainties in these estimates 
will feed through to the value of Q derived. Thirdly, the baseline density adopted here was about 
20 per cent higher than that adopted by YST. The reason for this is the independent evidence 
from the CfA survey that the southern galactic hemisphere region, which YST took to be at the 
background density, is in fact somewhat underpopulated with galaxies. As with the choice for 

¿Tsc? while the data do not absolutely demand the values we have adopted, there does not seem 
to be any obvious conflict. Finally, we take the value of vvec to be 350 km s_1. It is possible to find 
estimates of this parameter which are lower by as much as a factor 2. Had we adopted such a 
value, the density contrast would have been considerably lower than observed. It is perhaps more 
reasonable to state this parameter in the form of the fractional perturbation to the Hubble flow, 
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since this is closer to what is actually measured. For the parameters chosen in the model 
illustrated we have AH/H is 350/(1150+350)—23 per cent. 

We conclude then, that, from the reasonable likeness of the model to the data, one cannot 
exclude the joint hypothesis that the Universe has closure density and galaxies are clustered like 
the mass on the scale of the LSC. On the other hand, due to the highly idealized nature of the 
model, the considerable uncertainty in the data, and particularly the strong dependence of the 
derived density parameter on the infall velocity, we do not feel that a value of Q considerably less 
than unity, Q=0.2 say, can be firmly excluded either. 

The value of Q obtained in this way, or, almost equivalently, the mass-to-light ratio of the LSC, 
has important implications for theories of galaxy formation, particularly those invoking ‘biasing’ 
mechanisms. If one appeals to the clustering statistics of high peaks (Bardeen et al. 1986) to 
account for the M/L variations, and reconcile these with the Universe having closure density, one 
finds that M/L should be quite a sensitive function of the density of the final system. Finding a 
mass-to-light ratio in the LSC as low as for rich clusters is an embarrassment for these models for 
two reasons. First, as stressed by Peebles (1986), it is hard to see how the presumably small 
density enhancement of the LSC at earlier times could have led to an enhancement of the 
efficiency of galaxy formation by the factor 5 or so required. Secondly, even if one could achieve 
this, one would then predict a much lower M/L for clusters than is observed. The result obtained 
here shows that the required bias, at least for the outer parts of the LSC, may be quite small, and it 
may be that only in the inner regions of the LSC is the mass-to-light ratio significantly lower than 
the closure value. The best way to resolve this question observationally is via the method 
described in Section 3, since this sidesteps the difficulties encountered when one attempts to 
estimate the density contrast in our neighbourhood. 

5 Morphology of clusters and superclusters 

In Section 2 we found that, at large separations where linear theory should provide a valid 
description, the clustering pattern, as measured by the correlation function for instance, should 
be strongly anisotropic. The sign of this anisotropy is an elongation of the power spectrum, Ps 

along the line-of-sight, corresponding to a compression of structures along the line-of-sight in 
5-space. In contrast to this, in the dense virialized parts of clusters, we find the familiar ‘finger of 
God’ elongation. These dense regions are highly non-linear, having density contrasts of a few 
hundred or so. It is of great interest to know what happens in the intermediate regime, i.e. for 
systems which are marginally non-linear. 

Let us consider, for simplicity, the simple power law density enhancement for which we 
examined the outermost parts in Section 3. As we move in to smaller radii and larger density 
contrasts we eventually reach a point where the interior density contrast Aint—4.5. Particles on a 
shell at this radius are just turning around to fall back towards the cluster centre and so this 
spherical shell in r-space maps to a plane at constant z in 5-space. Interior to this, successive shells 
will be inverted in 5-space and, starting from a very flattened shape will become more and more 
elongated along the line-of-sight. We have taken a thin slice through such a cluster (omitting the 
central virialized portions) and the results are shown in Fig. 5(a) and (b), respectively. As can be 
clearly seen, a caustic surface has resulted; on this surface the density of matter is formally 
infinite, though the amount of matter at infinite density is formally zero; the density falling off 
inside the caustic surface inversely as the square-root of the distance. The density enhancement in 
the transverse direction is appreciable even outside the turnaround point where the actual caustic 
starts, and, at large radius this will match on to the butterfly-shaped density contours described in 
Section 3. 
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Figure 5. Spherical cluster with power law density profile in r-space (a) and as it appears in redshift space (b). The 
points shown are those which lie in a thin equatorial slice through the cluster centre. Points in the central virialized 
portion have been omitted. Innermost points are falling into the cluster for the first time. The sampling density and 
separation between shells are such that individual shells can still be seen in 5-space (z-coordinate is the redshift 
direction). The density contrast profile is A(r)=(r/1.4)_1 75. A caustic surface has resulted in 5-space which, in three 
dimensions, has the form of two trumpet horns glued face to face. The caustic surface extends to the turnaround 
radius which lies at roughly twice the central ID velocity dispersion, or about 20/i_1 Mpc for a cluster like Coma. 

The caustic surface extends to the point at which the density contrast is =4.5. We can get the 
idea of the likely scale of such features around real rich clusters since we know from the virial 
theorem that, for a cluster with central velocity dispersion lOOOkms-1 say, the density is 

—200^crit at the Abell radius rAbell=150 km s“1. Combining this with the estimate of the typical 
profile around a rich cluster which is given by the cluster-galaxy cross-correlation function 
^gar"1-7 at large r (Seldner & Peebles 1977), we estimate the turnaround radius to be at around 
1500 km s-1 (readers who wish to think in terms of physical distances will need to divide by their 
favourite value for the Hubble constant). To estimate this radius we have assumed that the profile 
of mass around a cluster is similar to the profile of the galaxies. The scale of regions turning 
around is quite impressive: compared with the ‘finger of God’ artefacts which contain only a very 
small fraction (~5 per cent) of all galaxies, we expect these transverse artefacts to contain roughly 
one order of magnitude more galaxies. 

The cold spherical model is highly idealized, and it is important to consider how the results 
would change in a more realistic situation. It would be surprising indeed if real cluster profiles 
were highly spherically symmetric. In the more realistic case one would expect the caustic 
surfaces to be quite distorted. This would mean that the caustics would probably not be very 
visible in projection, in a solid volume survey like the CfA survey. They would, however, be 
expected to be just as prominent as those displayed here in a slice-like redshift survey and the 
inverse square root density run behind the caustic is a general feature, requiring only that the 
velocity field be sufficiently smooth, and of sufficient amplitude that the radial velocity should 
have turning points. Moreover, one would expect the characteristic scale of these transverse 
features to be similar to the estimate given above. More important for the visibility of these 
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caustics is the presence or absence of substructure. If the density field is clumpy on small scales, 
the peculiar velocities associated with this dumpiness will tend to smear out the caustics. The 
requirement for pronounced caustics is that the peculiar velocities on small scales should be much 
less than the scale of the caustics. The evidence of the smoothness of the LSC flow (Sandage & 
Tammann 1975) suggests that this condition is amply satisfied. 

Thus we find that from a simple estimate of the turnaround radius, combined with the lack of 
very large peculiar velocities on small scales that there should be a strong tendency for galaxies to 
line up in smooth connected features; that these artefacts should match smoothly on to the 
‘fingers of God’ like the ‘trumpet horns’ seen in Fig. 5(b); and that the features should be most 
prominent in slice-like redshift surveys, being less prominent in projection. It is easy to find 
examples of clusters which display the type of feature shown in Fig. 5(b). Perhaps the best 
example is in the study of the Perseus-Pisces region by Giovanelli & Haynes (1985) wherein some 
of the clusters are distinctly cross-like. Indeed, the whole complex studied by Giovannelli & 
Haynes lies at a roughly constant redshift, with some extremely narrow features in redshift space 
(see especially fig. 4 in Giovanelli etal 1986) perhaps suggesting that here, in this region selected 
because of its great enhancement of galaxies and clusters seen on the sky, we have a very large 
region turning around. 

Narrow, connected features are also seen in the slice-like survey of de Lapparent et al. (1986). 
They interpreted these as being shells from giant cosmological explosions. It is easy to see from 
Fig. 5(b) that with a few clusters scattered around in or near the slice surveyed that the caustics 
generated might give this impression if velocities are naively interpreted as distances. 
Generalizing from the highly symmetric example of Fig. 5(b), one can expect that underdense 
regions (‘voids’) would tend to be surrounded by sharply defined convex surfaces. One unrealistic 
feature of the model shown here is that there are no regions with density less than the mean 
density so one would expect the voids in the more realistic situation to be emptier than the 
low-density regions shown in the figure. Again, this seems to be quite compatible with the 
observations. Thus, the scale and morphology of the structures seen is in reasonable accord with 
what one would expect based on our crude estimate of the scale of regions turning around today. 

The form of the spherical cluster as seen in redshift space can also shed some light on the falling 
velocity dispersion profile commonly seen in rich clusters such as Coma (Kent & Gunn 1982), and 
Perseus (Kent & Sargent 1983). These studies were confined to projected radii up to about 
400-500 km s-1, or somewhat less than half of the central velocity dispersion. The caustic in Fig. 
5(b) extends to a radius of about twice the central velocity dispersion, so we should compare the 
studies of Coma and Perseus with the inner parts of the model. In the spherical model it is 
considerably more difficult to follow the trajectories of the particles after shell crossing, and we 
have simply not plotted particles in the centre, which, assuming a central velocity dispersion of 
100 km s"1 would correspond to a radius of about 200 km s_ 1. Were we to superimpose a virialized 
core, this would give a ‘finger of God’ that would sit inside the elongated caustic surface. 
Comparing with the azimuthally averaged velocity versus projected radius plots shown in the 
above quoted references we see that the velocity dispersion that one would infer falls by about the 
same amount as that observed. The observations have usually been interpreted in the framework 
of equilibrium models (see also Merritt 1987), with the hope of constraining the dynamical 
models and/or variations in mass-to-light ratios. The results obtained here suggest that, in so far 
as the real systems mimic the spherical model, such a model would be quite inappropriate, at radii 
more than a couple of hundred km s-1, and what we are seeing in the outer parts of the clusters is 
essentially unequilibriated infall. Finally, it is worth noting that if this interpretation is correct, 
the distribution of velocities should be highly non-Gaussian and box-like. If we imagine a 
somewhat smeared-out version of the model, as one would expect due to departures from exact 
spherical symmetry, one would still expect the edges of the distribution in velocity space to be 
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fairly well defined. This is in accord with what is observed, where in Kent & Gunn’s plot of the 
Coma cluster in velocity and projected radius for instance, their seems to be an unambigious 
distinction between members and non-members. 

6 Discussion 

In the analysis and models presented so far we have assumed that on the relevant scales, the 
galaxies ‘fairly trace’ the mass distribution. This assumption does not require that all of the mass 
be tied up in galaxies (we know from virial analyses of clusters of galaxies that there is a great deal 
of intergalactic material), but that in a region of space containing many galaxies, the number of 
galaxies gives an unbiased estimate of the amount of matter. We have seen that, if this assumption 
is valid, Q can be determined from estimates of gs via equation (3.9). It might be thought that, on 
sufficiently large-scales, the galaxy distribution must trace the mass. In one sense this is correct, in 
that if we count the number of galaxies Ng, and measure the mass, Af, in some volume, then for 
large enough volumes Ng/M must tend to the global average value. However, the methods for 
determining Q discussed here depend on the perturbation in Ng faithfully reflecting the mass 
perturbation, so we need ANg/Ng=AM/M, and it is by no means certain that this condition is 
satisfied. 

In ‘biased’ models for galaxy formation (see e.g. Bardeen et al. 1986, and references therein) 
this assumption would be violated. In such models, one appeals to modulation of the galaxy 
formation process by large-scale density fluctuations to cause variations in the mass-to-light ratio. 
In this way one can hope to reconcile the low M/L found for galaxy clusters with the Universe as a 
whole having closer density. Various mechanisms have been suggested to effect this biasing, but a 
common feature of these schemes is that they give rise to a linear modulation of galaxy formation 
by small-amplitude density fluctuations on very large scales. In particular, in models which 
invoke a threshold selection one finds that ANg/Ng=(l+a) AM/M, with a a constant 
determined by the threshold and time of formation of the galaxies. Once galaxy formation 
terminates, AM/M will continue to grow, and eventually the bias will become negligible. Thus, if 
galaxy formation occurred sufficiently early, while the galaxy distribution may have been strongly 
biased at that time, the present value of a will be very small, and the large-scale clustering will be 
essentially unbiased. If we invoke the threshold model, it turns out that, if we have sufficient 
biasing to account for the low M/L in rich clusters, then we should see significant biasing even on 
arbitrarily large scales (i.e. the present value of a should be close to unity). While this estimate of 
or is rather crude, the result is supported by the numerical simulations in which this threshold 
selection for ‘galaxies’ has been implemented. 

Since the effect of this type of bias is simply to linearly enhance any large-scale clustering, this 
would be indistinguishable from an unbiased universe with a lower density parameter 

Qeffective:=(H"ör)_1/0 6—0-3- Thus, 3. test of such theories is provided by the method of Section 3: if 
we measure Q—1, we can rule out this model. In the framework of biased models the value of Q 
derived from the dynamical methods discussed here tells us more about the galaxy formation 
process than the actual density parameter. If the threshold-biasing model is appropriate then the 
real Q must be determined by other methods. 

Biasing of the galaxy distribution in this way will also effect the distortions discussed in Section 
5. If the large-scale structure is unbiased then regions with ANg/Ng=*4 will be turning around 
today and suffering gross distortions in 5-space. If the distribution is biased, and has or =4.0, then 
the density contrast is much lower so these regions will still be expanding, and consequently any 
distortions will be much less pronounced. In the limiting case of very strong biasing, a>l, as 
might be applicable to rich clusters, the effective value of Q will be very small and there would be 
effectively no distortion. 
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