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ABSTRACT 
Fully three-dimensional calculations of collisions between identical stars show two distinctly different mass- 

loss mechanisms. Strong shocks in nearly head-on collisions cause high-velocity jetting perpendicular to the 
collision axis. The mass loss in head-on collisions increases from 0.1% to 100% as the impact velocity at 
infinity increases from zero to 2.3 times the escape velocity from the stellar surface. The shock strength and 
the mass loss by jetting decrease as the impact parameter increases. However, in low-velocity encounters the 
mass loss increases sharply at impact parameters corresponding to nearly grazing collisions. This second 
mass-loss mechanism is a two-stage one in which the two stars first become gravitationally bound into a 
binary because of energy dissipation in the encounter, and then the binary components coalesce violently 
during a subsequent periastron passage. During the final merger, the two stars form a spiral-shaped mass 
distribution, which redistributes the angular momentum in the coalescing object within a dynamical time. The 
maximum mass loss by this second mechanism is about 5% by direct ejection from the system and about 
twice that by the formation of an accretion disk around the coalesced object. After the grazing collision, the 
central object shows the equatorial cusp indicative of a Roche rotational instability, and the accretion disk 
extends smoothly beyond the equatorial radius. The mass loss decreases rapidly at impact parameters beyond 
that producing maximum mass loss. Mixing is nearly complete in grazing collisions, so that the coalesced star 
should have nearly uniform chemical composition when it settles to the main sequence. Some blue stragglers 
in globular clusters must be coalesced stars. The minimum approach of two stars required for their 
coalescence decreases steadily from the sum of their radii for impact velocities small compared with the escape 
velocity from the surface of the stars to about 10% of this value at an impact velocity equal to the escape 
velocity. In low-velocity systems such as a globular cluster, about twice as many main-sequence stars suffer 
physical coalescence as form binaries by tidal capture. In higher velocity systems such as galactic nuclei, the 
number of binaries formed in two-body encounters is negligible compared with the number of stars under- 
going collisional coalescence. 
Subject headings: hydrodynamics — numerical methods — stars: binaries — stars: mass loss — 

stars: stellar dynamics 

I. INTRODUCTION 
Stellar collisions are important in galactic nuclei and the 

cores of globular clusters. Up to 40% of the stars in the cores of 
some globular clusters have suffered physical collisions (Hills 
and Day 1976). These authors note that some blue stragglers in 
globular clusters must be produced by the collisional 
coalescence of stars. 

Stellar collisions may be even more important in galactic 
nuclei. Spitzer and Saslaw (1966) suggested that energy rel- 
eased in stellar collisions could help to power quasars. They 
also noted that the gas released in collisions could settle to the 
center of the galactic nucleus to form new stars. Colgate (1967) 
suggested that collisional coalescence of stars in these systems 
may be frequent enough to build up stars which are sufficiently 
massive to become supernovae. The supernova explosions 
would contribute to the energetic events observed in galactic 
nuclei. The mass lost from colliding stars in galactic nuclei may 
provide the fuel to power Seyfert galaxies and other low- 
luminosity, old active galactic nuclei (AGNs) in which the 
central black hole has grown too massive to be fueled by the 
tidal breakup of stars and the capture of their debris (Hills 
1975,1978). 

1 On leave of absence to Harvard University, 1986 September-1987 June. 

In the current paper we report the results of computer simu- 
lations of stellar collisions. These three-dimensional calcu- 
lations were done at a number of different impact parameters 
and collision velocities. 

Progress has been rather slow in this field because of its 
inherent difficulty and the large amount of computer time 
needed to simulate stellar collisions properly. All previous 
large-scale hydrodynamic calculations of stellar collisions were 
published over a decade ago. Mathis (1967) and DeYoung 
(1968) did one-dimensional calculations in which they esti- 
mated the effect in the other two dimensions. Mathis showed 
that while nuclear reactions are greatly speeded up during a 
collision, the resulting high temperatures and densities do not 
last long enough for significant production of nuclear energy. 
This result was used to simplify all subsequent calculations 
including our own. 

Seidl and Cameron (1972) reduced the problem to two 
dimensions by considering only head-on collisions between 
equal-mass stars. They considered stars approximated by poly- 
tropes of index n = 3, while we concentrate on n = 1.5. We ran 
one case for n = 3. It is consistent with the results of Seidl and 
Cameron. 

Our nonzero impact parameter calculations show a variety 
of phenomena not anticipated in previous analytic evaluations 
and in one-dimensional and two-dimensional simulations. We 
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find, for example, that the greatest fractional mass loss in low- 
velocity collisions occurs when the two stars make grazing 
rather than head-on encounters. 

Our calculations used the smooth-particle method (Lucy 
1977) with 1024 particles. Details of the method are given in 
the next section, which also discusses the physical assumptions 
and initial conditions. 

In § III we present the results of our calculations. 

II. COMPUTATIONAL PROCEDURE 

To specify a collision completely, several quantities defining 
the two-star system prior to collision have to be given : relative 
velocity at infinity, impact parameter, the masses of the two 
star, and their structure. Of these parameters, we vary only the 
first two in this paper. At the beginning of each simulation 
both stars have the same mass and internal density distribu- 
tion. The internal structure of each star prior to the encounter 
is represented by a polytropic equation of state, 

P = Ap\ (2.1) 

where y = (1 + n-1) and n is the polytropic index. We choose 
n= 1.5, which is representative of low-mass, nearly fully con- 
vective stars, such as the remaining main-sequence stars in old 
systems including globular clusters and galactic nuclei. It is 
also a good approximation to the structure of low-mass white 
dwarfs, so the calculations also approximate the results of col- 
lisions between two white dwarfs. 

Once the stars collide, equation (2.1) is no longer valid and a 
more general equation of state has to be used. As a second 
thermodynamical variable, we choose the entropy and rewrite 
equation (2.1) in the form 

P = A(S)py, (2.2) 

where S is the specific entropy. Let us define S by the equation 

S = (y-iyl\n(P/py). (2.3) 

The second law of thermodynamics gives us the rate of change 
of the entropy : 

TM = dQ 
dt dt 

(2.4) 

where T is the temperature and dQ is the amount of energy 
absorbed by a system from its surroundings. By inserting equa- 
tions (2.2) and (2.3) in equation (2.4) and using the equation of 
state for perfect gases, we obtain 

dA f k \ t n Ap 

dt \prnH) y P dt 
(2.5) 

We now have to specify the quantity dQ/di. Rigorously, dQ/dt 
should contain a heating term due to dissipation in shocks, a 
radiative and/or convective transport term, a nuclear energy 
production term, and so on. However, shock heating has a 
time scale of the order of the collision time (which, as we shall 
see, is a few hours), whereas the other mechanisms have much 
longer time scales (Kelvin-Helmholtz time scale). While the 
nuclear production rate is speeded up in the collision, Mathis 
(1967) showed that the time over which this occurs is too short 
in collisions between main-sequence stars to allow significant 
production of nuclear energy. Therefore, we only consider in 
the expression for dQ/dt the heating produced by dissipation of 
kinetic energy in shocks for main-sequence star collisions. 

(Nuclear burning may be important in collisions between two 
white dwarfs because of their higher internal densities.) To 
solve the problem, the energy equation, equation (2.5), has to 
be solved simultaneously with the equation of motion, 

— = — - VP — VO + , (2.6) 
dt p p 

where O is the gravitational potential, Syisc is a force term due 
to the introduction of an artificial viscosity. In the next section 
we present the numerical method used to solve these equations 
and give the detailed expression for the various terms in equa- 
tions (2.5) and (2.6). 

a) Numerical Techniques 
The numerical method used to solve these equations is the 

so-called smooth-particle hydrodynamics (SPH) method. This 
method, first proposed in the astronomical context by Lucy 
(1977), was shown, especially by Gingold and Monaghan in 
numerous papers (1979,1981,1982,1983a, b), to give very good 
results in many different applications. Benz, Slattery, and 
Cameron (1986) applied this technique to the study of planet- 
ary collisions. 

Since the basic principles of this method have been 
published previously (cf. the references listed above), we will 
only give a condensed description of the method. We first note 
that any physical quantity may be written in the form 

A^=im[^\w^r-r^h)’ 

where r, are the vector positions of a set of N particles, and 

I mjW(\ri — fjl, h) 
j=i 

is the density at #v Here W(r, h) is the smoothing kernel, and h 
is the smoothing length. Using this formalism, we now write 
the equation of motion in the form 

dvi 
dt 

N 
-1 

j=i 
rrii P, Pi 

Pi Pi 
+ -ï)XiW(rij,h) 

_r y P + (F) U ^ 2 rij v* i/visi 
j=l rij 

(2.7) 

Here 

The first term on the right-hand side of equation (2.7) gives the 
pressure gradients. The somewhat unusual form derives from 
the equality 

VP 

P 
V (Vp) 

proposed by Gingold and Monaghan (1982) to ensure exact 
conservation of linear and angular momentum. The second 
term is the gravitational force, for which we made use of 
Newton’s law, since the particles are spherically symmetric. 
M(r0) is the mass of particle j within a sphere of radius r0- of 
particle i and is given by 

M(rij) = 4n r2 p(r)dr = Anmj r2W(r, h)dr . 
Jo Jo 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
87

A
pJ

. 
. .

32
3.

 .
61

4B
 

616 BENZ AND HILLS Vol. 323 

Finally, the third term represents the force term due to artificial 
viscosity. As shown by Gingold and Monaghan (19836), both 
the standard Von Neumann-Richtmyer viscous pressure and 
the standard bulk viscosity introduce unacceptably large post- 
shock oscillations. They propose a new form for the bulk vis- 
cosity: 

Wvisc = £ «ijmjV; W(rij, h) . 
j=1 

Here 

= 0 if Vij • fy > 0 , 

and Cij = 0.5(cf + c,), where Ci is the sound speed at rh and 
Pij = O.SOof + Pj). In these equations e and a are arbitrary 
numerical constants. 

The symmetric form for (/^¡^ ensures exact conservation of 
linear and angular momentum. This form, which gives very 
good results in shock-tube problems (Gingold and Monaghan 
19836), is the one we adopt in our code. By specifying (F,)^, it 
is now possible to give the form of the energy equation by 
noting that (Gingold and Monaghan 19836) 

Ç ^ E mJ nij vu •v * w(riPh) ■ 

Therefore, the energy equation (eq. [2.5]) becomes 

dAt 

dt (y-i) 
A Pi i f 

Pi 2 M 
MjKijVij * V¿ h) . (2.8) 

To complete the description of the problem, we need to specify 
the form for W(r, h). Mathematically, the only constraints on 
W(r, h) are that it should be differentiable, integrable, and nor- 
malized so that J W(r, h)dr = 1, and that J | W(r, h) \r2dr < oo. 
However, only two different kernels are in common use: A 
Gaussian kernel (Gingold and Monaghan 1977) and an expo- 
nential kernel (Wood 1981; Benz 1984a; Benz, Slattery, and 
Cameron 1986). In this paper we use the latter, which is defined 
by 

This expression for W(r, h) can be inserted in equations (2.7) 
and (2.8), giving these equations their final form. 

Recently Gingold and Monaghan (1985) proposed that a 
polynomial form defined on a compact support for W would 
speed up computation. Recent tests confirm this conjecture. 
We plan to change W in subsequent computations. 

Several conserved quantities may be used to check the accu- 
racy of the integration of the equations. Mass is always con- 
served, since no particle is lost during simulation. The 
conservation of total energy is required to determine mass loss 
accurately. Concerning energy conservation, we noted the fol- 
lowing trends: During the first part of a simulation (up to 
roughly 120 time units), which includes the actual physical 
collision, the variation of total energy is small (always < 3%) 
and occurs mostly during the formation of the collisional 
shock. On integrating the system for hundreds of time units 
beyond this time, the total energy increases slowly, but almost 
linearly with time. As the total energy increases during this 

latter phase, the number of particles having sufficient energy to 
escape increases. This obviously indicates that we no longer 
have a physical solution. Fortunately, before the amount of 
mass loss starts to increase as a result of these numerical errors, 
it always reaches a value which is constant over a relatively 
long time. The mass loss quoted in this paper corresponds to 
this plateau value. 

Similar behavior was observed for the total angular momen- 
tum. Very good conservation (variations <0.8%) was 
obtained for integration up to 120 time units. The good conser- 
vation of total energy and total linear and angular momentum, 
as well as the various tests of the program performed elsewhere 
(Benz 19846), gives us confidence in the results. 

The SPH method may underestimate the mass loss for those 
encounters in which the mass loss is very low (1%). The 
method has difficulty modeling gas in regions in which the 
density is much lower than the average density in the system, 
so it will underestimate the mass loss if the collision is gentle 
enough so that the mass loss is confined to the outer layers of 
the star. 

in. RESULTS 

Our three-dimensional simulations, as well as the two- 
dimensional simulations of Seidl and Cameron (1972), were of 
equal-mass stars. We computed six principal families of 
encounters, with each family specified by a pre-encounter 
impact velocity. Within each family, we made simulations at a 
number of different impact parameters in order to find the 
cross sections for mass loss, coalescence, and other physical 
processes associated with stellar collisions. 

Table 1 summarizes the results of the individual encounters 
for several values of the impact velocity at infinity in units of 
the escape velocity from the surface of the stars. The first 
column gives Rmin, the minimum separation of the two stars in 
the encounter if they were point masses. Rmin was calculated 
analytically from the pre-encounter orbital angular momen- 
tum and kinetic energy and is given in the table in units of the 
sum of the radii of the two stars, + R2). The next two 
columns give, respectively, the fraction of the combined mass 
of the two stars lost in the collision and the fraction of their 
mass which goes into an accretion disk around the coalesced 
star. The last column gives the number of stars surviving the 
collision. Here zero indicates total breakup of the two stars; 
“ 1 ” indicates their coalescence, and “ 2 ” indicates either their 
forming a bound binary or departing from each other in a 
hyperbolic orbit. 

In subsequent papers we explore close encounters between 
unequal-mass stars, including collisions and tidal captures. We 
are currently making highly accurate calculations of encoun- 
ters between equal-mass stars which pass too far apart for 
physical collisions but close enough for significant tidal dissi- 
pation. We plan to simulate collisions between main-sequence 
stars and giants and between white dwarfs and main-sequence 
stars and giants. 

We can show only a small fraction of the tremendous detail 
found in our simulations. We describe several diverse, but rep- 
resentative, encounters to illustrate the physics. We give plots 
of mass loss and other quantitative results of these collisions as 
a function of Rmin and impact velocity. We use these results to 
calculate integrated cross sections for mass loss and 
coalescence. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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TABLE 1 
Collisions between Equal-Mass Stars 

% Mass Loss 
  Number of 

RmJ(R1+R2) Infinity Disk Survivors 
V/Vesc = 0.0 

0.0   0.10 0 1 
0.141     0.10 0 1 
0.310   0.40 3.0 1 
0.534    0.90 6.0 1 
0.806     3.20 8.0 1 
0.953   3.40 10.0 1 
1.110   0.00 0 2 

v/vesc = 0.46 

0.0    0.5 0 1 
0.068   0.5 0 1 
0.369   0.9 4.0 1 
0.514   2.0 7.0 1 
0.665   0.0 0 2 

V/Vesc = 0.84 

0.0   3.50 0 1 
0.119    3.20 0 1 
0.246   0.40 0.3 1 
0.310   0.45 1.0 1 
0.400   0.10 0 2 

V/Vesc = 1.12 

0.0   10.50 0 1 
0.164   5.5 0.2 1 
0.307   0.80 0 2 
0.489   0.60 0 2 
0.596   0.20 0 2 

V/Vesc = 1.67 

0.0   32.2 0 1 
0.1   33 0.6 1 
0.156   30.6 0 2 
0.297   14.0 0 2 
0.413     7.6 0 2 
0.595     1.7 0 2 
0.717    0.1 0 2 

 F/Kesc = 2.33  
o.o   100.0 0 0 
01   100.0 0 0 
0.2   98.0 0 1 
0.35   61.0 0 2 
0.50   52.0 0 2 
0.65     42.0 0 2 
0.85   0.0 0 2 

a) Head-on Collisions 
Our head-on three-dimensional collisions provide conti- 

nuity with the two-dimensional calculations of Seidl and 
Cameron (1972, hereafter SC), although we approximated the 
pre-encounter stars as polytropes of index n = 1.5 and SC used 
n = 3. We used n = 1.5 to better model collisions between 
lower-main-sequence stars, which constitute most stars in 
globular clusters and galactic nuclei. It is also much more 
difficult for the smooth-particle code to simulate encounters 
between stars with n = 3 than between those with n = 1.5 
because of the higher density contrast. 

We ran one head-on collision with n = 3 in the limit in 
which the two stars hit each other at parabolic speed. Our 
results agree with those of SC even though our simulation 

began with the two stars separated by more than 10 stellar 
radii, while SC began with the two stars in contact. Our results 
should model more faithfully the tidal distortion of the stars 
prior to actual physical contact. We also ran our simulations 
for a much longer time than SC. In our calculations the stellar 
oscillations excited by the collision went through a number of 
pulsations before damping away. The models of SC were not 
run long enough to see any oscillations. 

Shock density and temperature are highest in head-on colli- 
sions. As noted by Mathis (1967) and SC, the temperature 
reaches a maximum of several times 107 K. The nuclear reac- 
tions increase greatly during the collision, but the high rate is 
only maintained for a few minutes, which is too short to 
produce significant nuclear energy in main-sequence stars. It 
takes a main-sequence star a Kelvin time (about 107 yr for the 
Sun) to produce enough nuclear energy to equal its thermal 
energy. 

Figure 1 shows the integrated system energies during a 
head-on collision at an impact velocity at infinity of F = 0 
(henceforth V is used to indicate relative impact velocity at 
infinity), while Figure 2 shows them during a collision with 
F = 1.7Fesc,where 

Vesc — (2M1/R1)1/2 — (2GM2/R2)1/2 

is the escape velocity from the surface of either star. Here M* 
and Ri (i = 1, 2) are the masses and radii of the two stars. The 
time unit in these figures is approximately the pre-encounter 
dynamical time (oscillation time) of each star. The time unit is 

Fig. 1.—Change in the energies of a two-star system due to a head-on 
collision. The stars have equal mass, and the impact velocity at infinity is zero, 
so the two equal-mass stars hit each other at the parabolic velocity. Here 
curves a, b, and d show, respectively, the total thermal, large-scale kinetic, and 
gravitational potential energies of the system, while curve c gives the sum of 
these energies. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 
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time 
Fig. 2.—Same as Fig. 1, except that the impact velocity at infinity is 1.67 

times the surface escape velocity. 

related to the physical parameters of the stars by the equation 

T = 135mM/MQ)(RQ/Rfr1,2s- 
Curve c in each figure shows the total (gravitational plus 

kinetic plus thermal) energy. If there were no integration 
errors, it would be constant. Curve b shows the macroscopic 
kinetic energy of the two-star system. As Figure 1 shows, it 
rises sharply as the two stars accelerate toward each other by 
their gravitational attraction; then it dissipates in the physical 
collision. Curves a and d show, respectively, the total thermal 
and gravitational potential energies. The collision-induced 
radial oscillations of the coalesced star are clearly shown by 
the anticorrelated periodic variations in the thermal and 
potential energies. 

If, for example, two identical main-sequence stars with mass 
M = 0.6 Mq and radius R = 0.7 RQ collide, the time unit is 
t = 1021 s = 17 minutes. If they collide at parabolic speed, 
then Figure 1 shows the system energies during the collision. 
This simulation covered about 120 time units, or 34 hr in real 
time. From the variations in the potential energy, we see that 
the coalesced object stops oscillating and reaches dynamical 
equilibrium after about 70 time units or 20 hr. Its radius is 
larger than that of the two stars prior to the collision, and its 
density is less. Because the collision is head-on, the coalesced 
object acquires no angular momentum and does not rotate. 

We note the very short time required for these two stars to 
collide, oscillate, and finally reach dynamical equilibrium. This 
short time confirms that neglecting heat transport is a good 
approximation. We expect the coalesced star to radiate away 
its excess energy to become a main-sequence star with a mass 

of 1.2 Mq for V/Vesc = 0 or with a mass of 0.8 M0 for 
V/Ksc = 1-7 after a Kelvin-Helmholtz (thermal) time. 

There are evident differences between the low-speed collision 
shown in Figure 1 and the high-speed one shown in Figure 2. 
Coherent, relatively low amplitude oscillations, which any 
theorist could snuggle up to, are produced in the low-speed 
collision. The high-speed collision produces a mess. It is the 
epitome of a nonlinear phenomenon. The kinetic energy of this 
impact exceeds the binding energy of the two stars, but a single, 
coalesced object with about 0.7 times the integrated mass of 
the two stars survives the collision. The amplitudes of its radial 
oscillations are large, and its various layers oscillate with differ- 
ent periods, so there is no coherent, overall pulsation evident in 
its integrated energies. 

More than 30% of the mass of the two stars escapes the 
system shown in Figure 2, and much of the rest rains back on 
the coalesced object over a time which is much longer than the 
pulsation time of the star. This raining back on the central 
object is responsible for the progressive increase in its thermal 
energy, and the corresponding decrease in its potential energy 
shown in Figure 2. 

i) Jetting 
As the approaching hemispheres of the two stars plunge into 

each other, an oblique shock forms at the interface, causing 
jetting in the plane perpendicular to the line of centers of the 
two stars. The velocity of some of the jetted material exceeds 
the impact velocity of the two stars. Jetting is the principal 
mass-loss mechanism in head-on collisions. It was already 
evident in the work of SC. The specific energy of the high- 
velocity jetted material is much larger than the average specific 
energy in the stars, so jetting increases the gravitational 
binding energy of any coalesced star that survives the collision. 
Jetting permits survival of the system shown in Figure 2 even 
though its total energy is positive. Jetting in oblique shock has 
been known to the defense community for decades and is used 
in armor-piercing projectiles. The impact of a properly shaped 
projectile causes a jet of metal to penetrate the armor at a 
speed several times that of the projectile. Jetting occurs in 
meteor impacts and is likely responsible for lunar rays and for 
the large-scale distribution of tektites on the Earth, and it may 
be responsible for the ejections of the meteorites from Mars 
which have been found recently in Antarctica. 

ii) Mass Loss 
To determine the amount of mass loss, we first find the 

fraction of the total mass which is energetically capable of 
escaping, as was done by SC. For each particle we compute the 
expression 

Tt + Pi/(y - 1) + = E,, 

where 7] is the outgoing kinetic energy defined by 

T = Io if xivx> y% or 2% < 0, 
1p¡[(4)2 + K)2 + (4)2]/2 otherwise . 

Here (x\ y\ zl) and (vl
x9 vl

y9 vl
z) are the coordinate and velocity 

components of the fluid particles in a Cartesian frame relative 
to the center of mass of the coalesced object, pt is the particle 
density, and <!>; is the gravitational potential energy. 

A fluid particle is assumed to escape if > 0. The fractional 
mass loss, M(i), at time t is the sum of all particles having 
Ei > 0 at that time, divided by the total number of particles, 
since all the particles have the same mass. M(t) reaches a ter- 
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velocity from the surface of the two stars. 

minai value at large t, which we assume to be the true mass 
loss. (See previous discussion in § II.) This mass-loss fraction is 
shown in Table 1. 

As shown in Figure 3, the fraction of mass lost in head-on 
collisions goes up with increasing impact velocity at infinity, V. 
The increase in V causes a corresponding increase in shock 
strength. Even if F = 0, mass loss occurs because the mutual 
gravitational attraction of the two stars ensures that they hit 
each other with at least the escape speed, Vcsc, which exceeds 
the sound speed in most of the star. Some of the jetted material 
produced in the subsequent shock acquires a velocity high 
enough for escape. 

The computer simulations show complete breakup of the 
stars in head-on collisions if V is at least 2.3J^SC. The gravita- 
tional binding energy of each star is 

for a polytrope of index n = 1.5. The kinetic energy of the two 
stars in center-of-mass coordinates is 

( m,m2 \ 
VAÍ! + mJ 

(3.2) 

where M = Mt = M2- The two stars have enough kinetic 
energy (Ek = 2Eib) to break up if F = (12/7)1/2Fesc = 1.3Fesc, if 
none of the escaping material has positive energy (finite 
outflow velocity) at infinity. 

At F = 1.3Fesc the total energy of the two stars is zero, so the 
average energy per unit mass is just enough for escape. If half 
the mass has less than the mean energy and half has more, then 
about half the mass would escape. The computer simulations 
show that at F = 1.3Fesc, less than 20% of the mass escapes. 

This small mass loss is the result of jetting, which causes a 
relatively small fraction of the mass to acquire much of the 
kinetic energy. 

b) Effect of Impact Parameter 
Figure 4 shows the fraction of mass loss as a function of the 

closest approach, Rmin, of the two stars. At high impact veloc- 
ities the fraction of the mass lost decreases with increasing Rmin 
as a result of a progressive weakening of the shock and of the 
jetting which it produces. At large impact parameters the rela- 
tive motion of the two stars at closest approach is nearly paral- 
lel to their colliding surfaces, so there is no shock except in the 
outermost layers of the stars and little mass loss by jetting. The 
higher the impact velocity, the greater the value of RmJ(Ri 
+ R2) needed to weaken the shock enough to terminate mass 

loss by jetting. This behavior is evident in Figure 4; the rate of 
decrease in mass loss with increasing Km¡n/(^i + R2) is much 
less at F/Fesc = 1.7 than at F/Fesc = 0.8. 

In relatively low velocity, grazing collisions the gravitational 
tidal pull of each star on the other is important, as is evident in 
the two lowest velocity families of encounters shown in Figure 
4, which have F/Fesc = 0 and F/Fesc = 0.46. The impact veloc- 
ities of stars in most stellar systems lie between these two 
values. Even in a typical galactic nucleus, F = 200-300 km 
s_1, so F/Fesc = 0.3-0.5 for main-sequence stars, while in a 
globular cluster F/Fesc = 0.02 is typical. These two families of 
encounters show marked increases in mass loss as the distance 
of closest approach, Kmin/(^i + R2l increases up to some criti- 
cal value beyond which the mass loss drops rapidly to zero. In 
the limit F = 0, the maximum mass loss occurs if RmiJ 
(Ri + R2) « 1, so direct physical contact is not primarily 
responsible for the mass loss, although the mutual tidal distor- 
tion does cause some overlap of the stellar surfaces. As we shall 
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,FlG' Fraction of the system mass lost as a function of Æmin, the closest approach of the two stars in the pre-encounter orbit. Here + R2) is the sum of the radii of the two stars. The curves are labeled according to the impact velocity at infinity in units of the escape velocity from the surface of the two stars. 

show, the increased mass loss in grazing collisions is the result 
of a two-stage process in which a gravitationally bound binary 
forms by tidal dissipation during the first approach, and then 
the binary coalesces rather violently into a single, fast-rotating 
star during a subsequent periastron passage. 

i) Minimum Approach for Coalescence 
From the data in Table 1, we can estimate the minimum 

approach, RmiJ(Ri + R2)9 needed for coalescence. Figure 5 
shows for each family of fixed impact velocities V/Vesc the 
maximum R^JiRi + R2) for which we found coalescence and 
the minimum R^JiRi + R2) for which two stars survive. We 
assume that the boundary between coalescence and two-star 
survival is halfway between these two values, as plotted in the 
figure. We note that the minimum RmiJ(R1 + R2) needed for 
coalescence decreases from unity for F/Fesc = 0 to 0.1 for 
V/Ksc = 1-7- F°r V/Vesc = 2.3, a close encounter with RmiJ 
(#! -1- R2) <0.1 produces total breakup rather than 
coalescence. 

ii) Failed Binaries, Accretion Disks, and Roche Cusps 
Figure 6 shows the system energies during a grazing encoun- 

ter between two stars with closest approach R^JiRi + R2) = 
0.953 and impact velocity F = 0. The labeling of the energy 
curves is the same as in Figures 1 and 2. This collision produc- 
ed the maximum mass loss of any member of family F = 0. 
The tidal dissipation and the shock dissipation produced by 
the impact of the two tidal bulges during the first periastron 
passage were sufficient for the two stars to become gravita- 
tionally bound in an orbit with a semimajor axis a few times 
larger than their radii. Curve b, which gives the macroscopic 
kinetic energy of the system, clearly shows the two periastron 
passages. The first peak in this curve results from the increased 
kinetic energy produced by the gravitational attraction of the 

two stars in the initial parabolic orbit. The curve is almost 
symmetric around the first peak because the energy dissipation 
is an order of magnitude less than the kinetic energy. However, 
the second peak is lower than the first because of the tidal 
dissipation during first passage. Even more rapid energy dissi- 
pation occurred during second passage. 

No mass was lost during first passage. The tidal dissipation 
caused the radii, R1 and R2, of the two stars to increase as 
some of their internal binding energy was used to bind the two 
stars gravitationally into a binary. This is evident in curves a 
and d, which show, respectively, the thermal energy and gravi- 
tational potential energy of the two stars. The thermal energy 
curve shows a drop and the potential energy curve shows an 
increase (becomes less negative) after first periastron passage. 

On the next periastron passage, which was the first one 
after the two stars formed a gravitationally bound binary, 
the encounter was much more violent. In this encounter 
(Ri + R2)/Rmin was larger because of the increase in the stellar 
radii, and the relative velocity of the two stars was reduced, 
which allowed more time for mutual gravitational pertur- 
bations. 

The first five frames of Figure 7 are “ snapshots ” of the two 
stars at increasing times during second periastron passage, 
while the last frame shows the system long after the collision. 
They are projections of the fluid particle velocities onto the 
plane containing the center of mass of the two stars. A spiral 
pattern formed during second periastron passage. A spiral is 
very effective in redistributing angular momentum (Hills 1976), 
so some material was slung from the system at high specific 
angular momentum and kinetic energy, while the remainder 
coalesced into a star on the verge of rotational instability with 
an accretion disk orbiting it. 

The two-stage process in which a binary first forms in a 
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0 .2 
V/Vesc 

Fig. 5—The upper diagonal curve shows the minimum value of Rmin/(R1 + R2) for which two stars are observed to survive the collision, while the lower diagonal 
curve shows the maximum value of+ R2) for which coalescence is observed. The middle diagonal curve is the assumed boundary between coalescence and 
two-star survival. The curve in the lower left-hand part of the figure gives the smallest value of Rmin for which an accretion disk is observed around the postencounter 
object. 

Fig. 6.—Change in system energies in a collision between two identical 
stars in which the impact velocity V is zero and the closest approach of the two 
stars is R^JiRi + R2) = 0.953. The curves are labeled as in Fig. 1. The stars 
become gravitationally bound during the first periastron passage and coalesce 
into a single star during the second periastron passage. 

grazing collision, and then coalesces into a single star during a 
subsequent periastron passage, also occurred in families 
V/Vesc = 0.46, 0.84, 1.12, and 1.67 for RmiJ(R1 + K2) = 0.514, 
0.310,0.164, and 0.1, respectively. The stars in the encounter in 
family V/Vesc — 0.46 only coalesced into a single star on the 
third periastron passage. We note that binary capture and 
coalescence occurred for K/Kesc = 1.67 even though the two 
stars have positive energy. Jetting during the first periastron 
passage ejected material of very high specific energy, which 
allowed the formation of a bound binary and final coalescence. 

iii) High-Speed, Off-Center Collisions 
Figure 8 shows the system energies in a high-speed collision 

(V = 1.67Fesc) in which the closest approach RmiJ(Ri + ^2) = 
0.413 is too large to allow coalescence. The labeling of the 
energy curves is the same as in Figure 2. The two stars do not 
become gravitationally bound to each other, but they are sig- 
nificantly altered by the encounter. 

About 8% of their mass is left behind as an expanding 
unbound cloud at the center of mass of the system. This debris 
cloud is somewhat elongated along the line joining the two 
stars. 

The stars lose a significant amount of binding energy, which 
by the virial theorem causes both a considerable increase in 
their potential energy (which becomes less negative) as shown 
in curve d, and a decrease in their thermal energy as shown in 
curve a. They are larger, lower in density, and cooler than 
before the encounter. They also pulsate radially, as is evident 
by the periodic variations in their potential energy. Because of 
the symmetry of the encounter for equal-mass stars, the two 
stars pulsate in phase, although they are rapidly receding from 
each other. 

Similar coherent, postencounter oscillations were observed 
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Fig. 8.—Change in system energies during a collision between two identi- 
cal stars in which the impact velocity K/Fesc is 1.67 and the closest approach in 
the collision orbit is R^JiRi + R2) = 0.413. The energy curves are labeled as 
in Fig. 1. 

for the case where V = 1.67Fesc and RmJ(Ri + Ri) = 0.297. 
Binary formation and eventual coalescence occurred in this 
family for RmJ(Ri + Ri) = 0.1. 

For the family F/Fesc = 2.33, total disruption occurred for 
RmiARi + R2) = 0.0 and 0.1. For RmJ(R1 + R2) = 0.2 in this 
family, about 2% of the mass remained behind in a gravita- 
tionally bound cloud with a radius about a factor of 25 larger 
than that of the pre-encounter stars. The remainder of the mass 
was lost. 

iv) Accretion Disks and the Rotation of the Coalesced Star 
Figure 5 shows the wedge-shaped area of the parameter 

plane defined by the impact velocity V/V6SC and the closest 
approach in the pre-encounter orbit + ^2)» in which 
we found the coalesced object to be on the verge of rotational 
instability with an accretion disk around it. The upper bound- 
ary of this area is the one defining whether one or two stars 
survive the encounter. The accretion disk forms only if the two 
stars coalesce into one. The smallest values of RmiJ(Ri + R2) 
for which we observed an accretion disk around a rotationally 
unstable coalesced star are about 0.3, but because of incom- 
pleteness of data they may be present at R^JiR^^ + R2) as 
small as 0.2. The wedge extends from F/Fesc = 0 to about 
F/Fesc = 1. For RmJiRi + R2) < 0.2-0.3, the coalesced object 
does not have enough angular momentum to be rotationally 
unstable, so no accretion disk forms around it. For F/Fesc > 1, 

coalescence occurs only at such small values of R^JiRi + R2) 
that the coalesced object is never rotationally unstable. 

Table 1 shows the mass of the accretion disk in units of the 
combined mass of the two stars prior to encounter. The mass 
of the accretion disk tends to increase as RmiJ(Ri + R2) 
increases within the wedge-shaped area. It is especially evident 
for collision families V/Vesc = 0 and V/Vcsc = 0.46, which have 
the postencounter coalesced object on the verge of rotational 
instability with a massive accretion disk around it for a wide 
range of impact parameters. The rate of rotation of the 
coalesced star increases with impact parameter until at about 
RmiJ(R1 + R2) = 0.2-0.3 it first becomes rotationally unstable 
and an accretion disk forms around it. The fraction of the mass 
in the accretion disk increases to about 6%-7% in both these 
families for Rmin/(^i + R2) = 0.5 and reaches 10% in family 
V/Vesc = 0 for R^iR, + R2) = L If RmiJ(Ri + R2) is large 
enough that two stars rather than one survive the encounter, 
these stars rotate well below the limit for rotational instability 
and they have no accretion disks. 

In the collision family V/Vcsc = 0.84 the coalesced stars have 
the cusp structure indicative of their being rotationally 
unstable as well as feeble accretion disks for Æmin/(Æi + R2) = 
0.246 and 0.310. A feeble accretion disk composed of 0.6% of 
the original mass formed in the family F/Fesc = 1.67 for 
RmiJi^i + ^2) = 0.1. However, the star does not have the cusp 
structure indicative of rotational instability, and the accretion 
disk is not coplanar with the equatorial axis. It was part of the 
material which rained back onto the star after a very violent 
collision which led to a third of the mass being ejected from the 
two-star system. 

Figure 9 shows postencounter, fluid particle velocity projec- 
tions of the coalesced object for three different impact param- 
eters in collision family V = 0. Each of these three postcollision 
objects is on the verge of rotational instability and has an 
accretion disk around it. The accretion blends smoothly into 
the equator of the rotating star, so it is difficult to estimate the 
mass of the disk. 

The stars of Figure 9 shows the equatorial cusp indicative of 
a Roche-type (cf. Ogorodnikov 1965) rotational instability 
which is characterizied by the outermost layer of the star 
having a centrifugal force at the equator which just balances 
gravity. This is also the situation throughout the accretion 
disk. This is not a global instability in the sense of the rotation- 
al bar instability (Ostriker and Peebles 1973) which occurs if 
the rotational energy exceeds 0.14 times the absolute value of 
the total potential energy. The bar instability certainly 
occurred during a number of collisions, as illustrated by the 
spiral in Figure 7. However, the final, coalesced central objects 
always have ß < 0.14. 

The coalesced star contracts to the main sequence in a 
Kelvin time. The contraction reduces its moment of inertia, so 
if it is rotationally unstable after the collision, it must shed 
more material at its equator into the accretion (excretion) disk 
as it contracts unless it can rid itself of its excess angular 
momentum in less than the Kelvin time. Even if the star can 
lose significant angular momentum, additional mass loss will 
be required to remove it. The mass loss shown in Table 1 
assumes that all the mass in the accretion disk is retained by 
the star. It can only be a lower limit to the final mass loss, 

Fig 7 —Episodes in the evolution of the system shown in Fig. 6. The frames show the velocity vectors of the fluid particles projected onto the plane containing 
the centers of mass of the two stars. The first five frames occurred during second periastron passage, and the last was taken near the end of the computer simulation. 
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INITIAL STRUCTURE 

HEAD-ON COLLISION 

Fig. 10.—Histograms showing the degree of mixing in the coalesced stars. 
The first histogram shows the mass distribution in the pre-encounter stars. The 
second histogram shows the mass distribution in the coalesced star after a 
head-on collision, and the third histogram shows it after a grazing collision. 

reached after the viscous time associated with the accretion 
disk, the Kelvin time associated with the contraction of the star 
to the main sequence, and perhaps a much longer stellar-wind 
time associated with enhanced stellar activity, which is 
common in fast-rotating stars. 

v) Mixing in the Coalesced Star 
The histograms in Figure 10 show the degree of physical 

mixing in both the head-on collision shown in Figure 1 and the 
grazing collision shown in Figure 2. The first histogram shows 
the total mass of the two pre-encounter stars divided into four 
equal bins in rank order of distance from the center of each 
star. The other two histograms show how this mass is distrib- 
uted in the final coalesced star. While 80% of the mass in the 
inner bin of the coalesced star is from the inner bin of the 
pre-encounter stars in the head-on collision, less than 50% of it 
is from the inner bin in the grazing collision, which indicates 
more thorough mixing. 

This work strongly suggests that stars are well mixed by 
grazing collisions, so nuclear waste from their cores is diluted 
with hydrogen-rich material from their outer layers. This 
mixing resets the nuclear clock of the coalesced star. The star 
returns to the zero-age main sequence, but with a larger helium 
abundance and consequently a higher luminosity than other 
main-sequence stars of the same mass in the stellar system. The 
coalesced object appears as a blue straggler if the two stars 
undergoing coalescence are near the top of the main sequence. 
This supports conjectures on blue stragglers made in Hills and 
Day (1976). 

vi) Tidally Captured Binaries 
If F = 0, the two stars must either coalesce or form a binary 

as any tidal dissipation causes them to become gravitationally 
bound. Press and Tueukolsky (1977) used analytic approx- 
imations to estimate capture cross sections as a function of V 
in the limit of weak tidal energy dissipation. Our present 
numerical simulations cannot be used to measure the small 
tidal energy dissipation at the large periastron distances which 

are needed to check their approximations. We are preparing 
improved computer simulations using a much larger number 
of fluid particles to better model distant tidal encounters. 

The calculations of Press and Teukolsky (1977) were for 
equal-mass stars treated as polytropes of index n = 3. This 
choice is unfortunate, since main-sequence stars in globular 
clusters, where most tidal captures occur, are closer to poly- 
tropes of index n= 1.5. However, tidal dissipation is much 
more sensitive to the closest approach of the two stars than to 
internal structure, so the capture cross sections for n = 1.5 may 
not differ significantly from those calculated for n = 3. They 
find that the minimum approach required for tidal capture of 
two main-sequence stars decreases from + Æ2) = 1-5 
at F = 10 km s-1, which is typical of the impact velocity in a 
globular cluster, to Rm\J{Ri + Rt) = 1 at F = 60 km s_1. The 
escape velocity of a main-sequence star is about Fesc = 600 km 
s- \ so tidal capture is not possible for F/Fesc >0.1 because, as 
shown in this paper, an encounter that is close enough to 
produce a binary capture leads to coalescence of the stars. 

At the low impact velocities found in globular clusters, 
gravitational focusing is important, and the cross section for 
any collision process is directly proportional to the maximum 
value of Rmïn for which it occurs. (Such cross sections are dis- 
cussed in § IIIc of this paper.) Since binary tidal capture in 
globular clusters requires RmiJ(Ri + Ri) á 1.5, while 
coalescence occurs if RmiJ(R1 + R2) < 1, only for RmiJ 
(#! + R 2) between 1.0 and 1.5 will the encounter produce a 
binary. It is evident that among main-sequence stars in globular 
clusters, collisional coalescence is twice as frequent as tidal 
capture. 

The tidal energy dissipation occurring at a fixed value of 
RmiJ(R1 + R2) is reduced by half if the encounter is between a 
white dwarf and a main-sequence star rather than between two 
main-sequence stars. However, the largest value of RmiJ 
(R1 + R2) which still permits tidal capture decreases only 
about 10% in this case because of the strong dependence of the 
tidal energy dissipation on RmiJ(Ri + R2)- We have yet to 
simulate encounters between a white dwarf and a main- 
sequence star, but it is likely that they will coalesce only if Rmin 
is of the order of the radius of the main-sequence star. If this is 
the case, in globular clusters the cross section for tidal capture 
of a white dwarf by a main-sequence star is about twice the 
cross section for coalescence. 

vii) Binary Formation and Coalescence in High-Velocity Collisions 
If RmiJ(Ri + R2) slightly exceeds the minimum needed for 

coalescence, a binary may form by the energy dissipated in the 
physical collision of the two stars (rather than by their tidal 
dissipation, which was the subject of the Press-Teukolsky 
study). However, tidal dissipation in subsequent periastron 
passages may increase the radii of the stars enough for them to 
coalesce. This two-stage process was observed for V/Vesc = 0, 
0.46, 0.84, 1.12, and 1.67 at + K2) = 0.953, 0.514, 
0.310, 0.164, and 0.1, respectively. We found that if both stars 
survived a high-velocity encounter at a Rmin larger than these 
values, they appeared to be in a hyperbolic orbit with respect 
to each other. If we explored the zone between the largest value 
of RmiJ(Ri + R2) where coalescence was observed after the 
formation of a binary and the smallest value of RmiJ(R1 4- R2) 

Fig. 9.—Mass distribution in three postencounter objects in collision family V = 0. Objects 1, 2, and 3 were the final result of the encounters in which 
RmJ(Ri + Ri) = 0-310> °-806> and °-953’ respectively. The first frame of each object is a projection of the velocities of the fluid particles onto a plane containing the 
rotational axis, while the other frame is a projection onto the equatorial plane. Each of the three objects is on the edge of rotational instability, and each has an 
accretion disk around it. 
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where two stars survive the encounter, we may find a range in 
which contact binaries form, but the available parameter space 
is small. We think it unlikely that binaries form by physical 
collisions in high-velocity (F/Fesc > 1) systems. 

We can formulate this problem more quantitatively. If no 
mass or angular momentum is lost from the system and we can 
ignore the rotation of the two stars, then the semimajor axis of 
the binary after circularization is given by the equation 

V^min = 2 + (V/Vesc)
2[RmiJ(R1 + R2)-] . (3.3) 

We see from Figure 5 that the minimum approach needed for 
coalescence drops from RmJ(R1 + R2) = 0.5 at F/Fesc = 0.6 to 
^min/(^i + ^2) = 0.1 at F/J^sc = 1.7. We expect any binaries 
formed by collisions to have values of R^JiRi + Æ2) only 
slightly larger than these values. Putting these values into the 
above equation gives af = 2.2Rmin = l.l^ + R2) for 
F/FeSc = 0.6, and af = 2.9Rmin = 0.3(R1 + R2) for F/Fesc = 1.7. 
The final semimajor axis of the binary is of the order of or less 
than the sum of the radii of the two stars. Any loss of orbital 
angular momentum due to mass ejection or the rotation of the 
stars will cause the orbit to shrink further. Binary formation is 
probably not possible at these high impact velocities; if enough 
collisional energy dissipation occurs to allow binary formation, 
the two stars are close enough together in the final orbit to 
coalesce. 

viii) Stellar Radii in Tidally Captured Binaries 
If no mass or energy is lost before the orbit of a tidally 

captured binary is circularized, the energy difference between 
the initial hyperbolic orbit and the final binary orbit is at the 
expense of the internal gravitational binding energies of the 
stars. In this case, the ratio of the final to the initial radius of 
each star is related to the semimajor axis, af, of the binary 
orbit and the velocity of the two stars at infinity by the equa- 
tion 

Rf/R0 = {l -(l/12)lR0/af - (F/Fesc)
2]}-1 . (3.4) 

Tidal capture requires that (F/Fesc)
2 1, so this factor may 

be ignored in the equation. If no angular momentum or mass is 
lost, we found earlier that the final semimajor axis af is equal 
to 2Rmin if (fVf'esc)2 ^ 1- Because Rmin > 2R0 to avoid 
coalescence, it follows that R0/af < 0.25 for all tidally captured 
binaries having identical companions, assuming conservation 
of angular momentum, energy (nothing radiated away), and 
mass. By the above equation, this requires that Rf/R0 <1.17, 
so that 2Rf = 0.6af. Tidally captured binaries are clearly 
detached systems. 

ix) Radii of Coalesced Stars 
If only a single, coalesced star is the survivor of a collision 

between two stars having impact velocity greater than zero, the 
coalesced star is larger than a main-sequence star of the same 
mass. The mass distribution in the star after the encounter 
should be close to a polytrope of index 1.5 because the thor- 
ough mixing of the interior of the star produced by the colli- 
sion requires its mass to be adiabatically distributed as is the 
case for a polytrope of index n = 1.5. Major deviations from 
the adiabatic equation of state would only appear after a 
Kelvin (radiative) time. 

The radius of the coalesced star is related to the sum of the 
radii of the two stars that produced it by the equation 

Rf/(Ri + K2) = [1 - (7/12)(F/Fesc)
2r1 . (3.5) 

This equation assumes conservation of mass and energy. If 
fV^esc = 0» the final radius of the coalesced object is just the 
sum of the radii of the two stars. In such a collision the gain in 
the kinetic energy of the stars as they fall together is just com- 
pensated by the decrease in the potential energy, which 
becomes more negative, so the energy per unit mass in the 
coalesced object is the same as in the two stars prior to colli- 
sion, which requires by the virial theorem that the mass-to- 
radius ratio in the final object be the same as in the colliding 
stars. If F/Fesc > 0, the binding energy per unit mass will be 
less than in the pre-encounter stars, and its average interior 
temperature is less than that of these stars. Its rate of pro- 
duction of nuclear energy will be smaller than the radiation 
loss from its surface, and it will shrink down to the main 
sequence in its Kelvin time. 

c) Cross Sections for Mass Loss and Coalescence 

From the conservation of energy and angular momentum, 
one can show (cf. Ogorodnikov 1965) that the closest-approach 
distance, Æmill, of the two stars in their pre-encounter hyper- 
bolic orbit is related to the impact parameter p by the equation 

2G(Ml + M2)l 

^in L V2Rmin J 

P2 = «min + «min «a , 
where 

_ 2G(Ml + M2) 
«<■ - y2 

(3.6) 

(3.7) 

(3.8) 

is the “ accretion ” radius which allows for the increase in the 
collision cross section due to gravitational focusing of the two 
colliding objects. This equation treats the two objects as point 
masses in the pre-encounter orbit. 

The cross section associated with the centers of mass of the 
two colliding objects passing within a distance Rmin of each 
other is given by 

a = np2 = n(Rlin + Rmin Ra). (3.9) 

Here 

P2 = Rmin + «min(«l + RlWeJV)2 , (3.10) 

where 

2G(Mi + M2)T
/2 

«l+«2 J 
(3.11) 

is the parabolic escape velocity of the two objects if separated 
by the sum of their radii, Rt + R2. For M1 = M2, Fesc is the 
surface escape velocity, which is about 600 km s“1 for main- 
sequence stars. The cross section increases enormously if the 
pre-encounter relative velocity V is very much less than Kcsc. 

In problems of this kind it is convenient to work in dimen- 
sionless units. In this particular case, it is useful to express the 
collision cross section associated with the two objects passing 
within distance Rmin of each other in units of the cross section 
for producing a grazing collision or stronger of the two objects 
in the absence of gravity (billiard ball or geometric cross 
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• section). This is given by the relation 

I g _np2 _ npl 

I <T0 Wo n(Rl + R2)2 

= ( R-,n Y , ( \ (Y™\2 

Ul+«2/ \Rl+R2)\Vj ' 
(3.12) 

i) Coalescence Cross Section and the Rate of Coalescence 
Calculating the cross section for physical coalescence is par- 

ticularly easy. Here RfUSion, the value of Rmin to use in the above 
equation, is the two-star/one-star boundary value given by 
Figure 5. Table 2 shows RfUSion and the coalescence cross 
section calculated for various values of V/Vcsc. These cross 
sections are plotted in Figure 11. The cross sections approach 
^fusion if F > Fesc. If K Vesc, the ratio of the cross section for 
passing within distance Rmin at closest approach to the geomet- 
ric (billiard-ball) cross section reduces to 

(7 Rmin 
Rl + Ri 

(3.13) 

In this limit the coalescence cross section is linearly 
proportional to Rmin rather than to R^in. Using Rmin = 
1.03(1?! + R2\ which is Rfusion for F/Fesc = 0, gives us the 
coalescence cross section in the low-velocity limit, 

(3'14) 

TABLE 2 
Coalescence Cross Section 

v/Ksc Rfus,„„/(R, + R2) <7/MR, + «2>2] 

-0    1.032 1.032(Kesc/K)2 

0.46   0.59 3.14 
0.84 ............... 0.355 0.629 
1.12   0.236 0.244 
1.67      0.128 0.062 
2.33   0 0.0 

The number of stellar coalescences that occur per unit time 
and volume is given by 

^ = = ^«*<>»0 , (3,16) 

where n* is the number of stars per unit and y is the rate 
coefficient for coalescence. Each collision event involves two 
stars. In the rate coefficient, F is the pre-encounter relative 
velocity of each pair of colliding stars and a is the coalescence 
cross section at that velocity, as given by Figure 11. The rate 
coefficient is averaged over all stars in the unit volume. If the 
stars have equal masses and follow a Maxwellian distribution 
of velocities, the rate coefficient is given by 

y = <crF> = i V3ae~l2vldV (3.17) 
n Jo 

(Hills and Day 1976). Here 

or 

a = imniR, + R2)2(VtJV)2 , (3.15) 
(3.18) 

.4 .6 
V/Vesc 

Fig. 11.—Cross sections for mass loss and coalescence as a function of the impact velocity. The impact velocity is given in units of the escape velocity from the 
surface of the two stars. The increase in cross sections at low impact velocity is due to gravitational focusing. 
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where <F2> is the mean squared velocity of the stars in the 
volume. We can use the values of a given in Figure 11 in these 
equations to find the rate of stellar coalescence in systems 
having various velocity dispersions. 

In the limit F —► 0, which is applicable to collisions in globu- 
lar clusters where F/Fesc ~ lO"2, we can integrate the equation 
for the rate coefficient analytically to give 

y = 1.03n(R1 + R2)2 
1/2 

<F2> 2\l/2 (3.19) 

ii) Mass-Loss Cross Section 
The cross section for mass loss by collisions is given by 

^ = J A2np dp . (3.20) 

Here 

2p dp = 2Rmin dRmin + Ra dRmin , (3.21) 

so that 

0 = 71 A(2.Rm{n + Ra)dRmin , 

-r 
A[_2Rmin + (R, + R2)(KJV)2ldRmin . 

(3.22) 

(3.23) 

Here A = + M2), which is given in Figure 4, is the 
fractional mass loss when two stars collide with closest- 
approach distance Rmin. 

Table 3 gives the mass-loss cross section which was calcu- 
lated for several values of (F/Fesc). 

If F i^sc, the equation for the mass-loss cross section 
reduces to 

AiR, + R2)(V'JV)2dRn (3.24) 

Using our numerical values for ^ as a function of Rmin for 
JV^esc = 0 as given in Figure 4, we found that this limit 

ÄW-00!47^/' (325» 
This result is applicable to collisions in globular clusters. 

Figure 11 shows the cross sections for mass loss and 
coalescence plotted as a function of impact velocity. The 
coalescence cross section is much larger than the mass-loss 
cross section for most stellar systems, including globular clus- 
ters and galactic nuclei. 

The amount of mass loss per unit time and volume resulting 
from stellar collisions is given by the equation 

dM 
dt 

1 
2 

{2M)nl(oVy 
M 

(3.26) 

where cr is the cross section for mass loss given by Figure 11, 
M = = M2 is the mass of the individual stars, and p* = 
Mn* is the stellar mass density. If the stars follow a Maxwellian 
distribution of velocities, the mass-loss rate coefficient <(jF) 
can be found numerically by the same procedure used to deter- 
mine the physical-coalescence rate coefficient, if the mass-loss 
cross section is substituted for the coalescence cross section. 

IV. CONCLUSION 
We have calculated physical collisions between stars treated 

as polytropes of index w = 1.5. The work is directly applicable 
to collisions between two lower-main-sequence stars, between 
two white dwarfs, and between two very massive upper-main- 
sequence stars whose internal structure is dominated by large 
convective cores. The results should be directly applicable to 
collisions between main-sequence stars in globular clusters and 
galactic nuclei and to the coalescence of massive stars bound 
gravitationally in a fragmentation hierarchical structure such 
as may be present in the embryonic subcluster R136a. 

TABLE 3 
Mass-Loss Cross Sections 

V/Ksc e/MRt + k2)2] 
^0  0.0147(Fesc/F)2 

0.46   0.0294 
0.84   0.0112 
1.12   0.0212 
1.67   0.0792 
2.33   0.391 
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