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ABSTRACT 
We have developed some very simple, plane-parallel models of atmospheres of X-ray bursters that are very 

close to the Eddington limit. The dominant opacity source is assumed to be incoherent Thomson scattering. 
Free-free transitions are responsible for the creation of soft photons. At large optical depths, t > Tbb, we have 
LTE, while at small optical depths, t < t', electron scattering is coherent. The bulk of the radiative flux at 
intermediate optical depths, t' < t < rbb, is described by a Wien distribution with a chemical potential that 
varies with optical depth. We develop models with luminosities up to L = 0.9999LE. At higher luminosities, it 
is necessary to allow for the sphericity of the extended, radiation pressure dominated atmospheres. The spec- 
tral (i.e. color) temperature in the extreme models is more than twice the effective temperature. Our spectra 
agree well with those calculated by London, Taam, and Howard, with a much more sophisticated computer 
program. 
Subject headings: stars: atmospheres — stars: neutron — X-rays: bursts 

I. INTRODUCTION 
In the past decade, considerable progress has been made 

toward understanding the phenomena of X-ray bursts (see 
reviews by Joss and Rappaport 1984 and Taam 1985). Type I 
X-ray bursts are thought to arise as a result of matter, accreted 
onto a neutron star surface, undergoing a thermonuclear flash. 
Numerical studies have shown that the thermonuclear flash 
model is quite successful at accounting for the global behavior 
of X-ray bursters; however, there are several remaining issues 
that need to be better understood. 

One such problem is the relationship between the effective 
and the spectral temperatures of the X-ray bursters at burst 
maximum. Initially, neutron star atmospheres were assumed to 
be perfect blackbody emitters. However, van Paradijs (1982), 
Czerny and Sztajno (1983), London, Taam, and Howard 
(1984), and London et al (1986) have suggested that the effects 
of electron scattering, both coherent and incoherent, in the 
neutron star atmosphere may be important enough to prevent 
the atmosphere from radiating as a perfect blackbody. 
London, Taam, and Howard (1984) and London et al (1986), 
through detailed numerical analysis of the radiative transfer 
equations, investigated the effects of absorption, coherent elec- 
tron scattering, as well as the effects of Comptonization on the 
X-ray spectra emitted by a neutron atmosphere. The results of 
their analysis reveal that the effects of electron scattering are 
indeed important; the scatterings deform the emitted X-ray 
spectrum from a Planck curve, resulting in a higher spectral 
temperature than the effective temperature. Ebisuzaki and 
Nomoto (1985), Madej (1986), and Lapidus, Sunyaev, and 
Titarchuk (1986) also arrived at similar conclusions. Foster, 
Ross, and Fabian (1986) present a detailed comparison 
between model atmospheres of neutron stars and the observed 
spectra of X-ray bursts. 

In this paper, we present a very simple model of an atmo- 
sphere of a neutron star with the hope that the model will 
facilitate a better conceptual understanding of the effects of 
Comptonization, coherent scattering, and free-free processes 

on the spectra when luminosity approaches the Eddington 
limit. The analysis of radiation transfer through our model 
atmosphere is quite tractable and may be done on any small 
computer. The flux spectra of X-rays emitted by our model 
atmosphere agree remarkably well with the spectra resulting 
from the detailed numerical simulations of London, Taam, and 
Howard (1984) and London et al (1986) but with the advan- 
tage that the simplicity of our model allows us to study atmo- 
spheres with luminosities very close to the Eddington limit. In 
the next section, we discuss the basic assumptions, the input 
physics, and the relevant equations of our model and in § III, 
we discuss our findings, the limitations of our models, and the 
improvements that need to be incorporated into the model 
before a meaningful comparison between the theoretical and 
the observed spectra can be made. 

II. DEVELOPMENT OF MODEL 

We consider a plane-parallel model atmosphere in hydro- 
static and radiative equilibria, with luminosity close to the 
Eddington limit. Therefore, we assume that electron scattering 
is the dominant opacity source, with the free-free opacity being 
negligible at the frequencies where the radiation spectrum has 
its maximum. Following the conclusions by London et al 
(1986) that the bound-free transitions are not important for 
X-ray bursts close to the Eddington limit, we have chosen to 
neglect these processes. The free-free transitions, on the other 
hand, are important as a source of new photons, but they do 
not affect the condition for hydrostatic equilibrium. 

The equations of radiative and hydrostatic equilibria may be 
written as 
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where 

J*00 L 
Fv dv = = constant, (2a) o AnR2 

FE = — = constant, (2b) 
^es 

Pg = p(t)7;(t) , dT = -pKes dz ; (2c) fimH 

Te is the electron temperature, which is equal to the ion tem- 
perature, g is the gravitational acceleration at the neutron star 
surface, Kes is the electron scattering opacity, and t is the corre- 
sponding electron scattering optical depth. Equation (lb) can 
be integrated to obtain the density stratification of the atmo- 
sphere as a function of optical depth, provided that the elec- 
tron temperature is known : 

p(i) = 
kßKes 

(3) 

It is very important that within our approximation /ces is a 
constant, independent of photon frequency or electron tem- 
perature. In this case, the mean radiation intensity, J, is a 
function of the optical depth t, 

J(t) = IF\X + <2(t)] , (4) 

where q(r) is the Hopf function [see Kourganoff 1963, p. 99 for 
numerical approximations to í/(t)]. For our purpose, we adopt 
the Eddington approximation, i.e., q(x) = f. 

We assume that at a large optical depth, the atmosphere is in 
LTE; therefore, the radiation has a Planck distribution with 
temperature equal to the local electron temperature : 

J(r) = TO = - 7» , T>Tbb. (5) 
n 

It may be shown (see Paczynski and Anderson 1986) that at 
this large optical depth, we have 

and /? is a very convenient parameter to use to describe the 
models. At smaller optical depths, LTE cannot be assumed, 
and we have to find the distribution of electron temperature 
with optical depth. 

For a neutron star with a given mass, radius, and therefore, a 
given surface gravity g, the radiation flux may vary almost all 
the way up to the Eddington limit. However, as the radiative 
flux increases, the radiation pressure becomes dominant, and 
the density scale height in the atmosphere increases. The 
density scale height is defined as 

, d In p 
-¡r 

By the time ß is down to 10 “4, the scale height is about equal 
to the neutron star radius, 

(7) 

Iir ~ ~ i 
R~ pMHGM/R ß~ 9 (8) 

and the atmosphere becomes spherically symmetric (Paczynski 
and Anderson 1986). This lower limit, /? æ 10-4, is also the 
necessary and sufficient condition for the expansion of the 
photospheric radius during an X-ray burst. Therefore, we shall 
consider only models with ß > 10 “4. 

Since we are interested in atmospheres that are dominated 
by electron scattering, it is convenient to divide the atmosphere 
into a total of six regions in the electron scattering optical 
depth-photon energy plane (see Fig. 1). At large optical depths, 
t > Tbb (region III), we assume LTE. New photons are created 
due to free-free transitions at low frequencies, and incoherent 
electron scattering redistributes them in frequency, main- 
taining a Planck distribution. At t < Tbb, the rate at which the 
photons diffuse out toward the surface is higher than the rate 

—2 -1 0 1 2 
Log Photon Energy (KeV) 

Fig. 1.—Division of a model atmosphere into distinct regions in the electron scattering optical depth-photon energy plane for the purpose of approximating the 
emitted X-ray spectrum. 
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at which they may be created by free-free processes. Therefore, 
LTE cannot be maintained. At low frequencies, free-free pro- 
cesses force the radiation to maintain a Planck distribution at 
the local electron temperature (regions la and Ha); however, 
most of the radiation is at high frequencies (region lb and lib) 
where there is a deficiency in the photon number density as the 
photons escape to the surface faster than they are up-scattered 
from the free-free dominated frequencies. We assume that in 
regions lb and lib, no new photons are created; we also 
assume that practically all the radiative flux is carried at these 
high frequencies. The division into regions lb and lib is due to 
the difference in the efficiency of Comptonization. We assume 
that Comptonization is fully efficient at moderate optical 
depths, t' < T < Tbb (region lib), and that there is no Comp- 
tonization at small optical depths, t < t' (region lb). In other 
words, we assume that in region lib, the total radiative flux is 
conserved while in region lb, we have monochromatic flux 
conservation. Full Comptonization in region lib means that 
we have a Bose-Einstein spectrum there, with an integrated 
intensity J(t) characterized by the local electron temperature 
and a nonzero chemical potential. To allow for a semianalytic 
treatment of the model, we approximated the Bose-Einstein 
distribution by a Wien distribution. 

At low frequencies, it is convenient to define a “ true ” photo- 
sphere, located at i0(v), as the electron scattering optical depth 
at which the soft photons emerging from the surface are typi- 
cally created. In the very low frequency region, where free-free 
opacity dominates over electron scattering opacity, the “ true ” 
photosphere is near the surface of the atmosphere, at electron 
scattering optical depth t0(v) æ 0. For very low frequencies, the 
value of the optical depth due to free-free opacity at the photo- 
sphere is Tff(v) « 1. At somewhat higher frequencies, the “ true ” 
photosphere is a little deeper, as shown in Figure 1. Above the 
“ true ” photosphere (region Ic), almost no photons are created, 
and incoherent scattering is not important. Therefore, we have 
monochromatic conservation of radiative flux, as in region lb. 

It should be clear from our description that there is no direct 
coupling between regions la and lia, where the soft photons 
are created, and the high-frequency regions, lb and lib. There- 

fore, one may wonder whether the low-frequency regions are of 
any importance. The low-frequency regions are indeed impor- 
tant since they affect the electron temperature at small and 
medium optical depths, which in turn affects the Comp- 
tonization of high-energy photons. At each optical depth, the 
electron temperature is determined by a balance between the 
heating of electrons due to high-frequency photons, and the 
cooling of electrons by low-frequency photons and the free-free 
processes. A full-scale model should calculate this energy 
balance in a self-consistent way at all optical depths. We shall 
calculate this balance at t = f only, and we shall assume that 
T* is a linear function of optical depth between the surface and 
ibb, where LTE is maintained. In order to calculate the radi- 
ation field, we need to know the electron temperature as a 
function of optical depth. Hence, we proceed in the following 
manner. 

For a model with a given chemical composition, effective 
temperature, and ß, we took the electron temperature at t = f 
to be an adjustable parameter. We calculated the radiation 
field for various values of this parameter and then determined 
the value of the electron temperature at t = f that followed 
from the radiation field. For every model, there was only one 
value of Tc(f) that turned out to be consistent with the calcu- 
lated radiation field. Figure 2 shows the spectrum of flux 
emitted by the atmosphere described in Figure 1. The flux 
curve is marked so as to show the regions of its origin. 

In order to determine, quantitatively, the spectrum of the 
radiation emitted by a neutron star atmosphere, we divided the 
atmosphere into two regions: t < t' and t > t', where 

corresponds to the number of scatterings required to Comp- 
tonize the low-frequency photons (Rybicki and Lightman 
1979). Following Felton and Rees (1972), we claim that the 
emergent radiation may be regarded, in a first-order approx- 
imation, as a sum of two components: a nonthermalized 
bremsstrahlung continuum emerging from the “ skin ” of thick- 

x 

öfl o 

Log Photon Energy (KeV) 
Fig. 2 Spectrum of X-ray radiation emitted by the model atmosphere of Fig. 1. Vertical line delineates the boundary between the low- and the high-frequency 

regions ot the spectrum. Flux curve is marked so as to show the regions of its origin in Fig. 1. 
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ness x' just as if the source were a definite slab of this thickness, 
and a thermalized equilibrium distribution emerging from the 
deeper layers. 

The radiation emerging from the slab of thickness t' was 
calculated by generalizing the method of Felton and Rees 
(1972). In a homogeneous, isothermal, semi-infinite medium, 
the maximum depth from which a photon of given frequency 
can escape without being absorbed is given by 

[Tff(v) + T]tff « 1 , (10) 

where 

dtff = — p(r)K(f(v)dz , (Ua) 

Kff(v) 
3.7 x 108 Z2p 

I — ln I 2.2 

0it 

diHe mH 

kBTe(x) 

[1 __ e~l"’lk'iTeM]gfi, (11b) 

hv 
hv 

I — In (2.2) n y 
lkB Te(x) 

hv 

kBTe 

hv 

KT, 

< 1 , 

> 1 . 

(11c) 

In the above equations, K:ff(v) is the free-free absorption 
opacity, Tff is the corresponding optical depth, Z is the charge 
of the ions, g{f is the velocity averaged Gaunt factor (Lightman 
1981), and all other symbols have their usual meaning. 

For an atmosphere with temperature gradient and density 
stratification, eq. (10) is not valid. Felton and Rees (1972) 
attempted to calculate the critical depth at which the radiation 
field will approach blackbody (see eqs. [56] and [57] in their 
paper) for atmospheres with the above-mentioned structure; 
however, their equations are valid only for high-frequency 
photons where Tff(v) t and, therefore, need to be generalized 
in order to treat photons of all frequencies. We claim that for a 
photon traveling toward the surface, the probability of absorp- 
tion at an electron scattering optical depth t, 

dA ä 2[Tff(T) + t] dx . (12a) 

For low-frequency photons, Tff(v) > t, and scattering of 
photons by electrons can be neglected. In this regime, the 
above equation suggests that the probability of absorption is 
dA « 2xi{dx{{9 and that the photons of a given frequency, 
which escape from the surface, are emitted at an optical depth, 
t0, such that Tff(T0) « 1. For high-frequency photons, Tff(v) « 
t, and we recover Felton and Ree’s eq. (56). Therefore, in 
general, the maximum depth, t0(v), from which a photon of 
given frequency can escape, is given by the condition : 

|t0<V) 2[tff(t) + t] ^ dt » 1 . (12b) 

In Figure 1, we have plotted t0(v) versus photon energy for the 
“skin’’layer. 

At the low-frequency end, t0(v) is very small. Thus, the 
escaping radiation comes from the layers near the surface and 
is not affected by electron scattering, giving rise to a “self- 
absorbed” spectrum. At intermediate frequencies, photons 
from deeper inside the “ skin ” layer also begin to contribute to 
the emergent flux. Hence, the flux begins to deviate from a 
“self-absorbed” spectrum as these photons are affected by 
coherent scattering. At some frequency, To(v) equals t and for 
higher frequencies, the depth from which photons can escape, 

exceeds the thickness of the “skin” layer. However, since the 
photons emitted from the layers deeper than t' undergo suffi- 
cient number of incoherent scatterings to redistribute them 
into a thermalized distribution, we assert that these photons 
are accounted for by the second of the two components of the 
emergent radiation and, therefore, need not be considered 
when calculating the nonthermalized bremsstrahlung com- 
ponent of the escaping flux. Hence, for frequencies such that 
t0(v) exceeds t', only the photons created within the “skin” 
layer need to be considered. The component of emerging flux 
due to the “ skin ” layer is given by 

F v,low 
J*min[T\ t0(v)] 

0 
itBJx) dx . dx 

(13) 

The second component of the emergent flux is the therma- 
lized equilibrium distribution coming from layers deeper than 
T'. This component dominates the high-frequency end of the 
emergent flux. At depths x > x’, the temperature of the dis- 
tribution is equal to that of the surrounding electrons. Of the 
processes that force the photon distribution to thermalize, the 
dominant mechanism is Comptonization of low-frequency 
photons. However, as previously discussed, this mechanism is 
relatively ineffective for x < x’, and, therefore, although this 
thermalized radiation will heat the electrons in the “skin” 
layer as it traverses through, its characteristic temperature will 
not change appreciably. Hence, we assume that the spectral 
distribution of the thermalized radiation is the same as that at 
x = r', attenuated due to coherent electron scatterings. We 
approximate the effects of coherent electron scattering by 
applying the Eddington approximation in the monochromatic 
limit. Therefore, 

2nJjy) 
^ V,high ~ ^ + (3/2)t'] > 

Alt') e~ti(r')e-hv/kBTe(r') ^ 

(14a) 

(14b) 

where n(x), the chemical potential of the photon distribution, is 
the measure of the deficiency in the photon number density as 
compared to the blackbody number density (/< = 0). 

Hence, the total emergent flux spectrum is given by 

= ^v.low + ^v.high • (15) 

Assuming that j Fv h¡gh dv j A.low ^lc total integrated 
flux is given by 

24* [/cbAIt')]4 

~ c2h3 6 1 + (3/2)t' ' 
(16) 

We would expect the total integrated flux to be equal to <r T*ff ; 
however, since we used the Wien approximation (eq. [14b]) to 
calculate the integrated flux, we incurred a maximum error of 
8% (Fu and Arnett 1986). To avoid this error, we compare 
equation 16 not to ffT%f but to 

4" 

Inhv3 hl,ikKTr„ 127t T)4 
Î e — 21 3 'Aß eff/ : C2 C n 

yielding 

H(x’) = 4 In 

(17) 

(18) 
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where 7i(r) is the Eddington temperature: 

?» = mf(l + jz). (19) 
It can be seen from equation (18) that as Te(z) approaches Te(t) 
deep inside the atmosphere, ju(r) vanishes and the mean spec- 
tral intensity (eq. [14b]) approaches the blackbody Wien dis- 
tribution, as would be expected. 

To complete the model, the temperature profile of the atmo- 
sphere needs to be defined. Under our scheme, there are two 
possible temperature profiles, depending on the relative values 
of t' and Tbb. The latter is the optical depth at which the escape 
time for high-frequency photons (v > v*) is equal to the time it 
takes to produce a blackbody photon number density by 
bremsstrahlung (Lightman 1981). This optical depth is given 
by 

T 3/2 
bb 

1.0884 x 10~9 

Sff(v*) 
7l/4(Tbb). LLa_L 

fijue Z
2 gß ’ 

(20) 

where the surface gravity, g, in terms of the parameters of our 
model, is 

_ ^es fl^eff 
c (I-/?)- 

and v* is such that 

(21) 

We shall only discuss the case, Tbb > t', the case associated 
with our models. For t > Tbb, we claim that both the electron 
and the radiation temperatures are equal and can be approx- 
imated by the Eddington temperature profile (eq. [19]), a 
linear relationship in the T4 versus t plane. For t < Tbb, 
Compton effects will cause the temperature structure to 
deviate from that of LTE. For simplicity, we chose to approx- 
imate this deviation with another linear relationship in the 
above plane. Therefore, the profiles of the electron temperature 
and of the temperature characterizing the photons in the Wien 
distribution (radiation temperature), for t < Tbb, are of the 
form : 

Ti(r) = A(r - rbb) + Ti(zbb), r < rbb , 

TtJt) = 
\Te(z) 

IW) ’ 
t' < T < Tbb 

T < l' 
(23) 

In order to solve for the unknown constant, A, we required the 
electron temperature to satisfy the following condition: 

dEç 

dt t=2/3 dt 
= 0, 

t = 2/3 
(24) 

that is, at the photosphere, there exists an equilibrium between 
the heating of electrons by the hot photons in the thermalized 
distribution and the cooling of electrons by free-free processes. 
The rate of energy transfer from the electrons to the photons, 
due to Comptonization, is given by Pozdnyakov, Sobol’, and 
Sunyaev(1983)tobe 

dEç 
dt 

4np 
m

ec HeWn 
4kB Te Jv - hvJv - ^ Jv

2 )dv . (25) 

This is the integrated form of Kompaneets equation 
(Kompaneets 1957). The loss of energy from the electrons, due 

to bremsstrahlung emission, is 

ir=4np - j,¥v. (26) 

We approximated Jv(z = f) to be twice the mean monochro- 
matic intensity of radiation at the surface. 

in. DISCUSSION 
In order to test our model, we sought to compare the pre- 

dicted flux spectrum with that acquired by London et al 
(1986). We chose their only single-component atmosphere, a 
helium atmosphere with parameters: Teff = 2.84 keV and 
ß = 0.565 (log g = 15), as a standard. It should be noted that 
our model is not at its best at such large values of the ß param- 
eter since our approximation that regions la, lb, and Ic (see 
Fig. 1) are well-separated and can be treated discontinuously 
works best when electron scattering is dominant, and this 
occurs when the luminosity is close to the Eddington limit 
(ß < 1). Nevertheless, our flux spectrum agreed remarkably 
well with the standard mentioned above. The two flux spectra 
are presented, for comparison, in Figure 3. 

In Figures 4-7, we present flux curves with ß fixed at an 
extreme value of 10 4 but with different effective temperatures 
and with atmospheres of different chemical compositions. On 
each graph, we have also plotted a blackbody curve corre- 
sponding to the effective temperature and a normalized black- 
body curve fitted to the peak of the spectrum. We term the 
temperature of the latter blackbody curve “the spectral tem- 
perature.” In some of the figures, at the low-frequency end, the 
flux curve crosses over the blackbody curve corresponding to 
the effective temperature. The crossover implies that the tem- 
perature close to the surface may be higher than the effective 
temperature, as would be expected if the heating of the elec- 
trons by radiation strongly counters the cooling effect of 
bremsstrahlung emission. It should be noted that since only 
radiation near the peak of the X-ray spectrum can be directly 
observed and that nothing is known about the spectrum of 
X-ray bursters below photon energy of 1 keV, the low-energy 
portion of the flux curves presented in Figures 4-7 is of little 
importance with respect to the observations. 

We investigated 22 model atmospheres resulting from 
various combinations of four values of ß (10-4, IO-3, 10"2, 
10"1), two values of the effective temperature (1.42 keV and 
2.84 keV), and three different types of atmospheres (nickel, 
helium, hydrogen). We found that the spectral hardening factor 
TSpec/Tc{{, varied from 1.6 to 2.6. The factor increased as ß was 
decreased, increased as the charge of the ions in the atmo- 
sphere was decreased, and also increased as the effective tem- 
perature was decreased. 

To understand the first two effects, we show, in Figure 8, the 
variations in the flux spectra due to the variations in the ß 
parameter in a helium atmosphere. This variation can be easily 
understood if it is noted that as Teff remains constant, an 
increase in ß (or a decrease in the luminosity) actually implies 
an increase in the density of the atmosphere, and, since a dense 
atmosphere emits more bremsstrahlung radiation, its surface is 
cooler than that of a less dense atmosphere. Furthermore, a 
higher bremsstrahlung emission rate also implies that the 
depth at which the spectrum becomes blackbody is closer to 
the surface, and, therefore, the Wien peak is cooler and has a 
very small chemical potential. 

The variation in the Tspec/Te{{ due to the chemical composi- 
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Fig. 3.—Comparison of the emergent flux from our model atmosphere (solid curve), with the spectrum determined by London et al. (1986) (dashed curve “ LTH ”) 
for atmosphere with same parameters. Dot-dashed curve (“ BB ”) is the Planck function evaluated at the effective temperature of the atmosphere. 

tion of the model atmosphere can also be understood in similar 
terms. The strength of the free-free processes depends not only 
on the density, as discussed above, but also on Z2, where Z is 
the charge of the ions in the atmosphere. Therefore, a high-Z 
model has a larger bremsstrahlung component and acts very 
much like the high-/? model described above. Hence, the same 
reasoning used in the case of varying ß parameter (or the 
luminosity) may be used to explain the variations in the flux 
curves and the variations in the spectral hardening factor due 
to changes in the atmosphere’s chemical composition. Figure 9 

shows the flux spectra of atmospheres of differing chemical 
composition. 

We also found that for t < Tbb, our model atmospheres 
tended toward developing an isothermal structure, with the 
effect being more pronounced for models with low Z, low ß. As 
discussed above, such models do not have large bremsstrah- 
lung emission rates; therefore, Compton heating/cooling 
manages to establish a nearly isothermal temperature profile. 
Assuming that ß ~ 10" 7 and that the atmosphere is isothermal 
above ibb, London et al (1986) arrived at an analytic expres- 

0) 

Ö0 u Q) 

Q0 O hJ 

Log Photon Energy (KeV) 
Yig. 4—Solid curve is the spectrum of emitted flux from atmosphere of model 1. Dashed curve is the normalized Planck curve that best fits the peak of the 

spectrum. Spectral temperature is defined as the temperature characterizing this Planck curve. Dot-dashed curve corresponds to the Planck curve evaluated at the 
effective temperature of the atmosphere. 
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03 
« 

ÖO o .J 

Log Photon Energy (KeV) 
Fig. 5.—Same as Fig. 4, for model 5 

sion for the spectral hardening factor TspecTe{{. Comparing the 
analytic results to our calculated values for models 1 and 5, we 
found that the analytic results were greater by a factor of ~ 1.5. 

London et al. (1986) also found that the dependence of 
^spec/^eff upon the effective temperature is rather complicated 
due to many feedbacks in the system. In light of this, we do not 
feel qualified to discuss the effects of Te{f upon the spectral 
hardening factor for our flux curves since we have considered 
only two values for the effective temperature. We refer inter- 
ested readers to the paper mentioned above for a more detailed 
discussion on this topic. 

We believe that our models are as simple as possible while 
retaining the most important physical processes responsible for 

the formation of the spectra from electron scattering atmo- 
spheres of X-ray bursters. We would like to emphasize that we 
did not encounter any numerical problems with our approach, 
even in models with L/LE = 0.9999, although our models are 
not good for L/LE < 0.1. However, there are some serious limi- 
tations. 

For simplicity, we assumed that the electron scattering cross 
section does not depend on the photon energy; i.e., we worked 
in the Thompson limit. This seems reasonable since we have 
kuT <mec

2. However, the gas density, as calculated with 
equation 3, is proportional to (1 - F/FE\ and, of course, FE is 
inversely proportional to Kes, as given by equation (2b). Since 
the total radiation flux, F, is constant, and in some of our 

> 0) 
* 

OD h 03 
X 

r-H 
00 o -1 

Log Photon Energy (KeV) 
Fig. 6.—Same as Fig. 4, for model 17 
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Log Photon Energy (KeV) 
Fig. 7.—Same as Fig. 4, for model 20 

models F = 0.9999FE, it is clear that even a very small 
reduction of the mean value of the electron scattering opacity 
with optical depth will result in a very large increase in the gas 
density and in the strength of the free-free emission. In fact, the 
expected variation in fces, in the atmosphere, is not all that 
small, since our models reach LTE at a rather large optical 
depth, Tbb (see Table 1), where the temperature may be up to 3 
times higher than it is at the surface. We conclude that by 
adopting the Thompson scattering cross section, we underesti- 
mate the importance of free-free emission and we overestimate 
the difference between the effective and spectral temperatures. 
Our error increases as the luminosity approaches the Edding- 
ton limit. 

In treating the high-frequency component of the radiation, 
we chose to approximate the photon distribution by a Wien 
distribution instead of using a Bose-Einstein distribution with 
a nonzero chemical potential. Using the exact B-E distribution, 
instead of the Wien approximation, would not lead to a signifi- 
cant change in the emergent X-ray spectrum. However, when 
considering the energy balance between the photons and the 
electrons, the Wien approximation affects the equilibrium elec- 
tron temperature at the photosphere, thereby affecting the tem- 
perature profile throughout the atmosphere. In particular, due 
to the presence of the term associated with induced heating of 
electrons in the integrated form of Kompaneets equation (the 
third term on the right side of eq. [25]), the use of a Wien 

0) 

oo u Q) 

W) O h4 

Log Photon Energy (KeV) 

Fig. 8.—Flux distributions for the atmospheres of models 9,10, and 12. Curves reveal the effect of/? parameter on the distribution. 
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Fig. 9.—Emergent flux from atmospheres of models 7,15, and 22. Curves show the effect, on the spectrum, of the chemical composition of the atmosphere. 

distribution, instead of a Bose-Einstein spectrum, in this equa- 
tion leads to an overestimation of the heating of the electrons 
and, therefore, an overestimation of the electron temperature, 
at the photosphere. We expect the excess heating to increase in 
magnitude as the luminosity approaches the Eddington limit. 

The ad hoc manner of calculating the spectrum across the 
transition region between the low- and the high-frequency 
components is also a cause for concern. The electron heating 

TABLE l 
Parameters of Model Atmospheres 

Number log ß TspJTefi 

Hydrogen 

1.42 keV 

2.84 keV 

2.58 
2.40 
2.11 
1.79 
2.01 
1.96 
1.83 
1.74 

6.06 
6.24 
6.62 
7.22 
4.93 
4.96 
5.06 
5.25 

160.27 
63.51 
27.32 
13.01 

173.84 
67.15 
27.83 
12.51 

Helium 
9. 

10. 
11. 
12. 
13. 
14. 
15. 
16. 

1.42 keV 

2.84 keV 

-4 
-3 
-2 
-1 
-4 
-3 
-2 
-1 

2.53 
2.31 
1.96 
1.75 
1.96 
1.91 
1.79 
1.67 

6.11 
6.38 
6.86 
7.42 
4.94 
4.99 
5.12 
5.36 

107.15 
43.86 
19.78 
10.14 

115.10 
45.72 
19.74 
9.45 

Nickel 
17. 
18. 
19. 
20. 
21. 
22. 

1.42 keV 

2.84 keV 

-4 
-3 
-2 
-4 
-3 
-2 

2.30 
1.96 
1.67 
1.89 
1.71 
1.59 

6.48 
7.03 
7.50 
5.03 
5.17 
5.42 

34.41 
16.15 
8.96 

35.47 
15.85 
8.14 

and cooling rates depend very strongly upon the shape of the 
flux curve across the transition region. Therefore, a better 
method for estimating the flux across the transition region 
needs to be developed. 

Furthermore, as our model does not allow for the calcu- 
lation of the electron and the Wien temperature at all optical 
depths, we are required to specify the temperature profile in the 
atmosphere, introducing a degree of arbitrariness in the model. 
As discussed earlier, our choice for the temperature distribu- 
tion above rbb was motivated by the desire to model the devi- 
ation from LTE in as simple a manner as possible. In order to 
determine fully the atmosphere’s temperature structure, we 
only need to consider the energy balance at the photosphere. 
However, we pay a price for opting for simplicity. The tem- 
perature structure in our model atmospheres is rather sensitive 
to variations in the heating/cooling rates at the photosphere. 
Any change in the photospheric temperature, whether due to 
increased bremsstrahlung resulting from a correct treatment of 
the electron scattering opacity or due to changes in the brems- 
strahlung and Compton heating/cooling rates resulting from a 
more exact treatment of the high-frequency component of the 
radiation as well as a better treatment of the transition region 
between the high- and low-frequency components, would exert 
a “ long lever arm ” on the whole atmospheric structure down 
to Tbb (London, private communication). In order to alleviate 
the atmosphere’s sensitivity to the value of the photospheric 
temperature, a simple method for estimating the equilibrium 
temperature at all optical depths needs to be developed. 

We also assumed that for r < t', the Wien peak is affected 
only by coherent scattering; however, the very hot photons 
in the high-energy tail (fcv > kB Te) continue to interact until 
t ~ me c2/kB T'ad (Sunyaev and Titarchuk 1980), causing a 
slight steepening of the emergent flux curve at very high fre- 
quencies. 

Finally, there are other physical phenomena, which are 
much more difficult to treat and which also need to be taken 
into account at the same time: sphericity of the atmospheres 
and general relativity. Paczyñski and Anderson (1986) showed 
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that as the radiative flux becomes closer to the local critical 
flux, the density scale height in the atmosphere becomes com- 
parable to the neutron star radius (see eq. [8] in this paper). As 
soon as this happens, the sphericity of the model becomes 
important, and the redshift variations with radius becomes as 
important as the variation of opacity with photon energy. All 
these effects must be included in the model before a meaningful 
comparison with observations can be made. 

In spite of all the shortcomings, the model atmospheres of 
near-Eddington limit X-ray bursters presented in this paper 
are the most simple models possible that incorporate most of 

the relevant physics associated with radiative transfer through 
a predominantly electron scattering atmosphere. Therefore, it 
was indeed gratifying to discover that these simple models 
produced results that were in remarkable agreement with 
results generated by much more sophisticated computer simu- 
lations. 

It is our pleasure to acknowledge R. A. London for his most 
helpful comments. This project was partly supported by the 
NSF grant AST-8317116, and A. B. is supported by a NSERC 
(Canada) postgraduate scholarship. 
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