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ABSTRACT 
A numerical code is developed to follow the dynamical evolution of groups of galaxies, starting from virial 

equilibrium. The code assigns a single particle to each galaxy and to a diffuse intergalactic background, both 
with appropriately softened potentials, and explicitly incorporates many of the physical processes occurring in 
groups, such as collisional stripping, tidal stripping from the background mean field, dynamical friction on the 
background, mergers, and orbital braking. 

Groups of eight galaxies with surface densities similar to Hickson’s compact groups are unstable against 
rapid galaxy merging and fail to meet Hickson’s compact group selection criteria (by lack of membership) 
after typically 6 or 30 half-mass crossing times [1/30 or (l/8)iHubbie]> depending on whether or not the dark 
matter is mainly in galactic halos or in a common intergalactic background. Statistical fluctuations cause two- 
thirds of the groups to evolve in one-half to twice the median rate, and no dense groups of eight galaxies still 
appear compact (in Hickson’s sense) after jtHuhhli. These “instability” times are insensitive to the uncertainties 
of the physics used in the code, but are increased with larger group membership, and larger group mass- 
luminosity ratios. 

Loose groups of eight galaxies typically witness two to four mergers with iHubble. Compact subgroups (as 
defined by Hickson) are seen in projection in 3%-35% of the loose groups. In loose groups of galaxies with 
massive halos, the compact subsystems are almost all chance alignments of galaxies, whereas in loose groups 
of galaxies without massive halos, half are chance alignments and the remainder are part of three-dimensional 
cores, a small fraction of which are bound. 

The cumulative luminosity function of dense groups shows statistical signs of mergers at its bright end 
halfway toward instability, while in loose groups these signs appear after i^Hubbie- Luminosity segregation 
occurs even faster. Tidal truncation is evident only in groups of galaxies without massive halos. 
Subject headings: galaxies: clustering — galaxies: evolution — galaxies: structure — numerical methods 

I. INTRODUCTION 

Although most galaxies are located within small groups (e.g., 
van den Bergh 1962; de Vaucouleurs 1975; Bahcall 1979), the 
dynamical evolution in these settings has not generated much 
interest among astrophysicists, who have preferred the study of 
the more glamorous rich clusters. Perhaps workers have been 
put off by the erratic behavior of galaxies in small groups 
(Aarseth and Saslaw 1972; Giuricin et al 1984). Recently 
however, several “self-consistent” numerical codes have been 
developed with galaxies made up of a collection of stars 
(Carnevali, Cavaliere, and Santangelo 1981; Ishizawa et al 
1983; Cavaliere et al 1983; Barnes 1985), thus allowing for the 
first realistic studies of dense groups of galaxies. 

In studying groups of galaxies, one is attempting to answer 
fundamental questions on their dynamical nature: Are small 
groups bound dynamical systems? Have the majority of them 
reached equilibrium conditions well described by hydrody- 
namic equations and the virial theorem? What constitutes the 
dark matter whose presence is inferred from such equilibrium 
treatments of groups? These questions are complicated by the 
fact that groups of galaxies occur in a wide range of densities, 
from our Local Group, which must not have virialized yet but 
is instead just turning around from its initial Hubble expansion 
(Gunn 1974), to the compact groups, some of which appear so 
tightly packed in projection that their galaxies overlap (e.g., 
Hickson 1982). Moreover, group densities are poorly known 
because of the strong sensitivity of present-day mass estimators 

to interlopers, and this prevents the evaluation of group evolu- 
tion time scales. 

It was initially thought that small groups of galaxies of 
roughly equal mass would be unstable to evaporation in a few 
group crossing times (Ambartsumian 1961). Later, Toomre 
and Toomre (1972) showed that the inelastic nature of galaxy 
encounters leads pairs of sufficiently slowly colliding galaxies 
to merge into a single entity. Small groups have low enough 
velocity dispersions for a significant fraction of interpene- 
trating encounters of galaxies to lead to merging. A “ cannibal ” 
galaxy develops and grows on a time scale of a few crossing 
times, and its increased cross section further enhances the rate 
of accretion of smaller galaxies, thus leading to a merging insta- 
bility (Ostriker and Hausman 1977). 

Whether or not an encounter is slow enough for merging to 
occur, it produces tides in the individual galaxies that are effi- 
cient in removing matter from the galaxies, some of which 
settles into a diffuse intergalactic medium. This background of 
dark matter and tidally stripped matter should in turn play an 
important role in the evolution of the group, since tides pro- 
duced by its mean field limit the sizes of galaxies (e.g., Merritt 
1984) and since dynamical friction is responsible for extracting 
orbital energy from the galaxies (Chandrasekhar 1943). These 
two processes have opposite effects on the stability of the 
group. Dynamical friction causes the galaxies to decay toward 
the center of the diffuse background (Tremaine, Ostriker, and 
Spitzer 1975), where they are more likely to have close encoun- 
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ters, and merge, while mean-field tidal limitation reduces the 
merger rate, both directly by reducing the merger cross sec- 
tions and indirectly by reducing the rate of orbital decay. 

This study was begun with the idea that some dense aggre- 
gates of galaxies could survive over relatively long periods of 
time, if the merging instability is tempered in the three follow- 
ing ways. First, two-body relaxation may be effective in estab- 
lishing a hierarchy of orbits which prevent the galaxies from 
closely interacting at each passage. By choosing equal galaxy 
masses, Carnevali, Cavaliere, and Santangelo (1981) and Ishi- 
zawa et al (1983) effectively prevented this from occurring in 
their numerical simulations; hence their short merging times. 
Second, the rates of direct merging and of orbital decay are 
reduced if tidal processes are efficient in groups. Finally, while 
the time scale for the merging instability should be a small 
fraction of the Hubble time on the average, it need not be for all 
groups of galaxies, and small-number statistics may push the 
time scale for AT — 3 galaxies to merge (thus reducing the group 
to a triplet) to a value comparable to the Hubble time, for a 
small but nonnegligible number of cases. 

The nonlinear evolution predicted by the stochastic nature 
of the dynamics of small systems and by the interaction of 
different physical processes makes analytical solutions inade- 
quate, and therefore an AT-body treatment is required. For a 
decent statistical coverage, it is clear that the self-consistent 
simulations of the Carnevali, Cavaliere, and Santangelo (1981) 
type are too costly, and a more elaborate, faster, but less self- 
consistent gravitational A/-body code is developed, in which 
galaxies and a diffuse background are all treated as single par- 
ticles. The lack of self-consistency of the method described in 
§ II requires the explicit inclusion of the physical processes 
operating in groups of galaxies, and this is presented in § III. 
The initial particle parameters are set forth in § IV, while § V is 
concerned with the numerical features and tests. Results are 
presented in § VI and discussed in § VII. This article concerns 
itself with the evolution of groups from virialized initial condi- 
tions. A following article (Mamón 1987h) will be devoted to the 
study of groups from their initial Hubble expansion. 

II. METHOD 
The basic scheme is a gravitational AT-body code, in which 

galaxies and a diffuse background are all treated as single par- 
ticles, with external parameters such as mass, luminosity, inter- 
nal energy, and tidal radius, but also with internal structure: 
the particles are assigned mass and luminosity profiles, from 
which the remaining internal parameters, such as core radius 
and central density, are easily obtained. This scheme explicitly 
incorporates physical processes such as dynamical friction of 
galaxies against the background, galaxy mergers, collisional 
stripping, tidal limitation of galaxies by the mean field of the 
background, and orbital braking in inelastic encounters. For a 
set of physical parameters, 20 or 50 groups that differ only by 
the Monte Carlo initialization of galaxy positions, velocities, 
and masses are evolved for a Hubble time. This scheme 
requires only AT + 1 particles, where N is the number of gal- 
axies in the group. The computation time for a single run is 
thus very short, which allows ~ 103 runs to be performed. With 
this method, the relative importance of a given physical mecha- 
nism can be assessed by simply turning it off. 

The particles representing galaxies are modeled for simplic- 
ity as spherically symmetric mass distributions, with density 

P(r) = 
P(0) 

l(r/rc)
2 + IT12 9 (1) 

where rc is the galaxy core radius, and with n = 2 for “halo” 
models (representing spiral or elliptical galaxies with massive 
halos), and n = 3 for “ modified Hubble ” models (representing 
ellipticals with constant M/L). The mass distributions in equa- 
tion (1) are sharply truncated at a tidal radius r = rt. Note that 
the truncated version of the modified Hubble model approx- 
imates well an r1/4 law in projection (Mamón 1985, hereafter 
M85, § IVa). The particle representing the intergalactic back- 
ground is also assigned a spherically symmetric modified 
Hubble mass distribution, truncated at 15 core radii (as used 
by Schneider and Gunn 1983). 

in. BASIC PHYSICS 

a) Equations of Motion 
The total force on each galaxy is the sum of three terms : the 

gravitational forces arising from each of the other galaxies, the 
gravitational force from the background potential gradient, 
and the dynamical friction force that the background exerts on 
the galaxies. The force on the background is taken as the exact 
opposite of the sum of the forces felt by the galaxies, giving a 
zero net force on the group. 

i) Potential Energy of Interaction of Two Overlapping Spheres 
Since the numerical scheme developed in this work attrib- 

utes only one single particle to each galaxy, whereas galaxies 
are extended systems, often overlapping in dense groups, it is 
necessary to use softer force laws than the usual Newtonian 
one. For energy to be conserved, the force between two gal- 
axies must be derived from a potential energy of interaction, 
which is expressed as the potential energy of interaction of the 
two galaxies placed concentrically, normalized to the real 
separation with a dimensionless extrapolation function (this 
avoids recomputing a double integral at every time step) : 

Vini(R) = Vint(0)V{R/Ro) - (2) 
For the galaxy and background models described in § II, the 
potential energy of interaction of the two galaxies placed con- 
centrically, klnt(0), is evaluated by cubic spline interpolation of 
pretabulated computed values (M85, Appendix B). The soften- 
ing parameter in equation (2) is 

p gm1m2 

0 Knt(0) ’ 

and the extrapolation function is chosen as 

V(Y) = (Y2 + 1)"1/2 . 

(3) 

(4) 

Equations (2), (3), and (4) yield the correct limits for F at R = 0 
and R -► oo, but not at R = rtl + rt2; they also produce the 
correct limit at R = 0 for dV/dR. The potential energy of inter- 
action between a galaxy and the background is derived in 
exactly the same fashion. For the adopted galaxy and back- 
ground mass distributions (§ II), the approximation of equa- 
tions (2), (3), and (4) is found in most cases to be exact to 
roughly 20% accuracy for R > R0/2 (M85, § IIa[i]). With 
these mass distributions, R0 is close to the rms half-mass radius 
of the galaxies: R0 * [(r^ + r2

2)/2]1/2 (M85, § IIa[i]). Note 
that most authors in the field of large-scale Af-body simula- 
tions have chosen different softening lengths from the ones 
above. Roos and Norman (1979) and Rose (1979) respectively 
took fixed softening lengths of 25 kpc and 55 kpc, which were 
much too large, even assuming that galaxies have r~2 halos. 
Aarseth and Saslaw (1972) and Cooper and Miller (1981) 
adopted a fixed softening length in terms of a closest neighbor 
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distance. The softening lengths of Roos (1981) and Roos and 
Aarseth (1982), which were typically one-half of the tidal radius 
of the largest of the two galaxies, agree with the softening scale 
adopted here only if galaxies possess dark halos. On the other 
hand, Aarseth and Fall (1980) and Farouki and Shapiro (1982) 
selected softening lengths that both scale as the rms half-mass 
radius to within a few percent. 

ii) Dynamical Friction 
From the analysis of Chandrasekhar (1943), the force of 

dynamical friction, which the background exerts on a galaxy of 
radial coordinate Ra and velocity Fa in the background frame, 
is 

Fd(a — 
AnG2Ml pb (Ra)[erf (x0) - x0 erf' (x0)] In A 

(5a) 

= 2“1/2 (5b) 

where phg(Ra) and <7bg(^a) are the local background density and 
velocity dispersion, respectively. The term in brackets rep- 
resents the fraction of particles whose velocity magnitude is 
below Va for a Maxwellian velocity distribution. Note that the 
mass of the particle that constitutes the background (e.g., stars, 
brown dwarfs, neutrinos, axions) should be small in compari- 
son with galaxy masses, and was neglected in equation (5). 

The Coulomb logarithm in equation (5a) can be written 

In A = In (^) , (6) 
\Pmin/ 

where pmax and pmin are the maximum and minimum impact 
parameters for which collisions with background particles are 
effective in altering the orbits of the galaxies. Following Tre- 
maine, Ostriker, and Spitzer (1975), the maximum impact 
parameter is chosen as 

Pmax = max (Rx, Rc), (7) 

where Rc is the background core radius. The minimum effec- 
tive impact parameter for extended test particles of concentra- 
tion parameter xt = rt/rc is taken from White’s (1976) equation 
(6), which, for the two galaxy models adopted in this present 
work (eq. [1]), yields 

^ = 0.589x(-° 044 , 
r, 

— = 0.794xf 0 324 , 
r, 

for halo models and modified Hubble models, respectively, and 
hence pmin æ rh for both mass distributions (see M85, § IIa[ii]). 
The Coulomb logarithms obtained from equations (6), (7), and 
(8) ranged from 1 to 5, which is in agreement with the choices 
of most workers in the field, except for Richstone and Malu- 
muth (1983), who adopted In A = 10. Dynamical friction is 
turned off when A < 1. 

b) Tidal Limitation by the Mean Background Field 
It has long been assumed that the sizes of globular clusters 

are determined by the mean tidal field of the surrounding 
galaxy (King 1962). Similar arguments concerning the tidal 

(8a) 

(8b) 

limitation of galaxies by the mean field of the cluster have been 
presented by Peebles (1970) and Gunn (1977), and recently 
Merritt (1984) incorporated this mechanism in a cluster evolu- 
tionary scheme by assuming that the tidal effects are set from 
the collapse phase of the cluster. 

A precise determination of the effects of background tides on 
the sizes of galaxies is a difficult problem because several 
approximations are inadequate. First, for two point masses in 
circular orbit, test particles will be constrained inside two 
Roche lobes, one surrounding each point mass, tangent at an 
intermediate (second Lagrangian) point. The boundaries of the 
Roche lobes are frozen in the corotating frame, and can be 
calculated exactly. However, the Roche radius is not applicable 
in the present situation of an extended galaxy moving on elon- 
gated orbits. 

A second approximation often made is that the tide acts 
instantaneously on the galaxy. The tidal radius is then defined 
by setting to zero the acceleration of a test star lying along the 
symmetry axis, relative to the center of the galaxy, in the rotat- 
ing frame: 

= - m - [_<t>'h¿R + r) - 0;g(R)] + Q2r, (9) 

where R and r are the distance of the galaxy to the center of the 
background and the galactocentric position of the test star, 
respectively, and Q is the tangential angular velocity of the 
galaxy and background around their mutual center of mass, 
and where the Coriolis inertial forces due to the motions of the 
star in the rotating frame have been neglected. This formula- 
tion is due to King (1962), who solves equation (9) by expand- 
ing </>bg in a Taylor series around R, and finds that the tidal 
radius is a decreasing function of orbit eccentricity (at constant 
pericenter). 

However, if the galaxy is on an elongated orbit, the tide will 
be of short duration and stars will not have time to reach 
escape velocity. The Roche problem is better understood as a 
tidal shock (e.g., Ostriker, Spitzer, and Chevalier 1972), and 
simple results can be obtained analytically with the impulse 
approximation, developed by Spitzer (1958), in which the 
motion of a test particle is assumed to be small, and where the 
perturber is assumed to move at constant velocity in a straight 
line about the test object. Spitzer’s calculations relate to a 
point-mass perturber, and a test object that is small in com- 
parison with the impact parameter, but can readily be gener- 
alized to the case of a diffuse perturber. In both cases, the 
impulse approximation produces stellar velocity increments 
Ai; ~ 1/F, where V is the velocity of the perturber relative to 
the stellar system (see eq. [8] in Spitzer 1958, and eqs. [Al] and 
[A2] of this paper). Thus,/or orbits of given pericenter, the net 
effects of tides and the tidal radii of stellar systems are respec- 
tively decreasing and increasing functions of orbit eccentricity, 
contrary to what is inferred from King's (1962) analysis. The 
limiting radii of galaxies on elongated orbits inside groups or 
clusters should thus be larger than the corresponding radii of 
galaxies on circular orbits. Note that preliminary numerical 
results by Merritt and White (1987) suggest that at a given 
pericenter, tides may be strongest at some intermediate orbit 
elongation. 

In Figure 1 the tidal radii calculated from the instantaneous 
tidal approximation (open symbols), solving equation (9), and 
from the impulse approximation (filled symbols), solving equa- 
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p/Rc p/Rc 

Fig. 1.—Limiting radii of halo (a, c) galaxies and modified Hubble galaxies (b, d), both with Rc/rc = 30 and (ppR^)/{pg rj) = 1, as a function of impact parameter 
for a modified Hubble perturber with Xt= 15, expressed in terms of F (defined in eq. [10]) {a, b) or in terms of the concentration parameters, (c, d). Solid curve: 
Instantaneous tidal radius for circular galactic orbits obtained by Taylor series expansion of eq. (9). Dashed curve : Instantaneous tidal radius for radial galactic orbits 
obtained by Taylor series expansion of eq. (9). The break in these curves at p/Rc = 15 is an artifact of the sharp truncation of the perturber. Open circles: 
Instantaneous tidal radius (eq. [9]) for circular galactic orbits. Open triangles: Instantaneous tidal radius for radial galactic orbits. Filled circles: Impulse approx- 
imation radius (eq. [A5]) for circular galactic orbits. Filled triangles: Impulse approximation radius for “parabolic” (zero-energy) galactic orbits. Dash-dot line: 
Radius for which the galaxy just overlaps the center of the perturber at closest approach. Thin dashed line : Initial galaxy radius. 

tion (A5), are plotted as a function of distance to the center of 
the cluster. The instantaneous tidal radii are computed at each 
radius for circular orbits (circles) and radial orbits (triangles), 
while the tidal radii derived from the impulse approximation 
are computed at the orbit pericenter for circular orbits (circles) 
and “ parabolic ” zero-energy orbits (triangles). The upper plots 
refer to the parameter F, introduced by Merritt (1984), defined 
by 

r,/Rc = 2ll2vc(rl)(j~
iF(R/Rc), (10) 

where vc(r) and ap are the circular velocity at galactocentric 
radius r and the perturber central one-dimensional velocity 
dispersion, respectively, and Rc is the core radius of the per- 
turber. For a modified Hubble diffuse perturber, F can be 
written as 

F = 0.41 COM 
cog(rt) ’ 

(11) 

where cog(r) and cop(p) refer to the galaxy angular circular veloc- 
ity and the perturber angular velocity at pericenter, respec- 
tively. The lower plots in Figure 1 give the resultant galaxy 
concentration parameter. For reference, the solutions to equa- 

tion (9) obtained by Taylor series expansion of the tidal field 
are shown for circular (solid curve) and radial (dashed curve) 
orbits (the first curve is analogous to Merritt’s Fig. 1). This 
figure shows the usefulness of F: it is very insensitive to the 
scaling of the galaxy relative to the perturber but depends 
almost uniquely on the impact parameter and the orbital 
eccentricity of the orbit of the galaxy about the perturber. This 
has been checked by varying Rc/rc, and (ppRc)/(pgrc \ around 
their respective values of 30 and 1, used in Figure 1 (M85, 
§ lib), where pp and pg are respectively the perturber and 
galaxy central densities. 

Note that the tidal radii obtained with the impulse approx- 
imation depend on the initial value of xt, since the dimension- 
less squared velocity dispersion a2 and potential <fi appearing 
in equation (A5) depend on the original concentration param- 
eter (see M85, Appendix A). For this reason, the filled symbols 
in Figure 1 are only plotted up to the initial concentration 
parameter xt = 100. Note also that the absence of filled tri- 
angles in Figures la and 1c reflects the fact that the potential at 
the edge of a halo galaxy is so strong (relative to the potential 
at the edge of a modified Hubble galaxy of equal central 
density and core radius) that the tides produced in “ parabolic ” 
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orbits are too weak to bring the outermost shell to positive 
energy. The positions of the symbols relative to the dash-dot 
line in the lower plots of Figure 1 indicate the validity of a 
Taylor expansion of the tidal field in equation (9): Figure 1c 
shows that the tidal radii derived with both instantaneous and 
impulsive methods are larger than the distance of the galaxy to 
the cluster center, thus justifying the method of solving equa- 
tion (9) exactly. Similarly, Figure Id indicates that rt/R > 0.3 
for modified Hubble galaxies. 

Of course, the impulse approximation may not be valid, 
since in reality the orbit is not a straight line and the velocity is 
not constant, or perhaps large enough. However, the trajec- 
tories are nearly linear at closest approach for orbits penetrat- 
ing inside the core radius of the background, because the 
potential inside the core radius of the modified Hubble model 
adopted for the background (§ lie) is close to that of a harmon- 
ic oscillator, producing elliptical orbits centered on the back- 
ground. And for small departures from linear orbits, Knobloch 
(1976) has shown that the velocity increments are within a few 
percent of those derived with the assumption of linear orbits. 

Spitzer (1958) and Knobloch (1976) show that the impulse 
approximation becomes invalid when V < pcog(rt), which 
translates with equation (11) to F > Fcrit = 0Alpcop(0)/V. In 
Figure 2, Fcrit is plotted as a function of impact parameter for 
equilibrium orbits, along with the Taylor expansion solutions 
for F, for reference. By comparing this plot with Figure 1, one 
sees that for circular equilibrium orbits the impulse approx- 
imation is not valid for impact parameters inside the core 
radius of the perturber, while for “parabolic” orbits the 
impulse approximation is essentially valid everywhere. 

With these constraints in mind, the adopted limiting radius 
of a galaxy has been chosen as rlim = max (ria, rct), where ria is 
the limiting radius obtained from the impulse approximation 
(the filled symbols in Fig. 1) and rct is the tidal radius obtained 
from equation (9) for circular orbits (the open circles in Fig. 1). 
In order to assess the effects of possible inaccuracies in this 

mean-field limitation scheme, a few simulations are carried out 
either with no mean-field limitation or with a “ modified ” tidal 
radius, chosen as rmt = max (ret, rct), where ret is the exact tidal 
radius, the solution of equation (9). For simulations using the 
modified tidal scheme, mean-field limitation is checked at 
every time step, rather than right after pericentric approaches. 

c) Collisional Stripping 
Numerical simulations of fast “ hyperbolic ” collisions of gal- 

axies have produced a wide range of mass losses : while many 
authors find that AM/M is usually very low, Dekel, Lecar, and 
Shaham (1980, hereafter DLS) obtain mass losses reaching 
38% for their galaxies of type A (elongated orbits in the 
envelope). However, Gerhard (1981) points out that the large 
amounts of mass seen by DLS to escape the test galaxy are 
probably exchanged between the two galaxies rather than 
escaping the colliding pair, and suggests that the true mass loss 
is roughly 4 times smaller than the fraction of mass that 
escapes one galaxy. 

DLS find that the mass loss and the energy change scale as 

AM 
M 

AE 
-jf = Wool , (12a) 

Vcol =   = Q ) ~2   ’ (12b) 
tVms W PV Vg 

with r¡ = —%. Here, vTms is a three-dimensional velocity disper- 
sion, Mp is the mass of the perturbing galaxy, and rrms and vg 
are the root mean square radius and the one-dimensional veloc- 
ity dispersion of the test galaxy, respectively (see Richstone and 
Malumuth 1983). Note that Aguilar and White (1985) find that 
AM/M and AE/E are functions of two parameters (perturber 
mass over velocity at closest approach and impact parameter) 
instead of one (vcol), and are very sensitive to the mass distribu- 
tion of the galaxies. 

p/Rc 
Fig. 2.—Regions of validity of the impulse approximation. Heavy solid curve : Critical F for circular galaxian orbits. Heavy dashed curve : Critical F for parabolic 

galaxian orbits. Thin curves : Same as the curves in the upper plots of Fig. 1. 
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Using Merritt’s (1981) comparison of Richstone’s (1975) 
tidal efficiencies with those of DLS, and assuming pmax « rt and 
Pmin £ rtß (where the mass loss reached its peak efficiency in 
Richstone’s simulations), one then finds that Richstone’s mass- 
loss efficiency satisfies \rj\< 0.042, i.e., it is at least 4 times 
lower than that of DLS. Now since, from Gerhard’s (1981) 
argument mentioned above, the mass losses from the latter 
must have been overestimated by approximately this factor of 
4, the present simulations adopt rj = —1/24 along with the 
parameter dependence of DLS. Note that the other main 
authors in the field of cluster simulations, Miller (1983), Rich- 
stone and Malumuth (1983), and Malumuth and Richstone 
(1984) have adopted mass losses that are respectively 1.9, 2.7, 
and 1.6 times those of DLS (M85, § IIc[ii]), and are thus much 
too large. Also, DLS noticed that the nearly head-on encoun- 
ters were much softer than expected from equations (12), so the 
collisional parameter for close encounters is constrained in the 
present study by 

vco1(p, v) < Vcjrhl + rhl, v). (13) 

It is interesting to compare the results of DLS with the tidal 
theory exposed in § Illh. Consider the tides generated by the 
encounter of a modified Hubble test galaxy of concentration 
parameter xt = 100 with a modified Hubble perturbing galaxy 
of the same central density and core radius, with concentration 
parameter =15. Writing the velocities at closest approach 
for both circular and “parabolic” orbits in terms of the poten- 
tial energies of interaction (§ IIa[i]), the new tidal radius of the 
test galaxy is found by applying equations (12) and (13) with 
rj = —1/24, inverting equation (20a), and multiplying by rc. 
Figure 3 shows the values of F, obtained from the tidal radius 
derived above using equation (10), plotted as a function of 
impact parameter for circular (circles) and parabolic (triangles) 
collisions. The results are roughly consistent with the tidal and 

impulsive results of Figure 1, but the match is far from perfect. 
This discrepancy could be due to systematic errors in the 
impulse approximation formulation of the tidal problem given 
in § Illh, or this may mean that the simulations of DLS are 
incomplete, as also suggested by Aguilar and White (1985). 
Note that the latter authors show that estimates of AM/M and 
AE/E based on a smooth perturber impulse approximation are 
close to the corresponding estimates obtained by them from 
AT-body simulations, although they derive the new mass from 
the velocity increments using a different and more sophisti- 
cated method than the one used here in the Appendix. 

The deceleration caused by the transfer of orbital energy 
into the internal degrees of freedom of a galaxy colliding with 
another one can be calculated if one assumes that the braking 
occurs before either galaxy sheds mass. In the laboratory 
frame, this can be written as (M85, § VI/) 

where v and vp are the velocities of the test and perturbing 
galaxy, respectively, M and Mp are their respective masses, T is 
the bulk kinetic energy of the test galaxy in the center-of-mass 
frame, and AUt is the change of the internal energy of the test 
galaxy including the stars escaping from it, and is equal to 2AU 
(DLS, for their type A galaxies). 

d) Mergers 
The numerical experiments of collisions of spherical galaxies 

by van Albada and van Gorkom (1977), White (1978), and 
Roos and Norman )1979) have been combined by Aarseth and 
Fall (1980) to yield the following merger criterion: 

P/Re 
Fig. 3.—Tidal radii transformed to F (eq. [10]) set by collisional stripping using Dekel et a/.’s (1980) formalism (eqs. [12] and [13]) with rj = —1/24, using 

modified Hubble test and perturber galaxies with respective concentration parameters xf = 100 and Xt= 15, and equal core radii and central densities. Filled circles: 
Circular orbits. Filled triangles : “ Parabolic ” orbits. The solid and dashed curves are the same as in Fig. 1. 
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where the local escape velocity is defined from 

î/^esc + VintiP) = 0 > (14b) 

where /¿ is the reduced mass of the pair. Farouki and Shapiro 
(1982) obtain an analogous criterion for mergers of two rotat- 
ing disk galaxies possessing massive halos, with their spins 
aligned with the orbital angular momentum: 

l.li> _5.5(rhi + r, -T< üj ■ 
(15) 

This criterion predicts more mergers than the criterion from 
Aarseth and Fall (1980), which, as pointed out by Farouki and 
Shapiro (1982), is in part a consequence of the alignment of the 
galaxy spins with the orbital angular momentum. Collisions of 
galaxies whose spins are anti-aligned with the orbital angular 
momentum should yield a merger criterion more similar to 
that of Aarseth and Fall, while collisions of galaxies with 
mutually orthogonal angular momentum vectors should lie 
somewhere in between. The present work mainly uses equa- 
tions (14), although some runs apply equation (15) instead. 

When two galaxies merge into a single entity, a fraction of 
the stars in both galaxies acquire positive energies and prompt- 
ly escape from the merging system. Numerical simulations of 
merging galaxies yield fractional mass losses in the range of 
2%-17% (Villumsen 1983, and references therein). The mass 
loss is quite insensitive to galaxy-type, and in mergers of both 
ellipticals and disk-halo galaxies these particles carry away a 
substantial fraction of the angular momentum of the two gal- 
axies (White 1979; Miller and Smith 1980; Gerhard 1981). 
However, ÄM/M is sensitive to the collisional parameters 
(White 1978; Villumsen 1982, 1983). In the present work, it is 
assumed that, for all mergers, the cannibal does not lose mass, 
and that one-third of the total mass of the victims escapes into 
the background, while two-thirds goes to the cannibal. This is 
equivalent to a total mass loss of 17% for equal-mass mergers, 
and 7% for a 4-to-l mass ratio between the cannibal and its 
victim. Since, in small groups, the typical mass ratio for collid- 
ing pairs should be around 4 to 1, this prescription gives mass 
losses that generally agree with the values given in the liter- 
ature. 

Since one-third of the mass of the victims is assumed to end 
up in the background rather than in the cannibal, then the 
cannibal and two-thirds of the matter in its victims should 
constitute an isolated subsystem during the merging process. 
The new remnant position and velocity are thus computed by 
conserving the center-of-mass and the linear momentum of this 
subsystem. The internal energies of the remnants are computed 
as follows. At the instant before a cannibal swallows a set of 
victims (most often just one galaxy), the total energy of the 
merging system is 

Et = + I + Ec,v , (16) 

where Uc and Uv are the internal energies of the cannibal and 
each victim, respectively, while £c l? is the orbital energy of the 
merging subsystem, defined as 

^,, = 7; +It;+ + (17) 

Here T is the kinetic energy in the center-of-mass frame of the 
merging system, ^ is the potential energy binding the victims 
to the cannibal, and V2 is the potential energy of the subsystem 
constituted of the sole victoms. Note that equation (17) is 
approximate, because in a system of overlapping galaxies the 

total potential energy of the system is not the sum of the inter- 
nal potential energies of its constituent galaxies and the poten- 
tial energy of the system of single masses, each representing one 
galaxy. 

Similarly, the total energy of the merging system after the 
event can be written as 

Ef=Ur+Ue + Er'e, (18) 

where Ur and Ue are the internal energies of the remnant and 
of the system of escaping matter, respectively, while Er e is the 
orbital energy of the system constituted by the remnant and 
the matter escaping to the background, defined in the same 
fashion as Ecv (eq. [17]). Now the last two terms in equation 
(18) are both probably small and of opposite signs, and are 
assumed here to sum to zero. Equating and Ef 'm equations 
(16), (17), and (18) with this assumption, the internal energy of 
the merger remnant is then 

Ur = Uc+Y.Vv + EC'V. (19) 

In contrast with the present prescription of equations (17) 
and (19), Richstone and Malumuth (1983) calculated Ur by 
conserving the average internal velocity dispersion of the can- 
nibal, though they ran a few simulations in which they 
neglected the orbital energy Ec v. Hausman and Ostriker (1978) 
chose a more similar remnant internal energy, except that they 
estimated Ec v by assuming that their cannibal and victim were 
both point masses in circular orbit, while with the present 
definition of equation (17) the orbital energy can be positive for 
nearly head-on encounters (see eqs. [14] and [15]) and is 
indeed so in roughly one-third of the mergers in the present 
study. Note that both pairs of authors neglected any escaping 
matter. 

e) Galaxy Evolution 
The internal structure of galaxies is subject to change as the 

galaxies gain internal energy and lose mass, after tidal encoun- 
ters with other galaxies or with the background. Numerical 
simulations of colliding galaxies have shown that galaxies, or 
at least their cores, contract at pericenter approach, then later 
expand (van Albada and van Gorkom 1977; Miller and Smith 
1980). The variations of the internal structure of galaxies have 
been considered by DLS for nonmerging collisions, and by 
White (1978) and Farouki, Shapiro, and Duncan (1983) for 
mergers. Unfortunately, there is no clear-cut picture emerging 
from these numerical experiments. 

The approach taken here is to assume that collisionally 
stripped galaxies evolve homologously, i.e., at constant con- 
centration parameter. Mergers are also assumed to be homolo- 
gous (despite the departures from strict homology found in 
merging galaxies by White 1978 and Farouki, Shapiro, and 
Duncan 1983). Finally, when they are limited by the back- 
ground mean field, galaxies are assumed to be sharply trun- 
cated and thus retain their core properties. 

Expressing the total mass and internal energy in terms of 
dimensionless variables, 

M(r) = 4np0 rc
3 M(x) , (20a) 

U(r) = —4nG2plr^ Ü(x), (20b) 

then for homologous evolution, given M, U, and xt, one can 
invert equations (20) to obtain 

1 GM2 Ü(xt) 
rc ~4 -U M2(xy 

(21a) 
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16 (—17)3 Ms(xt) 
nG3 Ms Ü3(xt) ‘ 

(21b) 

(21c) 

One can make use of Liouville’s theorem to find the new 
internal energy: conservation of phase-space density imposes 
<7 ~ rc

_1, and with U ~ Ma2 and rc ~ M2/U (eq. [21a]), one 
arrives at rc ~ M-1 and k = (AM/M)/(AU/U) = j. This agrees 
with the results of DLS for their collisions of type B (circular 
stellar orbits) galaxies, and with those of Gerhard (1981). This 
prescription of conserving phase space density confirms that 
the galaxies puff up they lose mass. 

Alternatively, one can assume that galaxies retain their core 
properties during collisional stripping, for which case the new 
concentration parameter is found by solving equation (20a) for 
xt; one then easily recovers the internal energy (eq. [20b]) and 
other parameters, such as the half-mass and rms radii. Note 
that the constant core evolution usually violates Liouville’s 
theorem. 

To derive the luminosities of the galaxies one writes 

M = £o M(x,) 
L X0 L(xt) ’ ' ’ 

where À0 is the central luminosity density and where L = 
L/(4nÀ0 r2). For homologous evolution, it is simplest to assume 
that the central mass-to-light ratio is conserved, which from 
equation (22) translates into constant average M/L during col- 
lisional stripping. In mergers, one can assume that the M/L of 
the matter that escapes from a victim to the background is 
equal to the average M/L of that victim. 

Note that regardless of the type of tidal mechanism, the 
relative mass loss of a galaxy at a given time step is limited to 
25% to avoid spuriously large mass variations arising from 
extreme conditions. 

/) Background Evolution 
In the present simulations, the background picks up mass 

tidally stripped off the galaxies, and acquires energy from this 
infalling matter and from the dissipation of galactic orbital 
energy by dynamical friction. For simplicity, the background is 
assumed to evolve homologously (see § llld) as in Schneider 
and Gunn (1983). One problem with this approach is that 
falling mass is assumed to settle into equilibrium within the 
background on a short time scale in comparison with the 
central dynamical time of the background. 

As the galaxies dissipate their orbital energy by dynamical 
friction, the background heats up. However, as the background 
absorbs energy at constant mass, it expands in radius. This 
expansion requires work, since it changes the potential energy 
of the background with the galaxies. The change in the back- 
ground internal energy is 

fí + Aí fí + Aí fly 
AUbg = -AC/,- j( Ç FdU ■ dsa - I dt, (23) 

where Ug is the sum of the galaxian internal energies, the first 
integral is the work performed by dynamical friction as per- 
ceived in the frame of the background, and the second integral 
is the intrinsic variation of the potential energy of the galaxy- 
background “binding” (M85, § II/). Note that the derivation 
of equation (23) assumes, as usual, that the internal energy of a 
galaxy is unaffected by the dynamical friction against the back- 
ground. 

Because the last term in equation (23) is difficult to evaluate 
numerically, the amount of energy absorbed by the back- 
ground is evaluated through explicit energy conservation. This 
reduces mathematically to solving a transcendental equation 
of the form 

Uhg(Rt) + Vg_hg(Rt) = E — Eg - Tbg (24) 

for Rt, where the terms on the right-hand side of equation (24) 
are all known quantities (from left to right: the total energy of 
the full system, the total energy of the system of galaxies, and 
the bulk kinetic energy of the background). 

The new position and velocity of the background are 
obtained by conserving the center of mass and the linear 
momentum of the subsystem constituted by itself and the 
matter that is being removed from the galaxies. Unfortunately, 
the internal energy of the background, set through explicit 
energy conservation, may then occasionally vary by an unrea- 
sonable amount. For example, if there is a galaxy near the 
bottom of the background potential well, then pushing the 
background to a new position amounts to pulling that galaxy 
out of the potential well of the background, hence reducing the 
binding energy of that galaxy to the background and, in com- 
pensation, increasing the background internal energy by an 
abnormal amount. Therefore, if, before recalculating the inter- 
nal energy of the background, the total energy of the full 
system is off in absolute value by more than half the old inter- 
nal energy of the background, then the background is pushed 
from its old position with the galaxy that has the largest 
binding energy to the background. The energy deficit is recom- 
puted, and if it still does not satisfy the above criterion, the 
background is pushed from its old position with two galaxies 
instead of one, and so forth. Although, this scheme is some- 
what ad hoc, its use is required in less than 1% of the time 
steps. 

IV. INITIALIZATION 

a) Positions and Velocities 
The initial positions of the galaxies are drawn from a homo- 

geneous distribution inside a sphere of a predetermined radius. 
The velocities are drawn from a normal distribution with zero 
mean and unit velocity dispersion, and then normalized, by a 
constant factor determined by the virial theorem written in its 
general steady state form (e.g., Goldstein 1950): 

2>«t>«2 + E^-tf« = o. (25) 
a a 

Ideally, one would obtain realistic initial condition by allow- 
ing the first-order system of particles to relax over a sufficient 
number of crossing times. However, if one lets a system of 
particles relax with dynamical friction, the system will contract 
because of orbital decay, while if one allows the system to relax 
without dynamical friction, one is then implicitly assuming 
that dynamical friction abruptly turns on at some point in the 
history of the group. Therefore, in practice, initial velocities are 
directly taken from equation (25). Moreover, only the systems 
in which all the galaxies have positive binding energies are 
considered. For runs with a massive background, rejecting 
systems with initially unbound galaxies amounts to prefer- 
entially selecting systems that are concentrated toward the 
center and/or that possess a negative velocity dispersion gra- 
dient (M85, § Va). This thus amounts to the establishment of a 
library of realistic near-equilibrium initial conditions. Finally, 
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the background is initially centered at the center of mass of the 
galaxy system, with zero net bulk velocity. 

b) Galaxy Parameters 
In the present simulations, the galaxies are randomly as- 

signed luminosities from a Schechter (1976) distribution of 
index — 1 : 

(D(L)dL = (L/I?)-le~LIL*dL . (26) 

This luminosity function is in good agreement with the corre- 
sponding ones for the Turner and Gott (1976a) groups (Turner 
and Gott 1976h) and for Hickson’s (1982) compact groups 
(Hickson et al 1984), and Turner and Gott (1976h) give L* = 
3.4 x 1010 L0, which corresponds to MB= —20.85 (using 
MBq = 5.48).1 

The initial luminosities are obtained using equation (26) 
with a faint-end cutoff at Lmin = where xt = 0.01. They 
are further constrained to give an average galaxy luminosity in 
each group that is within 1% of a chosen value (thus imposing 
roughly the same total mass for each group). For the modified 
Hubble models in the present numerical models, M/LB is con- 
stant throughout the galaxies with a value of 10, in concor- 
dance with the published results for ellipticals (Binney and 
Mamón 1982; Mamón 1983; Bacon, Monnet, and Simien 
1985). For the halo models, the central blue mass-to- 
luminosity ratio is set to 2, which for xt= 100 (see below) 
scales to an average M/LB of 9.4 within the sphere containing 
half the light, and an average M/LB of 45.8 for the whole 
galaxy. 

The velocity dispersions of the galaxies are obtained by the 
Faber-Jackson (1976) relation : 

/ T \ 1/4 
<7 = 190(-—J km s 1 , (27) 

where L21 is the luminosity of a galaxy with MB= —21, i.e., 
L21 = 3.9 x 1010 Lq. The constant in equation (27) is taken to 
be 78% of the value given in Faber and Jackson (1976) in order 
to account for the difference between measured central velocity 
dispersion and average galaxy velocity dispersion (M85, § Vh). 
Note that equation (27) is used for both modified Hubble and 
halo galaxy models, even though it is strictly justified only for 
the former. 

Assuming pressure equilibrium, the internal energies of the 
galaxies are derived from U = — (3/2)Mä2. Given the mass and 
internal energy of a galaxy, its central density and core radius 
are obtained from equations (21), using xt= 100 initially, 
which conforms to the concentration parameters that Kor- 
mendy (1977) tabulated for bright ellipticals by fitting these to 
King (1966) models. The half-mass radii, tidal radii, and rms 
radii are then easily derived (see M85, Appendix A). 

c) Background Parameters 
Setting the background “edge” radius to Rt, the internal 

energy of the background, from equations (21a) and (21b), is 

Ubg=-
l-A\Xt)^, (28a) 

1 A Hubble constant of H0 = 50 km s 1 Mpc 1 is used throughout this 
study. 

where 

A(Xt) = 
X¡/2Üí/2(Xt) 

M(Xt) 
(28b) 

The core radius and central density of the background can be 
derived from equations (21b) and (21c), respectively. Finally, 
the background luminosity is set to zero at the start of each 
run. 

The variation of the internal velocity dispersion of the back- 
ground as a function of radius (needed to estimate the dynami- 
cal friction force) is obtained by solving the isotropic 
hydrodynamic equation considering the potential terms from 
the galaxies as well as from the background. If the background 
is spherically symmetric and if the galaxies are distributed in a 
sphere centered on the center of the background, one can write 
this as 

d(p*2) 
dR 

-p(R) 
GMhK(R) 
ß(R)R2 ’ 

(29) 

where ß(R) = Mbg(R)/[Mhg(R) + Mg(R)] is the fraction of mass 
in the background inside a sphere of radius Æ centered on the 
background. Here, Mg(R) refers to the total mass in galaxies 
whose centers lie within the distance R of the center of the 
background. From equation (29) the background internal 
velocity dispersion can be approximated as l/ß(r) times the 
value that the background internal velocity dispersion would 
take if the background were isolated. Now since ß(R) and thus 
Mg(R) need to be recomputed for each integrator internal time 
step (§ V), the computations are speeded up by approximating 
ß(R) assuming that Mg is constant during the time step, and 
proportional to Mhg(R) inside a radius whose value is the 
maximum of R + rt for the galaxies in the background. This 
yields 

ß(R) = ß0, IK*!,, 

= R> R 
MJR) + Mg(Rg) ’ - ^ 

where ß0 = Mbg(Rg)/[Mbg(Rs) + Mg(RgJ] . 
Note that if the background is small in comparison with the 

galaxy system, then equation (29) does not hold, since a neigh- 
boring galaxy will exert a force away from the center of the 
background. To alleviate this problem, the size of the back- 
ground is set initially to be that of the system of galaxies 
(keeping the concentration parameter fixed): Rr =Rg = 
maxXRa + rtJ. The average internal velocity dispersion of the 
background, which initially satisfies Ubg= — 
where ßt is the initial background mass fraction, can then be 
expressed, using equations (28), as 

GMn 

6 (1 - ß^Rg 

1/2 
A(Xt) 

In the present simulations, crbg is 80% of the one-dimensional 
velocity dispersion of the galaxy system on the average, with a 
large scatter. 

d) Scaling 

This study focuses on groups of five, eight, and 20 galaxies. 
The simulations presented here have been studied in two 
density regimes. Dense groups are designed to appear similar 
to Hickson’s (1982) compact groups, while loose groups are 
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TABLE 1 
Initial Parameters for Groups of Eight Galaxies 

Dense Groups Loose Groups 

Parameter —a Median +o —a Median +<r 

R (kpc)  117 117 117 936 936 936 
Re

c (kpc)  11.2 11.8 12.9 62 67 77 
RC

h{kpc).  49 51 56 271 293 335 
Rt (kpc)  167 177 194 936 1009 1155 
Ra (kpc)  48 81.5 114 407 658 884 
Ra

H (kpc)  75 89 101 586 710 885 
u  22.4 22.7 23.0 26.8 27.3 27.5 

similar to the groups in Turner and Gott’s (1976a) catalog. The 
dense groups are scaled to a physical density of eight galaxies 
per sphere of radius Rg= 117/z^o1 kpc radius, while the loose 
groups of eight members start in a sphere of radius Rg = 
936hJ0

1 kpc, i.e., the loose groups are 512 times less dense. 
Table 1 lists the properties of simulated groups of eight 
members constructed in this fashion. For the dense groups of 
eight, the smallest projected circumscribed circles have radii 
Rh that are similar to those of the compact groups from 
Hickson’s (1982) catalog (M85, § Vd). 

The galaxies in Hickson’s groups have a mean luminosity of 
roughly L*, while the mean luminosity of galaxies in the CfA 
groups (Geller and Huchra 1983) is roughly 20% lower. Such 
large values are caused by a selection effect toward luminous 
galaxies in magnitude limited catalogs, and by the luminosity 
selection implicit in Hickson’s compactness criterion (see 
§ Via). In the present simulations, the average galaxy lumi- 
nosity is usually set to L* (see § IVh), though a few other simu- 
lations are carried out with smaller mean galaxy luminosities. 
Table 2 lists the range of galaxy parameters thus obtained with 
the standard parameters above. 

The initial background mass fractions are taken as ft = 0.1 
and 0.75 for groups of halo and modified Hubble galaxies, 
respectively. With the galaxy mass-to-light ratios used here 
(§ IVh) this corresponds to (M/L)group = 51 and 40, for groups 
of halo and modified Hubble galaxies, respectively, in accor- 
dance with the values observed for small groups (Gott and 
Turner 1977; Rood and Dickel 1978). Note that if ft is much 
smaller than 0.1, then the galaxies will often dissipate enough 
orbital energy into the background to make it acquire positive 
internal energy, hence evaporate. 

For the dense groups, the initial background core radius and 
edge radius are Rc = 10 kpc and Rt= 150 kpc. Its average 
internal velocity dispersion is 130 and 210 km s-1 for runs 
with halo galaxies and modified Hubble galaxies, respectively. 
For the loose groups, the two radii are roughly 8 times larger, 

while <7bg is 81/2 times larger in accordance with the virial 
theorem. 

V. NUMERICAL INTEGRATION 

The particles in this study are advanced with an Adams-type 
predictor-corrector method, adapted from Gear (1971), which 
uses a variable order up to a maximum of 12. The integrator 
works on internal time steps before interpolating the variables 
to the external time step set by the user. This “brute-force” 
method is faster than the renowned Aarseth-Ahmed-Cohen 
schemes (e.g., Aarseth 1985 and references therein) when the 
number of particles is less than 25 (Aarseth 1985) because it 
involves less bookkeeping. On a VAX 11/785, with a UNIX 
Fortran 77 compiler, a simulation of duration iHubbie typically 
requires 2.5 and 8 minutes of CPU time for dense groups of 
eight halo galaxies and modified Hubble galaxies, respectively; 
2 minutes of CPU time for a loose group of eight galaxies; and 
25 minutes of CPU time for a group of 20 galaxies. Approx- 
imately two-thirds of the computation time is invested in the 
advancement of the particles. 

The numerical code conserves energy to better than 10"3 

per run. This is not very impressive, since the code is designed 
to explicitly conserve energy (§ III/). However, when dynami- 
cal friction is turned off, explicit energy conservation can be 
bypassed (since the background is no longer heated from 
orbital energy dissipation of the galaxies; see § III/), and 
energy is then conserved again to better than 10“3 per run. 

Self-starting conditions must be used after time steps during 
which mass is transferred to the background, and this increases 
the computation time. The fraction of time steps for which 
mass is sent to the background is limited to 10%, by turning off 
collisional stripping and “modified” mean-field limitation 
(§ lib) when the tidally truncated mass is less than 1% and 5% 
of the total galaxy mass, respectively. Energy is explicitly con- 
served whenever mass is transferred from the galaxies to the 
background. 

The strong conservation properties of the code are probably 
established by the relatively short time steps. Particles are 
advanced with a time step chosen as a constant times the 
smaller of the minimum crossing time and the minimum 
dynamical time, where each minimum is among all bound 
pairs of particles (including the background). The constant of 
proportionality is chosen such that the time steps are always 
smaller than 1/47T times the shortest circular orbital time for all 
pairs of particles (see M85, § Vila). 

The numerical code has also been tested by experimenting 
with the decay of the circular orbit of a single galaxy around 
the background. Using a galaxy whose mass is small in com- 
parison with that of the background, fixing In A, and turning 

TABLE 2 
Initial Galaxy Parameters 

Halo Galaxies Modified Hubble Galaxies 

Parameter — a Median + <r —a Median + a 

rc (kpc)   0.37 0.55 0.86 0.34 0.50 0.78 
rh (kpc)   19 28 44 3.9 5.8 9.1 
r, (kpc)   37 55 86 34 50 78 
L(10uLo)   0.12 0.26 0.64 0.12 0.26 0.64 
MOO11 Ai0) .... 5.5 12 29 1.2 2.6 6.4 
â (km s-1)   142 172 216 142 172 216 
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off mean-field limitation, one obtains a run of jR versus t which 
matches well the theoretical prediction (M85, § Vllh). 

VI. RESULTS 

a) Stability and Compactness 
Hickson (1982) defines a compact group to meet the follow- 

ing three criteria: it has at least four members, all within 3 mag 
of the brightest one (membership). The mean surface magni- 
tude on the red POSS (E) plates is smaller than pUm, where the 
mean is taken within the smallest circle containing the geomet- 
ric centers of the members of the group (compactness). No 
other galaxies in the above magnitude range or brighter lie 
within a concentric circle of 3 times this radius (isolation). 

In the present study, a projected group satisfying these three 
criteria with Hickson’s choice of /¿lim = 26 will be called 
compact. The mean group surface magnitude is obtained from 
the mean group surface brightness in the B band, assuming 
B — E= 1.9 for modified Hubble galaxies (i.e., ellipticals) and 
B — E= 1.5 for halo galaxies (i.e., spirals) conforming to 
Hickson’s (1982) color transformations. 

At a given time, a group is viewed along three orthogonal 
axes. Calling js the number of these views for which the group 
satisfies Hickson’s membership and compactness criteria, with 

'‘»- = 26 + 5lo®.-(Tüffc)-25'oSlo(|î). 

where and Ltot are the respective initial size and total lumi- 
nosity of the group, then the instability time of a group will be 
defined as the time taken for js to fall below 1.5. With this 
definition, instability will occur if merging depletes the number 
of galaxies (membership) or if evaporation leads to a signifi- 
cantly enlarged group (compactness). Note that for a standard 
dense group of eight galaxies (§ IVd), plim = 25.83 in the above 
definition of stability, so that the instability time for dense 
groups of eight members is roughly equal to the time taken for 
a projected group to lose its compact group appearance in 
Hickson’s (1982) sense. 

The first result of this study is that all standard simulations of 
dense groups produce unstable groups after a Hubble time. 
Figure 4 plots the median (filled circles and thick solid lines), 
16th and 84th percentiles (crosses and thin solid lines), and the 

extreme values (points and dashed lines) of js versus time for the 
sets of 50 simulations of initially eight galaxies. Notice how 
rapidly the groups of galaxies with massive halos become 
unstable, compared with those without halos. On the average, 
the dense groups of halo galaxies are unstable at 0.75 Gyr, while 
the dense groups of modified Hubble galaxies are unstable at 
2.75 Gyr. This is a result of the larger merger cross sections of 
the halo galaxies, as will be discussed below. 

Figure 5 plots for the dense groups the radial coordinates of 
galaxies in the center-of-mass frame against time. These figures 
show a hierarchy of orbits: the low-mass galaxies settle on 
marginally bound elongated orbits, while the heavy ones spiral 
in toward the center of the background. In the group of halo 
galaxies (Fig. 5a), four galaxies rapidly succumb to mergers 
within 300 Myr, the first-ranked galaxy decays into the back- 
ground core, and, although the remaining galaxies do not 
decay, they cannot escape the large cross section of the first- 
ranked member, and eventually merge into it. In the group of 
modified Hubble galaxies (Fig. 5b) there is some merging at 
first, but less than in the previous group. The first-ranked 
galaxy decays more rapidly than its halo counterparts of 
Figure 5a, while all the other galaxies decay more or less 
rapidly into the background. 

Figure 6 plots the time evolution of js for dense groups of five 
and 20 galaxies. Simulations of dense groups of five galaxies 
initially yield shorter median instability times (250 Myr and 
1.5 Gyr for groups of halo and modified Hubble galaxies, 
respectively), which are a consequence of needing only two 
mergers to fail the membership criterion. Note that a group 
can show two isolated subgroups along a single projection 
axis, which explains why some groups of 20 galaxies have 
js > 3. Starting with 20 galaxies enables the dense groups to 
survive longer—up to 1.5 and 7.5 Gyr, on the average, for 
groups of halo and modified Hubble galaxies, respectively. 
Furthermore, groups of 20 are well enough populated that they 
witness a separate core/halo evolution as the galaxies attempt 
to reach energy equipartition. The resulting mass segregation 
goes far enough for the core to appear compact and isolated, 
and this is seen in the simulated groups when js is defined 
without the restriction of having at least four galaxies within 
3 mag of the brightest one (Hickson’s membership criterion) 
and with /zlim = 24.5, as shown in Figure 7. However, these 

Time (Gyr) Time (Gyr) 

Fig. 4.—Time evolution of7s in dense groups of (a) eight halo and (6) eight modified Hubble galaxies. Filled circles and solid lines: Median values of;s. Crosses 
and thin lines: 16th and 84th percentiles. Points and dashed lines: Extreme values. The lines are linear interpolations plotted for clarity. 
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Time (Gyr) Time (Gyr) 

Fig. 5.—Time evolution of galaxy positions with respect to the background, for a dense group of (n) eight halo and (b) eight modified Hubble galaxies 

cores are so dynamically evolved that their brightest members 
are more than 3 mag brighter than their second-ranked 
member, thus preventing them from passing the compact- 
group membership criterion. 

In Figure 8, the cumulative number of mergers per run, nm, is 
plotted against time for the standard sets of simulations of 
dense groups of eight and 20 galaxies. The median merger rate 
remains roughly constant after the occurrence of the first 
merger, until it saturates from the lack of galaxies available for 
cannibalism (this can be seen better by plotting time on a linear 

scale). This initial constant merger rate may indicate a balance 
between the increased cross section of the cannibal and the 
decreased space density of future victims. The strong inverse 
correlation of nm with js, easily seen when comparing Figures 4 
and 8, suggests that in dense groups of galaxies, merging is the 
dominant source of instability. For a given initial number of 
galaxies, the merger rates inferred from Figure 8 are higher for 
groups of halo galaxies than for groups of modified Hubble 
galaxies. This is caused by the larger half-mass radii of halo 
galaxies (eq. [14a] and Table 2). 

Time (Gyr) Time (Gyr) 

Fig. 6.—Time evolution of/s for dense groups of five (a, b) and 20 (c, d), halo {a, c) and modified Hubble (b, d) galaxies. Same notation as in Fig. 4. 
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Time (Gyr) 
Fig. 7.—Effect of using different criteria in defining stable groups on the time evolution of js for dense groups of 20 galaxies. The membership criterion no longer 

forces the galaxies to lie within 3 mag of the brightest one, and filim = 24.5. Same notation as in Fig. 4. 

Time (Gyr) Time (Gyr) 
Fig. 8.—Time evolution of the cumulative number of mergers nm in dense groups of eight (a, b) and 20 (c, d), halo (a, c) and modified Hubble (b, d) galaxies. Same 

notation as in Fig. 4. 
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Time (Gyr) Time (Gyr) 
Fig. 9.—Time evolution of the cumulative number of mergers nm in loose groups of eight and 20 galaxies. Same notation and layout as in Fig. 8. 

In Figure 9 the cumulative number of mergers is plotted as a 
function of time for the standard loose groups. Here the gal- 
axies are more immune to merging, thus enabling most of the 
loose groups to survive over the Hubble time. Still, 36% and 
22% of the respective groups of halo and modified Hubble 
galaxies have ;s < 3 at i = 20 Gyr. These two numbers become 
55% and 25% when the larger merger cross sections of 
Farouki and Shapiro (1982) are used. Merger cross sections 
thus affect more the evolution of groups of halo galaxies than 
that of their modified Hubble counterparts. Note that loose 
groups of five galaxies usually lose their stability within iHubbie> 
even with the standard merger cross sections. 

The instability times of the dense groups are relatively insen- 
sitive to the uncertainties in the physics that is put in the code. 
For example, if dynamical friction of galaxies against the back- 
ground is assumed to occur at constant In A, the instability 
times are decreased by one-third. The effect of uncertainties in 
the tidal stresses on the galaxies is more important : if back- 
ground mean-field limitation is assumed to occur at the modi- 
fied tidal radius, then the instability times are doubled. On the 
other hand, if mean-field limitation is turned off, the instability 
times remain roughly the same. If the collisional stripping cross 
sections are increased fourfold, to the values of Dekel, Lecar, 
and Shaham (1980), then the instability times are essentially 
unchanged. Simulations with a background initially stretched 
out to have twice its usual core radius (and “ edge ” radius), but 
with the same mass inside the sphere of radius R0 (containing 
all the galaxies), produce a similar evolution for the small 
groups, thus strengthening the validity of the impulsive mean- 
field limitation scheme described in the Appendix. A more 

stringent merger criterion (eq. [15]) changes little the insta- 
bility times of dense groups of modified Hubble galaxies, but 
reduces the instability times for dense groups of halo galaxies 
by one-third. The effects of galaxy evolution on the instability 
times are also small: neither setting k; to 1 (producing galaxy 
evolution at constant velocity dispersion; see § Hie) nor 
assuming constant core evolution instead of homology has any 
effect on the instability time. 

The loose groups are even less influenced by the uncer- 
tainties of the input physics. The major change comes with the 
use of the larger Farouki and Shapiro (1982) merger cross 
sections, which reduces the instability time of loose groups of 
eight halo galaxies to ~ iHubbie- 

The group instability times are more sensitive to the param- 
eters used in the simulations. As long as the total initial group 
mass is the same, the instability times suffer little change as the 
initial luminosity function is varied from various Schechter 
functions to a ^-function. But if the initial background mass 
fraction is increased to give (M/L)group =100 (instead of 51 and 
40 for respective groups of halo and modified Hubble galaxies; 
§ YVd), then the instability time is more than doubled. 

As seen in Figures 4 and 6, the group instability time fluctu- 
ates from one group to the next (where the groups differ only in 
their initial positions, velocities, and masses but have the same 
total mass). Roughly two-thirds of the groups are unstable 
within a factor of 2 of the median instability time, and no dense 
groups survive past i^Hubbio except for dense groups of 20 
modified Hubble galaxies, which are nevertheless all unstable 
within ÍHUbble. 

It is instructive to express these time scales in terms of a 
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TABLE 3 
Group Instability Times 

Halo Modified Hubble 

Remarks t: tA' t; 

100. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
117. 
159. 
800. 
936. 
936. 

1270. 

5 Standard 0.25 2.1 1.5 17 
8 Standard 0.75 6.0 2.75 31 
8 ¿-IMF 0.75 6.0 2.5 28 
8 *!= 0.001 0.40 3.3 2.5 28 
8 Ltot = 2L* 1.5 6.0 7 43 
8 No mean-field limitation 0.75 6.0 3.5 39 
8 “ Modified ” mean-field limitation 1.4 11.1 4 45 
8 Dekei ei a/, cross sections 0.75 6.0 2.75 31 
8 FS merger criterion (eq. [15]) 0.5 4.0 2.75 31 
8 Constant core evolution 0.75 6.0 2.75 31 
8 k= 1 0.75 6.0 2.75 31 
8 No dynamical friction 0.75 6.0 >20 >223 
8 Constant In A 0.5 4.0 1.6 18 
8 Stretched background 0.5 4.0 2.4 27 
8 (M/L)group = 100 2.5 36 6.25 118 

20 Standard 1.5 11.0 7.5 84 
5 Standard 13.75 5.3 12.5 10 
8 Standard >20 >7.3 >20 >13 
8 FS merger criterion (eq. [15]) 20 7.3 >20 >13 

20 Standard >20 >6.6 >20 >12 

dynamical time scale of the initial group. The half-mass cross- 
ing time of the system can be defined as 

/ 2<j?>3\1/2 

cr \ GM J ’ 

where M is the total group mass and <Æ> is the group half- 
mass radius, approximated as the mass-weighted average of 
the half-mass radii of the system of galaxies and the back- 
ground, respectively: <Ä> = ßRh + (1 — ^)<-Ra). Note that this 
time scale is roughly 1/271 times the circular orbital time of a 
galaxy around the group at half-mass radius. Table 3 gives M, 
(R}, fcr, the instability time th and tcr/th for various sets of 
simulations. The standard dense groups of eight halo galaxies 
are stable for 6 half-mass crossing times, and the standard dense 
groups of eight modified Hubble galaxies are stable for approx- 
imately 35 half-mass crossing times. 

Table 4 gives the frequency of compact group occurrence 
within the simulated loose groups: is the fraction of project- 
ed groups at i > 10 Gyr that appear compact, and r¡2 is the 
fraction of these compact projected groups that are also 
compact when viewed along the other two axes. Roughly 3% 
of the loose groups of five galaxies and 5%-33% of the larger 
loose groups contain configurations that appear compact 
when viewed in projection. Loose groups of modified Hubble 
galaxies are more likely to produce compact subsystems than 

TABLE 4 
Frequency of Compact Configurations 

Occurring within Loose Groups 

N Galaxy Type k rj1 rj2 

5  Halo j 0.035 ±0.016 0 ± 0.600 
5.. .... Modified Hubble ^ 0.031 ± 0.016 0 ±0.750 
8  Halo i 0.055 ±0.009 0.176 ± 0.088 
8  Modified Hubble ± 0.239 ± 0.019 0.457 ± 0.091 
8  Halo 1 0.069 ±0.011 0.140 ± 0.099 
8.. .... Modified Hubble 1 0.250 ± 0.019 0.436 ± 0.087 

20  Halo i 0.153 ±0.046 0 ±0.273 
20  Modified Hubble ^ 0.333 ± 0.086 0.200 ± 0.200 

loose groups of halo galaxies. It is also easier to form compact 
groups by starting with larger loose groups. Nearly half of the 
compact projected groups within loose groups of eight modi- 
fied Hubble galaxies would appear compact viewed along the 
two other projection axes. This fraction of three-dimensional 
cores seems smaller for compact projected groups within loose 
groups of five and 20 galaxies, although the statistics are poor. 

The best way to check whether a three-dimensional core is 
bound (physically dense) or unbound (transient; see Rose 1979) 
is to look for multiple mergers within short time intervals after 
the appearance of such cores (note that the code stores the 
exact merger times but looks for cores only every 2.5 Gyr). The 
median times for two mergers in dense groups of four halo and 
modified Hubble galaxies are 0.5 and 3 Gyr, respectively, and 
the corresponding times for three mergers in dense groups of 
five galaxies are 0.5 and 5 Gyr. Now, of the 19 different three- 
dimensional cores appearing inside the loose groups of eight 
modified Hubble galaxies (before the end of the simulations), 
only one is followed by mergers within the times quoted above, 
while two more witness mergers that take slightly longer. In 
addition, one core witnessed two mergers shortly before sam- 
pling, and was followed with another merger a little later. Since 
mergers may be occurring by chance independently of the exis- 
tence of the cores, then probably no more than 15% of the 
three-dimensional cores are bound. 

Within the loose groups of eight halo galaxies, none of the 
four three-dimensional cores witness enough mergers in the 
time intervals quoted above. If, for better statistics, one con- 
siders instead all the occurrences of rapidly succeeding merger 
events, whether or not in the presence of a sampled three- 
dimensional core, one finds two occurrences of three mergers 
in less than 2 Gyr within the 50 loose groups. In comparison, 
using the observed rate of 152 mergers in 20 x 50 = 1000 Gyr, 
Poisson statistics give an expected probability of 0.034 for two 
mergers occurring at random within 2 Gyr after a merger 
event, i.e., five expected occurrences of three mergers in 2 Gyr. 
Therefore, the multiple mergers observed in the simulations of 
loose groups of halo galaxies are probably all due to chance. In 
summary, three-dimensional cores occur rarely within loose 
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groups of halo galaxies, and are probably almost always 
unbound and transient. 

b) Physical Processes in Group Evolution 
The importance of evaporation can be assessed by simulat- 

ing a group of particles with the usual softened potential ener- 
gies of interaction but without any of the physics, i.e., with no 
background, no collisional stripping, no mergers, and so on. It 
then turns out that, because of the strongly softened potentials, 
none of the halo-type galaxies and 3% of the modified Hubble 
galaxies in dense groups manage to escape within the Hubble 
time. In other words, because of the extended nature of galaxies, 
the evaporation time of dense groups is much longer than the 
Hubble time, and very much longer than the relaxation time 
calculated from the standard point-mass formulae derived by 
Chandrasekhar (1942; cf. M85, § III). 

Several simulations of dense groups were carried out in 
which dynamical friction was artificially turned off. The 
resulting evolution for groups of halo galaxies is nearly the 
same as with dynamical friction. On the other hand, the evolu- 
tion of groups of modified Hubble galaxies is drastically 
altered. Nearly all modified Hubble groups remain compact 
after 20 Gyr, at which time only two mergers have taken place 
on the average. These results confirm what was seen in Figure 
5 : in dense groups of halo galaxies, merging occurs before orbital 
decay, while in dense groups of modified Hubble galaxies, orbital 
decay precedes merging. This explains why the merger criterion 
affects more the groups of halo galaxies, subject to direct 
merging, than their modified Hubble counterparts, whose 
instability times are set by the orbital decay time. 

In principle, tidal limitation of galaxies ought to slow down 
the merging instability by reducing the cross sections of the 
potential cannibals. However, the instability times listed in 
Table 3 are insensitive to the tidal physics, except that 
“modified” mean-field limitation produces longer lived 
groups. On the other hand, the final values of the tidal radius 
and the luminosity of the first-ranked galaxy, as well as of the 
background mass fraction and the central surface magnitude, 
shown in Table 5 in columns (3), (4), (5), and (6), respectively, 
often show a strong sensitivity to the tidal physics used for the 
simulations. The initial median values of rtl are 100 and 91 kpc 
for groups of halo and modified Hubble galaxies, respectively, 
while the initial median L1 and ^bg(0) are 8.7 x 1010 L0 and 
infinity for both types of groups. Recall that, initially, /? is 0.1 
(halo) and 0.75 (modified Hubble). The first-ranked galaxy sizes 
are strongly reduced by mean-field limitation, especially for 

groups of modified Hubble galaxies, for which the background 
is much more important. This effect on rt influences in turn (to 
a lesser degree) the other three parameters. The use of modified 
mean-field tides affects these parameters even more drastically. 
Finally, turning of collisional stripping has only small effects 
on rtl, Lt, ß, and /zbg(0), even with k = 1. This holds for both 
groups of halo and modified Hubble galaxies. But the use of 
the 4 times larger collisional stripping cross sections of DLS 
strongly influences these parameters. Therefore, if the cross 
sections for mass loss given by DLS are largely overestimated, 
as assumed in this study, then in dense groups of galaxies, 
collisional tides are overshadowed by the tides emanating from 
the mean field of the intergalactic medium, even when ~90% of 
the dark matter of the group initially lies in galactic halos. In 
loose groups, mean-field limitation turns out to be much less 
effective, because the background is more tenuous to start 
with. 

If the initial background mass fraction is much larger (giving 
M/L = 100h5O for the group), the dense groups survive longer 
(Table 3). The stronger tides from the background mean field 
cause reduced merger cross sections and merger rates in 
groups of halo galaxies, and reduced galaxy masses and orbital 
decay rates in groups of modified Hubble galaxies. These 
trends are also present for both halo and modified Hubble 
galaxy loose groups. Note that, in groups with little back- 
ground initially, the rate of orbital decay increases as the back- 
ground grows in mass but eventually decreases when the 
continued growth of the background reduces substantially the 
masses of the stripped galaxies. 

Because pmin scales as the size of galaxy (§ IIIa[ii]), which 
increases from collisional stripping (because /c = see § IHe), 
then fixing the Coulomb logarithm produces larger rates of 
orbital decay (eqs. [6] and [7]), hence shorter instability times 
in the groups of modified Hubble galaxies. 

c) Evolution of the Luminosity Distribution 
It is interesting to check how group evolution, especially 

merging, influences the galaxy luminosity function. For this 
purpose, groups were evolved starting with fixed initial lumi- 
nosities equally logarithmically spaced over a range of 16, with 
the same constraint on the total group luminosity. The lumi- 
nosity functions, averaged over 20 dense groups with these 
“fixed” initial luminosities, are shown in Figure 10, for t % 
ti/2 = 0.5 Gyr for dense groups of halo galaxies and 1 Gyr for 
dense groups of modified Hubble galaxies. One detects the 
appearance of a new magnitude bin at the bright end of the 

TABLE 5 
Final Median Dense Group Parameters 

Galaxy Type Remarks 
rn 

(kpc) 
¿i 

(1011 L0) 
/*bg(0) 

(B mag arcsec 2) 

Halo   
Halo   
Halo    
Halo   
Halo   
Halo   
Modified Hubble 
Modified Hubble 
Modified Hubble 
Modified Hubble 
Modified Hubble 
Modified Hubble 

Standard 44 1.49 0.79 
k= 1 34 1.34 0.83 
No collisional stripping 36 1.30 0.84 
No mean-field tides 135 2.00 0.32 
DLS cross sections 13 0.68 0.97 
Modified mean-field tides 45 1.35 0.82 
Standard 16 1.16 0.89 
k= 1 15 1.24 0.88 
No collisional stripping 17 1.30 0.88 
No mean-field tides 327 1.47 0.86 
DLS cross sections 13 0.72 0.93 
Modified mean-field tides 11 1.12 0.89 

24.7 
24.2 
24.3 
25.7 
22.7 
24.7 
23.6 
23.7 
23.8 
23.1 
22.8 
23.6 
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Fig. 10.—Galaxian luminosity functions for compact projected groups within dense groups of (a) eight halo and (b) eight modified Hubble galaxies, with fixed 
initial luminosities. Solid histograms: Luminosity functions before coalescence (0.5 Gyr) for groups of halo galaxies, and IGyr for groups of modified Hubble 
galaxies). Dashed histograms: Initial luminosity functions. 

halo galaxy luminosity function, which houses the better fed 
cannibals. In comparison, the luminosity function of dense 
groups of modified Hubble galaxies shows the effects of tidal 
truncation affecting the brightest galaxies and creating two 
new bins of fainter galaxies. 

The features of the luminosity functions of Figure 10 are not 
present in the luminosity functions of runs with initial galaxy 
luminosities sampled from a Schechter function of index — 1, 
cutoff 0.01L* (§ IVb), and with the constraint that the average 
galaxy luminosity in each group must be greater than 0.1L*. 
This is seen in Figure 11, which shows the luminosity func- 
tions, now averaged over 50 of these runs, at i = 0 and t ä 
tjl = 1 Gyr (halo groups) and 2 Gyr (modified Hubble 
groups). This occurs because different groups have different 
first-ranked luminosities, so that the perturbations evident in 
Figure 10 are washed out in Figure 11. Consequently, the 
evolved luminosity functions show little difference from the initial 
luminosity functions. The loose groups of galaxies show even 
less evolution in the luminosity function than their dense 
counterparts, since, in loose groups, mergers are less frequent 
and tides are weaker. 

Figure 12 shows the evolution of Am12, the magnitude differ- 
ence between the first and second brightest galaxies, for 
compact subgroups of standard dense groups. As expected, 
Ami2 increases rapidly with the cumulative number of merged 
galaxies. However, this statistic is biased by selecting only sub- 
groups whose brightest and dimmest galaxies are within 3 mag 
of one another. Nevertheless, the median values of Am12 grow 
to be quite large ( > 1) before the coalescence of dense groups. 

In order to test the significance of the increase in Am12, one 
can use the statistic Tt = (r(mi)/(Ami2y, introduced by Tre- 
maine and Richstone (1977), who show that 7^ > 1 if the 
luminosities are randomly sampled from any given luminosity 
function. Hence, sets upper limits to the mean Am12, and, if 
mergers are important in a sample of galaxies, the two inequal- 
ities are likely to be violated. However, this statistic is biased 
by small sample sizes, small set sizes (i.e., group membership), 
and selection effects (e.g., constraints on the total group 
luminosity); thus, 7^ is less than unity in most samples of 20 
groups of four galaxies with luminosities drawn from the 
Schechter function (eq. [26]) used to generate Figure 11 (M85, 
§ VIIIc; Mamón 1987c). 

Fig. 11.^Galaxian luminosity functions for compact projected groups within dense groups of eight galaxies, starting with a Schechter luminosity function 
(without fixing the total group luminosity). Evolved times ar 1 Gyr (halo galaxies) and 2 Gyr (modified Hubble galaxies). Same notation and layout as in Fig. 10. 
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t (Gyr) t (Gyr) 
Fig. 12.—Time evolution of Am12 for compact projected groups within dense groups of {a) eight halo and (b) eight modified Hubble galaxies, with the initial 

luminosity function of Fig. 11. Filled circles: Median values of the compact groups. Plus signs: 16th and 84th percentiles (±ir) of the compact groups. Open circles: 
Median values of the noncompact groups. 

Despite these limitations, ^ was generated for the sets of 50 
dynamical simulations that started with the luminosity func- 
tion used to generate Figure 11, and is presented in Table 6 at 
given group evolution times (for the groups with js > 0). For 
comparison, Table 7 shows Monte Carlo estimates of the 5th 
percentile of Tl9 based on 100 trials, obtained using the same 
luminosity function and with Hickson’s (1982) membership cri- 
terion (§ Via). One then finds that with 95% confidence the 
dense groups of eight halo galaxies become incompatible with 
the Schechter luminosity function used here at 1 Gyr, while 
their modified Hubble counterparts become incompatible with 
this luminosity function at 2 Gyr. Another choice of luminosity 
function would be unlikely to produce the low values of 7^ 
shown in Table 6. Note that this decreasing trend is also 
present in Tremaine and Richstone’s (1977) T2 statistic (M85, 
§ VIIIc). Since the instability times for these runs are 2 Gyr 
(halo galaxies) and 4.5 Gyr (modified Hubble galaxies), the 
bright end of the luminosity functions of evolving dense groups of 
galaxies show strong inconsistencies with any parent luminosity 
function roughly halfway through their stable evolution. 

Table 6 also lists the values of 7i obtained from loose group 

TABLE 6 
Tj Values for Simulated Groups 

Dense Loose 
Time 
(Gyr) Halo Modified Hubble Halo Modified Hubble 

0.0 
0.1 
0.2 
0.3 
0.5 
1 .. 
2 .. 
3... 
5 .. 
7.5 

10 .. 
15 .. 
20 .. 

1.12 (50) 
1.10 (50) 
1.02 (50) 
0.93 (49) 
0.80 (48) 
0.49 (39) 
0.33 (26) 
0.24 (16) 

1.12 (50) 
1.16 (50) 
1.18 (50) 
1.21 (50) 
1.09 (50) 
0.92 (50) 
0.46 (49) 
0.39 (43) 
0.27 (29) 

1.08 (50) 

0.93 (50) 
0.70 (50) 
0.61 (50) 
0.46 (48) 
0.34 (42) 

1.08 (50) 

0.96 (50) 
0.86 (50) 
0.69 (50) 
0.39 (50) 
0.24 (49) 

Note.—Numbers in parentheses refer to the number of runs used in esti- 
mating the preceding value of Tj. 

simulations, starting with a Schechter luminosity function of 
index —1 and a faint-end cutoff at 0.5L*, which gives an 
average galaxy luminosity of L* (cf. § IVd). Monte Carlo esti- 
mates of Tx with this luminosity function (and again the con- 
straint that at least four galaxies lie within 3 mag from the 
brightest) yield 5th percentiles of 0.88 for 50 groups of eight 
galaxies, and 0.80 for 50 groups of four members. Table 6 then 
indicates that the luminosity functions of loose groups show 
significant signs of mergers after 7.5 and 10 Gyr for groups of 
halo and modified Hubble galaxies, respectively. Now, 
intermediate-density groups ought to have turned around and 
condensed I0h^ Gyr ago. Therefore, a large enough catalog of 
the denser loose groups should show significant evolution in the 

statistic. 
Whether or not mergers operate within a small group, the 

dynamical signature of such a group may be apparent by the 
amount of luminosity segregation within it. The galaxy lumi- 
nosity is normalized to the total luminosity in galaxies in the 
group, and the radial coordinate is taken as the distance of the 
galaxy to the nonweighted centroid of the group, and normal- 
ized to the median distance. Figure 13 plots these quantities for 
the standard dense groups of halo and modified Hubble gal- 
axies, at i ä tJ2. While it is difficult to detect by eye in Figure 
13 any trend toward luminosity segregation, one can quanti- 
tatively estimate the significance of there being no trend with 
either a linear regression test (e.g., Draper and Smith 1981) or a 
Spearman rank test (e.g., Press et al. 1986). 

TABLE 7 
Monte Carlo Estimates of 

Tí 5th Percentiles 

N = 8 N = 4 

50  0.99 0.64 
40  0.95 0.60 
30  0.92 0.58 
20  0.79 0.54 
15  0.65 0.53 

Note.—«yC is the number of 
groups, and N is the number of gal- 
axies in each group. 
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R/<R> R/<R> 
Fig. 13.—Luminosity segregation for dense groups of {a) eight halo galaxies at i = 0.3 Gyr and (b) eight modified Hubble galaxies at í = 1 Gyr 

The confidence levels for the null hypothesis of no lumi- 
nosity segregation are shown in Table 8 for simulated groups 
of eight galaxies. The column heads labeled P(R) and P(S) 
indicate the values from the regression test and Spearman test, 
respectively. Dense groups show significant segregation start- 
ing at i = 200 Myr (halo) and 100 Myr (modified Hubble), 
while for loose groups the corresponding times are 5 Gyr and 
2.5 Gyr. The more rapid luminosity segregation in dense 
groups of modified Hubble galaxies relative to their halo 
counterparts may result from differential rates of orbital decay 
operating in the former groups where the background is more 
massive. Alternatively, one can use as a radial coordinate the 
distance of the galaxy to the center of the smallest circum- 
scribed circle, normalized to the radius of this circle, and the 
results are essentially the same, since segregation occurs after 
t = 200 Myr (dense groups) and i = 5 Gyr (loose groups). 
Unfortunately, this statistic is flawed, because nearly half of the 
data points lie on the unit abscissa line; furthermore, the center 
of the circle does not coincide with the center of mass of the 
group, so that luminosity segregation is washed out in the 
inner regions of the circle. In any event, luminosity segregation 
ought to be detectable in physical groups of galaxies. Note that 
the subsample of Hickson’s (1982) compact groups with 
“accordant redshifts” (as defined in Mamón 1986) shows no 

luminosity segregation, whichever of the two methods 
described above is used (see also Mamón 1986). 

In dense groups, the background expands by roughly a 
factor of 2 before the onset of coalescence, a consequence of the 
energy pumped in from dynamical friction on the galaxies. Its 
central surface magnitude, as seen in Table 5, remains around 
pB = 24, which is about the level of sky in Chile or Hawaii. The 
background surface brightness averaged within a given aper- 
ture is of course smaller. However, one can easily show that for 
Rc = 20 kpc, groups with recession velocities v < 10,000 (T/0) 
km s-1 will have a mean surface magnitude pB < 25.5 within a 
circular aperture of radius 0, which ought to be detectable at 
the high-altitude sites mentioned above. In loose groups, the 
background is initially too stretched out ever to be detectable. 

d) Global Group Properties 
Although the virial mass-to-light ratio has large dispersion 

and systematic biases (Bahcall and Tremaine 1981 and refer- 
ences therein), the median virial mass-to-light ratio of a set of 
10 or more groups provides reasonably accurate estimates of 
the mass interior to these groups (Mamón 1987a). The median 
virial luminosity weighted mass-to-light ratios (as defined in 
Rood, Rothman, and Turnrose 1970) are shown in Table 9 to 
decrease significantly in all cases, except for dense groups of 

TABLE 8 
Confidence Levels for Absence of Luminosity Segregation in Simulated Groups 

Dense Groups Loose Groups 

Halo Modified Hubble Halo Modified Hubble 
Time      —     
(Gyr P(R) P{S) P(R) P(S) P(R) P(S) P(R) P{S) 

0   x a 0.449 0.058 0.025 x a 0.473 0.030 0.095 
0.1   0.059 0.118 0.011 <0.001 
0.2   <0.001 <0.001 <0.001 <0.001 
0.3   <0.001 <0.001 <0.001 <0.001 
0.5   <0.001 <0.001 <0.001 <0.001 
1   <0.001 <0.001 <0.001 <0.001 ... ...   
2   ... ... <0.001 <0.001 
3    ... ... <0.001 0.002 
5......... ... ... ... ... 0.167 0.039 <0.001 <0.001 

10  ... ... ... ... <0.001 <0.001 <0.001 <0.001 
20    ... ... <0.001 <0.001 <0.001 <0.001 

a The trend is in the opposite sense of luminosity segregation. 
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TABLE 9 
Time Evolution of Median Virial Mass-to-Light Ratio 

Dense Groups Loose Groups 
Time     
(Gyr) Halo Modified Hubble Halo Modified Hubble 

0    37.3 70.1 
0.1   44.3 76.1 
0.2   45.2 63.2 
0.3   44.0 53.6 
0.5    35.3 52.6 
1   46.6 48.3 
2   ... 48.9 
3   54.0 
5  

10    
15   
20  

57.0 

55.0 
42.6 
40.0 
36.3 

85.3 

52.5 
37.6 
27.6 
26.9 

halo galaxies. This indicates that mass segregation between 
galaxies and background is occurring from dynamical friction 
and orbital decay (e.g., Barnes 1984). As the galaxies decay into 
the background, less background mass lies within the smallest 
sphere encompassing them. Also, the background expands as 
the galaxies decay and transfer their orbital energy into it. 
Finally, some of the matter tidally truncated from the galaxies 
resettles in the outer regions of the background (because of the 
assumed homologous background evolution). 

Note that the modified Hubble groups start with too much 
mass in the background. This is a consequence of Limber’s 
bias, since initially the background is more concentrated than 
the galaxy system (see Smith 1980). Nevertheless, after 2 Gyr, 
the virial mass-to-light ratios are smaller than 40 for these 
groups, and this therefore justifies the standard choice of ft = 
0.75 for them. Simulations with ft = 0.9 produced median 
values of M/L that started around 180 and did not decrease 
below 110. 

As a final point, the sizes of first-ranked galaxies are plotted 
against the group mean distance between galaxies, assuming 
here that all the galaxies lie inside the sphere of radius RH 
(defined in § YVd). These plots are shown in Figure 14, for runs 

with 7c = 1 (so that collisional stripping contributes to 
decreased galaxy sizes), and for groups of eight galaxies at 
r tttjl for the dense groups, and i = iHubbie f°r the loose 
groups. Note that the age of the loose groups does not influ- 
ence their position in this plot. Presumably, the gaps in 
between the two clouds of points in Figures 14a and 14h would 
be filled by groups of intermediate density. Figure 14h indi- 
cates a trend of decreasing galaxy size with decreasing mean 
intergalactic distance in groups of modified Hubble galaxies, 
while there seems to be no such trend in the groups of halo 
galaxies plotted in Figure 14a. These results confirm the fact 
that the modified Hubble galaxies are more severely truncated 
than the halo galaxies (§ VIh). Note that a similar pair of 
figures generated from simulations with k = % would be very 
similar to the plots in Figure 14, which indicates that col- 
lisional stripping contributes little to the sizes of the first- 
ranked galaxies in both dense and loose groups (cf. § VIh). 

VII. DISCUSSION 

In the early universe, dense groups ought to turn around 
from their initial Hubble expansion and subsequently virialize 
in very short times (although one can argue that they would 
never reach a state of virial equilibrium). The short instability 
times of iHubbie/30 and tHuhhlJ8 for dense groups of 8 halo and 
modified Hubble galaxies, respectively, with (M/L)group = 
40h5O, make it very difficult to account for present-day 
compact groups as surviving dense groups formed during the 
early universe. The spread of the evolution times observed in 
the present simulations (§ Via) is too small to change this con- 
clusion. Starting with 2.5 times more mass in the groups 
(M/Lb = 100h5O), the median instability times become roughly 
3 times longer, but are still too short to accommodate an early 
formation of present-day dense groups. If the mass-to-light 
ratio of groups were 200h5O as found by Mezzetti et al (1985) 
for the groups in the CfA catalog (Geller and Huchra 1983), 
then the instability times would be even longer. However, these 
very large mass-to-light ratios probably reflect a significant 
contamination by interlopers, for otherwise how would Gott 
and Turner (1977) and Rood and Dickel (1978) find lower 
mass-to-light ratios in small groups? The masses of groups are 

10 100 1000 10 100 1000 

N'1/3Rh (kpc) N'1/3Rh (kpc) 
Fig. 14.—Largest galaxy size vs. mean intergalactic separation for groups of eight galaxies with k = 1, at r = 0.3 Gyr (halo galaxies in dense groups), i = 1 Gyr 

(modified Hubble galaxies in dense groups), and r = 20 Gyr (galaxies in loose groups). Same layout as in Fig. 13. Crosses: Compact projected groups within dense 
groups. Plus signs: Stable projected groups within loose groups. The gaps between the clouds of points would presumably be filled by points representing 
intermediate density groups. 
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hence fundamental in probing the survivability of the densest 
ones. 

Therefore, if a compact group is physically dense and bound 
today, it must have formed recently via 2-body processes 
within a loose group. Such an evolution has been observed in 
the simulations of loose groups presented here, although 
bound dense subgroups occur rarely (< 1%) in loose groups of 
modified Hubble galaxies and almost never within loose 
groups of halo galaxies. Note that a bound core within a loose 
group of modified Hubble galaxies is more likely to be dis- 
persed by encounters with other galaxies from the group than 
is a corresponding core within a loose group of halo galaxies, 
because the ratio of instability time to parent group crossing 
time is much larger in the former case. 

With the statistics of projected compact groups seen in simu- 
lated loose groups (§ Via), one can reassess the distribution of 
the states of the compact groups cataloged by Hickson (1982) 
with “accordant redshifts” (see Mamón 1986). If galaxies in 
groups possess massive halos, then the vast majority of 
Hickson’s accordant redshift compact groups must be chance 
alignments within larger loose groups. On the other hand, if 
galaxies are stripped of their halos at an early stage of the 
evolution, then roughly 40% of the accordant redshift compact 
groups must be unbound transient cores, 5% physically dense 
subgroups, and the remaining 55% chance alignments within 
loose groups. In any event, the majority of the accordant red- 
shift groups of Hickson’s catalog must be chance alignments of 
galaxies within loose groups, and further arguments for this are 
presented in Mamón (1986). 

In contrast, Rose (1979) simulated loose groups of seven 
galaxies (with Rg = 500 Mpc), and found compact configu- 
rations within 12% of his groups, which he attributed to simul- 
taneous transient passages of galaxies through the core of the 
parent group. The large softening length adopted by Rose 
(55 kpc) and the absence of intergalactic background in his 
simulations make his groups directly comparable to the loose 
groups of halo galaxies here, for which only 15% of the 
compact projected groups are part of three-dimensional cores. 
This discrepancy is discussed further in Mamón (1986). 

The results from the simulations of small virialized groups of 
Carnevali, Cavaliere, and Santangelo (1981), Cavaliere et al. 
(1983), and Barnes (1985), although obtained from a very differ- 
ent scheme (by building galaxies with a collection of particles 
rather than a single one), are nevertheless suitable for compari- 
son with the simulations presented here. The density of the 
groups in those simulations is inferred from the ratio of the 
galaxy half-mass radius to the group half-mass radius, and the 
instability times, inferred from their snapshots, are expressed in 

units of the group half-mass crossing time. Details of the fol- 
lowing analysis are given in M85 (§ IXb). 

In the present simulations with fixed initial luminosities, the 
typical ratio of galaxy half-mass radius to group half-mass 
radius, from the numbers in Tables 1 and 3, are rA/<R) ä 0.35 
for dense groups of halo galaxies, 0.1 for dense groups of modi- 
fied Hubble galaxies, 0.04 for loose groups of halo galaxies, and 
0.015 for loose groups of modified Hubble galaxies. In com- 
parison, Carnevali, Cavaliere, and Santangelo (1981) simulated 
average density groups of 10 or 20 halo-like galaxies, each 
comprised of 20 stars and no background, and their groups 
were unstable (in the sense of § Via) in 7 of their time units, 
corresponding to « 8icr. Using the same code, but with a 
Schechter mass function, Cavaliere et al. (1983) arrive at æ 
ltcr. With 50% of the group mass in a diffuse background, their 
instability time extended to ^ 20icr. Finally, model E of 
Barnes (1985), with five galaxies and rh ~ 0.1<R> and ßt = 0.5, 
was unstable in three of his time units, or » 8icr, while his 
group of 10 galaxies (model G) seemed to survive much longer 
(see his Fig. 5). 

To make a direct comparison between model E of Barnes 
(1985) and the present code, simulations were carried out using 
five equal-mass modified Hubble galaxies with rh = 6.3 kpc, 
inside a sphere of radius Rg = 117 kpc, and with ß = 0.5. As in 
Barnes, these simulations start with rh/(R} =0.1. The median 

comes out to be 1.5 Gyr or if/icr = 7.9, thus in remarkable 
agreement with Barnes’s result. 

In reality, groups do not start out from virialized initial 
conditions, but instead follow Hubble expansion, then turn 
around and collapse, and may never pass through a virialized 
stage. Such initial conditions have been used by Ishizawa et al. 
(1983), Cavaliere et al. (1983), and Barnes (1985). A large 
number of simulations of small groups starting with these 
more realistic initial conditions, and using the methods pre- 
sented here, will be presented in a forthcoming paper (Mamón 
1987h). 

This article is largely based upon a Princeton University 
Ph.D. thesis. The author is indebted to his thesis adviser, Ed 
Turner, who had suggested a study on compact groups, for his 
continual advice, as well as to J. P. Ostriker, Luis Aguilar, 
James Binney, and Paul Hickson for important contributions, 
and to Cliff Hurvich and Javier Cabrera for statistical advice. 
Ed Turner and J. P. Ostriker are also thanked for reading the 
manuscript. Part of the computations were performed on the 
computers at ADR, thanks to Angel Casado. This work was 
partially supported by grant AST83-17009 from the National 
Science Foundation. 

APPENDIX 

IMPULSE APPROXIMATION FOR A MODIFIED HUBBLE PERTURBER 

Consider a stellar system moving past a diffuse distribution of matter. Assume that the trajectory of the diffuse perturber of core 
radius Rc and central density ps, relative to the stellar system, is a straight line. Let /? be the position of the stellar system in the frame 
of the perturber, and let r be that of a star in the stellar system. The position of the star in the frame of the perturber is then 
Rs = R + r, and the tidal acceleration of a star is 

dv 
Jt 

GM(Rs) GM(R) 
Rs

3 s R3 R = œ2
pRcÇ, 

where | is a dimensionless vector and cop = (4nGp0)112. Consider an inertial frame whose first axis points in the direction of the 
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perturber when it is at closest approach, and whose second axis points in the direction of the motion of the perturber. If p is the 
distance at closest approach, and V is the velocity, assumed constant, of the system relative to the perturber, then using dimension- 
less variables p = p/Rc, X = R/Rc, Xs = RJRC, x = x/Rc, and so on, and writing X2 =p2 + fi2i2 and X2 = (p - x)2 + (Qt - y)2 

+ z2, with fi = V/Rc, one can write 

where M(x) is the dimensionless mass distribution of the perturber (eq. [20a]). 
The tidal acceleration can be integrated, yielding 

f 00 ?ro2 R 
A» = co2 Rc j t;dt = —^t,, 

with 

where 

nx = (p + x)I(q) - p/(p), 

^ = 0 , 

i?z = zi(q), 

_ f00 Mjy)dy 
W_1 y2(y2 -x2)112 ’ 

(Al) 

(A2a) 

(A2b) 

(A2c) 

and q = [(p + x)2 + z2]1/2. For a modified Hubble perturber (eq. [1] with n = 3), and with some algebra, one obtains 

I(x) = \ 

I(x) = 

X, 
2 \X2 + 1 

sinh-1 Xt 

1/2 

x2(X? + 1) 1/2 

1 
+ - tan“ 

x 

JL 1 /X2-*2V/2 

4x + x2 \ X2 + 1 
2(1 — x2) — 2x2 1 ^2-x2y/2i _l . -i r^L 

+ J 2x Sm L X2(x2 + 1) j 

+ -^ In (x2 + 1) - 4 ln K^.2 + !)1/2 + (X? - *2)1/2] 2x x 

/(x) = 
sinh 1 X, X' 

x2(Xf + 1) 1/2 

x = 0 , 

0 < x < X,, 

x > X,, 

(A3a) 

(A3b) 

(A3c) 

where Xt is the concentration parameter of the perturber. Note that if p and q are both greater than X, everywhere, the velocity 
changes reduce to those of Spitzer (1958), since the stellar system sees a point-mass potential. 

Given Av, the limiting radius of the system is defined as the radius of the shell whose new specific energy, relative to the center of 
the system, is just zero (White 1983). Writing the new specific energy of a star as Ef = jv2 + <f>(r) + v • Av + ■j(Ac)2, the specific 
energy of a shell is obtained by averaging the stellar energies over velocities and then over angles. Assuming velocity isotropy and no 
rotational streaming, this yields 

E(r) = §<j2(r) + <p(r) + i((Av)2)? , (A4a) 

with 

<(Ar)2>? 

4o)p R2 JJ q2 sin OdOdcp 4ojp R2 

n2 ' 4n ~ n2 q2(r, p), (A4b) 

where tj is taken from equations (A2) and (A3). Setting to zero the specific binding energy of the shell, formulated in equations (A4), 
and expressing quantities in dimensionless form, one arrives at 

(x,) - </>(xt) + 
2y2^ 
m2n2 

(A5) 
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where rc and pg are respectively the core radius and the central density of the stellar system, and where a2 = a2l{A%Gpqr
2\ 

-(¡>/(^Gpg
rcX y = Rc/rc, and cog = (4nGpg)1/2. 

If the velocity dispersions are derived with the assumption of isotropy, then the shell binding energy/^x) = <j)(x) - (3/2)cr2(x) is a 
nonmonotonic function of x near the edge of the galaxy (M85, Appendix C). Since i/2(x/y, p) is either monotonie in x, or close to 
being so (M85, Appendix C), then equation (A5) may have more than one solution, and it is technically difficult to isolate the 
smallest (i.e., physical) solution when the total number of solutions is not known. Therefore, in practice, the internal velocity 
dispersion of a galaxy is approximated to the value set by assuming local virial equilibrium, giving an approximate shell binding 
energy (White 1983)/2(x) = i<£(x), which is a monotonie function of x. Then the new concentration parameter of the galaxy is 
obtained by solving 

2y2cot 
œïn* 

for xi5 where rj is cubic spline-interpolated from precomputed values. 

(A6) 
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