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ABSTRACT 
We determine the steady state particle and photon distributions under the assumption of continuous injec- 

tion of relativistic electrons and low-energy photons throughout a spherical volume. Through inverse 
Compton scattering, the primary electrons produce y-rays, which then produce electron-positron pairs. The 
pairs constitute a secondary electron injection, and the process continues, with each generation of pairs 
cooling down to subrelativistic energies before thermalizing and annihilating. We improve on earlier investiga- 
tions of this problem, compute detailed emergent spectra for a wide range of parameters, and compare our 
results to the data from active galactic nuclei (AGNs). The range of observed spectra and inferred high-energy 
cutoffs can be fitted by varying the input parameters of the injected particles and photons, subject to certain 
constraints. In general, pairs are less important in these models than previously thought. For the sizes of 
AGNs inferred from time variability, pair production cannot provide a break in the y-ray spectra at energies 
below ~l-5 MeV, as required by the limits of the y-ray background; the break must be achieved instead by 
suitable constraints on the primary injections of electrons and photons. Furthermore, pairs may provide only 
a minor contribution to the X-ray and y-ray spectra. However, pairs can still greatly outnumber ionization 
electrons, even at modest luminosities, and pairs may limit the maximum luminosities of AGNs by reducing 
the effective Eddington limit. 
Subject headings: gamma rays: general — particle acceleration — radiation mechanisms 

I. INTRODUCTION AND SUMMARY 
Two decades ago, it was pointed out that y-rays produced in 

sufficiently luminous and compact astrophysical objects would 
create electron-positron pairs by collisions with lower energy 
photons (Jelley 1966; Herterich 1974), y + y + e~. This 
process both depletes the escaping radiation at high energies 
and also changes the composition and properties of the radi- 
ating gas through the injection of new particles. An approx- 
imate condition for such pair creation to become significant is 
that a sizable fraction of the radiation from the object be 
emitted above the electron rest mass energy, mec

2 = 511 keV, 
and that the “compactness parameter” of the object, / = 
L(TT/(Rmec

3\ exceed 10, where L is the total luminosity, R is a 
characteristic source dimension, and crT is the Thomson cross 
section. When / > 10, a photon of energy mec

2 has an optical 
depth of unity for creating pairs. 

Both theoretical arguments and observational evidence 
suggest that pair production may be important in active galac- 
tic nuclei (AGNs) and quasars (QSOs), especially in the vicinity 
of a central black hole. On the theoretical side, we note that the 
compactness parameter may be rewritten as 

La •J' 
Rmec

3 (la) 

(lb) 

where mp/me is the ratio of proton to electron mass, LE = 
4nGMcmp/GT is the Eddington limit, and Rs = 2GM/c2 is the 
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Schwarzschild radius of a black hole of mass M. Thus, for 
R ~ 10RS, typical of many accretion models, / will reach 10 for 
a modest value of L/LE. Furthermore, in accreting onto a black 
hole, each proton can convert of order 10% of its rest mass 
into energy, making available ~0.1mpc

2 ~ 100mec
2 of energy 

per ionization electron in the gas. Shock waves, magnetic 
reconnection, and strong electric fields may continuously 
accelerate a small fraction of electrons up to much higher ener- 
gies. If such electrons can produce photons of similar energies, 
e.g., through synchrotron emission or Compton scattering, 
then the conditions for copious pair production are satisfied. 

On the observational side, the compactness parameters and 
pair-production optical depths of AGNs and QSOs may be 
estimated by assuming that time variabilities give character- 
istic sizes, R < cAt, where Ai is the observed time scale of 
variability. Recent data from AGNs and QSOs (see Wandel 
and Mushotzky 1986, and references therein, and Table 3 
below) indicate that a large fraction of these objects have 
/ » 10. The spectra from AGNs and QSOs extend up to 0.1- 
5 MeV (e.g., Mushotzky 1982; Schönfelder 1983; Rothschild 
et al 1983; Petre et al 1984; Graml, Penningsfeld, and Schön- 
felder 1978; Hall et al 1976; Perotti et al 1981a, b; von Ball- 
moos, Diehl, and Schönfelder 1987; Bignami étal 1919; 
Damle et al 1986) and possibly higher, although only a few 
objects are bright enough to have been seen at energies above a 
few hundred keV with current detector sensitivities. Among 
those objects detected are Cen A, NGC 4151, MCG 
8 — 11 — 11, and 3C 120, which have high-energy breaks at 3- 
10 MeV (Graml, Penningsfeld, and Schönfelder 1978; Perotti 
et al 1981a, b; Bignami et al 1979; von Ballmoos, Diehl, and 
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Schönfelder 1987; Damle et al 1986). Pair annihilation fea- 
tures have not yet been observed. In summary, the current 
observational evidence for pair processes in AGNs is sugges- 
tive but not conclusive, and a closer comparison between data 
and theory is needed, which we attempt below. 

Most theoretical investigations of pair processes in recent 
years have followed the fruitful suggestion of Guilbert, Fabian, 
and Rees (1983) that electrons are continuously injected into 
the emitting region with a high-energy, nonthermal distribu- 
tion and then produce y-ray photons, either through synchro- 
tron emission or Compton scattering. The y-rays produce 
pairs, which constitute a secondary electron injection and 
produce additional high-energy photons. Depending on 
parameters, further generations of particles and photons may 
be produced. As a result of rapid cooling (the cooling time of 
an electron of Lorentz factor y is ~ [Æ/c]/[y/] R¡c\ the elec- 
trons and positrons cool down to subrelativistic energies 
before thermalizing and annihilating. Thus, except for the scat- 
tering effects of the population of low-energy thermal pairs 
about to annihilate, the process is essentially nonthermal. This 
contrasts to previous calculations, which assumed all the par- 
ticles to have a Maxwellian steady state distribution (see, e.g., 
Svensson 1986 for a review). 

Following the above physical picture, we first studied the 
self-consistent distribution of particles and photons under the 
assumptions that higher order Compton scatterings and the 
scattering effects of the low-energy thermal pairs could be 
neglected (Zdziarski and Lightman 1985, hereafter ZL85). For 
a monoenergetic injection of primary electrons, the photon 
energy spectral index a in the X-ray region of the spectrum 
increases from a » 0.5 (when pairs are unimportant) to a » 0.9 
(when pairs are very important) as the compactness parameter 
/ increases from 0.1 to 100. When the number of pair gener- 
ations is large and the medium is thick to pair production at all 
relevant energies and the effects of thermal scattering can be 
neglected, the pairs are produced with a rate ocy-2, and the 
index a approaches unity, as first discussed by Kazanas (1984). 
For a power-law injection of primary electrons, ß(y)ocy-r, 
where Q is the rate of production of electrons per unit energy 
per unit volume, the first-order scattering by pairs steepen the 
X-ray spectrum from a = F/2 toward unity, as long as F < 2 
(when the primary electron injection is flatter than the pair 
injection). The case of monoenergetic electron injection was 
further studied by Fabian et al (1986, hereafter FBGPC86) 
and by Svensson (1987, hereafter S87), who significantly 
extended the treatment of ZL85 by including the scattering 
effects of the thermal pairs, which become important at com- 
pactness parameters / > 30. Furthermore, S87 has derived a 
number of new analytical results regarding the pair gener- 
ations and production rates. 

In the present investigation, we further improve on the 
theory, calculate many models with monoenergetic and power- 
law electron injections spanning a large range of input param- 
eters, and make detailed comparisons of our results to the 
observed data of AGNs and QSOs. We extend the theory 
by using the full Kompaneets equation to treat thermal 
Comptonization up to mildly relativistic energies and by 
adding relativistic corrections to photon scattering and escape 
probabilities. We also calculate the ratio of pairs to ionization 
electrons in accretion models and propose that a coupling 
between pairs and protons can reduce the Eddington limit. 

Our main results and conclusions are the following: 
1. Relativistic corrections to the scattering and escape prob- 

abilities are very important when the Thomson depth tt is 
large. For tx æ 10, for example, these corrections reduce the 
effective value of the scattering depth to ~ 1 at energies just 
below me c2, with a corresponding large effect on the spectrum. 

2. In accretion models, the ratio of pairs to ionization elec- 
trons can be large, in contrast to previous results for thermal 
production of pairs. 

3. Both the observations of AGNs and the theory indicate a 
large range of parameters from one object to the next, with no 
“ universal ” AGN. AGNs and QSOs have X-ray (2-10 keV) 
spectral indices a in the range of ~0.4—1.0 and “observed 
X-ray compactness parameters ” /ob = Lx aT/Atme c4 in the 
range ~3 x 10_2-10(seeFigs. 11 and 12). 

4. The required high-energy break in the spectrum of a 
typical AGN, with loh « 0.5, is probably not caused by pair 
production, but rather by a small value of the maximum 
energy of the scattered photons or by a low ratio of input 
photon power to input primary electron power. In the first 
class of models, the range of observed spectral indices corre- 
sponds to a range in the power-law indices of the primary 
injected electrons; in the second class, it corresponds to a range 
in the ratio of injected soft photon power to injected primary 
electron power. Each of these classes of models can fit most of 
the observed data. Pairs do not play an important role in 
models for the typical AGN. 

5. Electron-positron pairs increase the Thomson opacity of 
a black hole photosphere and can reduce the effective Edding- 
ton luminosity if they are coupled to the protons. The observed 
upper limit 10 for AGNs might be explained by this 
“pair-reduced Eddington limit,” which, depending on condi- 
tions, is ~ 10 times lower than the classical Eddington limit. 

II. PHYSICAL PROCESSES IN PAIR PLASMAS 

a) Fundamental Assumptions and Parameters 
We assume that electrons are continuously injected at a rate 

Q(y) particles per unit time per unit volume per unit energy, 
with 7min ^ 7 ^ 7max* When g(y) is a power law, we take Q = 
Q0 y-r. This injection occurs uniformly throughout a spherical 
volume of radius R and is measured by the dimensionless 
“ electron compactness parameter ” (see eq. [la]), 

L = 
Le aT 4nR4 

3c Rm„c3 

where 

Le = (4nR3/3)mec
2 Q(y)(y - l)dy 

-Í 
6(7X7 - i)dy > (2a) 

is the total power put into the electrons. We assume also that 
soft photons are injected at the rate h0(x) photons per unit time 
per unit volume per unit energy x, where x = hv/mec

2 is the 
dimensionless photon energy. We will take h0(x) to be a black- 
body, peaked at energy x = xs (where xs is related to the black- 
body temperature Thh by xs = 2.8/cTbb/mec

2), which may be 
identified with the “UV bump” observed in some AGNs 
(Malkan and Sargent 1982; Elvis et al 1986; Bechtold et al 
1987). Accordingly, we take xs in the range 10-5-10-4. We will 
assume xs7max < f, so that for any electron a nonzero part of 
the photon spectrum is in the Thomson limit (see eq. [8]). 
Allowing fi0(x) to be a smooth distribution peaked at xs rather 
than a ¿-function, as was assumed by ZL85, S87, and 
FBGPC86, smoothes out some of the artificially sharp spectral 
features found in the latter calculations. The “soft photon 
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compactness parameter ” is 

h = j* n0(x)xdx . (2b) 

If h0(x) is identified with the “ UV bump ” and this emis- 
sion comes from within the same region as the X-ray and 
y-ray emission, then the observations indicate 0.05 < ls/le <0.5 
(1 < ls/lx< 10 and lx/le~ 0.05). 

For a monoenergetic injection, Q(y) = Q0à(y - ym¡lx), the 
four dimensionless parameters that specify a model are xs, ymax, 
le, and ls/le. For a power-law electron injection, ymin and F must 
also be specified. We will take ymin = 1 in all of our detailed 
calculations. 

We note here that our compactness parameter, as defined by 
equation (la), is the same as in ZL85 and in S87, but is 47r/3 
times that in FBGPC86. Our le is denoted by in S87 and our 
ls/le is denoted by Ürad/Ücl in FBGPC86. 

Electrons are assumed to cool by scattering lower energy 
photons, which may either come from the injected distribution 
n0(x) (first-order scattering) or from previously scattered 
photons (higher order scatterings). Once xs, ymax, /e, and ls/le 
(and ymin and F if the electron injection is a power law) have 
been specified, the particle and photon distributions may be 
self-consistently determined under the combined processes of 
pair production and annihilation, inverse Compton scattering 
off electrons and positrons (which exist in both nonthermal 
and thermal populations), and photon escape. We assume that 
particles do not escape. 

For purposes of comparison to observations, two other 
compactness parameters must be defined: the “X-ray com- 
pactness parameter,” 

i _ Lx (Tt 
x - Rmec

3 ’ 

and the “ observed compactness parameter,” 

(2c) 

_ Lx 

Aimec
4 * 

(2d) 

Here Lx is the luminosity in the 2-10 keV energy range and Ai 
is the shortest observed time scale of variability. If tt is the 
Thomson scattering depth, then we may take Ai > (R/c) 
(1 + tx/3) (see eqs. [18a], [18b]). Taking this relation as an 
equality, we have 

U = IJ(1 + W3). (2e) 
The right-hand side of equation (2e) will be calculated in our 
models, while the left-hand side can be measured. 

b) Steady State Kinetic Equations 

The electron distribution will be divided into a thermal and 
a nonthermal population. Let n(x) and N(y) be the number 
densities per unit energy of photons and nonthermal particles, 
respectively, at a representative interior point of the emission 
region. Then the steady state equations are 

at energy x by soft photon injection, pair annihilation, 
Compton scattering off nonthermal electrons, and Compton 
scattering off thermal electrons, respectively. (The scattering by 
thermal and nonthermal electrons will be treated separately.) 
Photons are removed by Compton scattering with nonthermal 
electrons, having optical depth TcT, by pair creation, having 
optical depth Tyy, and by escape from the region, at a rate of 
nesc. The removal of photons at energy x by scattering with 
thermal electrons is included in fij. In the electron equation, 
Nc(y) is the rate of change of the particle distribution at energy 
y via nonthermal Compton scattering, P(y) is the rate of pair 
creation per unit volume per unit energy, and Q(y) is the rate of 
injection of primary electrons per unit volume per unit energy. 
At low energies, y ~ 1, the electrons and positrons are assumed 
to thermalize and form a Maxwell-Boltzmann distribution at 
temperature 0 =/cT/mec

2 1 before annihilating. The 
density and temperature of this thermal population of elec- 
trons will be determined below and will then be used in calcu- 
lating he in equation (3). 

In the rest of this section, we evaluate the processes in equa- 
tions (3) and (4). In Appendix A, we demonstrate that our 
equations conserve energy; in Appendix B, we discuss the 
numerical method used in their solution. 

c) The Steady State Nonthermal Electron Distribution 

Using the continuity equation for the nonthermal electron 
distribution, 

Nc(y) = y imy)'] oy (5) 

equation (4) may be formally integrated to yield 

N(y) = 
^Vmax 

LQ(Y) + P(Y)W - (6) 

Here y, the rate of cooling of an electron of Lorentz factor y via 
Compton scattering, is 

r= -°Tc(b2-i) 
*3/4y 

n(x')x'dx' . 
Jo 

(7) 

In deriving equation (7), we have assumed that a photon of 
energy x' scattering off an electron of energy y emerges with 
energy 

x = fyV , (8) 

and that this process occurs with the Thomson cross section at 
all photon energies satisfying x'y < f. For larger photon ener- 
gies, we assume the cross section is zero. Equations (6) and (7) 
are the same as equation (9) in FBGPC86, except that the 
latter replace 4/3 by 1. By including the full n(x) in equation (7), 
and not just the contribution from soft photons at energy ~xs, 
second- and higher order Compton scatterings are allowed in a 
self-consistent manner, in contrast to the treatments in ZL85, 
considering the first-order scattering only, and in S87, treating 
the second-order scattering as a perturbation not affecting the 
electron distribution N(y). 

0 = «0 + + «CT + «C - ^ n(*cT + v,) - «esc > (3) 

0 = Ñc(;’) + P(y) + Q(y) . (4) 

Here h0,hA, ficT, and are the rate of production of photons 

d) Photon Production and Absorption by Nonthermal Compton 
Scattering 

Using the approximation in equation (8) and the discussion 
below it, the photon production by nonthermal Compton scat- 
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tering may be written as 

ñcT(x) — c<tt Í n(x')dx'ô(x — ^ y2x'jN(y)H\^ — x'yjdy 

x~1/2 
pmin(3/4x, 3x/4) 

J3x/4y2
aax 

n(x')x'-1,2N 

(9) 

where H(y) = 1 for y > 0 and 0 for y < 0. 
Equation (9) is analogous to equation (6) in FBGPC86, and, 

again, it differs from the corresponding equation in ZL85 by its 
inclusion of higher order scatterings. S87 includes the second- 
order scattering as a perturbation (see § lie). 

The absorption depth corresponding to this process, under 
our assumptions, may be simply written as 

f3/4x 
t£t(x) = <txr| N(y)dy. (10) 

e) Pair Production and Annihilation 
i) Absorption Depth to Pair Production 

In pair production, photons of energy x interact primarily 
with photons of energy ~ 1/x. Using the calculations of Gould 
and Schréder (1967) for a power-law radiation field 
n(x) oc x-(a+1), the pair-production absorption depth may be 
written as 

= ii(v)Rgt - n\ (11) 

where 77(a) = 0.24 and 0.12 for a = 0.5 and 1, respectively. Fol- 
lowing S87, we take rj = 0.2 for our calculations. This approx- 
imation differs slightly from that of FBGPC86, where the cross 
section is approximated as a rectangular function and then 
integrated over the photon distribution. 

ii) Rate of Pair Production 
In pair production we assume that the incoming energy is 

shared equally between the electron and positron, each of 
Lorentz factor y. Thus energy conservation requires 

1 
x + - 

X 
= 2y . (12) 

For every photon that disappears at an energy x > 1, two 
particles are produced. Thus we may write 

r y max/2 'Jg Cymax 
P(y)dy = — n(x)ryy(x)dx, (13) 

Jy -K Jy + VV2 - 1 

where the lower limit on the right-hand side of equation (13) is 
obtained by taking the x > 1 root of equation (12). Equation 
(13) differs from the corresponding equations in ZL85 and in 
S87, where the energy input of the x < 1 photon is ignored in 
equation (12), and radiative transfer is treated differently (e.g., 
compare eq. [13] with eq. [2.18] in S87). 

iii) Pair Yield 
To measure the efficiency of putting energy into the rest 

mass of pairs we will define the “pair yield” (see Guilbert, 
Fabian, and Rees 1983 ; S87 ; FBGPC86) 

rY _ f imax/2 piy)dy 
- Jv™ <2(yXy - l)dy ' 

(14) 

As first found by S87, and confirmed by our calculations, for 
F 2, PY increases rapidly in the range 2<le<7 and 
approaches a maximum of ~0.1 for le$> 10, independent of 
other parameters (see Fig. 8). In the three references above, the 
pair yield is denoted by x. 

In the limit of small /e, PY can be calculated analytically. We 
first calculate PY in the case of a monoenergetic injection of 
electrons. If we write n » (R/c)h, use the approximation h0 = 
(c/R)n0 <5(x — xs), neglect higher order scatterings in equations 
(7) and (9) so that n(x) = n0 ô(x — xs) in the integrands, assume 
Q(y) = Q0 ô(y — ymax), neglect P compared to Q in equation (6), 
and neglect nA, tc, and Tyy, then equation (3) can be solved 
to give (see ZL85) 

31/2 QqR _^n _<n n(x) = — x 3/2xs 
1/2 , xs < x < xmax ! , 

4 c 

where 

•^max, 1 — sTmax^s • (1^^) 

This is the solution for n(x) when electrons are injected mono- 
energetically, the soft photon source is strong enough so that 
secondary scatterings can be neglected (ls/le >0.1), and pairs 
can be treated as a perturbation on n(x) (PY 1). 

Substituting equation (15a) into equations (11), (13), (14) and 
using equation (2a), the pair yield in the low compactness limit 
can be written as 

PY(mono) = ^ In (xmaXi t). (16) 
xmax, ! 

This equation differs by a factor of 2 from the analogous equa- 
tion (4.28) in S87 due to a different treatment of radiative treat- 
ment in that paper (see § IIe[ii] above). 

For a power-law injection of electrons with injection index 
F, the results are approximately the same in equations (15) and 
(16) for F < 1. For 1 < F < 2, the pair yield is given by 

py(i < r < 2) _ (2 - T)2 

PY(mOno) (r _ 1}2 ^max, i! 
(17a) 

and for F > 2 the pair yield is given by 

PY(r > 2) 
PY(mono) 

= (r - 2)24r vmax, 1 ' (17b) 

Note that for power-law electron injection, the pair yield can 
be even higher than that for monoenergetic injection. This is 
because the pair yield scales as the number of electrons 
injected, which, for fixed total injected energy, is greater when 
the injected distribution extends to lower Lorentz factors. The 
pair yield PY(F), for fixed xmax> x and xs, is largest for F = 2. 

iv) Pair Annihilation 
As mentioned before, we assume that pairs cool down to 

subrelativistic energies and thermalize before annihilating. If 
the number densities of these cool thermal positrons and elec- 
trons are n+ and n_, respectively, then the rate of pair annihi- 
lation may be written as (see S87 ; Svensson 1982) 

dn 'î 1 f>’max/2 

-f- = - - ga{®)oTcn+ n_ = - - J P{y)dy , (18a) 

= [1 + 202/ln (1.12© + 1.3)] -1 . (18b) 

The second equality in equation (18a) expresses the require- 
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ment that, for a plasma at rest, positrons must be destroyed at 
the same rate they are created, in steady state. When the 
plasma is in motion, for example flowing toward a black hole, 
steady state requires that the creation rate of positrons be 
balanced by the sum of the annihilation rate and the inflow rate 
(see Lightman, Zdziarski, and Rees 1987; Begelman, Sikora, 
and Rees 1987). Unless otherwise specified, we will assume in 
this paper that the plasma is at rest. 

For the pair annihilation spectrum, we use the spectral fit of 
Svensson (1983). For 0 1, the spectrum becomes 

"A2) - If iHe ~ ■'VB“p f^^2] - 

(19) 

Determination of the temperature 0 and of the broadening of 
the annihilation line due to thermal scattering will be discussed 
in § llg below. 

v) Scattering Depth to Thermal Pairs 
The Thomson scattering depth to thermal pairs is 

tt = RaT(n+ + n_) . (20a) 

Using n+ = n_, equations (2a), (14), and (18), equation (20a) 
may be written as (see Guilbert, Fabian, and Rees 1983), 

tx — (20b) 

In determining tt, we have neglected the cooled primary 
electrons, assuming that an effective reacceleration occurs. 

/) Photon Escape 
Photons not absorbed are impeded from escaping in a time 

~R/c by scattering. Scattering by (high-energy) nonthermal 
electrons drastically changes the energy of a photon and is 
treated as absorption. In this section, therefore, we consider 
scattering only by the (low-energy) thermal electrons. 

Spatial diffusion is modeled by a mean interior photon 
density n(x) and an escape rate nesc. We approximate the 
photon escape rate as 

where 

and 

"esc = ^ "M| 

jl, x < 0.1 , 

f(x) = 1(1 — x)/0.9 , 0.1 < x < 1 , 

lo , x > 1 , 

tknM — ^t^knM/^t • 

(21a) 

(21b) 

(21c) 

Here aKN(x) is the Klein-Nishina cross section (see, e.g., Jauch 
and Rohrlich 1980, eq. [11.24]). In the nonrelativistic regime, 
x < 0.1 and /(x) = 1, this expression approximates the results 
of equations (8) and (9) in Sunyaev and Titarchuk (1980) for the 
case of photon sources distributed sinusoidally throughout a 
spherical volume. For this special distribution, which is not far 
from a uniform distribution, equation (3) is a good approx- 
imation to the spatial diffusion problem. 

In the relativistic regime, x > 1, the large energy shift in a 
single scattering effectively removes a photon of energy x from 
n(x) upon scattering. In addition, forward scattering becomes 
more important. Thus, at each energy x a diffusive buildup of 
photons in the interior cannot occur. A photon either scatters 
and reappears at a new x, as included in and treated below, 
or it escapes in a time R/c. The /(x) function smoothly makes 
this transition from the nonrelativistic to the relativistic 
regimes. We determined /(x) by comparing the solution of 
equation (3), without pair processes, to the results of Monte 
Carlo calculations, injecting photons of energies 10-4 < 
x < 102 into a sphere of scattering depths tt ranging from 3 to 
12 (Lightman and Zdziarski 1987). The function/(x) was the 
simplest one that gave a good fit to the Monte Carlo results. 
(We point out, however, that the choice of/[x] depends some- 
what on the adopted relativistic corrections to the Kompa- 
neets equation; see § II^[i] and Lightman and Zdziarski 1987.) 
Earlier calculations (FBGPC86; S87) did not include rela- 
tivistic modifications to the escape rate for energies x < 1. 

g) Thermal Compton Scattering 
i) Scattering the Continuum 

For x < 1, we use the Kompaneets equation, with an empiri- 
cal modification by Cooper (1971), to describe thermal Comp- 
tonization off thermal electrons of temperature 0 and 
scattering depth tt: 

where 

(22a) 

u = n/x2 (22b) 

is proportional to the photon occupation number and 

œ(x) = (l +4.6 + l.lx2)"1 (22c) 

is a fit to the relativistic corrections to the mean photon energy 
shift for scattering on cold electrons, allowing equation (22a) to 
be used up to energies x ~ 1 in the limit of 0 <0 (Cooper 
1971). The stimulated emission term in the Kompaneets equa- 
tion has been dropped. Dispersion in the final energies of 
photons with x 0 has been neglected. This dispersion is 
much less important for scattering the continuum (as in our 
problem) than for scattering lines (see Ross, Weaver, and 
McCray 1978). Equation (22), as many of our other equations, 
must be solved numerically. 

For x > 1, equation (22) is no longer an accurate description 
of the scattering process. However, there are relatively few 
photons in this region, and, when scattered, they appear at 
much lower energies x < 1. Thus, it is a good approximation 
simply to remove these photons in proportion to their prob- 
ability for scattering and to neglect their reappearance at low 
energies. Accordingly, for x > 1, we take 

«C = - ^ m(x)tkn(x) . (23) 

Equations (21), (22), and (23) give results that are in good 
agreement with detailed Monte Carlo calculations over a wide 
range of values of 0 and tx (see Lightman and Zdziarski 1987 
for further discussion). 

S87 treated thermal Comptonization as in equation (23) 
for x > 1 and, for x < 1, took Comptonization into account 
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by multiplying injected photon spectra by the factor {1 — 
exP [—(3/*Tj)1/2]}. This approximation assumes 0 = 0 and 
so cannot treat the upscattering of X-rays by thermal electrons. 
Thermal upscattering of the input soft photons in S87 is 
treated using the actual 0. FBGPC86 shifted photon energies 
by Ax/x = 40 - x/(l 4- x) on each scattering, neglecting the 
dispersion <(Ax)2>, and used the Thomson cross section at all 
energies. For large tx, relativistic modifications to the escape 
probabilities and to the Kompaneets equation lower the effec- 
tive value of tt significantly and cause substantial differences 
between our results and those of S87 and FBGPC86 in the 
region 1/tx < x < 1. This is further discussed in § IV. 

ii) Scattering, Absorption, and Escape of the Annihilation line 

When 0 <0, the narrow annihilation line is not accurately 
treated by equation (22), which approximates discrete scat- 
tering by a continuous change of the photon energy. However, 
we can use some approximations to find an analytic solution to 
the scattering of the line and can treat the escaping photons 
separately. The total rate of production of photons in the anni- 
hilation line is 

1* ymax/2 
hA(x)dx = J P(y)dy . (24) 

Of this, a fraction fe = 1/(1 + tkn + TcT + tv>,) escapes without 
scattering or absorption and emerges with the distribution 
fehA(x) (see eq. [19]), and a fraction (1 —fe) is either down- 
scattered or absorbed before escaping. (Here scattering by non- 
thermal electrons is treated as absorption, and fe should be 
evaluated at x = 1.) We treat the second fraction now. 

For 0 <0 and x « 1, the 0 term in equation (22a) may be 
neglected. As further approximations, we set x = j in /(x) (eq. 
[21b]), in cd(x) (eq. [22c]), and in TcT and Tyy, since x does not 
vary much over the downscattered line. We approximate the 
source of line radiation as proportional to a ¿-function at 
x = 1. Then, equation (3), applied only to the line emission, 
reads 

where 

dx 
(x2n) + 5¿(x — 1) — £72 = 0 , 

S R (1 ~/e) { mdy 
C Tt(0 

1 
TT CO 

+ Tyy + 
1 + (1/3)tKn/. 

(25a) 

(25b) 

(25c) 

and a), tc, Tyy, and/are to be evaluated at x = j, as discussed 
above. The dominant contributions to fe and £ come from tkn. 
The solution to equation (25) for the downscattered annihi- 
lation line is 

n(x) = Se ^(1/* X) , x < 1 , (26) 
xz 

and n(x) = 0 for x > 1 (see Sunyaev and Titarchuk 1980). The 
photon density given by equation (26) is then added to the 
solution of n(x) for the continuum. 

Hi) Determination of the Thermal Temperature 

The equilibrium temperature of the thermal electrons and 
positrons is determined by requiring that no net energy be 

transferred between particles and photons : 

J hç xdx = 0 . (27) 

Using equations (22) and (23), performing two integrations by 
parts, and neglecting the Qdu/dx term compared to the u term 
at x = 1, equation (27) yields for the equilibrium temperature: 

@ = mx2ndx - (o(l)n(l) + fj° xmKNdx 
4 coxndx + JJ x2(dco/dx)ndx — co(l)n(l)' 

When the photon density does not extend up to the rela- 
tivistic domain, i.e., n(x) = 0 for x > 0.1 and = 1, only the 
first terms in the denominator and numerator of equation (28) 
are nonzero and our expression reduces to the usual expression 
for the “ Compton temperature,” e.g., equation (4) in Guilbert, 
Fabian, and Rees (1983). For relativistic photon energies, the 
additional terms are important. Recently, Guilbert (1986) has 
derived an integral for the equilibrium temperature without 
assuming validity of the Kompaneets equation. 

III. THE PAIR-REDUCED EDDINGTON LIMIT AND THE PAIR RATIO 

a) The Pair-reduced Eddington Limit, L|, and the Pair Ratio, 
2n+/ni,for Accretion onto a Black Hole 

In this section, we assume that the electron-positron pairs 
are produced within a gas that is accreting onto a central black 
hole of mass M. As before, we assume that the pairs are pre- 
vented from escaping. Such trapping of pairs may arise either 
from magnetic fields or from collective plasma effects. It is 
plausible that the pairs will then be coupled to the protons and 
can transmit radiation pressure to them. Since each proton is 
thus effectively coupled to 1 + 27!+/^ electrons, where ti+ and 
Tij- are the positron and proton densities, respectively, the 
Eddington limit is reduced to the value 

Lt = Le 
1 + 2n+/ni ’ 

(29) 

The pair-reduced Eddington limit, L|, is the maximum pos- 
sible luminosity in steady state, at which point the inward 
gravitational force on each proton is balanced by the outward 
radiation force on the (1 + 2n+¡n¡) electrons attached to it. 

When the luminosity L is generated by gravitational energy, 
nt may be calculated in terms of L. The rate of matter inflow 
can be written as M = 4nR2pvr, where p = mpni is the matter 
density and vr is the inward radial velocity. Setting vr = 
(2GM/R)ll2/p, where (2GM/R)112 is the free-fall velocity and 
p> 1 measures the departure from free fall, defining the 
efficiency of accretion e = L/Mc2, writing L = (Rmec

3/ 
<7t)/c(1 + ls/le), and using equation (20b) with ga= 1, we obtain 
for the pair ratio 

2ti + 

nt 
= 0.91 

m. 
vpYy/2 i 6p., 

A le ) 1 + h/le ^ 
(30) 

valid for 2tz+ > n^ Here e01 = e/0.1. In using equation (20b) in 
the derivation of equation (30), we have assumed that pair 
annihilation dominates pair inflow. As is shown by Lightman, 
Zdziarski, and Rees (1987), this is always valid for le > 102. 
Unless the scattering depth is sufficiently large to trap the 
outgoing radiation (see discussion below), we expect e0.i « 1. 
Furthermore, we assume that energy is liberated down to a 
radius R ä 2Rs for accretion onto a black hole. For spherical 
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accretion at the free-fall velocity, /z = 1. For disk accretion, ¡i 
can substantially exceed unity, and In+frii is accordingly 
reduced. In our detailed calculations, we take /z = 2, corre- 
sponding to nearly spherical accretion with some slowing due 
to angular momentum and dissipative drag. As can be seen 
from equation (30), the pair ratio 2n+/n¿ may greatly exceed 
unity for nonthermal production of pairs, in contrast to 
thermal production (e.g., Schultz and Price 1985). At ie = 100, 
for example, where PY » 0.1, 2n+7^ « 25 for €01 = 1, /z = 2, 
R = 2RS, and ljle « 0. 

Using equation (lb) with / = le + ls, the luminosity as a frac- 
tion of the pair-reduced Eddington limit is 

le 
Lhk 
Eg Ee 

where In+lrii is given by equation (30). 

b) Compactness and Pair Ratio at the Maximum Luminosity 

Unlike the classical Eddington limit LE, which depends only 
on M, the pair-reduced Eddington limit Lg depends on many 
different parameters. However, this dependence simplifies near 
the maximum luminosity, L = L|. When L = Lg, equations 
(30) and (31) can be solved together for /e, giving, for 2n+/ 
nt > 1, 

(32) 

For values of le > 50, PY « 0.1 independent of ymax, /s//e, F, 
and xs. Taking PY = 0.1, equations (29), (30), and (32) give 

LE .. 50 
Lf ~ (1 + ljle) 

(33) 

at the maximum luminosity, L = L%. Thus, for small values of 
ljle and /z » 1-2, the creation of pairs may limit the maximum 
luminosity to a factor ~ 10 below the classical Eddington limit. 

The above analysis ignores radiation trapping by the infal- 
ling matter. This effect becomes important when the scattering 
depth closest to the black hole (where most of the luminosity is 
produced) satisfies rTvr/c > 1 (e.g., Begelman 1979) and causes 
the accretion efficiency to decrease with increasing M. When 
such effects are included (Lightman, Zdziarski, and Rees 1987), 
it is found that L/L| never actually reaches unity, but increases 
with M until it reaches a value of ~0.5 and remains constant 
at this value for higher M. Equation (33) provides a good 
estimate for LE/L| at the lowest value of M for which L/L| has 
reached its maximum value of ~0.5, at an le given approx- 
imately by equation (32). This is also the point where radiation 
trapping first becomes important. It seems plausible that when 
L/L| » 0.5 globally, inhomogeneities in the spherical flow or 
in the energy production rate may create local regions where 
L/Lg > 1, leading to outward flows and modifications in the 
accretion rate. In this way, the maximum steady luminosity 
might still be limited to a factor of ~10 below the classical 
Eddington limit, as mentioned above. Dynamical calculations 
are needed to explore these effects. 

We point out that the pair-reduced Eddington limit 
described above differs from the pair-induced luminosity limit 
cycles recently proposed by Moskalik and Sikora (1986) and 
discussed further by Wandel and Mushotzky (1986). Moskalik 
and Sikora assume that thermal protons store up a large 
amount of energy, which is suddenly transferred to thermal 

pairs when the latter’s number density reaches a critical point. 
Depending on parameters, this instability happens at a lumin- 
osity L/Le ~ 10-2 and leads to a time-dependent limit cycle 
about this value of luminosity. For higher or lower values of L, 
such an instability does not occur. In contrast, the effect we 
consider derives from the opacity of the pairs, which might 
have dynamical consequences at a luminosity L = Ljj? ~ 0.1LE. 

IV. NUMERICAL RESULTS 

Emergent spectra are shown in Figures 1-7, and in Figure 9 
for a number of different models. The emergent spectrum is 
given in the units dl(x)/d In x = x2nesc(x)(47rR2<rx/3c). In 
Figures 1, 2, 6, and 9, the (narrow) width of the unscattered 
annihilation line has been set to zero. To allow visibility, the 
unscattered annihilation lines have been removed in the le — 
100 curves in Figures 1 and 2. For most models, an annihi- 
lation feature is visible for le> 10 even neglecting the 
unscattered annihilation line, which could be eliminated by 
macroturbulence and bulk motion of the gas. 

a) Effects of Thermal Electrons 
For tt > 1, a significant depletion of the spectrum is visible 

in the region 1/t| < x < 1, due to downscattering of photons 
by cold thermal electrons (see Sunyaev and Titarchuk 1980). 
This depletion lessens in the region 0.1 < x < 1 due to the 
relativistic corrections co(x) in equation (22c) and /(x) in equa- 
tion (21b), which decrease the effective value of tx. As a result, 
the depletion from downscattering is maximal at x æ 0.1. With 
this depletion, there is a corresponding increase of photons in 
the region 1 < x < tx, because such photons have fewer 
photons at energies 1/x to absorb them in pair production. The 
higher le curves demonstrate these effects. Another effect of 
thermal Comptonization at large tx is the upscattering of low- 
energy photons. For smaller values of ljle (e.g. Fig. 2 for high 
le) the equilibrium temperature is necessarily larger and the 
upscattering of the soft component of the spectrum can be very 
significant (see Figs. 1 and 2). We point out that the Compton 
y parameter, y = 40tx(1 + tx/3) in our approximation to radi- 
ative transfer, never reaches unity in our models, so that the 
resulting spectra never show features at energies corresponding 
to the temperatures of the thermal pairs, in contrast to the 
earlier estimates of Guilbert, Fabian, and Rees (1983). 

b) First-Order Scattering by Nonthermal Pairs 
This effect is due to scattering of the primary photons by the 

part of the electron distribution, N(y), proportional to J P(y) 
(see eq. [6]) and has been discussed in detail by Kazanas 
(1984), ZL85, and S87. In order for the scattering of the 
primary photons to dominate over higher order scatterings, 
ls > le is required. A more accurate criterion for higher order 
Compton scatterings to be unimportant is that the first-order 
scattering spectrum, including scattering by pairs, intersects 
the blackbody spectrum much below its peak. For a power-law 
spectrum extending to some break energy xb with a mean spec- 
tral index <a>, this condition can be written in an approximate 
manner as 

h fW*!,)1 <a> <«> < 1 ; 
K> (.1 > ’ <a> > 1 . 

(34) 

The spectral component produced by scattering by pairs has 
an index at x <0 that is always less than unity (S87). There- 
fore, the spectrum formed by scattering by the pairs will be 
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Fig. 1.—Emerging spectra for a blackbody photon injection at peak energy xs and a monoenergetic electron injection at Lorentz factor ymax, under the combined 
processes of Compton scattering, pair production, and photon escape. For these models, ymax = 1.2 x 103, xs = 3 x 10"5, and ljle = 2.5, where ljle is the ratio of soft 
photon compactness parameter ls to electron compactness parameter le. Dotted curve is the le — 103 model without thermal Comptonization included. For clarity, 
the unscattered annihilation line has been omitted from the le = 100 model. Note the effect of downscattering on the annihilation line for high le. The high-energy 
break in the le = 102 and 103 spectra at x % 10 is caused by pair production. Parameters of the le = 10 and 100 curves are given in Table 1, models F and G. 

x=hi//mec
z 

Fig. 2.—Same as in Fig. 1, but with ymax = 7.5 x 103 and ljle — 0.25. For the le = 1000 model, tt = 15. Note the large depletion of photons in the region 
1/tí ^ 1» caused by downscattering by thermal pairs at low energies, 0 = 2 x 10“ 3. Note also the upscattering of the input blackbody photons by these same 
pairs. See Table 1, models A, B, D, E, for the model parameters. 
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Fig. 3.—Emerging spectra for power-law primary electron injections at ymin < y < max, ymin = 1 (for this and all power-law models below), ymax = 7.5 x 103, 
F= 1.5,xs = 3 x 10 5, and ljle = 1. Dashed, solid, and dotted curves are for /e = 1,30, and 1000, respectively. See Table 2, models a, b, c. 

Fig. 4.—Emerging spectra for power-law primary electron injections, showing the effect of varying the injection index F at fixed electron and soft photon 
compactnesses. Dashed, solid, and dotted curves are for F = 0.5, 1.5, and 2.5, respectively. For all models, le = 10, ljle = 3, ymax = 400, and xs = 3 x 10“5. The 
high-energy break in the spectra at x < 10 is caused by the low value of ymax, not by pair production. See Table 2, models d, e, and f. 
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Fío. 5. Emerging spectra for power-law primary electron injections, showing the effect of varying the ratio of soft photon compactness to electron compactness, 
ljle, at fixed electron compactness and fixed injection index. Dashed, solid, and dotted curves are for ljle = 10“3, 3 x 10“2, and 5, respectively. For all models 
u- =u ^max = X ^3’ an<^ ^ values of L and *8 are the same as in Fig. 4. The high-energy break in the low lJle spectra at x = 1 is caused by the dominance of high-order scatterings and reduction of the Klein-Nishina cross section, not by pair absorption. See Table 2, models g, h, and i. 

'--I 

¥ 

x=hu/mec
z 

Fig. 6. Emerging spectra for xs = 3 x 10“5, ymax = 103, and le = 30, showing the effect of varying ljle for monoenergetic electron injections. Dotted, crossed, 
dashed, and solid curves represent ljle = 0.01,0.1,1, and 10, respectively. The dip in the spectra of the high ljle curves at x > 0.01 is caused by the decrease in photon 
production by injected pairs, not by Comptonization. Note the broad shoulders extending to energies beyond xmax j = (4/3)y2

axxs = 40, especially in the low ls/le 
curves. These shoulders are caused by higher order Compton scattering. See Table 1, models N, O, P. 
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x=hu/mec
2 

Fig. 7—Emerging spectra for monoenergetic injections at ymax = 400, le = 10, and ljle = 0.25, showing the effect of varying xs. Dotted curve is thexs = 3 x 10"5 

model without thermal Comptonization included. Vertical lines show the 2-10 keV X-ray energy range. See Table 1, models L and M. 

most visible for the smallest possible spectral index from the 
scattering by the primary electrons. The latter index is a = F/2 
for F > 1 and a = 0.5 for F < 1 (which includes the case of 
monoenergetic injection). For F > 2, the contribution of pairs 
to the spectrum will be invisible. 

For le> 1, the X-ray spectral index, a, approaches a 
maximum value that depends on the number of pair gener- 
ations (S87). If xmax 2 < 1 (see eq. [35]), there is only one pair 
generation. If xmax 2 > 1, relation (35) can be applied recurrent- 
ly to find the last xmax,fc which is still greater than 1, giving k 
generations. 

Figure 1 presents examples with monoenergetic injection at 
ymax = 1200 and xs = 3 x 10“5, which give only one pair gen- 
eration. For /e = 1 and 10, the thermal downscattering is negli- 
gible; for le = 103, the dotted curve shows the un-Comptonized 
spectrum. Figure 2 shows cases with ymax = 7500, xmax>2 ~ 102, 
and two pair generations. The x 1 nonthermal slopes for 
le = 102 and 103 are a « 0.8-1. 

For lower /e, the spectral indices at x <0 increase from 
a = 0.5 for /e < 1 to the asymptotic values given above and in 
S87. This effect is seen in Figures 1 and 2. 

For power-law primary electron injections with F < 2, the 
effect of nonthermal first-order scattering by pairs increases the 
X-ray index from a = T/2 (in the absence of pairs, /e 1) to 
a < 1 for le$> 1. This is illustrated in Figure 3. 

Another feature visible in some spectra is a dip at energies 
* £ *max,2> where 

*max,2 = (35) 
is the maximum energy of photons created by the first gener- 
ation of pairs when first-order scattering dominates (ZL85; 
S87). The spectrum falls at energies x > xmaXi2, because the 
photons produced by pairs no longer contribute, but it even- 
tually rises again from the photons produced by primary elec- 
trons. When xmax 2 lies in the range 10~2 < xmax 2 < 1, this 

“secondary injection” effect has some of the appearances of 
depletion by Compton downscattering. In the models in 
Figured, for example, xmax 2 = 3 x 10-2. The le = 10 curve 
shows a dip above xmax 2. However, tx is only 0.59 (model F in 
Table 1), not large enough to produce this apparent depletion. 
It is caused rather by the secondary injection effect. By com- 
parison, for the le = 10 curve in Figure 2, xmax 2 = 45, and a 
dip does not occur at x < 1. When ljle 1, the relative impor- 
tance of higher order scatterings tends to wash out the dip at 
x > xmax 2. For example, in Figure 6, xmax>2 = 1.6 x 10“2 and 
tt ranges from 1.5 to 2.4 (models N, O, P in Table 1). A dip at 
x > xmax 2 is visible for ljle = 1 and 10 and is absent for ls/le = 
10-2 and 10_1. 

c) Higher Order Scatterings by Nonthermal Particles 
When inequality (34) is satisfied, the resulting spectrum is 

completely insensitive to the ls/le ratio (see ZL85), except for 
the width of the annihilation line, determined by the Compton 
temperature. When ljle decreases, higher order Compton scat- 
tering by nonthermal electrons and pairs become important, 
and the value of ljle becomes critical to the spectrum. This case 
has been studied analytically by Zdziarski and Lamb (1986) for 
power-law injections with F > 1 + a. For ljle 1, the spec- 
trum must rise steeply at low x to produce the required lumin- 
osity, and a is small. The index a then increases with increasing 
ljle. There is a break at x = 1 (see § IVd), and, in the absence of 
pair absorption, the x > 1 spectral index is ay æ F — 1 (see 
Fig. 5). Compton scattering by nonthermal pairs does not 
modify these indices. 

Figure 6 demonstrates the effect of decreasing ljle for mono- 
energetic electron injection. Similarly as in Figure 5, a 
decreases with decreasing ls/le. Note also in Figure 6 that a is 
affected by secondary pair injection for high ls/le, but not for 
low ls/le, where higher order scatterings dominate and smooth 
out the spectrum. 
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TABLE 1 
Results for Selected Models with Monoenergetic Electron Injection 

L IJK e PY UK Model 

1. 
10. 
30. 

100. 
1000. 

10. 
100. 
40. 

400. 
5. 

400. 
10. 
10. 
30. 
30. 
30. 

0.25 
0.25 
0.25 
0.25 
0.25 
2.5 
2.5 
1 
1 

10 
10 
0.25 
0.25 
0.01 
0.1 

10.0 

3 x 10"5 

3 x 10"5 

3 x 10"5 

3 x 10“5 

3 x 10"5 

3 x 10-5 

3 x lO"5 

nr4 

KT4 

3 x KT5 

3 x 10"5 

3 x 10"5 

1 x 10‘5 

3 x 10"5 

3 x KT5 

3 x KT5 

7.5 x 103 

7.5 x 103 

7.5 x 103 

7.5 x 103 

7.5 x 103 

1.2 x 103 

1.2 x 103 

1.0 x 103 

1.0 x 103 

3 x 103 

3 x 103 

400 
400 

1.0 x 103 

1.0 x 103 

1.0 x 103 

1.2 x 10“ 
0.66 
1.63 
4.4 

15 
0.59 
3.6 
2.1 
8.8 
0.32 
7.2 
0.76 
0.83 
2.4 
2.1 
1.5 

2.2 x 10‘2 

3.1 x KT2 

1.9 x KT2 

8.8 x 10'3 

2.0 x 10"3 

5.6 x 10“3 

1.8 x 10“3 

6.6 x 10“3 

2.0 x 10“3 

1.4 x KT2 

3.3 x 10~4 

4.2 x 10“2 

3.4 x 10"2 

5.4 x lO"2 

2.5 x 10“2 

1.1 x 10'3 

1.1 x 10"4 

3.4 x 10"2 

7.0 x KT2 

0.15 
0.18 

2.7 x 10“2 

0.1 
8.9 x KT2 

0.15 
1.6 x 10“2 

0.10 
4.4 x 10"2 

5.3 x 10'2 

0.15 
0.11 

5.6 x KT2 

2.3 x 10"3 

5.8 x KT2 

9.0 x 10”2 

0.13 
0.22 

8.5 x 10”2 

0.15 
0.13 
0.17 

7.8 x lO"2 

0.14 
3.7 x KT2 

4.5 x 10“2 

4.7 x 10"2 

9.5 x 10"2 

9.9 x 10"2 

0.53 
0.73 
0.79 
0.81 
1.4 
0.97 
1.08 
0.80 
0.97 
0.73 
0.91 
0.72 
0.56 
0.49 
0.73 
1.20 

7.5 x 103 

36 
6.0 
1.7 
1 

35 
3.4 
4.1 
1 

65 
1 

60 
31 

3.7 
5.0 

15 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
O 
P 

d) High-Energy Break 
A critical feature of the spectra, especially when comparing 

to observations, is the high-energy break (or turnover). For 
scattering models, there are four characteristic energies at 
which a break can occur, depending on parameters: xmax>1, the 
maximum photon energy from first-order scattering by 
primary electrons; x*, the energy above which the optical 
depth to pair production exceeds unity; 1, the energy below 
which electrons of Lorentz factor about unity can scatter 
photons in the Thomson limit; and ymax, the maximum elec- 
tron energy. The appropriate conditions for each of these char- 
acteristic break energies are discussed below. We point out 
that, within the context of scattering models, only the break at 
x = 1 (which coincides with x = x* for le > 100) is independent 
of the details of the primary injections of soft photons and 
electrons. 

i) Breaks for ljle P 1 
For ls/le P 1, first-order scatterings dominate and the high- 

break occurs at the minimum of x* and xmax>1, where x* is 
defined by 

Tyy(x*) = 1 > (36) 

and xmax>1 is defined in equation (15b). The energy xmax l is the 
maximum energy attainable by first-order (single) scatterings 
of photons at the peak of the injected blackbody distribution, 
x = xs. The spectrum at energies x > x*, where Tyy > 1, is 
depleted by absorption of photons in pair production. For 
increasing le, x* decreases toward unity. As can be seen in the 
figures and in Table 1, typically x* > 10 for le < 20. We can 
estimate the dependence of x* on le when le is large and x* is 
close to unity. If F < 2 and /e > 1, a « 1, and the photon 
density may be roughly approximated by 

n(x) : 3L* 1 + tt/3 _2 

4nR2me c3 In (x^/xj 
x < x* (37) 

where the coefficient multiplying x 2 ensures that 

(4nR3/3)mec
2 hesc(x)xdx = Le , 

JXs 
and 

n(x) « (1+ xT/3)hesc(x)R/c . 

Substituting equation (37) into equations (11) and (36), and 

using equation (2a) and (10b) with PY = 0.1, we obtain 

x* « max 1, 
5(4n/3)\n(xjxs) } 

/e[l + (0.4/e/7r)1/2/3]j ’ 
(38) 

For values of x* in the range we consider, equation (38) shows 
that x* reaches unity at le « 100 and tx « 3.5. For larger le, x* 
remains ~ 1 because a photon with x < 1 can produce a pair 
only with photons with x > 1, which are already depleted by 
pair production (see the self-consistent solution in Appendix 
B). In Figures 1-3, the high-energy breaks occur at x = xmax>1 
for the low le models and at x = x* for the high le models. 

ii) Breaks for ljle < 1 
When ljle < 1, higher order (repeated) scatterings become 

relatively important and determine the location of the high- 
energy break in the spectrum. For power-law injections of elec- 
trons and sufficiently large F, the spectral break in this regime 
occurs at x = 1 (see the low ls/le curves in Fig. 5). Under these 
conditions, a break at x = 1 occurs because that is the energy 
below which electrons of Lorentz factor about unity can 
scatter in the Thomson limit (see the upper limit of the integral 
in eq. [9] and its change in functional form at x = 1). This 
effect, which was first noted by Zdziarski and Lamb (1986), 
requires both that higher order scatterings dominate and that 
electrons of Lorentz factor ~ 1 dominate. The latter condition 
requires that F > 1 + a. 

For monoenergetic electron injection, or power-law injec- 
tion with F < 1 + a, the low Lorentz factor electrons do not 
sufficiently dominate, and the spectral break extends up to 
x « ymax (see the low /e//e models in Fig. 6). Even for /s//e > 1, 
higher order scatterings can form a knee on the spectrum at 
energies above x* or xmax> 1. 

Independent of ls/le, the spectrum cannot extend above the 
energy x « x* without breaking. 

e) X-Ray Spectral Index 
The X-ray spectral index a, defined by the least-squares fit to 

the spectrum between 2 and 10 keV, is shown for selected 
models in Tables 1 and 2. In general, a increases for increasing 
le (e.g., models A-E) and for increasing ls/le (e.g., models N-P, 
g-i), but the dependence of a on these and other parameters is 
complex. 

For monoenergetic electron injection satisfying inequality 
(34), with le< 100 (thermal Comptonization is not too 
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TABLE 2 
Results for Selected Models with Power-Law Injection3 

lA r 7 max TT 0 PY lx/le a X* Model 

1   1 1.5 7.5 x 103 5.6 x KT2 1.6 x HT2 2.5 x 10“3 3.9 x 10“2 0.74 1.6 x 103 a 
30  1 1.5 7.5 x 103 1.64 7.3 x 10"3 7.0 x 10"2 0.11 0.86 5.8 b 
103   1 1.5 7.5 x 103 13.7 9.7 xlO"4 0.15 0.13 1.4 1 c 
10  3 0.5 400 0.73 5.4 x 10"3 4.2 x 10"2 7.0 x 10"2 0.57 19 d 
10   3 1.5 400 0.51 4.1 x 10~3 2.1 x 10"2 0.13 0.80 16 e 
10  3 2.5 400 0.16 1.6 x 10"3 2.0 x 10"3 0.14 1.18 30 f 
10   10~3 2.5 7.5 x 103 1.0 0.18 7.3 x 10~2 1.0 x 10“2 0.30 2.2 x 103 g 
10  3 x 10-2 2.5 7.5 x 103 0.76 4.6 x 10“2 4.5 x 10“2 7.9 x 10~2 0.68 20 h 
10 .  5 2.5 7.5 x 103 0.19 1.1 x KT3 2.8 x 10'3 0.13 1.20 33 i 

a y min = 1, *s = 3 x 10 5 for all models. 

important), and xmax 2 > 1, we expect a to lie in the range 
0. 5 < a < 1.0. The index a increases above unity even for a 
monoenergetic injection when the depletion of the spectrum 
due to Compton downscattering extends down to X-ray ener- 
gies. Setting 1/tj < 0.03, we obtain tx > 6 for this effect. At 
such large values of tt, le is large and PY has reached its 
asymptotic value of PY ~ 0.1. Then, using equation (20b) with 
tt = 6 and PY = 0.1, we obtain le > 300 for the condition that 
thermal Comptonization push a above unity. This is consistent 
with our results. (Note also, from Fig. 10, that le ~ 300 corre- 
sponds to loh — 10.) 

Figure 4 and models d, e, and f show the sensitivity of a to F. 
For these models with low xmax>2, pairs have little effect on the 
X-ray region of the spectrum, and a is controlled completely by 
the primary electron injection and the value of F. 

Figures 5 and 6 and models N, O. P, and g-i show the 
sensitivity of a to ls/le. For /s le, oc is small. For increasing 
ls/le, oc increases, until it becomes independent of ljle for ljle $> 
1. Note also in Figure 6 that oc is affected by secondary electron 
injection for high ls/le, but not for low ljle, where higher order 
scatterings dominate and smooth out the spectrum. 

Finally, Figure 7 and models L and M show the sensitivity of 
a to xs. When xs is increased from 10"5 to 3 x 10“5, the 
Compton upscattered photons enter the lower portion of the 
X-ray band and increase a. 

/) Pair Yield 
Figure 8 shows the pair yield for a several groups of models. 

Monoenergetic injection models with the same values of xs and 
y max but different ljle give about the same results. As can be 
seen, PY is approximately linear with le for /e <0, in accord- 
ance with equation (16), rises rapidly in the range 2 < /e < 7, 
and saturates at a value PY » 0.1 for le^> 10, as first found by 
S87. The rise of PY in the region 2 < le < 1 is not as sharp in 
our calculations as in those of S87. This is because we use a 
distributed soft photon input, rather than a ^-function, and 
also allow for higher order Compton scatterings. 

The dotted curve represents a model with a power-law injec- 
tion with parameters the same as in Figure 3. The rise of PY is 
smoother than for monoenergetic injection (no “ pair 
runaway”), but PY saturates at a similar value (see Table 2 for 
PY for other power-law models). 

g) Comparison to Previous Calculations 
We computed models with xs = 10"4, a monoenergetic 

injection at ymax = 103, ls/le = 1, and le = 40 and 400, corre- 
sponding to models 2 and 5 of FBGPC86. For the le = 40 
model, we obtained PY = 8.9 x 10~2, 0 = 7 x 10~3, 

oc = 0.80, and tt = 2.1, while FBGPC86 obtained 
PY = 5.7 x 10"2, © = 1.1 x 10"2, a = 0.76, and iT = 1.75. 
For the le = 400 model, we obtained PY = 0.15, 
0 = 2 x 10-3, a = 0.97, and tt = 8.8, while FBGPC86 
obtained PY = 6.7 x IQ-2, 0 = 2.1 x 10“3, oc = 0.97, and 
tt = 5.97. Thus, our pair yields are somewhat higher, but the 
quantitative agreement is pretty good. However, the detailed 
spectra are different, as can be seen in Figure 9a for the le = 
400 model. Here the FBGPC spectrum converted to our units 
is shown by the dashed curve. Their spectrum is much more 
depleted than ours at x > 1/tj, due to their approximation 
that a photon at x <0 has a mean escape time of tt R/c (where 
we use tt R/3c in eq. [21a]) and their neglect of the relativistic 
corrections /(x) and co(x) (see eqs. [21b] and [22c]). At x = 1, 
for example, with tt « 9, the relativistic correction /(x) 
decreases the effective value of tx by a factor 4 or a factor 10, 

Fig. 8.—The pair yield, PY, as a function of le for various models. Models 
with monoenergetic electron injection are given by solid curve, with ymax = 
1.2 x 103 and = 0.25, and dashed curve, with ymax = 7.5 x 103, ljle = 
2.5. Dotted curve represents a model with power-law electron injection and 
y max = 7-5 x 1°3> r = 2> ljle = 1. For all models, xs = 3 x 10"5. Changing F 
from 2 to 1.5 in the power-law model leaves the resulting curve almost 
unchanged. Also the pair yield does not depend much on ljle. 
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x=hu / mec
2 

Fig. 9a 

x=hu/mec
z 

Fig. 9b 
Fig. 9.—Comparisons to previous calculations for monoenergetic electron injection, {a) xs = 10-4, ymax = 1000, ljle = 1, le = 400. Dashed curve is from Fabian 

et al. (1986); solid curve is ours. See text for discussion, (b) xs = 3 x 10"5, ymax = 3000, ljle = 10, and le = 400 and 5, as indicated. Dashed curves are from Svensson 
(1987); solid curves are ours. See text for discussion, and Table 1, models I, J, and K. 

depending on whether tt/3 or tt is used in equation (21a), and 
the relativistic correction co decreases the effective value of tx 
by another factor of 6. Without these relativistic corrections, 
the spectrum at x = 1 is depleted below ours by more than a 
factor of 20. Because FBGPC86 continue using tx R/c as the 
photon escape time even for x > 1, their spectra remain signifi- 
cantly depleted below ours in this energy range. The 
FBGPC86 spectrum drops very abruptly at high energies, 
where pair production is important, because they reduce their 
emergent spectra by the factor e~Zyy (Fabian, private 

communication), rather than the factor ~ \/Tyy given by 
solving equations (3) and (21a). The latter factor is appropriate 
for photon production distributed throughout the pair pro- 
duction region. 

We also computed models with xs = 2.7 x 10"5, ymax = 3 
x 103, ljle = 10, and /e = 5 and 400, corresponding to two 

models calculated in S87. We obtained almost identical values 
for the pair yields. For /c = 5 and 400, tx = 0.3 and 7.2, respec- 
tively. Since Svensson determines 0 only crudely, a compari- 
son here is not useful. Figure 9b shows a comparison between 
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our spectra and Svensson’s for these two models. The discrep- 
ancies can be explained by the differences in our treatments of 
Comptonization and of the distribution of n0. In the region 
1/t| < x < 0.3, our spectrum is more depleted than that of 
Svensson’s. One contribution to this discrepancy derives from 
the difference in our treatments of the distribution of photon 
sources : we assume the photon sources are distributed sinus- 
oidally, reflected in our use of equation (21a), while Svensson 
assumes they are distributed uniformly (see Sunyaev and Titar- 
chuk 1980). A second contribution is the difference between 
our treatments of Comptonization. Like the spectra of 
FBGPC86, Svensson’s spectra are more depleted than ours at 
0.3 < x < 1 due to his neglect of relativistic corrections to the 
escape and scattering probabilities. The sharp dip of the 
spectra at x = xmaXi2 (equal to unity for this particular choice 
of parameters) and at x = xmax> 1 in Svensson’s models arise 
from his assumptions that both the primary electron injection 
and the soft photon injection are monoenergetic. For xs = 2.7 
x 10"5 and ymax = 3 x 103, xmax>2 = 0.95, and photon pro- 

duction by secondary pair injection stops abruptly at x > 0.95. 
However, for a distributed soft photon input, such as our black- 
body peaked at xs, some soft photons are injected above and 
below x = xs and the feature at x = xmax>2 is not nearly so 
pronounced. For the same reason, our spectra do not drop 
abruptly to zero at x = xmax 1? but extend beyond this point. 
The amplitudes of our spectra in the region x* < x fall below 
those of Svensson’s because we evaluate Tyy at photon densities 
characteristic of a mean interior point of the emitting region, 
while Svensson evaluates Tyy at escaping photon densities. The 
latter densities are lower, causing a smaller depletion in 
photons from pair production. The detailed shape of the 
spectra in this energy range are not reliable, and more work is 
needed on radiative transfer in pair media. 

h) The Reduced Eddington Limit 
Combining equations (30) and (31) for In+ffy > 1 and 

PY » 0.1, we obtain, at R = 2RS, 

irou-f' 
(39) 

This can also be written as a function of /ob. As can be seen in 
Figure 10, for le > 10, loh is almost exclusively a function of le 
and becomes independent of ls/le, xs, ymax, and the form of the 
injection. In models N, O, and P, for example, where ls/le varies 
over a factor 103, lob varies only from 0.79 to 2.2. This delightful 
simplification arises because both lx/le and PY approach ~0.1 
for le> 10, independent of other parameters. Since tt oc 
(le PY)1/2, lob oc Ze

1/2 for le > 10 (see eq. [2e]). Thus, for le > 50 
and L/Lg < 1, we obtain 

L_ 

Lt 
0.3L £oj_ (40) 

V. COMPARISON TO OBSERVATIONS 

a) Data without Theory 

We have compiled the available data on the X-ray spectral 
indices, luminosities, and variability time scales of AGNs and 
QSOs (not including BL Lac objects) in Table 3. Shown also 
are the computed observed compactness parameters lob as 
defined in equation (2d). Figure 11 gives the positions of these 
objects in the two-dimensional a — lob plane. 

Without application of any theory at all, Table 3 and 

Fig. 10.—Electron compactness parameter le as a function of the observed 
compactness parameter Zob for several groups of models. Groups 1-4 are 
models with monoenergetic electron injection and are defined as follows: 

Tmax) = (2*5> x lo3) in group 1, (2.5, 7.5 x 103) in group 2, (0.25, 
7.5 x 103) in group 3, and (0.25, 1.2 x 103) in group 4. Groups 5 and 6 are 
models with power-law electron injection, le/ls — 1 and ymax = 7.5 x 103, with 
F = 2 (model 5) and F = 1.5 (model 6). In all groups, xs = 3 x 10"5. Dashed 
curve refers to groups 2 and 3, solid curve to groups 1 and 4, dotted curve to 
group 5, and dash-dotted curve to group 6. 

Figures 11 and 12 suggest the following: (1) There is little cor- 
relation between a and /ob. (2) The spectral index a varies 
broadly from ~0.4 to ~ 1.0. Ten of the 23 objects have values 
of a lying outside the range a = 0.67 + 0.15 found in the 
samples of Mushotzky et al. (1980), Rothschild et al (1983), 
and Petre et al (1984). Thus, it may be misleading to interpret 

Fig. 11.—Comparisons of theory to observations for X-ray spectral index a 
as a function of observed compactness parameter Zob. Positions of AGNs and 
QSOs in the a — Zob plane are indicated by dots. Curves are theoretical. Curves 
labeled by “1,” “2,” and “3” correspond to the groups of monoenergetic 
injection models 1, 2, and 3 defined in Fig. 10. The group of models labeled by 
“ 7 ” have the same parameters as group 3, except that ljle = 0.05. Curves 
labeled by “8” and “9” are power-law electron injection models. Models in 
group 8 have le = 10, xs = 3 x 10“5, ljle = 3, and ymax = 400, with varying F. 
Models in group 9, which are given by a dotted curve to help distinguish them 
from group 8, have le = 10, xs = 3 x 10“5, ymax = 7.5 x 103, and F = 2.5, with 
varying ljle. Bar at the bottom of the group 8 curve marks the lowest possible 
value of a for these models. 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
87

A
pJ

. 
. .

31
9.

 .
64

3L
 

LIGHTMAN AND ZDZIARSKI Vol. 319 658 

TABLE 3 
Data from AGNs and QSOs 

Name log Lx log Ar Type L 
Spectral Data 

References 

Luminosity/ 
Time Variability 

References 

NGC 526A   
NGC 2110  
NGC 2992    
NGC 3031   
NGC 3227   
NGC 3516  
NGC 4051    
NGC 4151   
NGC 4593   
NGC 5506   
NGC 6814    
NGC 7314   
NGC 7469   
NGC 7582    
Ill Zw 2   
F9   
4U 0241 + 62   
MCG -5-23-16 
MCG -6-30-15 
3C 273   
3C 382   
OX 169    
AKN 120  
Mrk 205   
Mrk 335   
Mrk 509   
Mrk 766    
Mrk 841   

0.52 
0.80 
0.79 
1.5 
0.51 
0.7 
1.0 
0.50 
0.67 
0.75 
0.42 

0.78 
0.69 
0.67 
0.95 
0.66 
0.84 

0.41 
0.93 

0.8a 

0.78 
0.63 

0.7 

43.85 
43.08 
43.25 
40.48 
42.11 
42.70 
41.48 
42.85 
43.41 
43.00 
41.25 
42.60 
43.81 
42.55 
44.90 
44.34 
44.30 
43.48 
42.95 
46.22 
44.40 
44.20 
44.26 
44.45 
43.60 
44.36 
42.34 
43.92 

4.9 
4.9 
5.1 
2.7 
4.3 
4.0 
3.0 
4.6 
3.4 
5.2 
2.0 
3.3 
4.9 
4.8 
3.3 
5.5 
5.4 
5.0 
3.3 
5.1 
5.4 
4.4 
3.4 
5.4 
3.8 
5.7 
3.9 
5.0 

SII/NELG 
SII/NELG 
SII/NELG 

SI 
SI 
SI 
SI 
SI 
SI 

SII/NELG 
SI 
SI 
SI 

SII/NELG 
SI 
SI 

QSO 
SII/NELG 

SI 
QSO 

BLRG 
QSO 

SI 
QSO 

SI 
SI 
SI 

QSO 

0.75 
0.12 
0.12 
0.054 
0.054 
0.45 
0.27 
0.16 
8.6 
0.052 
1.6 
1.8 
0.73 
0.049 
360 
0.57 
0.70 
0.25 
3.8 

119 
0.88 
6.2 

73 
1.13 
5.8 
0.41 
0.28 
0.84 

a 0.2-3.5 keV. 
References.—For spectral data: (1) Mushotzky 1984, and references therein; (2) Barr and Mushotzky 1987; (3) Reichert, 

Barr, and Mushotsky 1987; (4) Lawrence et al. 1985; (5) Petre et al. 1984; (6) Pounds et al. 1985; (7) Wilkes and Elvis 1987; 
(8) Arnaud et al. 1985. For luminosity (H0 = 50) and time variability data, (1) Wandel and Mushotzky 1986, and references 
therein; (2) Warwick 1986, and references therein. 

the data in terms of a “universal” value of spectral index, 
a æ 0.7. A similar point has been made by Wilkes and Elvis 
(1987). Also, a = 0.7 spectra must harden toward hard X-rays 
and y-rays in objects with large L0 5_5McW/Lx. This ratio is 
> 102 for most objects with measured y-ray luminosities (e.g., 
MCG 8-11-11, NGC 4151; Bassani and Dean 1983, and 
references therein), implying ax_y < 0.3. (3) Ignoring the three 
extreme objects AKN 120, 3C 273, and III Zw 2, the observed 
compactness parameters have an upper limit of loh <10. It 

|-/l*edd 

10"' I 

Fig. 12.—Histogram of observed compactness parameters. Top abscissa is 
labeled with some values of L/LJ corresponding to the value of Zob, using 
R = 2Rs,€oi/h = 0.5. 

seems important to test this apparent upper limit against new 
observations. 

b) Constraints from High-Energy Break 
From the theoretical curves in Figure 11, it is clear that a 

wide range of input parameters is needed to fit the range of 
data from one object to the next. The two extreme objects 
(III Zw 2 and 3C 273) may not be fitted by any models of the 
type we have considered. 

Critical constraints on all models are provided by the 
requirements that the high-energy break occur at x < 5-10 
and oty > 1.5-2.0, requirements imposed by the observed upper 
limits (Perotti et al. 1981a, h; Hermsen et al 1981; Pollock 
et al 1981) and considerations of the y-ray background (e.g., 
Bignami et al 1979; Bassani and Dean 1983). The spectra of 
three of the AGNs with the largest apparent brightnesses, 
Cen A, NGC 4151, and MCG 8-11 -11, as well as of 3C 120, 
have been observed to break at these energies (Bignami et al 
1979; Graml, Penningsfeld, and Schönfelder 1978; Perotti 
et al 198Ih; Damle et al 1986), and it is possible that most of 
them do. The y-ray observations of 3C 273, if extrapolated to 
lower energies, also indicate a spectral break at ~3 MeV 
(Bignami et al 1979). The typical object in Figures 11 and 12 
has loh ~ 0.5, corresponding to le ~ 10, and a value of a 
ranging from 0.5 to 1.0, NGC 4151, MCG8 —11 —11, and 
Cen A all have loh <£ 1 (Bassani and Dean 1983). With such a 
modest value of le, x* > 30 and pair absorption does not break 
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the spectrum at a sufficiently low energy. An appropriate spec- 
tral break caused by pair absorption would require le > 50, 
which in turn requires loh > 3. (Note, however, that NGC 4151, 
MCG 8 — 11 — 11, and Cen A have le/loh > 102; Bassani and 
Dean 1983.) This in turn requires that the size of the typical 
emitting region, R, must be more than 6 times smaller than the 
value R = cAt/(l + tt/3) used in our calculations. Further- 
more, when pair production does cause a break in the spec- 
trum, it steepens the spectrum by a factor 1/t^ oc x~a (unless 
pairs are absorbed outside the source), which is less than the 
observed steepening in the objects mentioned above and prob- 
ably not sufficient in most AGNs to conform to the limits of 
the y-ray background. 

For these reasons, we consider it unlikely that pair pro- 
duction is the source of the high-energy break in the typical 
AGN. Thus, in the models we consider, the break must be 
provided either by (1) a small value of the maximum photon 
energy from first-order scattering by primary electrons, which 
requires 3 < xmax>1 <10, or by (2) a domination of higher 
order scatterings and electrons of low Lorentz factor, which 
requires ls/le 1 and F > 2.5-3, where the latter condition 
ensures that the break will be steep enough (see discussion in 
§§ IVc, d.) Models can be classified according to which of these 
two mechanisms provides the high-energy spectral break. 

c) Variable F Models 
When the high-energy break is provided by a small value of 

^max, 1 > the required variation in a can be achieved by a varia- 
tion in F, 1 < F < 2.5. Such models are shown as the curve 
labeled “ 8 ” in Figure 11 and the spectra in Figure 4 (models d, 
e, and f in Table 2), where parameters have been chosen to give 
typical observed values of /ob as well as a suitable high-energy 
break. Although a universal value of xmax>1 ä 3-10 may not be 
too plausible, a range of F is. Recently, Takahara (1986) found 
a strong dependence of F obtained from shock acceleration on 
the motion and distribution of scattering centers, suggesting 
that shock acceleration produces no universal index F. 

Several features and restrictions of these models are impor- 
tant. First, ljle cannot be too small, or else higher order scat- 
terings will dominate, and, when F < 1.5-2, the high-energy 
break will extend up to ymax and be too large. Second, these 
models cannot produce values of a below ~ 0.6 (see the bar at 
the bottom of curve 8 in Fig. 11). This is because, for le > 10, 
pairs will always increase a somewhat above 0.6 (see discussion 
in § YVb). Thus for AGNs with 0.4 < a < 0.6 these models will 
not apply. Third, pairs are not very important in contributing 
to the X-ray spectra of these models. In order to fit the 
observed power-law form of the spectra, xmax 2 cannot lie in the 
X-ray band, where it would cause a noticeable dip and a depar- 
ture from a power-law form; xmax 2 must be either much larger 
or much smaller than ~0.01. However, with xmax>1 » 3-10, 
*max,2 could not be larger than 0.01 without xs extending well 
above UV energies (see eqs. [15b] and [35]), where strong soft 
photon sources have not been observed. Thus xmax 2 must lie 

below the X-ray region of the spectrum. Since this is the 
maximum energy where pairs contribute to the spectrum, pairs 
cannot contribute much to the X-ray spectrum in these models. 
Finally, if a break energy of x ä 6 proves to be a common 
feature of AGNs, one is left to explain why xmax x falls naturally 
around this value. 

d) Variable ls/le Models 
When the high-energy break is provided by a small value of 

IJl^ the required variation in a can be achieved by a variation 
in ls/le, 10“3 < ls/le < 1. Such a variation could result, for 
example, from a variation in the relative volumes in which the 
soft photons and y-ray photons are produced. These models 
are represented in the dashed curve labeled “9” in Figure 11 
and in the spectra in Figure 5 (models g-i in Table 2), where, 
again, parameters have been chosen to give typical observed 
values of /ob. 

As in the variable F models, several features and restrictions 
apply here as well. First, F must be large, F > 2.5-3.0. If this 
condition is not satisfied, the y-ray spectrum at energies above 
the break will not fall steeply enough to accommodate the 
limits given by the y-ray background, as previously mentioned. 
Second, the spectral break will occur at x » 1. If the typical 
AGN has a spectral break at x « 6 = 3 MeV, as do Cen A, 
NGC 4151, MCG 8 — 11 — 11, and possibly 3C 273, then this 
class of models may be ruled out. And third, as in the variable 
F models, pairs do not contribute much to the X-ray region of 
the spectrum. For the large values of F required by these 
models, most of the injected energy is at y « 1. 

e) Possible Role of Pairs in Controlling the Luminosity 
From the above discussion, it seems probable that pair pro- 

duction is not very important in the shape or high-energy 
break of the spectra from typical AGNs. (Pairs may certainly 
be much more important for the smaller number of high loh 
objects.) We suggest here that pairs may still be important in 
regulating the maximum luminosities of these objects, by 
reducing the Eddington limit. 

We have labeled the upper x-axis of Figure 12 with the value 
of L/Lg corresponding to loh, assuming R/2RS =1, €01/p = 
0.5, and using equation (40). Except for the three extreme 
objects AKN 120, 3C 273, and III Zw 2, the AGNs and QSOs 
in our sample obey L < Lf. Unless ls/le > 1, this upper limit to 
L may be a factor ~ 10 lower than the classical Eddington limit 
(see eq. [33]). Note that at this upper limit, where /ob % 5 and 
le ^ 100, Xjjj is very close to unity, and, as long as xmax x > 1, 
pair effects can provide the high-energy break to the spectrum. 

We are grateful to Martin Elvis and Leonid Ozernoy for 
helpful discussions, to Richard Mushotzky for helping us 
compile some of the data, and to Roland Svensson for sending 
us an early draft of his 1987 paper. One of us (A. A. Z.) was 
supported in part by the NSF grants AST 84-15355 and AST 
84-51725. 
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APPENDIX A 

ENERGY CONSERVATION 

We now demonstrate that equations (3) and (4) and the various expressions for the quantities therein conserve total energy. 
Integrating equation (3) over x dx and using equations (19), (9), (27), (10), the total escaping energy, per unit volume, per unit time, is 

J xnesc = J xh0 dx + J P(y)dy + ^(rTc ^ 

Í 

y2xn(x)N(y)H\ ■ xy 

C(7j n(x)xN(y)Hl ~ — xy Jdxdy 
R Í 

4 / 

xn(x)Tyy(x)dx . 

)dydx 

(Al) 

The second term on the right-hand side of equation (Al) assumes that 0 = 0, which neglects the thermal energy in electrons and 
positrons. This energy never exceeds ~ 10“ 2 of the total energy, and we have neglected it in our calculations. 

Now, using equation (6), and integrating by parts, we obtain 

yN(y)dy = lQ(y) + P(yy](y - Wy, 

and, using equation (7) for y, this is equal to the third and fourth terms on the right-hand side of equation (Al). Thus, we have 

xn0dx + 

Now, using equations (12) and (13), we have 

J xhesc dx = J xfic 

ymax £ 
Kr - i)ô(y) + yP(y)¥y - j xn(x)Tyy(x)dx . 

•/l/Vmax 

fïmax £ Vmax / 
I yP(y)dy = - J ^ + -jn(x)T:ri(x)dx , 

(A2) 

(A3) 

(A4) 

and, using the expression for Tyy in equation (11) and making the substitution x 1/x in one of the two terms on the right-hand side 
of equation (A4), we finally obtain 

yP(y)dy 
c ryma 

R Jl/Vm 
giving 

j* xhcsc dx = j xh xh0dx + 

xn(x)Tyy(x)dx , 

Q(y)(y - l)dy . 

(A5) 

(A6) 

The right-hand side of equation (A6) is the injected energy, per unit time, per unit volume, in soft photons and in particles, 
respectively. Thus the emitted energy equals the injected energy. 

APPENDIX B 

NUMERICAL METHOD 

In the absence of thermal Comptonization, equation (3) may be written as 

R n0 + fiA + ftcT  
C (l+a^T^/j-^ + T^ + T^' 

(A7) 

Since the terms on the right-hand side may be written as functions of n(x) and integrals over n(x), equation (A7) represents a complex 
integral equation for n(x). In our first stage of solution, we solve equation (A7) by successive iterations. The right-hand side is 
evaluated at an old n(x), then a new n(x) is computed by equation (A7), and so on. Using this scheme, however, we find that basing 
Tyy(x) on the old n(x) in order to determine the new n(x) leads to difficulties with convergence. Fortunately, the special form oftyy 
allows an exact, self-consistent solution for n(x) and ryy(x), given the other quantities in equation (A7) as fixed functions of x. First, 
write equation (A7) in the form 

n(x) = 
A(x) 

B(x) + C(x)n(l/x) ’ 

where ryy = C(x)n(l/x) = 0.2R<7T x ^(l/x). Next, change x to 1/x in equation (A8a), obtaining 

D(x) 
E(x) + F(x)n(x) ’ 

(A8a) 

(A8b) 
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where D(x) = A(l/x), E(x) = B(l/x), F(x) = C(l/x), and A, B, C, D, E, F are all known functions of x. Substituting equation (A8b) 
into equation (A8a) then yields a quadratic equation for n(x). Taking the positive root, gives us n(x) and Tyy(x). Using this method for 
n and Tyy at each iteration, 5-10 iterations on equation (A7) produce convergence at better than 1 %. 

In our second stage, we include the effects of thermal Comptonization. This is done by numerically solving equations (3), (22), and 
(23), with w0, hA, n£T, TcT, Tyy, and tt given functions of x, as determined by the last iteration in stage 1. After solving for n(x) in this 
way, an equilibrium temperature 0 is computed by equation (28). This 0 is not self-consistent, however, because an estimated 0 
had to be used to solve equation (22). Furthermore, Tyy(x) and n(x) are not self-consistent, leading to numerical instabilities. 
Therefore, we calculate a new Tyy(x) based on the new n(x), use the new 0, and again solve equations (3), (22), and (23), with h0, hA, 
ÂcT> t£t, and tx unchanged. This process is repeated typically 5 times, updating Tyy and 0 at each iteration, until convergence at 
better than 1 % is achieved. 

In our third stage of solution, we recalculate hA, TcT> Tyy> and tt based on the latest n(x). After this, equations (3), (22), and (23) 
are solved again, including the iterations on © and ryy described for the second stage. Stage 3 is repeated ~5 times, until all 
quantities have converged to better than 1%. Note that after the first stage, equation (A7) is no longer used because it neglects 
thermal Comptonization. 

The two boundary conditions used to solve the Kompaneets equation are 

at the lowest x, expressing zero flux, and 

u — [tt0 + hcT + (1 —/e)^]/(Ty7 + t£t + tkn + 1) 

at x = 1, resulting from the solution of equations (3), (21), and (23) in the region x > 1. 
In actual computations, the value of x dividing the regime of equation (22a) and the regime of equation (23) was taken as 

x % 1.1-1.5 rather than x = 1, so that the transition in calculational method would not interfere with a good treatment of the 
annihilation line at x = 1. For the transition value of x, xf, not equal to unity, the œn term in the numerator of equation (28) must be 
evaluated at xt and multiplied by xf ; in the denominator it must be evaluated at xt and multiplied by x,2. 
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