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ABSTRACT 
We describe results for the origin of angular momentum of bound objects in large cosmological AT-body 

simulations. Three sets of models are analyzed: one with white-noise initial conditions and two in which the 
initial conditions have more power on large scales, as predicted in models with cold dark matter (CDM). 

We study the growth and distribution of angular momentum in individual objects. The specific angular 
momentum distribution of bound clumps increases nearly linearly with radius, but the orientation of the 
angular momentum in the inner high-density regions is often poorly correlated with that of the outer parts. 
The angular momentum of proto-objects grows as the first power of time while their overdensity is less than 
unity, in agreement with linear perturbation theory. Objects with pronounced substructure couple more effec- 
tively to the tidal field and so acquire more angular momentum. However, the nonlinear evolution of sub- 
structure in the inner regions of groups transports angular momentum to their outer parts. The final angular 
momentum of nonlinear clumps may be substantially lower than the angular momentum acquired during the 
linear growth phase. These nonlinear effects may play a key role in determining the Hubble sequence. 

Statistical analysis of large catalogs of objects shows that the dimensionless spin parameter À is remarkably 
insensitive to the initial perturbation spectrum and has a median value Ame - 0.05. Thus the generation of 
angular momentum in hierarchical clustering models is not critically dependent on the specific shape of the 
primeval spectrum. The quantity À is weakly correlated with mass and internal substructure and is uncor- 
related with initial overdensity. In CDM models, groups with high A-values tend to have nearer neighbors and 
are more strongly clustered than groups with low À; these effects are weaker or absent in white-noise models. 
There is little or no significant correlation between spin orientations of nearest neighbor clumps in either class 
of model. 
Subject headings : galaxies : clustering — galaxies : formation — galaxies : internal motions 

I. INTRODUCTION 
If galaxies and clusters formed by gravitational instability of 

small density perturbations, they will have acquired angular 
momentum through tidal interactions with their neighbors 
(Hoyle 1949; Peebles 1969). Analytic descriptions of this 
process have proved to be difficult, even in linear perturbation 
theory, and almost totally inadequate in modeling the non- 
linear phase of structure formation. 

Peebles (1969) used linear theory to estimate the angular 
momentum growth in randomly placed spherical regions, 
assuming that the power spectrum of the density fluctuations 
was of the form 

l^l2ock". (1) 

He matched the results with those of a simple nonlinear model 
in which the torque on a protosystem was calculated as the 
product of its quandrupole moment with the tidal field of 
neighboring point masses. Peebles’s calculation suggested that 
the dimensionless spin parameter, 

à = J\E\1/2G~1M-5/2 , (2) 

of a typical bound system should be roughly À ä 0.08. (Here J, 
£, and M are, respectively, the total angular momentum, 
energy, and mass of the system; G is the gravitational con- 
stant.) This calculation can be considered only as a rough 

guide to the correct answer. For example, the linear part of the 
calculation diverges for spectral indices outside the range 
— 1 < n < 0 because of spurious coupling between short- and 
long-wavelength modes. The linear growth rate of J is inappli- 
cable to the early stages of protogalaxy evolution because 
Peebles calculates J for spherical regions, so the angular 
momentum grows only to second order in perturbation theory. 
A different analysis has been given by Doroshkevich (1970) and 
expanded by White (1984). These authors show that the 
angular momentum of a Lagrangian volume encompassing the 
material which eventually ends up in a bound grows to first 
order. However, the magnitude of J is uncertain in the latter 
approach, since it is difficult to designate the boundary of a 
protogalaxy analytically. 

Zel’dovich and Novikov (1983) recognized that detailed pre- 
dictions from the tidal torque model would probably require 
cosmological Af-body simulations. This is the approach 
adopted in this paper. Our work is an extension of previous 
numerical studies which dealt mainly with white-noise (n = 0) 
initial conditions with Q = 1. Efstathiou and Jones ran 1000 
particle AT-body simulations and found that the 90 and 10 
percentile points in the distribution of 2 for bound clumps 
correspond to 2 = 0.11 and À = 0.03, respectively, with a 
median À = 0.06. This result was confirmed by Efstathiou and 
Barnes (1983, hereafter EB) using a 20,000 particle simulation. 
They also found a trend for massive clumps to have lower À 
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values than less massive clumps. They ran several 1000 particle 
models with spectral indices n = + 2 and n = — 1 and found 
evidence that the 2 distribution is not sensitive to initial condi- 
tions. We have been motivated to reexamine this problem 
because it is now feasible to run many large-AT simulations. We 
can therefore begin to ask more detailed questions concerning 
the internal distribution of angular momentum, the nonlinear 
effects of substructure, correlations with large-scale structure, 
and so on. 

Recent work on galaxy formation and clustering suggests 
that equation (1) with n = 0 may be a poor approximation to 
the postrecombination fluctuation spectrum. Values of n < — 1 
are in closer accord with the observed two-galaxy correlation 
function and the multiplicity function of groups and clusters 
(Gott, Turner, and Aarseth 1980; Efstathiou and Eastwood 
1981). In one of the most attractive models, the mean mass 
density of the universe is dominated by cold weakly interacting 
dark matter (CDM; see Blumenthal et al. 1984). For constant- 
curvature primordial fluctuations, the postrecombination 
power spectrum in this model is well approximated by 

k 
^ ^ (1 + afc + ßk312 + yk2)2 ’ ^ 

where a = \Jl, ß = 9.0/3/2, y = l.Ol2, and l = 
Mpc1 (Davis et al. 1985, hereafter DEFW). This spectrum 
exhibits a gradual transition from the primordial slope n = +1 
on large scales to n = —3 on small scales. DEFW have 
described an extensive series of V-body simulations designed 
to study the formation of large-scale structure in this model. 
They find that Q = 1 models are acceptable, provided that 
luminous galaxies formed only at the high peaks in the initial 
density field (“biased” galaxy formation; see also Bardeen 
1986; Kaiser 1986). The density peaks are more highly clus- 
tered than the mass, in qualitative agreement with the argu- 
ment for linear Gaussian density fields given by Kaiser (1984). 
Hence in biased galaxy formation models, luminous galaxies 
exaggerate the clustering strength of the mass distribution. An 
unbiased low-density universe with Q0 = 0.2 was found to give 
a somewhat less satisfactory match to observations of galaxy 
clustering. CDM universes with Q0 /i_4/3 < 0.2 are also incom- 
patible with upper limits on the fine-scale anisotropy of the 
microwave background radiation (Bond and Efstathiou 1984). 
In Davis et a/.’s specific example of biasing, the value of the 
Hubble parameter is h ^ 0.5, and the effective spectral index 
on scales relevant to galaxy formation is roughly n = —2.4. 

These results must be regarded as preliminary at this stage. 
No successful mechanism for biased galaxy formation has yet 
been demonstrated (but see Rees 1985; Silk 1985; Dekel and 
Silk 1985; Frenk et al 1987 for various ideas), and the observa- 
tional constraints on the model are still relatively weak. Never- 
theless, the hypothesis that galaxies formed at the high peaks in 
a universe dominated by CDM has excited considerable dis- 
cussion and speculation, some of which may remain relevant 
even if the specific details of the CDM picture are incorrect. 
For example, Blumenthal et al. (1984) suggest that galaxies 
forming around the highest peaks ( > 3(rg, where crg is the rms 
density fluctuation on a galactic scale) acquire less angular 
momentum via tidal torques and therefore become ellipticals, 
while lower peaks (lag-2(jg) spin more rapidly and become disk 

1 Here h is the Hubble constant in units of 100 km s -1 Mpc \ and 6 is the 
microwave background temperature in units of 2.7 K. 

galaxies. Since high peaks are statistically concentrated toward 
the future sites of rich clusters (see Bardeen et al. 1986), Blu- 
menthal et al. predict a relationship between the morphology 
of galaxies and their environment in qualitative agreement 
with observations by Dressier (1980). Hoffmann (1986) has pre- 
sented a simplified calculation indicating that the required 
anticorrelation between angular momentum and initial over- 
density arises naturally in hierarchical clustering models. We 
are skeptical of such claims. First, it seems unnatural that the 
angular momentum of a proto-object, which depends on its 
shape and the local tidal field, should be closely related to a 
global threshold. Second, the angular momentum of a nonlin- 
ear dump is unlikely to be accurately predicted by linear 
theory. Angular momentum growth is abruptly truncated once 
a cluster reaches an overdensity on the order of unity, and may 
decrease substantially thereafter if it is inhomogeneous and 
nonaxisymmetric, as first pointed out by Frenk et al. (1985). 
Third, one generally requires a knowledge of the joint distribu- 
tion of several variables, e.g. J, E, and M, to apply even the 
simplest arguments regarding the final state of collapsed proto- 
galaxies (Fall and Efstathiou 1980). 

Thus, one of our main aims in this paper is to examine the 
generation of angular momentum in simulations with “more 
power on large scales,” such as CDM models (eq. [3]), and to 
compare the results with simulations run with white-noise 
initial conditions. Numerical results for the special case n = 0 
have figured prominently in many discussions of galaxy forma- 
tion (e.g., Fall and Efstathiou 1980; Silk and Norman 1981; 
Gunn 1982; Faber 1982). It is clearly important to check 
whether results derived from white-noise models are applicable 
to a wider range of spectral indices. We do not concentrate on 
simulating the exact initial conditions appropriate to galactic 
scales in the CDM picture because this poses difficult 
(although not insurmountable) numerical problems. In our 
view, such specific modeling does not seem warranted at this 
stage. For example, recent work by White et al. (1987) suggests 
that the biased CDM model proposed by DEFW does not 
account for the strong clustering of Abell clusters (Bahcall and 
Soneira 1983) and does not lead to large-scale velocity fields 
such as those reported by Collins, Joseph, and Robertson 
(1986) and Burstein et al. (1986). Our models have substantial 
power on large scales and should be adequate to tèst whether 
any features of the tidal torque picture are unduly sensitive to 
the spectral shape. 

The A-body simulations and the algorithm used to identify 
groups are described in § II. In § III we give examples of 
individual objects and study their dynamical properties. 
Section IV presents an investigation of correlations between À 
and various other parameters (e.g., group mass, presence of 
substructure, degree of clustering); we also describe the evolu- 
tion of angular momentum and test for correlations between 
the spin directions of group pairs. Our main conclusions are 
summarized in § V. 

II. NUMERICAL SIMULATIONS AND GROUP CATALOGS 

a) Numerical Simulations 
The V-body simulations that we analyze here were run using 

the high-resolution cosmological P3M (particle-particle 
particle-mesh) code described by Efstathiou and Eastwood 
(1981) and Efstathiou et al. (1985). This code can follow the 
motion of a large number of particles (typically N = 32768) 
within a periodic computational cube of length L. The gravita- 
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tional field is divided up into long- and short-range com- 
ponents, which are computed by fast Fourier transform and 
direct summation, respectively. Spatial resolution is limited 
only by the very short-range force softening introduced to 
render the equations of motion nonsingular; the two-particle 
interaction potential goes exactly as 1/r on scales 
greater than the comoving softening length rj and is relatively 
close to 1/r even for separations as small as riß (see Efstathiou 
et al 1985, Fig. 2). Initial conditions were set up by imposing a 
chosen spectrum of perturbations on a uniform grid of par- 
ticles and assigning velocities according to the Zel’dovich 
(1970) approximation. As Efstathiou et al (1985) show, this 
procedure yields a good approximation to the desired power 
spectrum for k between the fundamental wavenumber kL = 
2ti/L and the Nyquist wavenumber kN = N1/3kJ2, with pertur- 
bations almost entirely in the growing mode. 

To explore the dependence of À on the fluctuation spectrum, 
we have analyzed 11 models with CDM powerspectra (eq. [3]) 
and three models with white noise (eq. [1] with n = 0). An 
overview of the simulations is presented in Figure 1 : from left 
to right, we plot three CDM models with computational box 
lengths L = 2, 10, and 32.5/T2 Mpc, and one white-noise 
model. The top row shows initial conditions, with time advanc- 
ing down the page. Parameters for the models analyzed in this 
study are listed in Table 1 ; all have Q = 1, and in each case the 
softening parameter was r¡/L = 0.0047. One CDM model (TO) 
with a box length L = 2h~2 Mpc was run to study tidal 
torques in a model with a extremely flat fluctuation spectrum; 
the local spectral index n(k) = ¿(log |<5fc|

2/¿(log k) ranges from 
n(kN) = -2.4 to n(kL) = — 2.0. With so little curvature to the 
power spectrum, this model is similar to a pure power law with 
effective spectral index neff = n[{kN kL)1/2] ~ —2.2. As noted 
by Efstathiou et al (1985), large variations from run to run are 
expected in models with so much power randomly distributed 
between the few long-wavelength modes of the computational 
box. To obtain statistically reliable results within a finite com- 
puting budget, we chose to concentrate the bulk of our 
resources on models with somewhat less extreme spectra. We 
therefore ran an ensemble of five CDM models (SO-4) with 
L = 10h~2 Mpc (n = -2.2 to -1.5), providing a large data 
base for statistical tests. We have also analyzed an ensemble of 
five CDM models (CO-4) with L = 32.5/T2 Mpc (n = -2.0 to 
— 0.5), run by DEFW. Comparisons between these two CDM 
ensembles are of some help in estimating the significance of 

TABLE 1 
The íV-Body Simulations 

Model N Spectrum L neff Amplitude 

TO   32768 CDM 2.0 -2.23 1.0 
SO-4   32768 CDM 10.0 -1.98 1.0 
SO'.  8000 CDM 10.0 -1.98 0.822 
SO"  32768 CDM 10.0 -1.98 0.5 
C0-4  32768 CDM 32.5 -1.59 1.0 
W0-1   32768 WN ... 0 1.0 
PR1   20000 WN ... 0 1.0 

Notes.—N is the total number of particles. “ WN ” indicates models with 
white noise initial conditions, and “CDM” denotes models in which the 
initial fluctuation spectrum was of the form expected in a cold dark matter 
universe (eq. [3]). For the CDM models, L denotes the length of the compu- 
tational box in units of h~2 Mpc. Effective spectral index is given by neff (see 
§ Ilia). Amplitude is that of the initial power spectrum at the Nyquist fre- 
quency corresponding to the initial particle grid (kN = Nll3n/L) relative to 
that of a random distribution with the same number of particles. 

some of our results. As a foil to the CDM ensembles, we 
analyzed a pair of white-noise models (W0-1) run by the 
DEFW group to study self-similar gravitational clustering. In 
addition, we have reanalyzed the Poisson model (PR1) 
described by Efstathiou and Barnes (1983). 

In our analysis below, we adopt units in which G = 1, the 
mass of each particle m = 1, and the comoving computational 
box length L = 1. Comoving and physical lengths will be 
denoted by x and r, respectively. We use the notation a(t) to 
denote the cosmological scale factor in our N-body models, 
normalized to unity at the start of the calculation. 

b) Group Algorithm 
Locating clusters of particles in the simulations is central to 

all of the analysis described below. In purely gravitational clus- 
tering, there are no well-defined edges or boundaries which 
delineate the virialized regions from the outer parts of clusters. 
The outer boundary must therefore be set using an arbitrary 
crititerion such as mean or local overdensity. Further, we do 
not want to appeal to special symmetries (e.g., spheres) since 
clusters have a wide variety of instrinsic shapes. The algorithm 
that we have adopted was chosen for its computational speed 
and simplicity. It works by identifying connected regions where 
the local mass density p(x) exceeds a fixed threshold without 
regard to shape. Since the mass distribution in the models is 
approximated by discrete particles, some local averaging must 
be used to obtain p(x). In our procedure, a fixed sphere of 
radius xsph is placed around each particle, and the particles 
within that sphere (including the central one) are counted. If 
there are at least nsph such particles, all particles within the 
sphere are identified as members of the same cluster. If any of 
these particles are already members of other clusters, the clus- 
ters are merged together. Some details of the algorithm are 
given in the Appendix. Given values for the parameters xsph 

and nsph, this procedure maps a distribution of particles into a 
unique set of disjoint clusters, roughly bounded by surfaces of 
constant density pcrit = 3nsph/47rxs

3
ph. The algorithm obeys a 

nesting condition (Efstathiou, Fall, and Hogan 1979) with 
respect to changes in either xsph or nsph. This property is very 
useful in assessing the degree of substructure within clusters. If 
nsph = 2, the algorithm becomes identical to the standard 
“friends of friends” algorithm (e.g., Davis et al 1985). We have 
set nsph = 4 and adjusted xsph to give the desired critical 
density, but our results are not sensitive to this specific choice. 
Typical large groups identified at a density contrast of 64p are 
shown in Figure 3 below. 

c) Group Parameters 
For each object identified by the group algorithm we evalu- 

ate the following : 
1. Spin parameter 2, defined by equation (2) in terms of the 

total angular momentum J, energy £, and mass M of a group. 
Let and Vi be the physical position and velocity of particle i 
with respect to the group center of mass. All particles have unit 
mass, so 

M 
J= £ r¡ x Vi, (4a) 

i=l 

and 

E=T+U=^ X l,’¡l2 + Z I </>P3M(k - »vl) • (4b) ¿ i=l i=l j<i 
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2. Principle axes and ellipticities, computed by diagonalizing 
the normalized moment of inertia tensor, 

J M 
Ö — 77 H r¡® r¡ ■ (5) 

Let a2 > b2 > c2 be the principle components of Q, and A the 
corresponding major-axis vector. 

3. Substructure, measured by comparing group catalogs 
defined at different density contrasts. As noted above, the 
group algorithm obeys a nesting condition, so each group 
identified at a critical density pcrit will be resolved into several 
smaller groups at a higher p'crit. We parameterize the level of 
substructure by the quantities ^ and f2 which represent the 
fractional mass in the first and second ranked subgroups, 
respectively. For example, the group in Figure 3h identified at 
Pent = 64p resolves at p'crit = Slip into two subgoups with 
fractional masses ^ = 0.57 and/2 = 0.11, with the remaining 
mass in individual particles and small clumps. 

4. Initial over density va, which attempts to quantify the rela- 
tive amplitude of the linear-regime fluctuation which gave rise 
to a given object. In our tests of the AT-body simulations, we 
have focused on certain well-defined measures of initial over- 

density. The theoretical fluctuation spectra used to generate 
our initial conditions have no intrinsic short wavelength cutoff, 
so the small-scale fluctuations are accurately represented apart 
from particle discreteness. To measure the initial overdensity 
on the scale of bound clumps, we first smooth the (over)density 
field (5(x) by convolving with a Gaussian exp ( — x2/2x2); let 
S(x; xs) be the smoothed overdensity field, with standard devi- 
ation <t(xs). We then associate with each particle the value of 
v = ö(x; xs)/a(xs) computed at the particle’s initial position x. 
The distribution of v values within each clump may be used to 
characterize the initial overdensity, for example, the mean 
value <v>. These measures depend on the artificial smoothing 
length, but as we show below, our results for CDM models are 
largely insensitive to the precise choice. (As « -► — 3.0, the 
results are completely independent of xs). 

As an example, the large-scale distribution of high-v par- 
ticles in model SO is shown in Figure 2. We plot particles in 
groups identified at a = 3.0 using pcrit = 64p (Fig. 2a), particles 
with 1.0 < v < 2.0 defined for a smoothing length xs = 1/64 
(Fig. 2b), and particles with v > 2.0 at a = 3.0 (Fig. 2c), and in 
the initial conditions (Fig. 2d). These plots may be compared to 
the corresponding frames in Figure 1 (col. [2]). The enhanced 

Fig. 2—Large-scale distribution of particles in groups and above various thresholds in model SO. (a) Particles assigned to groups above 64p. (b) Particles with 
1.0 < v < 2.0. (ç) Particles with v > 2.0 at a = 3.0. (d) Initial positions of these particles. 
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clustering of particles with high v predicted by Kaiser (1984) is 
clearly seen. The figure also shows the close correspondence 
between high-v particles and the prominent groups. 

III. INDIVIDUAL OBJECTS 

In this section we describe the properties of a few objects in 
some detail to provide physical insight into the tidal torque 
mechanism. We focus our discussion on the five most massive 
groups identified at a density contrast of pcrit = 64p in simula- 
tions TO (at a = 2.34), SO (a = 3.0) and in WO (a = 23.4). These 
particular simulations were chosen to test whether our results 
are sensitive to initial conditions; as is evident from Figure 1, 
the initial fluctuation spectra in these three models differ sub- 
stantially. We have restricted the analysis to massive groups 
because they have the best resolved internal structure. This 
introduces a distinct selection bias of which the reader should 
be aware. It is not really possible to assess in detail how certain 
group properties, e.g., the variation of specific angular momen- 
tum with radius, depend on mass. Less massive objects simply 
do not contain enough particles to allow a detailed analysis of 
their internal structure. The analysis of this section will be 
complemented by a statistical study in § IV of the global 
properties of groups spanning a wide range of masses. In § Ilia 
we describe the density structure of these groups, and in § Illh 
we discuss the spatial distribution and evolution of angular 
momentum. In § IIIc we investigate the range of the local tidal 
field for the various initial density fields in our simulations. 

a) Structure of Massive Groups 
On the left-hand panels in Figure 3, we show particle posi- 

tions for groups T0(4), S0(5), and W0(2) respectively. [The 
notation T0(4), for example, denotes the fourth most massive 
group in simulation TO]. Points belonging to the first- and 
second-ranked subgroups identified at pcrit = 512p are plotted 
as circles and crosses, respectively; the remaining points are 
plotted as dots. The diagrams in the right-hand panels show 
“smoothed” representations of these groups: the ellipsoids 
shown in these figures were constructed with the same orienta- 
tions and axial ratios, computed from eq. (5). Some key param- 
eters for these groups are listed in Table 2. 

These groups are quite typical of the large groups in our 
simulations. Some are centrally concentrated, with one promi- 
nent subcluster [e.g., W0(2)], while others [e.g., S0(5)] contain 
several distinct subclumps. On the right-hand panels of Figure 
3 we have indicated the directions of the angular momentum 
vectors for the larger subclusters and for the groups as a whole. 
The spins are fairly well aligned in group W0(2), while in con- 
trast the angular momentum of the two large subgroups in 
S0(5) point in roughly opposite directions. These spin align- 
ments will be discussed further in § Illfr. 

In Figure 4 we show “circular” velocity profiles vc(x) = 
[GM(x)/x]1/2 for our 15 selected groups. Here M(x) is the total 
mass of all particles within a sphere of radius x centered on the 
group, including those which were explicitly assigned to the 
group. The precise definition of the group “center” has an 
important bearing on the results. We do not use the center of 
mass of the whole group, since this is offset from any center of 
mass concentration if significant substructure is present. The 
resulting “circular” velocity profiles would then appear to 
have spuriously large cores. Instead, we have computed the 
potential energy of each particle in the first ranked subgroup 
identified at pcrit = 512p and identified the center of the group 
as the location of the most tightly bound particle. The reality of 

TABLE 2 
Properties of Massive Groups 

Group M /i f2 A T/\W\ 61R d2R 

a = 2.34 

T0(1)  2598 0.197 0.099 0.097 0.48 121.9 40.1 
T0(2)  749 0.267 0.069 0.091 0.54 45.8 6.6 
T0(3)  608 0.538 0.041 0.074 0.59 14.0 50.2 
T0(4)  570 0.465 0.079 0.054 0.61 110.2 77.8 
T0(5)  565 0.543 0.021 0.033 0.58 68.2 48.7 

a = 3.0 

S0(1)  870 0.522 0.018 0.035 0.58 79.8 35.1 
S0(2)  676 0.450 0.053 0.034 0.62 11.6 101.7 
S0(3)  546 0.589 0.048 0.046 0.59 61.2 12.3 
S0(4)     476 0.431 0.052 0.027 0.54 105.2 135.8 
S0(5)    425 0.574 0.111 0.031 0.65 88.5 108.7 

a = 23.4 

W0(1)  1209 0.508 0.070 0.049 0.52 75.8 21.1 
W0(2)   986 0.720 0.052 0.035 0.60 19.7 66.9 
W0(3)    975 0.567 0.048 0.035 0.52 41.7 109.3 
W0(4)  639 0.622 0.094 0.089 0.57 17.1 133.6 
W0(5)  576 0.712 0.021 0.035 0.56 77.3 93.1 

Notes.—M denotes the total number of particles per group at pcrit = 64p; 
fx and f2 give the fraction of the total group mass in the first- and second- 
ranked subgroups, respectively, where the subgroups were identified with 
pcrit = 512p; A is the spin parameter A, T/\W\ is the ratio of the kinetic to 
potential energy; Q1R and 02R give the directions between the angular 
momenta of the first- and second-ranked subgroups, respectively, related to 
the angular momentum of the rest of the particles in the group. 

the resulting cores shown in Figure 4 is compromised primarily 
by the effective softening ( ~ rç/2) in the P3M potential, which is 
indicated by the arrows in the figure. 

These results show that vc(x) for clumps in the CDM-like 
models is very nearly flat, while pc(x) in the white noise model 
falls slowly with x (approximately as x-0 25). The outermost 
point of each curve corresponds to the radius at which the 
average density exceeds that of the mean background by a 
factor A = 100. The large cores in models TO and SO are prob- 
ably significant, while those for some of the groups in model 
W0 are of the same size as the effective potential softening. The 
density profiles of the large groups in models TO and SO are 
similar to those inferred for the dark halos around spiral gal- 
axies (e.g., Rubin et al 1985, and references therein), while 
those in model W0 fall somewhat too steeply. Similar results 
have been obtained by Frenk et al. (1985) for CDM models and 
by Quinn, Salmon, and Zurek (1986) for a set of scale-free 
models. It is beyond the scope of this paper to make a more 
detailed comparison between the density profiles of dark halos 
and those of the V-body groups. Briefly, the main problem 
with such a comparison lies in scaling the models to physical 
units. This can be done is several ways. For example, one can 
match the amplitude of the observed two-point galaxy correla- 
tion function Ç(r) or its second moment J3(r) (Peebles 1974, 
1981) with corresponding results from the simulations. 
However, this has the disadvantage that an extrapolation to 
small scales (<20/z_1 kpc) is required to compare with the 
properties of dark halos. A more direct approach is to match 
the inferred density contrast for halos on length scales similar 
to those over which spiral rotation curves are measured. For a 
flat rotation curve, the overdensity interior to radius r relative 
to an Q = 1 background is A = 2v^/(H0 r)2. For a typical large 
spiral (L ä 5 x 1010 L0), A æ 1 x 104 within a Holmberg 
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Fig. 3.—Internal structure of several massive groups identified in models TO, SO, and WO. In the notation defined in § Ilia, (a) shows group T0(4), (b) shows S0(5), 
and (c) shows W0(2). In the left-hand panels the positions of particles belonging to the first-ranked subgroup (pcrit = 512p) are shown as open circles, those belonging 
to the second-ranked subgroups as crosses, and the remaining particles as dots. The right-hand panels show smoothed representations of the groups in which groups 
and subgroups are represented by ellipsoids. In each case, we have indicated the orientation of the angular momentum of the group and those of the two largest 
subclumps. 
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radius (rH » 30h~1 kpc), while for a small spiral (L ä 3 x 109 

L0), A ä 1 x 105 within rH ä 6/i_1 kps (see Fall and Efsta- 
thiou 1980, Table 1). At the radius defined by the effective 
softening (rj/2) in Figure 4 the most massive clumps in model 
WO have A ä 4 x 104, while those in models SO and TO have 
A ä 1 x 104. Thus, there is marginal overlap between observa- 
tions of the largest spirals and the N-body results presented 
here. This agrees with Figure 2 of Frenk et al (1985), who used 
a self-consistent scaling adopted from their earlier work on 
large-scale structure in CDM models (DEFW), and with the 
results of Quinn et al, who adopted a scaling for which their 
AT-body integrations have a resolution of ~10/i-1 kpc. Addi- 
tional ambiguities in comparing N-body results with observed 
rotation curves arise from the possibility that the collapse of a 
luminous component might alter the distribution of dark 
matter in the central regions of a halo. 

b) Internal Distribution and Evolution of 
Angular Momentum 

In Figure 5 we show the specific angular momentum j(x) for 
our selected groups computed in shells as a function of radius 
from the center of mass. The bins were chosen so that they each 
contain 100 particles. For each set of initial conditions the 
specific angular momentum of material in the inner regions of 
the groups is substantially lower than in the outer parts. The 
dotted lines in each panel show the relation j(x) oc x, which 
provides a reasonable approximation to the results. It is 
instructive to examine how this distribution of angular 
momentum arises. We have therefore calculated the evolution 
of the specific angular momentum for the particles belonging 
to each of the radial bins used in Figure 5. A typical example of 
this evolution is shown in Figure 6a, where we plot results for 
the group S0(1). At the time the simulation begins, the distribu- 
tion of j is nearly constant, and the material which is destined 
to clump toward the center of a group has almost the same 
specific angular momentum as that which ends up in the halo. 
As the evolution proceeds, j(x) of the inner material begins to 
grow at a slower rate than that for the halo material, and at 
a> 2 angular momentum is lost from the central regions. The 
growth rate of the angular momentum in linear perturbation 
theory can easily be derived using the Zel’dovich (1970) 
approximation for particle trajectories. This states that 

r = a(t)x = a{t)[q + b(t)p(qy] , p(q) = - , (6) 

where q is the initial unperturbed particle coordinate and 
b(t) oc a(t) oc i2/3 if Q = 1. As shown by Doroshkevich (1970) 
and White (1984), the angular momentum of the material in a 
Lagrangian volume, 

J(t) = J pa5(x — x) x xd3q 

(where x denotes the center of mass and dots denote deriv- 
atives with respect to t) may be approximated to first order 
using equation (6) as 

J(t) » pa5 J (? - i) x p(q)dzq . (7) 

Thus according to linear perturbation theory we expect 

J(t)cca3,2cct (8) 

in an Q = 1 universe. This derivation is rigorous only if the 
mass distribution is linear on all scales. If the distribution is 

nonlinear, it is possible that small-scale motions could alter the 
growth rate of J even if the integral in equation (7) extends over 
a volume which encloses a small net density perturbation. A 
description of this type of mode coupling effect is beyond these 
scope of linear perturbation theory and at present can be inves- 
tigated only by AT-body simulations. White (1984) showed that 
such effects are unimportant in simulations with white noise or 
“ massive neutrino ” initial conditions. A similar comparison is 
shown in Figure 6b for the five largest groups in model SO. The 
top set of dashed curves shows the evolution of J(t) for each 
group identified at the standard density contrast pcrit = 64p at 
a = 3.0. The lower set of dashed curves show J(t) for the largest 
subgroup (pcrit = 512p) in each group. The early evolution is in 
excellent agreement with the linear theory prediction. As the 
clumps become nonlinear, the growth rate of J(t) decreases on 
average. It is easy to see why this occurs. The torque on a set of 
particles G is 

(9) a i e G j t G \xi xj\ 

where the origin of the coordinates in equation (9) is chosen to 
be the center of mass of G. Now according to the Zel’dovich 
approximation, the force on a particle is Ft = a(a2b)'piq^. 
Thus in linear theory equation (9) gives F = (a2b) ' E(^t- — q) 
x p(qi) = constant in agreement with equation (7). As an ideal- 
ized model of nonlinear evolution, consider the case when the 
mass distribution within the clump G ceases to evolve in 
proper coordinates while the forces from external sources con- 
tinue to grow at the linear rate. The torque will then decrease 
as F oc t~2/3. This model is intended to describe the way in 
which a nonlinear clump might decouple from the tidal field. In 
fact, the real behavior is considerably more complex. The 
curves in Figure 6b show that the evolution of J(t) becomes 
extremely erratic when clumps become highly nonlinear. Some 
clumps loose a large fraction of their angular momentum 
within a short time interval, while J(t) for other clumps con- 
tinues to grow relatively smoothly, although at a slower rate 
then predicted by linear theory. In particular, notice that for 
two high-density subgroups J(t) falls substantially between 
a = 2.0 and a = 3.0, but their angular momentum increases 
sharply between a = 3.0 and a = 4.0. The explanation for this 
behavior is apparent from Figure 7 which shows the time evol- 
ution of all the particles belonging to group S0(5) together with 
those of the two largest subgroups. Table 3 lists the time evolu- 
tion of the angular momentum of the whole group (JT), those 
of the first- and second-ranked subgroups (^ and J2, respec- 
tively, defined relative to their center of masses) and the orbital 

TABLE 3 
Evolution of J for Group S0(5) and Two Largest Subgroups 

a JT Ji J 2 Joi ^02 A6Í Á02 

1.00   37.8 15.9 1.2 7.0 8.8 0.0 0.0 0.0 
1.68..  83.8 37.7 3.5 11.7 19.8 9.2 14.6 34.5 
2.02  115.0 62.5 7.8 6.1 35.9 12.2 23.0 55.4 
2.36  156.7 87.0 7.9 9.2 42.5 21.7 23.0 57.5 
3.04   133.4 56.5 7.5 39.4 42.3 20.4 28.2 64.2 
4 04  47.9 12.0 43.1 22.4 37.9 32.0 58.7 77.9 

Notes.—Cosmological scale factor is denoted by a; JT is the total angular 
momentum of group S0(5), Jx and J2 list the internal angular momenta of the 
two largest subgroups (see § Illb for details). The orbital components of the 
subgroups relative to the center of mass of the whole group are given by J0i 
and J02; A9T, A0l5 and A02 denote the change in direction of the angular 
momenta JT, and J2 respectively, relative to their initial directions at a = 1. 
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angular momenta of each subgroup relative to the center of 
mass of the whole group (J01 and J02, respectively). In addi- 
tion, we list three angles which indicate how the spin directions 
change with time: A6T = cos-1 JV^i) * /r(ii)], = cos-1 

[^(i) • /ifo)], and AO2 = cos“1 [/2(i) • Z^)]. The plot of the 
particle positions in Figure 7 shows that the group first breaks 
up into a number of small clumps which subsequently merge to 
form a nearly featureless structure by a = 4 (see Frenk et al. 
1985; White 1976). These subclumps loose orbital angular 
momentum to surrounding material as they merge, and it is 
this process that accounts for the general tendency for angular 
momentum to fall when groups become highly nonlinear. For 
group S0(5) shown in Figure 7, the internal angular momen- 
tum vector J1 of the dominant subgroup at a = 3 is of similar 
magnitude to that of its orbital angular momentum J01 (Table 
3), and the two vectors are aligned to within 19°. By a = 4, J01 
has nearly reversed direction (AO = 170°), and its magnitude 
has fallen by nearly a factor of 2. In this time interval, the 
magnitude of J1 fell by a factor of 4, and its direction changed 
by 60°, while the internal angular momentum of the second- 
ranked subgroup J2 increased by a factor of nearly 5, and its 
direction changed by 56°. However, the large decrease in the 
total angular momentum of the group is dominated by the 
combined change in the orbital angular momenta /01 and /02. 
The angular momentum of particles that are not members of 
the two largest subclumps suffers a relatively small change 
between a = 3 and a = 4, with the magnitude increasing from 
92.9 to 93.5 and the direction changing by only 23?5. Most of 
this change is due to transfer of the x components of the orbital 
angular momenta of subclumps 1 and 2 to this material. The 
rest of the change in the orbital angular momenta is absorbed 
by material external to the group. 

The decay of orbital angular momentum is a general feature 
of the evolution of groups in our numerical simulations. The 
erratic nonlinear evolution of the internal angular momenta of 
subclumps illustrated in Figure 6b is of less general interest. 
This is because the subgroups are identified as distinct objects 
at a specific epoch, and they may not retain their identity at 
later times. As may be seen in Figure 7, at a = 4 the second- 
ranked subgroup no longer corresponds to a single well- 
defined density concentration but has been sheared out into a 
long structure and in the process has gained a large amount of 
internal angular momentum. When the evolution of a group 
becomes highly nonlinear, the internal angular momenta of 
subclumps can suffer large changes of either sign since the 
torque is dominated by the presence of nearby nonlinear lumps 
(see § IIIc). 

As indicated by the preceding discussion, the direction of the 
angular momentum vector of material near the center of a 
group may be poorly correlated with that of material in the 
outer parts. In Table 2, we list the direction between the 
angular momenta of the first- and second-ranked subgroups 
with respect to the angular momentum of the rest of the par- 
ticles in the group. This shows that large misalignments are 
relatively common. We have also investigated the variation of 
the orientation of the angular momentum measured in spher- 
ical shells relative to the group center of mass. In general, we 
find that the spin direction of material with density contrast 
A > 500 is poorly aligned with that of the halo material. The 
spin directions of shells of material with lower density con- 
trasts. are often well aligned (to within 30°), but large devi- 
ations, which are usually associated with substructure, may 
occur. (Note that these results are insensitive to the exact 

choice of the group center.) In the tidal-torque picture one 
must therefore expect that the direction of the angular momen- 
tum vector of infalling material will vary in a complex way 
with distance from the center of a protogalaxy. These varia- 
tions will depend in detail on the internal structure of the 
protocloud. Binney and May (1986) have recently discussed 
some of the consequences of such misalignments for the evolu- 
tion of galactic spheroids. 

We have checked carefully that the results given above are 
not sensitive to particle discreteness. As a quantitative 
example, consider the internal distribution of angular momen- 
tum at a = 3.0 illustrated in Figure 6a for the group S0(1). 
From each radial bin we have removed the 10 particles with 
the largest angular momenta (i.e., 10% of the total number of 
particles per bin). In the innermost bin, the total angular 
momentum decreases by 24%, and the spin direction changes 
by 22°. In the outermost bin, the magnitude of J decreases by 
19%, and the orientation changes by 21°. These results are 
quite typical of those for the massive groups described in this 
section and illustrate that the angular momenta are not unduly 
sensitive to the inclusion or exclusion of a few particles. 

It has sometimes been stated that the tidal torque process 
ought to yield protoclouds in approximately “solid-body” 
rotation, ;(x) oc x2 (Gott 1975; Gott and Thuan 1976; Thuan 
and Gott 1977). Since this differs from the behavior j(x) oc x 
shown in Figure 5, it is worth reviewing the cause of the dis- 
crepancy. 

Gott’s (1975) argument can be rephrased as follows. The 
angular momentum of a particle may be written to first order 
in linear perturbation theory as 

j = a2b(q -q)x [p(q) - p(qft . 

Expanding p(q) as a Taylor series about q gives 

jx(èq) « -(026)ea/îy<5/<5<f'/',K,y, (10) 

where ôq* = q* — qa and the second derivative of ij/ is evaluated 
at q. The angular momentum of a particle thus varies as the 
second power of the initial displacement ôq. However, if we 
integrate equation (10) over a spherical Lagrangian volume, 
the total angular momentum vanishes identically. If we 
perform a similar analysis for the angular momentum in a 
spherical Eulerian volume, we find to lowest order 

J. = a5e«py J Mu'’ - u'Ü^ôx^d^x 

4tz 
= -a5 — x5lu(x) -u]x \xp\x=-x , (11) 

where u = x (see also Peebles 1980, § 23). The total angular 
momentum in the Eulerian sphere therefore depends critically 
on the level of inhomogeneity of the protocloud (see Binney 
1974). These arguments show that the angular momentum dis- 
tribution of a cluster in linear perturbation theory is deter- 
mined by the precise initial spatial distribution of the particles 
of which it is comprised. Thus, although the argument present- 
ed by Gott (1975) that the angular momentum of a particle 
should scale approximately as ôq2 is qualitatively correct, its 
subsequent interpretation (Gott and Thuan 1976; Thuan and 
Gott 1977) that it implies uniformly rotating (v = r x a), 
co = constant) protoclouds is erroneous. In Figure 6c, we show 
the initial specific angular momentum j(x) computed in shells 
as a function of the initial radial distance from the center of 
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mass for the five massive groups from model SO. The dotted 
line shows the relation j(x) oc x. The results for groups in simu- 
lations TO and WO are similar. Thus, the initial distribution of 
angular momentum scales with separation in a similar fashion 
to that found above for well-developed groups (Fig. 5). It is 
important to link this result with our discussion of Figure 6a, 
which shows how the angular momentum distribution in a 
typical clump evolves. We remarked above that there is no 
strong correlation between the initial specific angular momen- 
tum and the final location of a particle within a clump. 
However, Figure 6c clearly shows that material which lies ini- 
tially close to the center of the clump has lower specific angular 
momentum than that in the outer parts. These results are not 
incompatible since the particles which eventually reach the 
core of a clump are only marginally more centrally concen- 
trated at the initial time than those which end up in the halo. 
Substantial radial mixing occurs as a clump evolves. 

Crampin and Hoyle (1964) made the interesting observation 
that the distribution of angular momentum in disk galaxies is 
similar to that of a uniform sphere in uniform solid body rota- 
tion. An extension of this argument has been presented by Fall 
and Efstathiou (1980), who investigated the formation of disk 
galaxies in a two-component model containing gas and non- 
dissipative dark matter (see White and Rees 1978). They 
assumed that in the early stages of protogalactic evolution the 
gas and the dark material would behave as one single com- 
ponent, with similar radial density profiles and distributions of 
specific angular momentum. In their model, the two com- 
ponents would “separate” as the system becomes nonlinear, 
with the dark material settling down to a roughly isothermal 
form while the gas dissipates and collapses to a disk. Using 
modern photometric and kinematic data for disk galaxies, they 
showed that the angular momentum distribution within spiral 
disks is similar to that of an “isothermal” (p oc 1/r2) sphere in 
which the specific angular momentum varies approximately as 
j(r) oc r. (Note that their assumption of cylindrical rotation 
rather than spheroidal rotation does not significantly alter this 
conclusion.) These properties are similar to those described 
above for evolved groups in our simulations (i.e., groups identi- 
fied at pcrit = 64p). This similarity could be used as support for 
the basic theory if each element of material in a protocloud 
conserved its angular momentum during and after collapse. 
However, as we have shown above, nonlinear torques play an 
important role in determining the angular momentum dis- 
tribution within a group. It is therefore difficult to assess 
exactly how these effects would modify the angular momentum 
distribution of the gaseous component since they depend criti- 
cally on the spatial distribution of the gas and thus on the rate 
at which dissipation occurs. Some aspects of this problem will 
be discussed in § V. 

c) The Tidal Field 
In this section we investigate whether our simulations have 

sufficient dynamic range to model the tidal field correctly. Our 
models clearly do not include perturbations with wavelengths 
larger than the computational box. It is therefore important to 
check whether the absence of long-wavelength perturbations 
significantly affects the total torque acting on the groups. The 
following argument suggests that this is unlikely to be a signifi- 
cant problem. The tidal field is given by Tij = (j)tijOc 
^k(kikj/\k\2)elk 'x. The expectation value <7]; 7^.> at any point 
is thus proportional to J \ôk\2k2dk, which is dominated by 
short-wavelength perturbations unless n < —3. Figure 8 

shows how the initial torque (at a = 1) on the massive groups 
in our models converge with increasing scale. The quantity 
F(x) represents the torque from all material within a radius x 
from the center-of-mass of the group and has been computed 
using equation (9). Since linear theory predicts F = constant 
(eq. [8]), we expect the total torque to be related to the initial 
angular momentum of our groups according to J(í¿) = Fif. The 
typical initial radii of the groups lie in the range 0.1 < x < 0.2 
(see Fig. 7); thus, there is little contribution to the torque on 
these scales from other particles. For the white-noise model 
(WO, Fig. 8c), and the L = 10h~2 Mpc CDM model (SO, Fig. 
Sb), the torque converges rapidly with increasing scale. On 
average, there is little torque from material at x > 0.3. The 
quantity F(x) is nearly flat from x æ 0.3 to the boundary of the 
calculation at x = 0.5, and the ratio Fix^/J^) tends to unity 
as expected from linear theory. We therefore conclude that for 
typical groups in models W0 and SO the dominant contribu- 
tion to the torque arises from material close to the group. The 
neglect of longer wavelength perturbations should not signifi- 
cantly bias our results on angular momentum from these simu- 
lations. 

Figure 8a shows results from model TO which was set up to 
model a CDM spectrum with a computational box length of 
L = 2h~2 Mpc. The spectrum has substantial power at large 
scales, and we might anticipate that the long-wavelength con- 
tribution to the torques might not be modeled correctly. 
Indeed, we see that F(x) in this case does not converge as 
rapidly as in models SO and W0. The rms torque for these 
groups increases steadily until x = 0.4. However, between 
x = 0.4 and x = 0.5 the rms torque increases by only 12%. At 
x = 0.5, the mean value of Fif/J^) is slightly smaller than 
unity, showing that the simulation boundaries are noticeably 
affecting the results. Recall that our numerical procedure for 
solving for the potential employs triply periodic boundary con- 
ditions. The total torque on a group thus includes the contri- 
bution from an infinity of images. From Figures Sb and 8c we 
see that the presence of images does not significantly affect the 
angular momentum acquired by groups in models SO and W0. 

The spectrum adopted in model TO is probably close to the 
limit at which reliable results for group angular momentum 
can be derived using our numerical techniques. It is difficult to 
make an accurate assessment of the error introduced from the 
missing long wavelengths, but Figure 8a suggests that it is 
probably small, the torques have already converged to within 
20% by x = 0.4, and the contribution from more distant 
material and images are smaller than 10%, on average. Thus 
we suspect that the À parameters for groups in model TO are 
probably accurate to ~20%. The median value of À for groups 
in this model is Àme = 0.047, which is not unusually low in 
comparison with the results from, say, models SO-4 (see § I Va). 

One way of including long-wavelength perturbations, 
without an enormous increase in computational expense, 
might be to split the interparticle force into two components : a 
short-range component computed using standard AT-body 
techniques, and a long-range component generated directly 
from the desired power spectrum which is assumed to grow 
according to linear perturbation theory. Such a hybrid scheme 
may be worth investigating as a way of extending the results 
presented in this paper. 

In § Illb we mentioned that when groups become highly 
nonlinear, the main contribution to the external torque comes 
from nearby nonlinear clumps. In other words, the contribu- 
tion from long-wavelength perturbations becomes proportion- 

© American Astronomical Society • Provided by the NASA Astrophysics Data System 



19
87

A
pJ

. 
. .

31
9.

 .
57

5B
 

© American Astronomical Society Provided by the NASA Astrophysics Data System 

Fi
g.
 9

.—
As

 fo
r F

ig
. 8

, e
xc

ep
t w

e h
av

e e
va

lu
at

ed
 th

e 
to

rq
ue

 o
n 

th
e 

gr
ou

ps
 a

t l
at

er
 ep

oc
hs

 w
he

n 
th

ey
 h

av
e b

ec
om

e c
en

tra
lly

 c
on

ce
nt

ra
te

d,
 (a

) G
ro

up
s i

n 
m

od
el

 T
O 

at
 a

 =
 2

.3
; (

b)
 g

ro
up

s f
ro

m
 S

O 
at

 a 
= 

3.0
; (

c) 
sh

ow
s g

ro
up

s f
ro

m
 W

O 
at

 a 
= 

23
.4.

 



19
87

A
pJ

. 
. .

31
9.

 .
57

5B
 

ANGULAR MOMENTUM FROM TIDAL TORQUES 589 

ately less important as the groups evolve. This is illustrated by 
Figure 9 which shows how the torques on the groups converge 
with increasing distance at the epochs at which the groups 
were identified with our group algorithm. In comparison with 
Figure 8, the torques shown in Figure 9 converge at a much 
smaller comoving radius. In particular, notice that for model 
TO the main contribution to the torque on the groups at 
a = 23 comes primarily from material within x æ 0.1, where, 
as described above, the initial torque converges slowly with 
distance. 

IV. STATISTICAL PROPERTIES 
Examination of massive groups has shown in some detail 

how angular momentum is generated and transported in indi- 
vidual objects. From these results it appears that tests of tidal 
torques based on individual objects, e.g. the Local Group 
(Gott and Thuan 1978) are unlikely to yield convincing results 
without knowledge of the distribution and kinematic proper- 
ties of the dark material. If the rotation of individual objects is 
difficult to predict, we may still hope to ñná statistical evidence 
for tidal torques from the rotational properties of large 
numbers of objects. In this section we investigate statistical 
distributions and correlations of the group parameters defined 
in § II. In § IVa we study the A distributions of our various 
ensembles and compare the results to previous work. In 
§§ Wb-d we present a systematic study of correlations among 
group parameters; we postpone a detailed discussion of these 
empirical results until § V. Finally, in § IVe we assess the range 
of validity of linear perturbation theory in predicting angular 
momentum growth. 

a) Distribution of Group Parameters 
The multiplicity function (Gott, Turner, and Aarseth 1980) is 

useful in characterizing the distribution of group masses. We 
bin groups in unit intervals of Llog2 MJ, so that singlets, 
binaries, and triples, groups of 4-7, 8-15, etc., fall in distinct 
bins. Each group is counted with weight proportional to its 
mass, so the value of each bin is the fraction of all particles in 
groups of the corresponding mass range. Figure 10 compares 
the multiplicity functions for groups, identified at a density 
contrast pcrit = 64p, in CDM ensembles CO-4 and SO-4 at 
a = 3.0 and white-noise ensemble W0-1 at a = 23.4, respec- 
tively. At these epochs, clusters of comparable mass have 
developed in all three ensembles, with slightly more massive 
objects found in the latter two. These three group catalogs will 
be used as our “ standards.” 

To obtain reliable group parameters, we have imposed a 
lower limit to the masses of the groups. This limit was set by 
comparing group catalogs in models SO and SO'. These models 
were generated using identical sequences of random numbers 
to perturb the initial grid of particles, so that they represent the 
same primordial density field. Model SO has N = 32,768 par- 
ticles, while in model SO' the same density field was realized 
with only N = 8000 particles. We found a poor correspon- 
dence of properties (e.g., 2) for groups represented by less than 
16 particles in model SO'. With so few particles per group, the 
local averaging procedure employed in the group algorithm 
may include particles from regions below the desired critical 
overdensity. A single outlying particle may contain a signifi- 
cant fraction of the total angular momentum of a small group. 
The angular momentum estimate for such groups is thus sensi- 
tive to exactly which particles are included. We emphasize that 
these uncertainties arise entirely from difficulties in relating a 

Fig. 10.—Multiplicity functions for groups identified at 64p in the standard 
CDM and white-noise ensembles. The value plotted for each bin is proportion- 
al to the total mass of groups in that mass bin. Note that the cutoff nsph = 4 
excludes objects in the lowest mass bins. Solid line shows results for groups in 
ensemble C0-4 at a = 3.0; some ~48% of the total mass is in objects of less 
than nsph = 4 particles. Long-dashed line gives the multiplicity function for 
ensemble S0-2 at u = 3.0; ~45% is in the field. Short-dashed line shows 
results for ensemble W0-1 at a = 23.4; in this case only ~ 18% is in the field. 
Arrow indicates the minimum mass mmin = 32 of groups used in the sub- 
sequent analysis. 

discrete set of particles to a smooth density field. For groups of 
more than 32 particles in SO' we find good agreement between 
the two simulations. We have therefore restricted all of remain- 
ing analysis to objects containing nmin = 32 or more particles. 
This should guarantee that our main results are not sensitive to 
the exact definitions of the groups. 

The distributions of À values in our three standard catalogs 
are compared in Figure 11. Despite substantial differences in 
the initial fluctuation spectra, the resulting 2 distributions are 
remarkably similar. Median À values (2me) of 0.043 and 0.048 
are found for CDM ensembles CO-4 and SO-4, respectively. 
This difference is only of marginal significance given the large 
variations in 2me from run to run in the CDM models. For the 
white-noise ensemble we find 2me = 0.052. This is somewhat 
less than the value of 2me = 0.065 obtained by EB for model 
PR1, using an algorithm which identified spherical groups with 
an average density contrast of ~7. When analyzed with our 
new group algorithm at pcrit = 64p, model PR1 gives 2me = 
0.052, in agreement with ensemble W0-1. 

Table 4 lists values of 2me derived for various ensembles and 
group catalogs. In general, 2me is a slowly decreasing function 
of the critical density pcrit used to identify groups. This reflects 
the internal distribution of angular momentum within a group : 
much of the total J is carried by particles near the edge (§ Illh), 
which are excluded as pcrit increases. However, À is relatively 
insensitive to pcrit because the change in J when outlying par- 
ticles are included is largely cancelled by the corresponding 
changes in £ and M. 
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Fig. 11.—Histograms of Á; different line types denote the same group cata- 
logs as were shown in Fig. 10 

TABLE 4 
Parameters for Various Groups Catalog 

Models Peril Not 

TO.... 
CO-4 . 

CO-4 . 

SO-4.. 
S0-4.. 

SO-4.. 
SO'.... 
SO" ... 
W0-1 

W0-1 

2.3 
2.4 

3.0 

2.0 
2.4 
2.4 
3.0 
3.0 
3.0 
6.0 
3.88 
9.54 

23.4 

64 
64 

8 
64 

.512 
64 
64 

512 
64 

512 
64 
64 
64 
64 

8 
64 

.512 

32 
32 
32 
32 
32 
32 
32 
32 
32 
32 

8 
32 

8 
16 
32 
32 
32 

55 
414 
607 
514 
264 
371 
433 
211 
459 
297 
112 
92 

1311 
818 
324 
324 
287 

0.047 
0.044 
0.055 
0.043 
0.037 
0.046 
0.046 
0.037 
0.048 
0.039 
0.058 
0.042 
0.045 
0.052 
0.058 
0.052 
0.045 

Notes.—Scale factor of the models is denoted by a (normalized 
to unity at the start of a calculation), corresponding to the epoch at 
which the group catalogs were constructed. The resulting groups 
are approximately bounded by surfaces of constant density pcrit 
given in units of the mean density p. We imposed a requirement of 
a minimum number of nmin particles per group; Ar

group is the total 
number of groups in the resulting catalog; Ame is the median value 
of the spin parameter X. 

b) Correlations between Group Parameters 
We begin by asking if tidal torques produce any significant 

correlation in proto-galactic mass and angular momentum 
content (e.g., Davies et a/. 1983; Lake 1983). Figure 12 shows À 
plotted versus group mass M for CDM ensemble CO-4 at 
a = 3.0 and white-noise ensemble W0-1 at a = 23.4. Open 
symbols show local median values of A. For the CDM ensem- 
ble (Fig. 12a), a least-squares fit to the open circles gives a slope 
of ß = d(\og A)/d(\og M)= -0.17 ± 0.07, indicating a weak 

but detectable anticorrelation between À and M. For the white- 
noise ensemble (Fig. 12b), local median values of 2 for a = 9.54 
and 3.88 are plotted as crosses and boxes, respectively. In plot- 
ting results from these earlier epochs, we have assumed that the 
A distribution is temporally self-similar (see, e.g., Davis and 
Peebles 1977), so that 

Ame(M, t) = ame(M/M*), M* x i4/<3+">, (12) 

where M* is a characteristic clustering mass at time t (see also 

Fig. 12.—Scatter plots for spin parameter A vs. mass M for objects identified at 64p in CDM ensemble CO-4 when a — 3.0 and white-noise ensemble WO-1 when 
a = 23.4. Open circles show local median values of A; crosses and boxes in (b) show medians for a = 9.54 and 3.88, respectively, scaled according to the self-similarity 
relation eq. (12). 
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log M 
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log E/M*l 70 

n D
13-77SPecific angular momentum; and binding energy « plotted vs. group mass M for CDM ensemble CO-4. Straight lines are the power-law fits given in eq. (13). (c) Residuals from the;-M and e-M power laws vs. each other. Objects are plotted as circles with area proportional to M. 

EB). Thus, the masses of objects from a = 9.54 and 3.88 were 
multiplied by factors of (23.4/9.54)2 = 6 and (23.4/3.88)2 = 36, 
respectively. Although individual medians (each computed 
from ~24 or more groups) scatter considerably, the general 
continuity between the three epochs suggests that the À dis- 
tribution is indeed self-similar. A least-squares fit to the entire 
set of medians gives ß = — 0.08. 

To get some idea of why the À distribution is so broad, we 
have examined the specific angular momenta / = J/M and 
binding energies e = E/M of the groups. In Figure 13a-13b we 
plot j and e against mass for objects in CDM models. Both 
parameters correlate strongly with M; least-squares fits given 
the following relations: 

j oc MT, T = 

e oc MK , K = 

0.54 + 0.05, CO-4, 
0.70 ± 0.05 , W0-1 , 

0.69 ± 0.01 , CO-4 , 
0.56 ± 0.01 , WO-1 . 

(13a) 

(13b) 

The regressions show small but significant differences between 
the white-noise and CDM models. These relations, together 
with the definition of 2, lead to 2 oc Mx+K^2~1; although the 
relations in equation (13) depend on spectral index, the com- 
bination t + k/2 — 1 is nearly independent of the power spec- 
trum, and numerically close to the measured value of ß. For 
both sets of models, the scatter in the j-M relation is much 
larger than that in the e-M relation. This is shown in Figure 
13c where we have plotted j/Mz against e/MK, eliminating the 
variance contributed by M. Most of the groups fall in a highly 
elongated ellipse nearly aligned with j/Mx; only a small part of 
the variance in j is due to the variance in e. Although a weak 
anticorrelation of j and e is indicated, it is clear that binding 
energy is a poor predictor of angular momentum. This argues 
against the results of Hoffmann (1986), who suggested that 
tightly bound groups would collapse before acquiring much 
angular momentum. Our analysis shows that almost all of the 

scatter in À arises from scatter in j/Mx. To try to understand 
what factors determine 2, we study several other correlations. 

Figure 14 shows scatter-plots of À versus substructure, as 
measured byf2/f1. This ratio is small for monolithic centrally 
condensed objects and close to unity for binaries with compa- 
rable components. We find a significant tendency for objects 
with little substructure to have low 2-values compared to the 
overall distribution; this is more apparent in the CDM models, 
in part because the higher part of the f2/f1 range is better 
populated. Such an effect is expected in the tidal torque picture 
because binaries, which typically have large quadrupole 
moments, are strongly coupled to the tidal field. A similar 
correlation is found between A and the major- to minor-axis 
ratio a/c, which is related to quadrupole moment by equation 
(5). 

In § IIIc we showed that the main contribution to the torque 
on a typical group in our simulations arises from nearby 
material. We might then expect those objects with nearby 
neighbors to be subject to stronger tidal fields and therefore 
have higher A. It is not clear, however, that this should be a 
strong effect, since the torque also depends on the orientation 
of the quadrupole moment with respect to the separation 
vector to the nearest neighbor. We test for this effect in Figure 
15, where we plot A of each object versus nearest neighbor 
distance xnn for ensembles CO-4 and WO-1. As expected, high A 
objects do tend to have nearer neighbors, but this effect is 
always quite weak. The large scatter in these plots is not signifi- 
cantly reduced if instead of xnn we plot the tidal field due to the 
nearest neighbor, which scales as mnn x’n3. 

The possible implications of a correlation between over- 
density and protogalactic angular momentum of the origin of 
the Hubble sequence have been alluded to in the introduction. 
In Figure 16, we show correlations of A with mean initial over- 
density <v>, computed using a smoothing length of xs = 1/64. 
Results for the CDM ensemble are plotted in Figure 16a; 
although a strong correlation between <v> and mass M 
(proportional to circle area) is apparent, there is only marginal 
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Fig. 14.—Scatter plots for spin parameter X vs. substructure index/2//i, which measures the “ binaryness ” of an object, for the ensembles used in Fig. 12 

evidence for a trend of X with <v>. A weak anticorrelation of X 
and <v) could be induced by the observed correlations 
between X and M and between M and <v>. Results for the 
white-noise models are plotted in Figure 16h; no trend is found 
at this epoch or at earlier ones (which yield a broader <v> 
distribution). Similar null results are found for other values of 
xs. At face value, these results directly conflict with the sugges- 
tion that angular momentum is strongly anticorrelated with 
initial overdensity (Blumenthal et al 1984). There are several 
possible criticisms of our analysis. First, the smoothing length 
xs is an unphysical parameter which cannot readily be identi- 
fied with the characteristic sizes of groups. Nevertheless, as we 
show in Figure 2, the particles at high v do succeed in tracing 

the dense spots where rich groups form. Second, we would 
have difficulty detecting an anticorrelation of X and v if it only 
set in, e.g., for v > 2.0, since our AT-body simulations contain 
few objects with such high overdensities. However, as we will 
show in the next section, the spatial distribution of objects with 
different X does not conform to the predictions of Blumenthal 
et al In addition, we show directly in § IVe that linear theory 
calculations of J yield poor estimates of the angular momen- 
tum of objects which have detached from the Hubble flow. 

c) Spatial Distribution 
We next ask more generally if a picture of galaxy formation 

linking X and galactic morphology can account for the 

Fig. 15.—Scatter plots of spin parameter X vs. nearest neighbor distance xnn for the ensembles used in Fig. 12 
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Fig. 16.—Scatter plot of spin parameter X vs. initial overdensity <v>. No effect is seen, although a trend between mass M and <v> is apparent in the CDM data. 

observed relation between type and environment. Specifically, 
we compare the autocorrelation functions and £< for 
separate catalogs of groups with X values above and below the 
median Ame. A large difference in the spatial distributions of 
rapidly versus slowly rotating groups might then be expected 
to induce a corresponding difference in the spatial distributions 
of different types, which could be compared to the observa- 
tions. 

In Figure 17 we present representative results for ensembles 
CO-4 and WO-1; in addition to £> and £<, we plot the mass 

correlation function £p. One sigma error bars were estimated 
by comparing results for different models in each ensemble. We 
find that high X objects are more clustered than those with low 
X. In ensemble CO-4, which shows the strongest effect, £> and 
£< have similar slopes but the amplitude of ^ for the high X 
objects is a factor of ~2.5 above that for low X objects. The size 
of this effect depends on pcrit and nmin, which together deter- 
mine the rarity of the objects in our catalogs; qualitatively we 
find that the effect is stronger in group catalogs containing 
only massive, rare objects. A correlation between X and clus- 

log x log x 

Fig. 17.—Two point correlation functions for rapidly and slowly rotating groups in ensembles (a) CO-4 and (b) WO-1. Results for disjoint catalogs of groups with 
À values above and below the ensemble Ame are plotted as circles and crosses, respectively; error bars are estimated from the variation from one model to another in 
each ensemble. Solid curves show the correlation functions of the underlying mass distribution. 
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tering is physically reasonable, since those objects which are 
highly clustered should be subject to stronger tidal fields, con- 
sistent with our results for l and nearest neighbor distance xnn. 
Our result is in agreement with the qualitative argument pre- 
sented by Bardeen et al (1986, § Yb). Note, however, that the 
sign of the effect is inconsistent with the idea that low À objects 
become elliptical galaxies; if À were the sole determinant of 
gross galactic morphology, we would expect spirals to be 
slightly more clustered than ellipticals, in contradiction with 
observation. 

d) Alignment Statistics 
The idea that tidal torques might produce significant align- 

ments in the rotation axes of adjacent galaxies has generated 
both theoretical and observational work (e.g., Hawley and 
Peebles 1975; Jones 1976; Sharp, Lin, and White 1979; Helou 
1984). In this section some of the proposed “signatures” of 
tidal torques are checked against the N-body simulations. 

A single object defines two directions : the spin vector J and 
the (bidirectional) major-axis vector Æ We begin by looking at 
the internal alignment of these directions. Figure 18 is a histo- 
gram of I/; • Ai I, the cosine of the angle between the spin- and 
major-axes of object i. The solid line is data for all objects in 
ensemble CO-4, while the dashed line is for a subset with less 
substructure,/2 < fJ4. If /and A were independent, these data 
would be uniformly distributed. The histograms show that the 
spin- and major-axes of objects tend to be perpendicular; a 
similar trend is found in other catalogs. This effect is, of course, 
consistent with the standard tidal torque picture, but would 
also appear if / and A were both determined by a single outly- 
ing subobject with a large transverse motion. The low- 

Fig. 18.—Test for alignment between the spin J and major axis A of objects 
identified at 64p in ensemble C(M when a = 3.0. Histograms show the dis- 
tribution of |/* A\, the cosine of the angle between J and A ; random orienta- 
tions would produce a uniform distribution. Dashed line is from a subset of 
objects selected to have less substructure,/2 < A/4. 

substructure subset provides a simple test of this possibility; 
the alignment is nearly as strong in the subset, so we conclude 
that substructure does not dominate the measured effect. 

A pair of objects in turn define five directions: two spin 
vectors, two major-axes, and one separation vector. With these 
we could, in principle, generate a large number of statistical 
alignment tests (some of which, by chance, could appear 
“ significant ”). Instead, we focus on tests for alignment between 
a direction defined by an object and the separation vector 
toward a nearby object, and tests for coherence in a direction 
field defined by a field of objects. All of these tests involve 
collecting statistics for a restricted subset of the set of all pairs 
of objects (Uj) in each simulation; after considering a number 
of ways of defining such subsets, we focus on the subsets of all 
pairs within comoving distance xsep of each other, for various 
values of xsep. 

1. In all of our ensembles we find that nearby objects “tend 
to point toward each other,” i.e., for nearby i and j, At tends to 
be parallel to the separation vector (parallel and antiparallel 
are not distinguished). This is shown in Figure 19a, where we 
plot histograms of |^í(- • Jc0 | for the standard ensembles. Results 
are shown for all pairs within xsep = 0.10 (lower set of 
histograms) and 0.16 (upper set). If the vectors were uncor- 
related, the expected distribution would be uniform. A correla- 
tion was reported in observations of Abell clusters by Binggeli 
(1982) and studied in AT-body simulations with white-noise, 
adiabatic, and “mixed” spectra by Dekel, West, and Aarseth 
(1984). They found this effect to be significant in the latter two 
cases but not in the white-noise models; however, the weak 
effect shown by the dotted lines in Figure 19a may have been 
undetectable in their smaller data set. 

2. To look for coherence in the orientation of nearby 
objects, Figure 19b shows histograms of • Aj\, the cosine of 
the angle between the major-axes of objects i and 7, for the 
same sets of pairs as in Figure 19a. We find a consistent ten- 
dency for nearby objects to point in the same direction in the 
CDM models but not in the white-noise ensemble. This effect, 
along with the related effect described in the last paragraph, 
reflect the “ filamentary structure ” of the CDM models (Fig. 1). 

3. We now turn to discuss alignment statistics involving the 
spin vectors of nearby objects. In Figure 19c, we plot histo- 
grams of \Jr- Xijl for pairs in the three standard ensembles. A 
weak tendency for J and x to be perpendicular is suggested in 
the results for ensembles SO-4 and W0-1. While no effect is 
seen in ensemble CO-4 at this particular epoch and over- 
density, a weak but consistent tendency for nearby neighbors 
to lie in an object’s spin plane is found in other CDM results. 
An alignment effect of this kind is expected at some level if 
nearest neighbors have aligned quadrupole moments. 

4. Finally, we look for coherence in the spin vectors of 
nearlby objects. Figure 19d presents histograms of /j • Jj for 
pairs selected using the same criteria as above (this is the only 
test in which we can sensibly distinguish between parallel and 
antiparallel). In general, no coherent pattern emerges: the 
small-box ensemble exhibits no effect at all, while in the 
big-box and white-noise ensembles objects appear to be 
weakly parallel and antiparallel, respectively. None of these 
trends appear reliably in group catalogs constructed at other 
epochs or density contrasts. Similar results were obtained for 
pairs (i, j) which are mutually nearest neighbors; this set 
includes a high proportion of physically associated pairs. We 
conclude that tidal torques do not produce a significant degree 
of coherence in the spins of nearby objects. 
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Fig. 19.—(a) Test for alignment between the major axes of objects and directions toward nearby neighbors, identified at 64p in ensembles SO-4 (dashed lines) and 
CO-4 (solid) when a = 3.0 and ensemble W0-1 (dotted) when a = 23.4. Distribution of |/îf • is plotted for pairs with |jc0 | < xsep, where xsep = 0.1 (lower 
histograms) and 0.16 (upper). Objects tend to point at each other in all simulations, although the effect is much stronger with CDM. (b) Test for coherence in the 
major-axis directions of nearby objects. The distribution of j/î,. • Âj\ is plotted for the same sets of pairs as in (a). A weak effect is seen in the CDM ensembles, but not 
in the WN. (c) Test for alignment between the spin vectors of objects and directions toward nearby neighbors, (d) Test for coherence in the spin vectors of nearby 
objects. Histograms of /f • Jj are plotted for the sets of pairs used in (a). 
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e) Evolution of Angular Momentum and Applicability 
of Linear Theory 

In § III we presented results for the evolution of angular 
momentum in a small number of clusters selected from our 
simulations and showed how nonlinear effects are important in 
terminating the growth and in fixing the spatial distribution of 
angular momentum. Similar effects can be demonstrated in a 
statistical fashion, without reference to the detailed evolution 
of individual groups. 

As an example, we have analyzed our “standard” group 
catalogues for ensembles CO-4 and WO-1 (defined at a = 3.0 
and a = 23.4, respectively, with pcrit = 64p) in the following 
way. We computed the binding energy of each particle with 
respect to all other particles belonging to the same group. The 
curves labeled 1-4 in Figure 20 show the evolution of the mean 
specific angular momentum of particles with binding energies 
which lie within the following percentile points of the overall 
distribution: (0%-10%), (10%-20%), (20%-50%), and (50%- 
100%), respectively (only objects with n > 32 particles in the 
most tightly bound percentile bin were used). Thus curve 1 
shows the evolution of weakly bound particles, while curve 4 
shows the behavior for tightly bound particles. 

Fig. 20.—Specific angular momentum j as a function of expansion factor a 
for particles in various binding energy bins. The curves labeled “ 1 ” show the 
evolution for weakly bound group members, while the curves labeled “4” 
show the evolution for strongly bound members (see text in § IVe for details). 
(a) Results for ensemble C0-4; (b) results for ensemble W(M. Dotted lines 
show the linear theory prediction j(t) oc t. 

The dotted lines show the expected linear-theory behavior 
(eq. [8]), which is in good agreement with the simulations at 
early times. As clumps becomes nonlinear, the rate of angular 
momentum growth falls away from the linear prediction. The 
subsequent decrease in specific angular momentum of the more 
tightly bound particles reflects the outward transport of 
angular momentum by nonlinear dynamical effects as outlined 
in § III. Notice that the most tightly bound particles begin to 
loose angular momentum sooner than less tightly bound par- 
ticles and that by the final times shown in Figure 20, the mean 
specific angular momentum of the most tightly bound set of 
particles is about a factor of 3 lower than that for the most 
loosely bound set. As we have shown in § III, the difference in j 
between the inner and outer parts of individual clumps can be 
even larger than this. These results confirm our statement in 
§ Illh that the decay of angular momentum during the nonlin- 
ear evolution of clumps is a general feature of our numerical 
simulations. 

We now check whether linear perturbation theory can be 
used to estimate even qualitatively the total angular momen- 
tum of a mildly nonlinear clump. In Figure 21a, we plot the 
final angular momentum Jfinal of clusters in model C4 
(identified at a = 3 with pcrit = 64) against the angular momen- 
tum “ predicted ” by linear theory Jpred, which is computed by 
evaluating the angular momentum of group members using the 
initial conditions and then extrapolating to a = 3 using the 
growth rate given in equation (8). The initial conditions 
provide a reliable estimate of the initial angular momentum, 
since J accurately follows the linear theory growth rate at early 
times.2 As this figure shows, there is a good correlation 
between Jfinal and Jpred. However, this is merely the result of 
the strong correlation between J and total group mass. Large 
groups tend to have large angular momenta, and this trend is 
correctly predicted by linear theory. The quantity Jfinal is, on 
average, ~3 times smaller than Jpred, and the total scatter 
about the mean relation is also a factor of ~3. Thus linear 
theory predicts the correct order of magnitude of Jfinal, but 
even if we multiply Jpred by a constant factor to account quali- 
tatively for the reduced growth of J in the nonlinear regime, 
the scatter in the predictions for groups of fixed mass will be 
comparable to the width of the distribution of 2. This is 
demonstrated in Figure 21b, which shows Jrm¡l\/JpTCd plotted 
against L If linear theory were to provide a useful guide of 
correlations between À and other parameters, we would expect 
that the distribution of points on this figure would be highly 
elongated in the À direction. In fact, the elongation is relatively 
small, showing that nonlinear effects are important in deter- 
mining the final value of L In Figure 21c, we show the analo- 
gous diagram for groups identified at a lower density contrast, 
Pcrit = 8p. This shows a tighter correlation, as we would expect 
since these groups are only mildly nonlinear, but even here the 
scatter is substantial. Notice that in both figures the scatter in 
JfinaiA/Pred among the larger groups is less than that of the 
smaller groups. Similar results are found for white-noise initial 
conditions (Fig. 2Id). The only difference is that dfinal/Jpred is 
lower by an additional factor of ~3 compared with groups 
identified at the same density contrast in the CDM models. 
This is primarily because low-mass groups decouple from the 
Hubble flow over a wide range in time. 

2 As an additional check of the accuracy of our initial conditions, we ran 
model SO", which has exactly the same set of perturbations as model SO, but 
with initial amplitude lower by a factor of 2. The angular momenta of corre- 
sponding groups are in good agreement even at late times. 
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log lambda log lambda 
Fig. 21.—(a) Final angular momenta (Jfinal) of groups in model C4 identified at a = 3.0 with pcrit = 64p plotted against predictions of linear theory Jpred = 

J{ti)a3/2. Circle area is proportional to mass M. (b) Plot of yfinal/Jpred against X for the groups in model C4 used to construct {a), (c) Equivalent plot for groups 
identified at a lower density contrast (pcrit = 8p) ata = 3.04 in model C4. (d) Results for groups identified ata = 23.4 with pcrit = 64p in model WO. 

These results demonstrate clearly that angular momenta of 
clumps with even modest overdensities are altered by nonlin- 
ear effects. The physical mechanisms involved can be roughly 
grouped into two categories. First, as groups become nonlin- 
ear, the angular momentum grows more slowly than predicted 
by equation (8). This is because the clumps become more cen- 
trally concentrated as they evolve and therefore become more 
weakly coupled to the tidal field (§ Illh). This sort of 
“saturation” effect was anticipated by Peebles (1969) in his 
calculation. Second, angular momentum is transported from 

the inner parts of groups to their outer parts by gravitational 
torques. This effect is more pronounced at high-density con- 
trasts. The results in Figure 21 show that linear theory can 
provide, at best, only a rough guide to the angular momenta of 
nonlinear groups. Since we have shown in previous sections 
that À is only weakly correlated with other group parameters, it 
is quite likely that arguments based on linear theory could lead 
to misleading conclusions and spurious correlations. 

Some implications of these nonlinear effects for models of 
galaxy formation will be discussed in § V. 
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V. CONCLUSIONS 

We have studied the growth and distribution of angular 
momentum in bound objects formed by gravitational clus- 
tering in large cosmological iV-body simulations. Initial condi- 
tions for our simulations range from white noise (n = 0) to the 
kind of spectra predicted on the scales of galaxies and groups 
in a biased Q = 1 CDM cosmogony (neff ä — 2.2). 

Our analysis of individual massive groups has led to the 
following results. The groups are centrally concentrated with 
“circular” velocity profiles vc(x) = [GM(x)/x]1/2, which are 
nearly flat in the CDM-like models (neff « —2) and decline 
slowly (ocx~0-25) for white-noise models. These results are 
compatible with those of Frenk et al (1985) and Quinn, 
Salmon, and Zurek (1986). The specific angular momentum for 
material near the center of a group is lower than that for 
material in the outer parts. This behavior is well approximated 
by the relation j(x) oc x and is independent of initial conditions. 
While groups represent small density perturbations, their 
angular momentum grows as J(t) oc i, in accord with the pre- 
dictions of linear theory. As groups become nonlinear, their 
angular momentum at first grows more slowly and then 
decreases at later times. The loss of angular momentum arises 
primarily from the orbital angular momentum associated with 
subclumps which is transferred to external material as they fall 
toward the center of a group and merge. This process plays an 
important role in determining the spatial distribution of 
angular momentum in the central, high-density regions of 
groups. The direction of the spin vector for high-density 
material (A > 500) is often poorly correlated with that for 
material in the outer parts of groups. 

We find that the overall distribution of the dimensionless 
spin parameter 2 in our models is broad and shows no signifi- 
cant trend with spectral index. A weak tendency for massive 
objects to have lower À values is seen in both CDM and white- 
noise models. A more striking correlation is found between 2 
and substructure, especially in the CDM models; this correla- 
tion reflects the better coupling of binaries to the tidal field. 
However, we find only a weak indication that À is correlated 
with nearest neighbor distance in the sense generally expected 
from tidal torques, and no significant correlation between 2 
and initial overdensity as measured by <v>. In CDM-like 
models, the more rapidly rotating objects (with À > 2me) are 
somewhat more clustered than slowly rotating ones. The 
white-noise models do not show any significant correlation of 
this kind. 

At first sight some of these trends may appear contradictory. 
For example, in the CDM models groups with high mass tend 
to have high v and to cluster more strongly than low-mass 
groups, yet we find that high-mass groups tend to have low 2 
values and groups with high À cluster more strongly than those 
with low A. Apparent contradictions of this kind are common 
in complex multivariate problems (see, e.g., Kendall 1975). The 
A distribution is broad and may be weakly correlated with 
several parameters. When we plot scatter diagrams, we project 
the distribution of points in the hyperspace of group param- 
eters onto several different planes. Weak correlations in two 
such planes cannot generally be combined to interfer a correla- 
tion in any other. We feel that this is an important point, since 
it shows that future analytic treatments of angular momentum 
in protogalaxies will have to consider several variables before 
they can make reliable predictions. 

We find that the spin- and major-axes of typical objects tend 

to be perpendicular, although a wide range of shapes and spin 
orientations are found. Nearby objects tend to point at each 
other in both CDM and white-noise models, and the major 
axes of CDM groups appear to define a coherent direction 
field. Spin-vector directions, on the other hand, are much less 
orderly. We find only a weak indication that objects tend to 
spin at right angles to nearby neighbors, and no consistent 
indication of coherence in the spins of adjacent objects; the 
tidal torque mechanism produces no significant (i.e., easily 
detectable) spin orientation effects. Some insight into this result 
may be provided by the following. The most striking effect seen 
in these tests is the tendency for nearby objects to point at each 
other. It seems likely that objects are “ born ” with these orien- 
tations; if they had been formed with random major axes and 
sheared into line by tidal torques, we would expect a strong 
spin-vector versus separation-vector effect, which we do not 
find. This point is also supported by direct inspection of plots 
such as Figure 1. As Binney and Silk (1979) observed, an object 
which is born with its major axis already pointing at a nearest 
neighbor receives no torque from that neighbor; it can only be 
spun up by the tidal field of more distant objects. This align- 
ment may account for the weakness of the A versus nearest- 
neighbor correlation (§ IVh). A weak spin separation effect 
could arise solely from the strong tendency of objects to have 
perpendicular spin and major axes and major axes pointing at 
nearby objects. 

The lack of spin alignment seen in our simulations is consis- 
tent with observational studies which have found no evidence 
of significant alignment between galaxies which are nearby 
neighbors (Hawley and Peebles 1975) or members of a binary 
(Sharp* Lin, and White 1979). Recently, Helou (1984) has used 
21 cm data and other clues (e.g., spiral structure) to disentangle 
the projected spin-vector orientations of 31 relatively isolated 
pairs of galaxies. He finds what appears to be a significant 
tendency for the spin vectors to be antiparallel. Any effect of 
this magnitude would be easy to detect in our simulations. 
Indeed, it is hard to see how tidal torques could produce an 
effect of the kind reported by Helou. Conservation of angular 
momentum does not imply antiparallel spins: an isolated pair 
of galaxies born with suitable orientations could spin in the 
same direction and orbit around each other in the opposite 
direction. If Helou’s conclusions are correct, they will have a 
major impact on our understanding of the origin of galactic 
angular momentum. It is therefore urgent that a similar 
analysis be performed on a larger sample. 

The torque on an object depends on several different factors : 
the shape of the object, which determines the quadrupole 
moment, the external tidal field in which the object finds itself, 
and the alignment (or lack thereof) between the shape and the 
tidal field. Our results show that all of these factors are highly 
variable and only weakly correlated with other parameters. 
Thus groups of identical mass and/or binding energy can end 
up with very different A values, and nearby objects may spin in 
very different directions. 

A general inference to be drawn from these conclusions is 
that theories of galaxy formation in which tidally generated A is 
linked to Hubble type are unlikely to produce the tight relation 
between local density and galactic morphology demanded by 
observations (Dressier 1980). The large number of nearly inde- 
pendent factors which combine to determine A will produce a 
broad distribution of A values in any environment. For 
example, the weak trend of A and environment found in the 
CDM models, if coupled with the usual hypothesis that rapidly 
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rotating protogalaxies become spirals while slow rotators 
become ellipticals (Sandage et al 1970), would yield a broad 
mix of types in all settings, with spirals slightly more common 
at high densities. 

If 2 does not determine Hubble type, what effect does it 
have? It seems reasonable to suppose that galactic disks col- 
lapse until they become rotationally supported; other things 
being equal, disks formed from high-2 protogalaxies should 
have low surface densities. EB noted that the distributions of 
model 2 values and observed surface brightnesses are consis- 
tent with this suggestion, and suggested that with sufficient 
photometry the relative 2 values of different galaxies could be 
inferred by comparing surface brightness. On the other hand, 
the transport of angular momentum during the collapse and 
virialization phases of galaxy formation warns us that the spe- 
cific angular momentum of a halo as a whole may not be 
simply related to that of the galaxy forming inside it. This effect 
is likely to depend critically on the spatial distribution of the 
gas relative to the dark matter during galaxy formation. We 
hypothesize that the cooling time of the gas within a protoga- 
laxy could be extremely important in determining galactic 
morphology. If an initial protocloud is highly inhomoge- 
neous and the cooling time is short compared to the dynamical 
times of the subclumps, then much of the gas could fall into 
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separate density centers. These would then lose orbital angular 
momentum as they spiral toward a common center. The 
resulting luminous object could then resemble an elliptical 
galaxy or the spheroidal component of a spiral. If, however, the 
cooling time is much longer than the dynamical time of the 
dissipationless component but shorter than a Hubble time, the 
bulk of the gas will not collapse until most of the substructure 
in the halo has been erased and the background potential has 
become steady. These conditions seem appropriate for the for- 
mation of spiral disks. Detailed inhomogeneous and non- 
axisymmetric models of galaxy formation may be required to 
predict the gross morphology and relative specific angular 
momenta of the various luminous components. These ideas 
will be extended in subsequent investigations. 
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ANGULAR MOMENTUM FROM TIDAL TORQUES 

APPENDIX 

THE CLUSTER-FINDING ALGORITHM 

Clusters of particles were identified from the instantaneous particle positions, using the following algorithm : 

For each particle p repeat 
Place p in an equivalence class by itself; 

Endrepeat; 
F or each particle p repeat 

Find all particles {#} within xsph of p; 
If there are nsph or more particles {q} then 

For each q in {#} repeat 
Merge equivalence classes to which p and q belong; 

Endrepeat; 
Endif; 

Endrepeat; 
Output equivalence classes C of Nmin or more particles. 

Following S. White, we have used a P3M-style grid of particle lists to speed up the process of finding the set of nearby particles {q}. 
Techniques for representing equivalence classes are given in Knuth (1968). This algorithm depends on three parameters: xsph, nsph, 
and ^min- The first two jointly determine a density characteristic of the clusters identified, 3nsph/47rxsph, which is roughly the local 
density near the surface of a cluster, smoothed on a scale of xsph. The third parameter, Nmin, sets a floor on the size of clusters found. 
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