
19
8 

7A
pJ

. 
. .

31
9.

 .
16

2N
 

The Astrophysical Journal, 319:162-179,1987 August 1 
© 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 

THE BIRTHRATE AND INITIAL SPIN PERIOD OF SINGLE RADIO PULSARS 

Ramesh Narayan 
Steward Observatory, University of Arizona 

Received 1986 November 4; accepted 1987 January 23 

ABSTRACT 
A statistical analysis of radio pulsar data is presented. Detailed account is taken of known selection effects 

in pulsar surveys, including the effects of scatter-broadening and period-dependent beaming factor. Two 
approaches are used: (1) a model-free analysis, based on a F/Fmax approach, with large statistical errors; and 
(2) an analysis based on a luminosity model that leads to much smaller formal errors. Neither approach 
assumes spin-down by dipole braking. The birthrate of pulsars in the Galaxy is estimated to be one pulsar in 
~56 yr, and the local rate in the solar neighborhood is estimated to be one pulsar in ~9 x 104 yr kpc-2. The 
present calculations confirm an earlier result, published by Vivekanand and Narayan in 1981, that many 
pulsars are born with initial periods as slow as 0.5 s, contrary to the usual belief that initial periods are 
~10 ms. The pulsars that are born slow typically have high magnetic fields, log [£(G)] > 12.5, where B is 
estimated assuming spin-down through dipole braking. Pulsars that are born fast usually have low fields. 
Three possibilities are discussed for the correlation between initial spin period and magnetic field: (1) the core 
of the progenitor star may lose angular momentum to the outer layers through magnetic coupling; (2) the 
majority of pulsars may be “recycled” through accretion spin-up in binary systems; and (3) the magnetic field 
may be built up after the neutron star is born, thus delaying the switch-on of a pulsar. If most pulsars are 
born slow, then their radio emission would be weak at birth, and this might explain why so few pulsars are 
detected in the centers of supernova remnants. 
Subject headings: pulsars — stars: evolution — stars: stellar statistics 

I. INTRODUCTION 

Ever since their discovery, radio pulsars have been the subject of numerous statistical analyses that have attempted to understand 
details of their birth, evolution and life history (see Manchester and Taylor 1977; Taylor and Stinebring 1986 for reviews). The 
earliest such analysis was the celebrated work of Gunn and Ostriker (1970), who with extremely scanty data (31 pulsars known at 
that time, only 14 with measured period derivatives) made remarkably durable deductions about the distribution and evolution of 
pulsars. Eight years later, with over 150 pulsars known, Taylor and Manchester (1977) made more reliable calculations. They 
obtained the distribution of pulsars in the Galaxy and the pulsar luminosity function, and also estimated the birthrate of pulsars in 
the Galaxy. Their birthrate estimate of one pulsar in ~6 yr was, however, a considerable embarrassment since it greatly exceeded 
the estimated deathrate of massive stars, the supposed progenitors of pulsars. Other independent analyses (e.g., Lyne 1981 ; Phinney 
and Blandford 1981) also gave similar estimates for the birthrate. 

The above studies neglected a crucial selection effect. The luminosity L of pulsars decreases with increasing period P, and so the 
mean age of a flux-limited sample of pulsars is significantly lower than that of an unbiased sample. Thus the birthrate estimated 
from a flux-limited sample tends to be higher than the true value. Vivekanand and Narayan (1981, hereafter VN; see also Narayan 
and Vivekanand 1981) allowed for this selection effect at the suggestion of J. H. Taylor (1981, private communication). Using an 
expanded data set that included observations from the Second Molonglo Survey (Manchester et al 1978), VN obtained a new 
birthrate estimate of one pulsar in ~ 20 yr in the Galaxy. 

In the last few years, there have been further developments. It is now recognized that there are several other selection effects that 
have been neglected in the past. In particular, various factors reduce the ability of pulsar surveys to detect short-period pulsars 
(P < 300 ms). Also, it now appears that the beaming factor /, which describes the probability that the beam from a randomly 
oriented pulsar would intersect Earth, may not be a constant ~0.2 as thought earlier, but may vary with the pulsar period P, 
increasing almost to unity for fast pulsars. Further, the distance scale to pulsars has been modified. Including some of these effects, 
Lyne, Manchester, and Taylor (1985, hereafter LMT) estimated the pulsar birthrate to be one in ~50 yr. Here we make an 
independent estimate of the birthrate, including some effects omitted by LMT, and utilizing a different luminosity model. 

The second issue that we focus on concerns the initial spin period, Ph of radio pulsars. The Crab pulsar, 0531 +21, is believed to 
have been born in the supernova explosion of 1054 ad that led to the formation of the Crab Nebula. Because a precise age estimate 
is available, the life history of this pulsar is known very well, and it is estimated that it was born with an initial period Pt » 16 ms. 
The Vela pulsar, 0833 — 45, in the Vela supernova remnant, and the pulsar, 1509 —58, in the remnant, MSH 15 — 52, are also 
believed to have been born with Pt of the same order, though with less certainty. The fact that these three youngest known pulsars 
were all born with short periods has been considered strong evidence that all pulsars are born spinning rapidly, with say -10 ms. 
This assumption was, however, questioned by VN who found from their statistical analysis, after allowing for the dependence of L 
on P, that the majority of pulsars may be born with Pt- of several hundred milliseconds. The result, which VN named “injection” 
(because pulsars are “injected” at intermediate periods), is surprising if true. If one assumes that main-sequence stars start off 
rotating rigidly and that they conserve angular momentum locally both during their evolution and during core collapse to a neutron 
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star, then one expects most pulsars to be born with P; < 1 ms, close to break-up (e.g. Hardorp 1974). To haveP^ > 500 ms requires 
that most of the angular momentum should be extracted before, during, or after the collapse. No persuasive agency has been 
proposed yet to do this. 

It is of course possible that VN’s analysis missed an important period-dependent selection effect. They did not include the 
variation of beaming factor/with P, but this acts in the direction of strengthening “injection” since it makes fast pulsars more 
visible. On the other hand, as mentioned above, there are several other selection effects which make fast pulsars harder to find, and if 
one of these effects were strong enough it might completely explain “ injection.” A major motivation for the present study is to check 
this possibility. All known and suggested P-dependent selection effects have been included in the calculations presented here. Our 
final conclusion is that these effects are too weak to explain away “injection,” and that the majority of pulsars are indeed born with 
slow periods. Chevalier and Emmering (1986) reached a similar conclusion based on an independent analysis of the pulsar data, as 
did Srinivasan, Bhattacharya, and Dwarakanath (1984) on the basis of an analysis of plerion statistics. 

As further confirmation, we find that there is a marked correlation of P¿ with pulsar magnetic field. High field pulsars are born 
slow much more often than low field pulsars. The fact that “ injection ” depends on a physical parameter such as the magnetic field 
appears to further support our contention that “ injection ” is not due to a statistical fluctuation or selection effect, but is a real 
physical effect. 

Section II of the paper discusses the basic theory behind the present analysis. This is essentially a recapitulation of the techniques 
developed by VN. Section III considers in detail all the selection effects of the major pulsar surveys, paying particular attention to 
those that depend on pulsar period. Section IV discusses the issue of a luminosity model for radio pulsars. The model of LMT, 
which was based on the work of Gunn and Ostriker (1970), is rejected in favor of a power-law model, which fits the data better. 
Section V describes the numerical results of the analysis, and § VI discusses their significance. 

A preliminary version of the present work was reported in Narayan (1987). 

II. THEORY 

We make the standard assumption that the pulsar distribution in the Galaxy can be written as a continuous function and that it 
can be factored in the form 

p(R, z, P, P, L)2nRdRdzdPdPdL = [pR(R)27rRdP][pz(z)dz][pi(^ P, L)dPdPdL] , (2.1) 

where R is the galactocentric radius, z is height above the Galactic plane, P is the pulsar period, P is the time derivative of P, and L is 
the pulsar luminosity. We normalize pR(R) and p2(z) so that the integrals over Galactic coordinates give unity. Thus, the function 
pt(P, P, L) (where t stands for “ true ”) describes the smoothed pulsar distribution that would be obtained if one could detect every 
pulsar in the Galaxy. The factorization assumed in equation (2.1) is only approximately valid since pulsars are born in the Galactic 
plane and move to higher z as they age. In fact, it is known that there is a positive correlation between the z-height of a pulsar and its 
period P, as well as its characteristic age t, defined by 

t = P/2P . (2.2) 

Hence, pt(P, P, L) cannot be independent of z. However, we believe that the error introduced by this simplification is not serious, as 
discussed in § VI. 

The luminosityL of a pulsar at distance d from Earth can be expressed in the form 

L = Sd2 , (2.3) 

where S is the radio flux received at Earth in a particular wavelength band. Following Taylor and Manchester (1977), we deal 
exclusively with L at 400 MHz, and express it in the practical units of mJy kpc2. 

We restrict our attention in this paper to the pulsars detected by four major 400 MHz radio surveys: Jodrell Bank Survey 
(Davies, Lyne, and Seiradakis 1972), U Mass-Arecibo Survey (Hulse and Taylor 1974), Second Molongo Survey (Manchester et al 
1978), and U Mass-NRAO Survey (Damashek, Taylor, and Hulse 1978). Recently, there have been other surveys at 400 MHz with 
improved sensitivity for pulsars with low luminosities and short periods: Princeton-NRAO Survey, Phase I (Dewey et al 1985), 
Phase II (Stokes et al 1985), Princeton-Arecibo Survey (Segelstein et al 1986). However, no period derivatives have been published 
for the new pulsars discovered, and therefore we are not in a position to include these surveys in our calculations. 

Let us describe the pulsars detected by the four surveys by means of a smooth distribution p0(P, P, L) (where o stands for 
“ observed ”). This function is related to the true distribution pf(P, P, L) by two factors : 

1. The solid angle swept out by the beam of a spinning pulsar is only a fraction of An. The mean pulse duty cycle of pulsars is 
~ 4%, which implies a beam half-power-width in the “ east-west ” direction (defined with respect to the rotation axis) of order ~ 14°. 
If the unknown north-south width is taken to be the same, and if the orientations of the rotation and magnetic axes are random in 
space, then the beaming factor/( = solid angle swept by pulsar beam/47c) will be/« 0.2 (Gunn and Ostriker 1970). However, several 
recent studies indicate that pulsar beams are elongated in the meridional direction (Narayan and Vivekanand 1982, 1983a, b; 
Narayan and Radhakrishnan 1983; see Narayan 1984 for a summary). Moreover, it seems that the ratio R of the NS to EW 
dimensions of the beam varies with pulsar period P as (Narayan and Vivekanand 1983fr) 

R « 1.8P-0,6 . (2.4) 

Thus, the beaming factor/is a function of P, with the variation shown in Figure 1. Note that/(P) > 0.2 over most of the range of 
pulsar periods. In fact, at short periods <0.1 s, /(P) « 1 in this model, which means that fast pulsars are potentially visible from all 
directions. 
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Pulsar Period P (s) 

Fig. 1.—Variation of the beaming factor/with pulsar period P for the beam elongation model of eq. (2.4) (Narayan and Vivekanand 1983h). The rotation and 
magnetic axes of the pulsar are assumed to be randomly oriented. 

2. Even if the beam points toward Earth, a pulsar would not be detected if it were fainter than the minimum detection limit of 
pulsar surveys, or if it were in a direction that has not been searched. We allow for this by introducing the following scale factor: 

n _ll pR(R)pz(z)RdRd<I>dz 
1 ’ ' ¡i'pR(R)pJz)RdRd<t>dz ’ 

(2.5) 

where the integral JJ in the numerator is over the whole Galaxy (<I> is galactocentric azimuthal angle), while the integral |j’ in the 
denominator is over only that part of the Galaxy where a pulsar with period P and luminosity L could have been detected by at least 
one of the four surveys included in the calculation. The computation of L) including all selection effects is somewhat involved, 
and we defer a discussion of it to § III. Note that ^(P, L) is related to the classic ratio; in fact [^(P, L)] 1 is equal to a 
weighted where the weight is the space density of pulsars in the Galaxy. 

Using the above two factors, we can now write 

pf(P, P, L)dPdPdL = [^(P, L)//(P)]p0(P, P, L)dPdPdL . (2.6) 

The total number of active single pulsars in the Galaxy is then estimated to be 

AL, 
=JJi 

pt{P, P, L)dPdPdL 
/If 

inP, L)//(P)]p0(P, P, L)dPdPdL * X WPi, Q/fiPt) (2.7) 

The final sum is obtained by replacing the smooth distribution function p0(P, P, L) by the actual pulsars detected by the four 
surveys with radio flux above the modeled minimum sensitivity limits of the surveys. Since we are interested in only single pulsars in 
this paper, binaries are excluded from consideration in the calculations. 

Consider now the current of pulsars, J(P), a useful quantity introduced by Phinney and Blandford (1981) and VN. This is defined 
to be the number of pulsars crossing per unit time from periods shorter than P to longer than P, i.e., 

J(P) = 
ÍÍ 

Pp,(P, P, L)dPdL . (2.8) 

To improve the statistics, it is more convenient to consider the average current in a period-interval, defined as 

J{P„ Pi) = 
(Pi 

(P~i 

^»T 
J(P)dP 

2   p ff j^(p,l)~ 
- Pô Jp, JJ L m . 

p0(P, P, L)dPdLdP 

1 P. -nP,, L¡) 

(Pi - Pi) t f(P.) 
(2.9) 

where the summation is restricted to pulsars with period P lying in the range between P, and P2 detected by the various surveys. 
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P (s) 

0 1 2 
P (s) 

Fig. 2.—(a) Schematic variation of the “current ” J(P) with P for a case where all pulsars are born with initial period P < Pb = 0.7 s and die with P> Pd= 1.3 s. 
The current equals the birthrate BRtot, shown by the dashed line, for the period range < P < Pd. (b) A case where = 1.3 s is greater thanPd = 0.7 s. Here J(P) 
lies below BRtot over the whole range of P. 

In steady state, J(P) measures the birthrate minus the deathrate of pulsars with period less than P, i.e., 

J(P) = J^P[BR(P) - DR(P)]dP , (2.10) 

where BR(P) and DR(P) are differential birthrates and deathrates per unit interval of P. Let all pulsars be born with P¡ < Pb and die 
with P > Pd. Figure 2 shows two possible cases. If Pd > Pb (Fig. 2a), then, between the periods Pb and Pd, J(P) is equal to the total 
pulsar birthrate BRtot, 

BRtot = 
Pb 

BR(P)dP = J(Pb, Pd). (2.11) 

This case is unlikely to be rigorously true in practice. For instance, the 1.5 ms pulsar, 1937 + 21, will almost certainly switch off 
before reaching the initial period, P; « 16 ms, of the Crab pulsar. If Pd < Pb (Fig. 2b), then all we have is a bound on BRtot,i.e., 

BRtot > J{Pi, Pi), (2.12) 
for any Pi, P2. Fortunately, as we show later, the pulsar birthrate is dominated by a class of high magnetic field pulsars. Therefore, if 
we choose Pb and Pd corresponding to these, the birthrate we estimate would fall short of the true value by only a small amount, and 
we could use J directly as an estimate of the total birthrate. 

It should be emphasized that the estimate of birthrate obtained through pulsar current makes no assumption at all regarding the 
mechanism of pulsar spin-down. We consider this a major improvement over other approaches, which invariably need to assume 
dipole braking. 

III. COMPUTATION OF THE SCALE FACTOR ./(/'. L) 
As shown in equation (2.5), the computation of the scale factor £P(P, L) involves integrals over the galactic density functions 

Pr(K), Pziff LMT, following the iterative methods of Large (1971), used recent data to obtain histograms of pR(R) and p.(z). The 
radial density function, shown in Figure 3a, appears to have a deficit of pulsars near the Galactic center, for R « 5 kpc. (The Sun is 
assumed to be at P = 10 kpc in these calculations.) However, it is not clear that this is a real effect since scatter-broadening 
drastically reduces the visibility of pulsars in this region of the Galaxy at 400 MHz. A recent 1400 MHz survey by Clifton and Lyne 
(1986) detected many new pulsars near the Galactic center, and the deficit may be less than supposed earlier. To keep matters simple, 
we fit a simple Gaussian to the data. This gives the normalized function 

Pr(R) -¿exp[- (3.1) 

where R is in kpc. [An exponential model may be preferable since the progenitors of pulsars are Population I stars in the Galaxy; 
however, it makes no difference for this paper since the results are quite insensitive to the precise functional form of pR(R).] Figure 3b 
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z (kpc) 
Fig. 3.—{a) The histogram shows the radial pulsar density, pR{R), estimated by LMT (1985). The smooth curve is the best-fit Gaussian, described by eq. (3.1). 

(b) Histogram of pz(z), estimated by LMT. The smooth curve is the best-fit Gaussian, described by equation (3.2). 

shows the histogram in z estimated by LMT, and this is again fitted to a Gaussian to give 

PzOO = 
1 

0.6l7T1/2 exp 
z 

ÓM 
(kpc)‘ (3.2) 

With the above normalizations, the numerator of equation (2.5) gives unity. 
To calculate the denominator of equation (2.5), we need detailed models of the sensitivities of the four surveys included in the 

calculation. Dewey et al (1984) give the following general formula for the minimum detection flux Smin of a survey (see also 
Vivekanand, Narayan, and Radhakrishnan 1982) 

Smin = ßs0\ 
Tr + Ts sky pw 11/2 

We(P-W)\ my (3.3) 

This formula is to be used over the region of sky covered by each survey. Tr is the receiver excess noise temperature, 7¡ky is the sky 
background temperature at the longitude / and latitude b of the particular line-of-sight, and is a suitable normalization constant. 
We is the equivalent width of the unbroadened pulse, and W is the measured pulse width, given by 

W2 = We
2 + Tsamp

2 + tDM
2 + Tscatt

2 , (3.4) 

where Tsamp is the broadening caused by the finite sampling time of the data, tdm is due to dispersion smearing, and Tscatt is due to 
scatter-broadening. S0 (mly) is the minimum detection limit for a pulsar in the center of the telescope beam in the ideal situation 
when W =We<P and Tsky Tr. Since pulsar surveys usually cover the sky in overlapping steps, there is a loss of efficiency for 
regions of sky that are off-center, and the factor ß allows for this. In the case of the Second Molongo Survey, the observations were 
conducted such that a constant length of data was analyzed for declinations ô < 30°, and twice that length was analyzed for ô > 30°. 
This introduces an extra factor of 1/21/2 in equation (3.3) for ö > 30°. 

Table 1 lists the various details of the four surveys, including the sky coverage and values of Tr and T0. The data have been taken 

TABLE l 
Parameters of the Jodrell Bank, U Mass-Arecibo, Second Molonglo, 

and U Mass-NRAO Surveys 

Parameter Jodrell Arecibo Molonglo NRAO 

Sky coverage   — 80</<115° 42° < / < 60° — 85° < <5 < 20° ¿>20° 
I b I < 7° \b \ <4° 

rr(K)   110 110 210 170 
T0 (K)   140 260 240 200 
Tsamp (ms)   80 33 40 33 
CDM   3.0 xlO"4 9.4 xlO-6 6.0 x 10“5, | b | < 18° 1.5 x 10~4 

3.0 x KT4, I b I > 18° 
ßS0 (mJy)   10 2 8 12 
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from Dewey et al. (1984) and LMT, and from the original papers. Manchester and Taylor (1981) list Tsky at 400 MHz for 330 pulsars. 
For the more recently discovered pulsars, we obtained ^sky from the 408 MHz all-sky map published by Haslam et al (1982). Using 
these estimates, the variation of ^sky with / and b (both expressed in degrees, with | /1 < 180°) was fitted to obtain the following simple 
model : 

7¡ky(/, h) = 25 + 275/Cl + (//42)2][1 + (h/3)2] . (3.5) 

The form of the model is identical to the one used by Taylor and Manchester (1977), but the parameters differ slightly. 
We assume that all pulsars have an intrinsic duty cycle of 4%, and hence we take 

We = 0.04P . (3.6) 

The values of Tsamp were taken from Dewey et al. (1984) and are listed in Table 1. 
The dispersion broadening tdm is of the form 

tdm — Com DM , (3.7) 
where DM is the dispersion measure (units: cm-3 pc) of a given pulsar, and CDM is a constant, listed in Table 1, that depends on the 
details of each survey. For any potential location of a pulsar in the Galaxy, DM is given by the following integral 

DM = 103 j*d ne(l)dl pc cm-3 , 

where ne(l) is the free electron density at distance / (kpc) along the line of sight to the pulsar, and d (kpc) is the total distance to the 
pulsar. We used the following model of LMT for the electron density at galactocentric coordinates R, z, (kpc): 

The scatter-broadening Tscatt 

ne(R, z) = 0.025 + 0.015 exp cm 
1 + R/10 

can be written in the form (Romani, Narayan, and Blandford 1986) 

Tscatt = 2.9 x 10_3(104CJV
2)6/5A22/5d11/5 ms 

(3.8) 

= 52(CJV
2)6/5dkpc

11/5 ms (at 400 MHz), (3.9) 

where the distance d to the pulsar is in kpc, the radio wavelength 2 of the survey is in meters, and CN
2(m~20/3) is a parameter that 

describes the mean electron density fluctuation power ône
2 in the line of sight (e.g., Rickett 1978). Cordes, Weisberg, and Boriakoff 

(1984) have shown that there is a smooth component of CN
2 in the Galaxy with a constant value, log (CN

2) = —3.5, and an 
additional clumpy component, restricted to |z| < 0.1 kpc, that peaks in the inner region of the Galaxy. Assuming that the second 
component is also smoothly distributed, we can approximately write 

CN
2 = 10-3-5 + l- £ CsU¥l m-20'3, (3.10) 

where Cscatt(/) is proportional to öne
2 of the second component at distance / along the line of sight. We have modeled this ône

2 to be a 
Gaussian as a function of galactocentric radius R (kpc) and optimized its normalization constant and scale length by means of a 
least-squares fit to the measured CN

2 listed by Cordes, Weisberg, and Boriakoff (1984). We then obtain the following model forCscatt 

Cscul(R, z) = 6.8 exp [- (R/3.5)2]m 20/3, | z | < 0.1 kpc 

= 0 , |z| > 0.1 kpc . (3.11) 

This model gives log (CN
2) ä — 3.5 for neaby pulsars, and log (CN

2) > 0 for pulsars in the inner Galaxy, consistent with the data. 
The only parameter remaining in equation (3.3) is ßS0, which was determined as follows. For each survey, a reduced flux 5red was 

calculated for every pulsar detected by that survey (compare with eq. [3.3]), 

where S is the actual measured flux. (In the case of the Second Molonglo Survey alone there is an additional factor of 21/2 for 
ö > 30° as discussed earlier.) A histogram of Sred has a peak at some intermediate value of Sred. The fall-off above the peak is due to 
the steep pulsar luminosity function (bright pulsars are much rarer than faint ones). The fall-off below the peak is because of the 
sensitivity limit of the survey. An approximate estimate of ßS0 can be obtained by selecting a value of iSred near the peak (see 
Vivekanand, Narayan, and Radhakrishnan 1982). Figure 4 shows the results for the four surveys considered here, and the 
corresponding values of ßS0 are listed in Table 1. 

The scale factors ^(P, L) were now computed over a grid in P and L using equation (2.5) by means of a Monte Carlo scheme. A 
point was selected at random in the Galaxy, and the numerator, which can be thought of as a weighted total volume, Vmax, was 
updated by adding the weight pR(R)pz(z) to it. For the denominator, the pulsar flux S = L/d2 was computed and for each P, the 
value of Smin(P) was calculated for the four surveys. If S was greater than Smin for any of the surveys, then the denominator, which is 
like a weighted volume, F(P, L), was updated by adding pR(R)pz(Z). This was done for all P, L in the grid. By repeating for a large 

PW 11/2 

We(P - W)_ 
mJy , (3.12) 
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Fig. 4.—(a) Histogram of Sred/0So for all pulsars detected in the Jodrell Bank Survey (Davies et al. 1972); ßS0 is taken to be 10 mJy. (b) U Mass-Arecibo Survey 
(Hulse and Taylor 1974), ßS0 = 2 mJy. (c) Second Molonglo Survey (Manchester et al 1978), ßS0 = 8 mJy. (¿) U Mass-NRAO Survey (Damashek et al. 1978), 
ßS0 = 12mJy. 

FIG. 5—Variation of log ^{P, L) with log L. Starting from the top, the curves correspond to P = 0.05 s, 0.1 s, 0.2 s, 0.4 s, 0.8 s, 1.6 s. 
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number of random pulsar positions in the Galaxy, approximations of Fmax and F(P, L) were obtained. Finally, the scale factors were 
calculated as 

<?(P, L) = VmJV(P, L) . (3.13) 

Since the majority of pulsars are weak and are detected only when they happen to be physically close to the Sun, the Monte Carlo 
scheme was arranged so that the volume of the Galaxy near the Sun was sampled much more often than distant parts of the Galaxy. 
The weights used in evaluating Vmax and V(P, L) were reduced by the oversampling factor in this region to compensate for this. 

Figure 5 shows the variation of ^(P, L) with P and L. There are two trends. First, ^(P, L) is very large at low values of L and 
tends to ~ 1 for high L. This reflects the variation with L of the effective Galactic volume surveyed and emphasizes the point that 
faint pulsars are much more important for statistical studies than bright ones. Second, <9%P, L) increases dramatically at short P, 
below a few hundred ms. This is because of the various period-dependent selection effects that go into the expression for the pulse 
width W in equation (3.4). 

In order to use the table of <9%P, L) it is important to restrict our attention to the subset of pulsars that were detected by the four 
major surveys with flux S greater than the modeled Smin (eq. [3.3]). When this criterion is applied, the list of single pulsars consists of 
220 objects. We have calculated <9%P, L) (needed in eq. [2.7]) and P^(P, L) (needed in eq. [2.9]) for these pulsars (except in a few 
cases where P in unmeasured). Figure 6 shows histograms of the distributions of these quantities. The long tail at high values of 
P^P, L) is disturbing. It implies that an estimate of birthrate obtained using J as defined in equation (2.9) will have low statistical 
reliability because, although we have 220 pulsars in our data base, the effective number of pulsars that contribute to our birthrate 
estimate is very small, possibly as small as 2 or 3. 

IV. LUMINOSITY MODEL AND THE SCALE FACTOR 9{P, P) 
The theory of § II and the scale factor ^(P, L) are valid for general pa and pt that are arbitrary functions of P, P, and L. Because of 

this generality, the theory is highly model-independent, but it also leads to poor statistics. In this section we introduce extra 
information in the form of a model for pulsar radio luminosity. The statistical significance of the results is thus greatly improved, 
though at the risk of introducing systematic errors. 

Lyne, Ritchings, and Smith (1975) showed that the luminosity L of a pulsar is not independent of P and P, but in fact has a 
power-law dependence on these parameters. This has been confirmed in later work by VN and Proszynski and Przybicien (1984). 
These studies showed that the correlation is statistically very significant and, although they used different data sets, all the studies 
obtained similar values for the power-law exponents. Rounding off the exponents, we write the model pulsar luminosity Lm for a 
given P and P as 

log Lm = 1.72 + [log (P-15/P
3)]/3 , (4.1) 

where Lm is in units of mJy kpc2 and P_15 = 1015P. Figure 7 shows the agreement between this model and the observed 
luminosities of pulsars, grouped in bins of 30 pulsars each. The x2 of the fit is 10, which is acceptable. 

Apart from the good fit, a model in which the radio luminosity Lm depends on P/P3 is appealing for two reasons. First, P/P3 is 

-1 0 1 2 3 4 5 6 
log (P_15S(P,L)) 

Fig. 6.—(a) Histogram of Sf{P, L) corresponding to the 220 pulsars included in the calculations, (b) Histogram of P_15Sf{P, L) for 204 of the 220 pulsars for 
whichP_15 = 1015P is available. 
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Fig. 1.—The luminosity model, eq. (4.1), compared to the data 

proportional to Ltot, the rate of loss of total rotational energy of the pulsar. Second, pulsars seem to switch off in the radio when 
P/P3 falls below a critical value ~ 10”16 s-3 (Taylor and Stinebring 1986), and it is satisfying to have Lmdepend on this quantity. 

Gunn and Ostriker (1970) originally proposed a different luminosity model, viz., 

LmcxP2, (4.2) 

where B, the pulsar magnetic field, is estimated assuming dipole spin-down torque, 

B ~ 1012(PP_15)1/2 G . (4.3) 

LMT used this model in their work. While the model may be physically plausible, it agrees rather poorly with the data. We prefer to 
use the model of equation (4.1) in our calculations. 

Although equation (4.1) is a good representation of the variation of mean luminosity with P, P, there is a very large dispersion of L 
around this mean. We allow for this by factoring the observed pulsar distribution in the form 

p0(P, P, L)dPdPdL = [Po(P, P)dPdP][>L(log L - log Lm)d log L] , (4.4) 

where pL is normalized so that it integrates to unity. The crucial assumption here is that the distribution of (log L-log Lm) is 
independent of P, P, which is reasonable since the dispersion of log L around the mean is remarkably constant for the different bins 
in Figure 7. The shape of the function pL is shown by the histogram in Figure 8, which combines the data on all pulsars. The 
distribution is quite symmetric around the mean, and we model it by means of the following function 

Pz/log L - log LJ = 0.2144{1 + cos [1.347(log L - log LJ]} , | log L - log Lm \ < 2.332 

= 0, I log L - log Lm I > 2.332. (4.5) 

The fit, shown in Figure 8, is good. 
The advantage with the factored form of equation (4.4) is that instead of requiring the set of observed pulsars to describe the 

three-dimensional function p0(P, P, L) as in §§ II and HI, we now require it to describe only the two-dimensional function p0(P, P). 
The dependence on L is taken care of through the luminosity model, equations (4.1) and 4.5). Statistically speaking, the results from 
this scheme should be far more reliable than with the earlier scheme. However, there is a greater danger of systematic errors creeping 
in from inadequacies in the luminosity model. 

Equation (2.8) now becomes modified to 

j(p) = jj Pmp, L)/m-]p0(p, p, DdPdL 

= j PmP, P)lf(P)]p0{P, P)dp , (4.6) 

where we have defined a new scale factor 

■np, P) <?(P, LKPog L - log Lm(P, P)-]d log L . (4.7) 
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Fig. 8.—The histogram shows the distribution of log L around the model luminosity log Lm. The smooth curve corresponds to eq. (4.5). 

The average current in a period-interval is now 

/(Pi, P2) « 
1 

(P2 - Pi) 

p.nPi, fid 
i f(Pi) 

(4.8) 

where, as before, the summation is restricted to pulsars with < P < P2- Similarly, Npsr is obtained by substituting ^(P¿, P*) for 
^(Pi, Li) in equation (2.7). . . . , 1 • u * 

Figure 9 shows histograms of the distributions of ^(P, P) and P^(P, P). Note that these histograms are much more compact 
than those in Figure 6, which makes a profound difference in the statistics. ... j u- 

It should be noted that although we have introduced a pulsar luminosity model in this section, we still have not assumed anything 
regarding the nature of pulsar spin-down. 

oo 
o 
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V. RESULTS 

It was seen in § II that there are two models for the beaming factorial) a constant factor,/ = 0.2; and (2) a variable factor,/(P), 
with the variation shown in Figure 1. Substituting these in equation (2.7), and using the list of 220 single pulsars detected by the four 
surveys with S > Smin, we estimate the total number of pulsars in the Galaxy to be 

f=f(P): JVpsr = (1.46 ± 0.34) x 105 , (5.1) 

/= 0.2: Afpsr = (2.35 ± 0.48) x 105 , (5.2) 

The error estimates correspond to 1 a deviations, <tn, and were estimated by (see VN) 

^iv2 « I WW • (5-3) 
i 

Note that the estimate of Npsr using/(P) is less than that using/ = 0.2. The bulk of the contribution to Npsr comes from pulsars 
with P ä 0.7-1 s. As seen in Figure 1,/(P) for these pulsars is ~0.3-0.4, and so the ratio is ~ 1.5-2. A similar ratio carries through in 
birthrate estimates as well. 

A problem with the above estimate of Npsr is that the observed sample of pulsars is mostly clustered near the Sun, and we need to 
assume a functional form for pR(R) in order to extrapolate to the whole Galaxy. As discussed in § III, pR(R) is not known well in the 
inner part of the Galaxy, and, in particular, it is not clear whether pR(R) cuts off for R < 5 kpc. Due to this uncertainty, it is 
worthwhile to estimate a local number density of pulsars in the solar vicinity. Such a number would be much more reliable, and, as 
emphasized by Blaauw (1985), it would be easier to make a comparison with the number density of pulsar progenitors such as 
massive stars, since these too are detected only in the solar vicinity. 

To compute the local number density, we restricted our attention to a square area in the Galactic disk of side 2 kpc, centered on 
the Sun. We computed scale factors S'loc(P, L) for this volume by restricting the R and Q> integrations in equation (2.5) to this range. 
We also truncated the earlier list of 220 pulsars to a new list of 62 pulsars that lie within the (2 x 2) kpc square. The areal density of 
pulsars in the solar vicinity is then given by 

Ntoc StJPh L¡)/f(P,) kpc-2 , (5.4) 
i 

where the factor of | is to convert from an area of 4 kpc2 to 1 kpc2, and the summation is over the shortened list of 62 pulsars. We 
thus obtain 

/=/(P): Nloc = 152 + 35 kpc-2 , (5.5) 

/= 0.2: Vloc = 243 ± 50 kpc-2 . (5.6) 

Comparing with equations (5.1), (5.2), we see that the effective area of the Galaxy is 

Ac{{ æ 103 kpc2 . (5.7) 

This is the area that would be occupied if all the pulsars in the Galaxy were spread out into a uniform sheet with number density 
equal to the solar value. The precise value of Aef{ depends on the model used for pR(R). 

Coming now to pulsar current and birthrate, we note that, in addition to the two models for / there are also two models for the 
scale factor, viz., £f(P, L) (§ III) and P) (§ IV). [We did not need to introduce ^(P, P) for calculating NpsT since the statistical 
errors there were quite acceptable.] Figure 10 shows the calculated current J(Pi, P2) for the four cases. The current in each bin 
corresponds to choosing Px and P2 to be the lower and upper end of the range of P in that bin. The error bars correspond to 1 <7 
limits, calculated in a manner similar to equation (5.3). The ranges of the bins were selected in order to have as much resolution as 
possible along the P axis without being swamped by the statistical noise. The range P < 0.15 s was eliminated because selection 
effects are strongest here, and it was not clear that these had been allowed for adequately. 

In all the figures, the current has a maximum in the period range extending from P ä 0.5-0.7 s to P « 1.5-2.0 s. Choosing the 
range of P corresponding to the maximum in J, and assuming that this range extends from Pb to Pd as discussed in § II, we can 
estimate the birthrate of pulsars through equation (2.11). The results are listed in Table 2. The four estimates of birthrate range from 
one pulsar in ~ 20 yr to one in ~ 60 yr, the preferred estimate being 

BRtot = 1 pulsar in ~56 ± 9 yr , (5.8) 

TABLE 2 
Estimates of Total and Local Pulsar Birthrate in the Galaxy 

Beaming Factor Scale Factor Pb(s) Pd{s) Birthrate 

f(P)   y(P,L) 0.7 2.0 0.034 +0.025 yr“1 

^{P,P) 0.5 1.6 0.018 ±0.003 yr"1 

0.2   ^{P,L) 0.7 2.0 0.050 ± 0.037 yr"1 

^{P,P) 0.5 1.6 0.029 ± 0.004 yr"1 

f{P)   ^i0C{P, L) 0.7 2.0 (3.4 ± 2.5) x 10"5 yr"1 kpc"2 

yi0C{P, P) 0.5 1.6 (1.2 ± 0.6) x 10"5 yr"1 kpc“2 
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P (s) P (s) 

P (s) P (s) 
Fig. 10.—{a) Pulsar current J estimated using the luminosity model scales P) and the variable beaming factor/(P) of Fig. 1. (b) With ^(P, P) and a 

constant beaming factor/ = 0.2. (c) With the model-independent scales £f(P, L) and/(P). (d) With y{P, L) and/= 0.2. 

obtained using/(P) and ^(P, P). The values obtained with ^(P, L) and ^(P, P) are consistent with each other, but the former has 
significantly larger statistical errors, as expected. Also, the birthrate estimates with variable/(P) are smaller by ~35% than those 
with constant/ = 0.2, just as with the estimates of ATpsr. 

A local areal pulsar current P2) in the solar vicinity was also calculated, using the local scales ^^(P, L) and derived 
^loc(P, P). The results are shown in Figure 11 and Table 2. Our best estimate of a local areal pulsar birthrate is 

BRloc = 1 pulsar per ~9^° x 104 yr kpc"2 . (5.9) 

This is somewhat lower than the estimate of Blaauw (1985), who gives BR1(,C = one pulsar per ~(4 + 2) x 104 yr kpc 2. Blaauw has 
made the important point that a comparison between the local pulsar birthrate and the local rate of formation/death of massive 
stars might tightly constrain the mass range of pulsar progenitors. 

We come now to an effect that was highlighted by VN. All the cases in Figures 10 and 11 show that the pulsar current reaches its 
peak only at periods >0.5 s, implying that many pulsars are born with such long periods. This surprising result contradicts the 

Cf 
o 
Q* 

O 

cu 

I 
0 
a 
¿í 

1 

P (s) 

Fig. 11.—(a) Local pulsar current J in the solar vicinity with //(P, P) and f(P). (b) With .9'(P, L) and/(P). 
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usual picture that pulsars are born with initial periods ä 10 ms. VN named this phenomenon “injection,” since pulsars are 
apparently being “injected” midstream into the pulsar “current.” The first reaction to the eifect is that there may be some selection 
effect which has not been included in the calculation. Several suggestions have been made as to possible sources of error. Dewey et 
al (1984) pointed out that VN had not allowed for the finite sampling time (Tsamp in § III) of the surveys. Vivekanand, Narayan, and 
Radhakrishnan (1982) considered the effect of dispersion smearing, while Manchester, D’Amico, and Tuohy (1985) argued that 
scatter-broadening would be important. All these effects have been included in the present calculation (see eq. [3.4]), and 
“injection” evidently survives with high significance. As further confirmation, we see that “injection” is present even in the local 
current calculation, which is restricted to nearby pulsars for which dispersion and scatter-broadening are negligible. Another 
suspect could be the luminosity model, which might overestimate the luminosity of fast pulsars, assuming thereby that they are 
visible over a larger fraction of the Galaxy than in reality. We test and reject this possibility in § VI. Also, note that “injection” is 
present even with the calculation using L), where no luminosity model is assumed. 

The existence of “ injection ” implies that a large fraction of radio pulsars are born spinning rather slowly. This is in conflict with 
the usual assumption that (1) the material in the core of the progenitor star retains the angular momentum it had at the birth of the 
star because of the so-called /¿-barriers that prevent the transport of angular momentum (e.g., Fricke and Kippenhahn 1972), and 
that (2) this angular momentum is conserved during collapse. Such a picture leads to an initial period Pt < 1 ms (e.g., Hardorp 
1974). To explain > 0.5 s, the stellar core must lose nearly all its angular momentum before becoming a pulsar. It is possible that 
the core couples in some way to the outer layers of the presupernova star, or the ejecta during the supernova explosion. Magnetic 
coupling is a strong possibility, and so we study injection as a function of the pulsar magnetic field. 

Magnetic fields B were estimated through the dipole braking formula, equation (4.3), and the pulsars were divided into two 
groups—high-ß and low-ß. Figure 12 shows the variation of pulsar current with P for the two groups. “ Injection ” is seen to be very 
pronounced in the high-ß sample and virtually absent in the low-ß sample. This would appear to rule out any P-dependent 
selection effect as the cause of “ injection,” since the selection effect would have to depend on P, which is extremely unlikely. It seems 
more reasonable to accept that “ injection ” is a real effect and that it is tied in some way to the pulsar magnetic field. 

VI. DISCUSSION 

Based on the analysis presented in this paper, our best estimate of the Galactic pulsar birthrate is one pulsar in ~56 yr. This rate 
is significantly lower than the estimates of a few years back, but it is consistent with more recent conclusions (Vivekanand 1984; 
LMT). Three effects have contributed to the reduction in birthrate: 1. The inclusion of the luminosity selection effect (inverse 

Fig. 12.—(a) Pulsar current J for pulsars with log B > 12.1 calculated using ^(P, P) and/(P). (b) log B < 12.1, £f(P, P),f{P). (c) log B > 12.1, with ^(P, L) and 
/(n(^) log p< 12.1, ^(p,L),/(n 
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correlation of L with P) reduces the birthrate by a factor ~3. 2. The inclusion of a variable beaming factor (Fig. 1) reduces the 
birthrate by a factor ~ 1.5-2. 3. A modified distance scale introduced by LMT reduces the birthrate by a factor < 1.5. 

Many selection effects were included in the present calculation, but one wonders if there may be other important effects that we 
are unaware of. LMT included an additional reduction in the birthrate by a factor of 1.5 to allow for errors in distance estimates. 
(There is a similar effect from luminosity variability.) This is, however, cancelled by yet another effect that we have ignored. In 
estimating the sensitivity limits of the four surveys, we have been liberal and used a somewhat lower value of ßS0 than indicated by 
the data (see Fig. 4). This was done so that enough pulsars would survive in the data base to provide reasonable statistics. However, 
it means that at the low flux end there are more pulsars in the Galaxy than we estimate, and so our birthrate estimate will need to be 
revised upward. 

The discussion in § II indicated that our estimate of birthrate is technically only a lower limit since the assumption that Pd > Pb is 
not likely to be valid. There is however a mitigating circumstance. As seen in Figure 12, the pulsar birthrate is largely dominated by 
high-B pulsars. In fact, half the pulsar current is carried by less than 10% of high-B pulsars in the observed sample. These pulsars do 
not die until they reach periods >2 s. Hence, the birthrate estimates in Table 2 calculate the full contribution of these pulsars. Some 
low-B pulsars probably die with P < 1 s, due to field decay, and our birthrate calculation underestimates the contribution from 
these. However, since these form a minority, the overall error is probably small. Similarly, our calculation completely neglects the 
contribution from millisecond pulsars since these never spin down to the slow periods that we have considered. However, most 
millisecond pulsars appear to be in binaries, which are not considered in this paper, and in any case their birthrate appears to be 
significantly lower than that for single pulsars (Narayan 1987). 

Since the birthrate estimate is dominated by a few observed high-B pulsars, a serious worry is whether there could be a 
population of pulsars with still higher B that is missing in the observed sample. This issue was raised by Phinney and Blandford 
(1981) who showed that the number of pulsars falls off rather slowly as a function of P and suggested that the integral of birthrate 
over P may not converge. To assess the importance of this, we have calculated the birthrate as a function of magnetic field. For each 
pulsar, the initial magnetic field Bt was calculated through the formula 

B? = 1039PP[1 + (P/PVíJÍG)2 , (6.1) 

where tB is the field decay time scale. Figure 13 shows the pulsar birthrate per unit log Bf as a function of log Bj for two choices of tBf 
viz., 107 yr (LMT) and 2 x 107 yr (Krishnamohan 1987). A power-law fit of the variation at high B¿ gives for both values of tB 

dBR/d log Bj ä 0.065(1012 G/Bf) yr"1 , Bf > 2 x 1012 G . (6.2) 

The fit of this functional form to the histograms in Figure 13 is satisfactory. The important point to note is that the integral of BR 
over Bt is convergent. The integral gives a total birthrate of one pulsar in ~71 yr, which is consistent with the other estimates 
obtained in this paper. If equation (6.2) is a true representation of the initial magnetic field distribution, then only about 10% of 
pulsars are born with fields greater than the highest fields (~ 1013-2 G) observed so far, and so the error from missing these is small. 

An important result of this paper is the strong confirmation of pulsar “injection.” The effect is seen with all the different 
combinations of data analysis attempted (Fig. 10). Moreover, the correlation seen between “injection” and magnetic field strength 
(Fig. 12) makes any explanation in terms of a selection effect unlikely. Independent evidence in favor of “injection” has been 
presented by Stokes et al (1985) and Chevalier and Emmering (1986). However, several other papers have argued that, although the 
data may be consistent with “injection,” they do not require it (e.g., Manchester, D’Amico, and Tuohy 1985; LMT ; Clifton and Lyne 
1986). We make an important comment on this question. Most of the pulsar current, and hence birthrate, is really associated with 
high magnetic field objects, i.e., pulsars with high P. This is shown by Figure 12 and is further made clear by Figure 14 where we see 
that at any given P, the contribution of a pulsar to the current, viz., P6f(P, P)/f (P), increases rapidly with P. Because of this effect, if 
“ injection ” were present only in the subset of high field pulsars, it could be easily missed if one gave equal weight to all observed 
pulsars, as is usually done. The analysis presented in this paper starts off by converting the observed sample of pulsars to a 
representation of the true pulsar distribution using the scale factors ^(P, L) and ^(P, P). These numbers are then multiplied by P to 

Fig. 13.—(a) Histogram of pulsar current in the period range 0.5-1.6 s as a function of initial magnetic field assuming tB = 107 yr. (b) Same as {a), for 
tB = 2 x 107 yr. The dashed lines correspond to eq. (6.2). 
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Fig. 14.—Variation of log [F-15^(F, F)//'(P)] with log (P-15). Starting from the top, the curves correspond to P =1.6 s, 0.8 s, 0.4 s, 0.2 s, 0.05 s, 0.1 s. The 
reversal in the trend at short periods is because of period-dependent selection effects. 

calculate the current. The net effect is that at each P, the high-P pulsars are weighted much more strongly than the low-P pulsars 
(Fig. 14), and hence “injection” is seen very strikingly. We feel our approach is more appropriate when investigating questions 
related to the Galactic pulsar population. Other applications, such as the study of selection effects, are better carried out using the 
unweighted sample of observed pulsars. 

A recurring theme has been the poor statistical reliability of numerical estimates, and this is particularly true of “ injection.” The 
calculation using the scales ^(P, L) makes no assumptions at all regarding pulsar luminosity or spin-down mechanism, but instead 
allows the measured luminosity of each pulsar to determine the weight of that pulsar through a F/Fmax-type argument. However, 
the evidence for “ injection ” in this calculation is only at the level of a couple of standard deviations. The statistics are much better 
when the luminosity model is introduced through the scales ^(P, P). In this case, “injection” stands out with high significance, but 
one wonders if it could be an artifact introduced through the luminosity model. A look at Figure 7 shows that the model tends to 
overestimate pulsar luminosities at high P/P3. Most of the pulsars at this end have short P, and so the effect is to underestimate the 
pulsar current at short P. To assess the importance of this, we have repeated the calculations with another luminosity model, shown 
by Figure 15. The feature of this model is that Lm is taken to be constant at high P/P3, as Taylor and Stinebring (1986) and Stollman 
(1986) suggest. This is probably too extreme since the data do show a rising trend in this region of the figure. However, even with this 
luminosity model, “injection” continues to be indicated by the data, as shown in Figure 16. It would appear that an extremely 
drastic modification of the luminosity model will be needed before “injection” could be made to disappear. Stollman (1986) claims 
that no “injection” is required with the modified luminosity function; however, the comments in the previous paragraph on the 
importance of using the appropriate weighting function probably apply to his calculation. 

Yet another selection effect may arise from the variation of pulsar scale height with period (A. G. Lyne and J. J. Goodman, private 
communication). It is known that fast pulsars have a smaller scale height than slow pulsars, but the results described so far assumed 
a common scale height for all pulsars. However, numerical calculations show that “injection” in fact becomes somewhat stronger 
when the variation of scale height is allowed for. 

Summing up all the evidence, we would say that there is strong (though by no means overwhelming) evidence for “injection.” The 
question then is: why are many pulsars born with slow periods? We feel that the correlation between “injection” and pulsar 
magnetic field is an important clue, and the explanations we offer are based on this. 

It is usual to assume that both angular momentum and magnetic flux are conserved during the collapse of the stellar core in a 
supernova explosion. Hence the initial period Pi and magnetic field R* of a pulsar directly reflect the spin and field strength before 
collapse. A thorny issue in stellar physics has been the question of whether the core of a star can lose angular momentum during the 
life of the star. To our knowledge, this has not been settled. Convection is considered a likely source of viscosity in stellar interiors, 
but magnetic fields could also be important. If the dominant mechanism of angular momentum transport is magnetic coupling 
between the core and outer layers of the star, then it is natural to expect that stars with higher magnetic fields in their interiors 
would have slower rotating cores, and this could explain “injection.” The loss of angular momentum could also take place during 
the supernova explosion, after the neutron star has formed, but this seems less likely. The magnetic energy of a pulsar with 
B « IO12*5 G is only EB « B2r3 æ 1043 ergs (r » 10 km is the neutron star radius), whereas the rotational energy of a pulsar with 
P « 10 ms is £rot æ Mr2Q2 « 1051 ergs. It is therefore hard to imagine the field having a strong dynamical influence during the 
short time available during a supernova explosion. (It is possible to get around this argument by saying that the magnetic field may 
wind up as a result of the rapid spin of the newly formed neutron star and reach a much higher field strength than 1012 5 G, thus 
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Fig. 15.—An alternative luminosity model, fitted to the same data as in Fig. 7. The model L was constrained to be constant for high values of P_ 15/P
3. The other 

two straight line segments were adjusted so as to minimize the residuals between the model and the data. 

P (s) p (s) 

Fig. 16.—(a) Pulsar current J for pulsars with log B > 12.1 calculated with the luminosity model of Fig. 15 and using Sf(P, P) and/(P). (ft) log B < 12.1, 
Sf (P,P),f(P).(c)\ogB > 12.1, y(P, P),f = 0.2. (d) log B < 12.1, y(P, P),f = 0.2. 
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becoming dynamically important.) Since the preexplosion core is larger in radius than the neutron star by a factor ~ 103, both Q 
and B would be less by ~ 106. Thus, the ratio EB/Erot would be larger by -103 and the two energies would be more nearly equal. 
Also, any magnetic viscosity would be able to act over a much longer time, essentially the lifetime of the star. In view of the evidence 
for pulsar “injection,” a more careful analysis of magnetic coupling and angular momentum transport in massive main-sequence 
stars may be worthwhile. 

Another scenario that may explain “injection” is binary “recycling.” Most massive stars are found in binary systems. If the 
asymmetry of supernova explosions is small, these systems are expected to stay bound after the first explosion. It is believed that, as 
the second star evolves, it transfers matter to its companion neutron star and spins up the latter. For Eddington-limited accretion, 
the neutron star is quickly spun up to an equilibrium period Peq given by (Smarr and Blandford 1976; Srinivasan and van den 
Heuvel 1982) 

Peq * 0.9£12
6/7 s , (6.3) 

where B = 1012B12 G is its dipole magnetic field. When the second star finally explodes as a supernova, the binary is disrupted, 
releasing a new neutron star with presumably a short period, and the “ recycled ” old neutron star with Pt = Peq (Radhakrishnan 
and Srinivasan 1981 ; Alpar et al 1982; Radhakrishnan 1982). The “ recycled ” neutron stars would show a correlation between their 
magnetic fields and initial periods very similar to that indicated by the pulsar rate (although we will need to invoke super-Eddington 
accretion in order to fit the observed pulsar periods). In this scenario it would appear that the “ injected ” pulsars can form at most 
half of the neutron star population, whereas the pulsar data seem to require a somewhat larger fraction. One explanation could be 
that in the majority of binaries the second star, which is the less massive of the two, falls in the mass range ~ 6-8 M©, and undergoes 
total disruption through degenerate carbon burning, leaving no compact remnant (Iben and Renzini 1983). Another problem with 
the above “recycled” neutron star scenario is that it requires most binary systems to remain bound after the first explosion. These 
systems would go through an X-ray phase during accretion spin-up. The birthrate of massive X-ray binaries (~ 1 in 103-4 yr) is, 
however, far short of the pulsar birthrate, and it may be necessary to invoke X-ray silent accretion in most of these systems. 

A third explanation of “injection” would be to invoke late switch-on of the pulsar magnetic field, in the manner suggested by 
Blandford, Applegate, and Hernquist (1983). In this picture, the neutron star is born with a small seed magnetic field, which is 
amplified by a thermoelectric phenomenon associated with the cooling flux. Thus, the neutron star is initially silent in its radio 
output, and switches on as a radio pulsar only after the field has grown sufficiently, by when the pulsar is spinning more slowly. If it 
turns out that it takes longer to generate high magnetic fields than low fields, then it would be possible to explain the correlation 
between “ injection ” and magnetic field. 

Whatever may be the cause of “ injection,” one effect of the phenomenon is that newly born pulsars will emit more weakly in the 
radio than thought earlier, because of the luminosity model, equation (4.1), which has a strong dependence on the pulsar period. 
This could have important consequences for pulsar-supernova associations. A longstanding puzzle has been why out of over 100 
shell-type supernova remnants in the Galaxy, only one (MSH 15-52) has a detected pulsar in its center. This is very hard to explain if 
all of these remnants had pulsars as bright as the Crab or Vela. However, if most of them contain slow, weak pulsars, the situation 
would be less paradoxical. A careful quantitative analysis of this question is now needed. Late switch-on of pulsars is another 
possibility for explaining the rarity of pulsar-supernova associations (Phinney and Blandford 1981 ; VN). 
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